| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * fs/dax.c - Direct Access filesystem code | 
 |  * Copyright (c) 2013-2014 Intel Corporation | 
 |  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> | 
 |  * Author: Ross Zwisler <ross.zwisler@linux.intel.com> | 
 |  */ | 
 |  | 
 | #include <linux/atomic.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/buffer_head.h> | 
 | #include <linux/dax.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/genhd.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/memcontrol.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/uio.h> | 
 | #include <linux/vmstat.h> | 
 | #include <linux/pfn_t.h> | 
 | #include <linux/sizes.h> | 
 | #include <linux/mmu_notifier.h> | 
 | #include <linux/iomap.h> | 
 | #include <asm/pgalloc.h> | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/fs_dax.h> | 
 |  | 
 | static inline unsigned int pe_order(enum page_entry_size pe_size) | 
 | { | 
 | 	if (pe_size == PE_SIZE_PTE) | 
 | 		return PAGE_SHIFT - PAGE_SHIFT; | 
 | 	if (pe_size == PE_SIZE_PMD) | 
 | 		return PMD_SHIFT - PAGE_SHIFT; | 
 | 	if (pe_size == PE_SIZE_PUD) | 
 | 		return PUD_SHIFT - PAGE_SHIFT; | 
 | 	return ~0; | 
 | } | 
 |  | 
 | /* We choose 4096 entries - same as per-zone page wait tables */ | 
 | #define DAX_WAIT_TABLE_BITS 12 | 
 | #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) | 
 |  | 
 | /* The 'colour' (ie low bits) within a PMD of a page offset.  */ | 
 | #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1) | 
 | #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT) | 
 |  | 
 | /* The order of a PMD entry */ | 
 | #define PMD_ORDER	(PMD_SHIFT - PAGE_SHIFT) | 
 |  | 
 | static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; | 
 |  | 
 | static int __init init_dax_wait_table(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) | 
 | 		init_waitqueue_head(wait_table + i); | 
 | 	return 0; | 
 | } | 
 | fs_initcall(init_dax_wait_table); | 
 |  | 
 | /* | 
 |  * DAX pagecache entries use XArray value entries so they can't be mistaken | 
 |  * for pages.  We use one bit for locking, one bit for the entry size (PMD) | 
 |  * and two more to tell us if the entry is a zero page or an empty entry that | 
 |  * is just used for locking.  In total four special bits. | 
 |  * | 
 |  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE | 
 |  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem | 
 |  * block allocation. | 
 |  */ | 
 | #define DAX_SHIFT	(4) | 
 | #define DAX_LOCKED	(1UL << 0) | 
 | #define DAX_PMD		(1UL << 1) | 
 | #define DAX_ZERO_PAGE	(1UL << 2) | 
 | #define DAX_EMPTY	(1UL << 3) | 
 |  | 
 | static unsigned long dax_to_pfn(void *entry) | 
 | { | 
 | 	return xa_to_value(entry) >> DAX_SHIFT; | 
 | } | 
 |  | 
 | static void *dax_make_entry(pfn_t pfn, unsigned long flags) | 
 | { | 
 | 	return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT)); | 
 | } | 
 |  | 
 | static bool dax_is_locked(void *entry) | 
 | { | 
 | 	return xa_to_value(entry) & DAX_LOCKED; | 
 | } | 
 |  | 
 | static unsigned int dax_entry_order(void *entry) | 
 | { | 
 | 	if (xa_to_value(entry) & DAX_PMD) | 
 | 		return PMD_ORDER; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned long dax_is_pmd_entry(void *entry) | 
 | { | 
 | 	return xa_to_value(entry) & DAX_PMD; | 
 | } | 
 |  | 
 | static bool dax_is_pte_entry(void *entry) | 
 | { | 
 | 	return !(xa_to_value(entry) & DAX_PMD); | 
 | } | 
 |  | 
 | static int dax_is_zero_entry(void *entry) | 
 | { | 
 | 	return xa_to_value(entry) & DAX_ZERO_PAGE; | 
 | } | 
 |  | 
 | static int dax_is_empty_entry(void *entry) | 
 | { | 
 | 	return xa_to_value(entry) & DAX_EMPTY; | 
 | } | 
 |  | 
 | /* | 
 |  * true if the entry that was found is of a smaller order than the entry | 
 |  * we were looking for | 
 |  */ | 
 | static bool dax_is_conflict(void *entry) | 
 | { | 
 | 	return entry == XA_RETRY_ENTRY; | 
 | } | 
 |  | 
 | /* | 
 |  * DAX page cache entry locking | 
 |  */ | 
 | struct exceptional_entry_key { | 
 | 	struct xarray *xa; | 
 | 	pgoff_t entry_start; | 
 | }; | 
 |  | 
 | struct wait_exceptional_entry_queue { | 
 | 	wait_queue_entry_t wait; | 
 | 	struct exceptional_entry_key key; | 
 | }; | 
 |  | 
 | /** | 
 |  * enum dax_wake_mode: waitqueue wakeup behaviour | 
 |  * @WAKE_ALL: wake all waiters in the waitqueue | 
 |  * @WAKE_NEXT: wake only the first waiter in the waitqueue | 
 |  */ | 
 | enum dax_wake_mode { | 
 | 	WAKE_ALL, | 
 | 	WAKE_NEXT, | 
 | }; | 
 |  | 
 | static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas, | 
 | 		void *entry, struct exceptional_entry_key *key) | 
 | { | 
 | 	unsigned long hash; | 
 | 	unsigned long index = xas->xa_index; | 
 |  | 
 | 	/* | 
 | 	 * If 'entry' is a PMD, align the 'index' that we use for the wait | 
 | 	 * queue to the start of that PMD.  This ensures that all offsets in | 
 | 	 * the range covered by the PMD map to the same bit lock. | 
 | 	 */ | 
 | 	if (dax_is_pmd_entry(entry)) | 
 | 		index &= ~PG_PMD_COLOUR; | 
 | 	key->xa = xas->xa; | 
 | 	key->entry_start = index; | 
 |  | 
 | 	hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS); | 
 | 	return wait_table + hash; | 
 | } | 
 |  | 
 | static int wake_exceptional_entry_func(wait_queue_entry_t *wait, | 
 | 		unsigned int mode, int sync, void *keyp) | 
 | { | 
 | 	struct exceptional_entry_key *key = keyp; | 
 | 	struct wait_exceptional_entry_queue *ewait = | 
 | 		container_of(wait, struct wait_exceptional_entry_queue, wait); | 
 |  | 
 | 	if (key->xa != ewait->key.xa || | 
 | 	    key->entry_start != ewait->key.entry_start) | 
 | 		return 0; | 
 | 	return autoremove_wake_function(wait, mode, sync, NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * @entry may no longer be the entry at the index in the mapping. | 
 |  * The important information it's conveying is whether the entry at | 
 |  * this index used to be a PMD entry. | 
 |  */ | 
 | static void dax_wake_entry(struct xa_state *xas, void *entry, | 
 | 			   enum dax_wake_mode mode) | 
 | { | 
 | 	struct exceptional_entry_key key; | 
 | 	wait_queue_head_t *wq; | 
 |  | 
 | 	wq = dax_entry_waitqueue(xas, entry, &key); | 
 |  | 
 | 	/* | 
 | 	 * Checking for locked entry and prepare_to_wait_exclusive() happens | 
 | 	 * under the i_pages lock, ditto for entry handling in our callers. | 
 | 	 * So at this point all tasks that could have seen our entry locked | 
 | 	 * must be in the waitqueue and the following check will see them. | 
 | 	 */ | 
 | 	if (waitqueue_active(wq)) | 
 | 		__wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key); | 
 | } | 
 |  | 
 | /* | 
 |  * Look up entry in page cache, wait for it to become unlocked if it | 
 |  * is a DAX entry and return it.  The caller must subsequently call | 
 |  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry() | 
 |  * if it did.  The entry returned may have a larger order than @order. | 
 |  * If @order is larger than the order of the entry found in i_pages, this | 
 |  * function returns a dax_is_conflict entry. | 
 |  * | 
 |  * Must be called with the i_pages lock held. | 
 |  */ | 
 | static void *get_unlocked_entry(struct xa_state *xas, unsigned int order) | 
 | { | 
 | 	void *entry; | 
 | 	struct wait_exceptional_entry_queue ewait; | 
 | 	wait_queue_head_t *wq; | 
 |  | 
 | 	init_wait(&ewait.wait); | 
 | 	ewait.wait.func = wake_exceptional_entry_func; | 
 |  | 
 | 	for (;;) { | 
 | 		entry = xas_find_conflict(xas); | 
 | 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) | 
 | 			return entry; | 
 | 		if (dax_entry_order(entry) < order) | 
 | 			return XA_RETRY_ENTRY; | 
 | 		if (!dax_is_locked(entry)) | 
 | 			return entry; | 
 |  | 
 | 		wq = dax_entry_waitqueue(xas, entry, &ewait.key); | 
 | 		prepare_to_wait_exclusive(wq, &ewait.wait, | 
 | 					  TASK_UNINTERRUPTIBLE); | 
 | 		xas_unlock_irq(xas); | 
 | 		xas_reset(xas); | 
 | 		schedule(); | 
 | 		finish_wait(wq, &ewait.wait); | 
 | 		xas_lock_irq(xas); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * The only thing keeping the address space around is the i_pages lock | 
 |  * (it's cycled in clear_inode() after removing the entries from i_pages) | 
 |  * After we call xas_unlock_irq(), we cannot touch xas->xa. | 
 |  */ | 
 | static void wait_entry_unlocked(struct xa_state *xas, void *entry) | 
 | { | 
 | 	struct wait_exceptional_entry_queue ewait; | 
 | 	wait_queue_head_t *wq; | 
 |  | 
 | 	init_wait(&ewait.wait); | 
 | 	ewait.wait.func = wake_exceptional_entry_func; | 
 |  | 
 | 	wq = dax_entry_waitqueue(xas, entry, &ewait.key); | 
 | 	/* | 
 | 	 * Unlike get_unlocked_entry() there is no guarantee that this | 
 | 	 * path ever successfully retrieves an unlocked entry before an | 
 | 	 * inode dies. Perform a non-exclusive wait in case this path | 
 | 	 * never successfully performs its own wake up. | 
 | 	 */ | 
 | 	prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE); | 
 | 	xas_unlock_irq(xas); | 
 | 	schedule(); | 
 | 	finish_wait(wq, &ewait.wait); | 
 | } | 
 |  | 
 | static void put_unlocked_entry(struct xa_state *xas, void *entry, | 
 | 			       enum dax_wake_mode mode) | 
 | { | 
 | 	if (entry && !dax_is_conflict(entry)) | 
 | 		dax_wake_entry(xas, entry, mode); | 
 | } | 
 |  | 
 | /* | 
 |  * We used the xa_state to get the entry, but then we locked the entry and | 
 |  * dropped the xa_lock, so we know the xa_state is stale and must be reset | 
 |  * before use. | 
 |  */ | 
 | static void dax_unlock_entry(struct xa_state *xas, void *entry) | 
 | { | 
 | 	void *old; | 
 |  | 
 | 	BUG_ON(dax_is_locked(entry)); | 
 | 	xas_reset(xas); | 
 | 	xas_lock_irq(xas); | 
 | 	old = xas_store(xas, entry); | 
 | 	xas_unlock_irq(xas); | 
 | 	BUG_ON(!dax_is_locked(old)); | 
 | 	dax_wake_entry(xas, entry, WAKE_NEXT); | 
 | } | 
 |  | 
 | /* | 
 |  * Return: The entry stored at this location before it was locked. | 
 |  */ | 
 | static void *dax_lock_entry(struct xa_state *xas, void *entry) | 
 | { | 
 | 	unsigned long v = xa_to_value(entry); | 
 | 	return xas_store(xas, xa_mk_value(v | DAX_LOCKED)); | 
 | } | 
 |  | 
 | static unsigned long dax_entry_size(void *entry) | 
 | { | 
 | 	if (dax_is_zero_entry(entry)) | 
 | 		return 0; | 
 | 	else if (dax_is_empty_entry(entry)) | 
 | 		return 0; | 
 | 	else if (dax_is_pmd_entry(entry)) | 
 | 		return PMD_SIZE; | 
 | 	else | 
 | 		return PAGE_SIZE; | 
 | } | 
 |  | 
 | static unsigned long dax_end_pfn(void *entry) | 
 | { | 
 | 	return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE; | 
 | } | 
 |  | 
 | /* | 
 |  * Iterate through all mapped pfns represented by an entry, i.e. skip | 
 |  * 'empty' and 'zero' entries. | 
 |  */ | 
 | #define for_each_mapped_pfn(entry, pfn) \ | 
 | 	for (pfn = dax_to_pfn(entry); \ | 
 | 			pfn < dax_end_pfn(entry); pfn++) | 
 |  | 
 | /* | 
 |  * TODO: for reflink+dax we need a way to associate a single page with | 
 |  * multiple address_space instances at different linear_page_index() | 
 |  * offsets. | 
 |  */ | 
 | static void dax_associate_entry(void *entry, struct address_space *mapping, | 
 | 		struct vm_area_struct *vma, unsigned long address) | 
 | { | 
 | 	unsigned long size = dax_entry_size(entry), pfn, index; | 
 | 	int i = 0; | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) | 
 | 		return; | 
 |  | 
 | 	index = linear_page_index(vma, address & ~(size - 1)); | 
 | 	for_each_mapped_pfn(entry, pfn) { | 
 | 		struct page *page = pfn_to_page(pfn); | 
 |  | 
 | 		WARN_ON_ONCE(page->mapping); | 
 | 		page->mapping = mapping; | 
 | 		page->index = index + i++; | 
 | 	} | 
 | } | 
 |  | 
 | static void dax_disassociate_entry(void *entry, struct address_space *mapping, | 
 | 		bool trunc) | 
 | { | 
 | 	unsigned long pfn; | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) | 
 | 		return; | 
 |  | 
 | 	for_each_mapped_pfn(entry, pfn) { | 
 | 		struct page *page = pfn_to_page(pfn); | 
 |  | 
 | 		WARN_ON_ONCE(trunc && page_ref_count(page) > 1); | 
 | 		WARN_ON_ONCE(page->mapping && page->mapping != mapping); | 
 | 		page->mapping = NULL; | 
 | 		page->index = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static struct page *dax_busy_page(void *entry) | 
 | { | 
 | 	unsigned long pfn; | 
 |  | 
 | 	for_each_mapped_pfn(entry, pfn) { | 
 | 		struct page *page = pfn_to_page(pfn); | 
 |  | 
 | 		if (page_ref_count(page) > 1) | 
 | 			return page; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page | 
 |  * @page: The page whose entry we want to lock | 
 |  * | 
 |  * Context: Process context. | 
 |  * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could | 
 |  * not be locked. | 
 |  */ | 
 | dax_entry_t dax_lock_page(struct page *page) | 
 | { | 
 | 	XA_STATE(xas, NULL, 0); | 
 | 	void *entry; | 
 |  | 
 | 	/* Ensure page->mapping isn't freed while we look at it */ | 
 | 	rcu_read_lock(); | 
 | 	for (;;) { | 
 | 		struct address_space *mapping = READ_ONCE(page->mapping); | 
 |  | 
 | 		entry = NULL; | 
 | 		if (!mapping || !dax_mapping(mapping)) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * In the device-dax case there's no need to lock, a | 
 | 		 * struct dev_pagemap pin is sufficient to keep the | 
 | 		 * inode alive, and we assume we have dev_pagemap pin | 
 | 		 * otherwise we would not have a valid pfn_to_page() | 
 | 		 * translation. | 
 | 		 */ | 
 | 		entry = (void *)~0UL; | 
 | 		if (S_ISCHR(mapping->host->i_mode)) | 
 | 			break; | 
 |  | 
 | 		xas.xa = &mapping->i_pages; | 
 | 		xas_lock_irq(&xas); | 
 | 		if (mapping != page->mapping) { | 
 | 			xas_unlock_irq(&xas); | 
 | 			continue; | 
 | 		} | 
 | 		xas_set(&xas, page->index); | 
 | 		entry = xas_load(&xas); | 
 | 		if (dax_is_locked(entry)) { | 
 | 			rcu_read_unlock(); | 
 | 			wait_entry_unlocked(&xas, entry); | 
 | 			rcu_read_lock(); | 
 | 			continue; | 
 | 		} | 
 | 		dax_lock_entry(&xas, entry); | 
 | 		xas_unlock_irq(&xas); | 
 | 		break; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	return (dax_entry_t)entry; | 
 | } | 
 |  | 
 | void dax_unlock_page(struct page *page, dax_entry_t cookie) | 
 | { | 
 | 	struct address_space *mapping = page->mapping; | 
 | 	XA_STATE(xas, &mapping->i_pages, page->index); | 
 |  | 
 | 	if (S_ISCHR(mapping->host->i_mode)) | 
 | 		return; | 
 |  | 
 | 	dax_unlock_entry(&xas, (void *)cookie); | 
 | } | 
 |  | 
 | /* | 
 |  * Find page cache entry at given index. If it is a DAX entry, return it | 
 |  * with the entry locked. If the page cache doesn't contain an entry at | 
 |  * that index, add a locked empty entry. | 
 |  * | 
 |  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will | 
 |  * either return that locked entry or will return VM_FAULT_FALLBACK. | 
 |  * This will happen if there are any PTE entries within the PMD range | 
 |  * that we are requesting. | 
 |  * | 
 |  * We always favor PTE entries over PMD entries. There isn't a flow where we | 
 |  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD | 
 |  * insertion will fail if it finds any PTE entries already in the tree, and a | 
 |  * PTE insertion will cause an existing PMD entry to be unmapped and | 
 |  * downgraded to PTE entries.  This happens for both PMD zero pages as | 
 |  * well as PMD empty entries. | 
 |  * | 
 |  * The exception to this downgrade path is for PMD entries that have | 
 |  * real storage backing them.  We will leave these real PMD entries in | 
 |  * the tree, and PTE writes will simply dirty the entire PMD entry. | 
 |  * | 
 |  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For | 
 |  * persistent memory the benefit is doubtful. We can add that later if we can | 
 |  * show it helps. | 
 |  * | 
 |  * On error, this function does not return an ERR_PTR.  Instead it returns | 
 |  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values | 
 |  * overlap with xarray value entries. | 
 |  */ | 
 | static void *grab_mapping_entry(struct xa_state *xas, | 
 | 		struct address_space *mapping, unsigned int order) | 
 | { | 
 | 	unsigned long index = xas->xa_index; | 
 | 	bool pmd_downgrade;	/* splitting PMD entry into PTE entries? */ | 
 | 	void *entry; | 
 |  | 
 | retry: | 
 | 	pmd_downgrade = false; | 
 | 	xas_lock_irq(xas); | 
 | 	entry = get_unlocked_entry(xas, order); | 
 |  | 
 | 	if (entry) { | 
 | 		if (dax_is_conflict(entry)) | 
 | 			goto fallback; | 
 | 		if (!xa_is_value(entry)) { | 
 | 			xas_set_err(xas, -EIO); | 
 | 			goto out_unlock; | 
 | 		} | 
 |  | 
 | 		if (order == 0) { | 
 | 			if (dax_is_pmd_entry(entry) && | 
 | 			    (dax_is_zero_entry(entry) || | 
 | 			     dax_is_empty_entry(entry))) { | 
 | 				pmd_downgrade = true; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (pmd_downgrade) { | 
 | 		/* | 
 | 		 * Make sure 'entry' remains valid while we drop | 
 | 		 * the i_pages lock. | 
 | 		 */ | 
 | 		dax_lock_entry(xas, entry); | 
 |  | 
 | 		/* | 
 | 		 * Besides huge zero pages the only other thing that gets | 
 | 		 * downgraded are empty entries which don't need to be | 
 | 		 * unmapped. | 
 | 		 */ | 
 | 		if (dax_is_zero_entry(entry)) { | 
 | 			xas_unlock_irq(xas); | 
 | 			unmap_mapping_pages(mapping, | 
 | 					xas->xa_index & ~PG_PMD_COLOUR, | 
 | 					PG_PMD_NR, false); | 
 | 			xas_reset(xas); | 
 | 			xas_lock_irq(xas); | 
 | 		} | 
 |  | 
 | 		dax_disassociate_entry(entry, mapping, false); | 
 | 		xas_store(xas, NULL);	/* undo the PMD join */ | 
 | 		dax_wake_entry(xas, entry, WAKE_ALL); | 
 | 		mapping->nrpages -= PG_PMD_NR; | 
 | 		entry = NULL; | 
 | 		xas_set(xas, index); | 
 | 	} | 
 |  | 
 | 	if (entry) { | 
 | 		dax_lock_entry(xas, entry); | 
 | 	} else { | 
 | 		unsigned long flags = DAX_EMPTY; | 
 |  | 
 | 		if (order > 0) | 
 | 			flags |= DAX_PMD; | 
 | 		entry = dax_make_entry(pfn_to_pfn_t(0), flags); | 
 | 		dax_lock_entry(xas, entry); | 
 | 		if (xas_error(xas)) | 
 | 			goto out_unlock; | 
 | 		mapping->nrpages += 1UL << order; | 
 | 	} | 
 |  | 
 | out_unlock: | 
 | 	xas_unlock_irq(xas); | 
 | 	if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM)) | 
 | 		goto retry; | 
 | 	if (xas->xa_node == XA_ERROR(-ENOMEM)) | 
 | 		return xa_mk_internal(VM_FAULT_OOM); | 
 | 	if (xas_error(xas)) | 
 | 		return xa_mk_internal(VM_FAULT_SIGBUS); | 
 | 	return entry; | 
 | fallback: | 
 | 	xas_unlock_irq(xas); | 
 | 	return xa_mk_internal(VM_FAULT_FALLBACK); | 
 | } | 
 |  | 
 | /** | 
 |  * dax_layout_busy_page_range - find first pinned page in @mapping | 
 |  * @mapping: address space to scan for a page with ref count > 1 | 
 |  * @start: Starting offset. Page containing 'start' is included. | 
 |  * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX, | 
 |  *       pages from 'start' till the end of file are included. | 
 |  * | 
 |  * DAX requires ZONE_DEVICE mapped pages. These pages are never | 
 |  * 'onlined' to the page allocator so they are considered idle when | 
 |  * page->count == 1. A filesystem uses this interface to determine if | 
 |  * any page in the mapping is busy, i.e. for DMA, or other | 
 |  * get_user_pages() usages. | 
 |  * | 
 |  * It is expected that the filesystem is holding locks to block the | 
 |  * establishment of new mappings in this address_space. I.e. it expects | 
 |  * to be able to run unmap_mapping_range() and subsequently not race | 
 |  * mapping_mapped() becoming true. | 
 |  */ | 
 | struct page *dax_layout_busy_page_range(struct address_space *mapping, | 
 | 					loff_t start, loff_t end) | 
 | { | 
 | 	void *entry; | 
 | 	unsigned int scanned = 0; | 
 | 	struct page *page = NULL; | 
 | 	pgoff_t start_idx = start >> PAGE_SHIFT; | 
 | 	pgoff_t end_idx; | 
 | 	XA_STATE(xas, &mapping->i_pages, start_idx); | 
 |  | 
 | 	/* | 
 | 	 * In the 'limited' case get_user_pages() for dax is disabled. | 
 | 	 */ | 
 | 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) | 
 | 		return NULL; | 
 |  | 
 | 	if (!dax_mapping(mapping) || !mapping_mapped(mapping)) | 
 | 		return NULL; | 
 |  | 
 | 	/* If end == LLONG_MAX, all pages from start to till end of file */ | 
 | 	if (end == LLONG_MAX) | 
 | 		end_idx = ULONG_MAX; | 
 | 	else | 
 | 		end_idx = end >> PAGE_SHIFT; | 
 | 	/* | 
 | 	 * If we race get_user_pages_fast() here either we'll see the | 
 | 	 * elevated page count in the iteration and wait, or | 
 | 	 * get_user_pages_fast() will see that the page it took a reference | 
 | 	 * against is no longer mapped in the page tables and bail to the | 
 | 	 * get_user_pages() slow path.  The slow path is protected by | 
 | 	 * pte_lock() and pmd_lock(). New references are not taken without | 
 | 	 * holding those locks, and unmap_mapping_pages() will not zero the | 
 | 	 * pte or pmd without holding the respective lock, so we are | 
 | 	 * guaranteed to either see new references or prevent new | 
 | 	 * references from being established. | 
 | 	 */ | 
 | 	unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0); | 
 |  | 
 | 	xas_lock_irq(&xas); | 
 | 	xas_for_each(&xas, entry, end_idx) { | 
 | 		if (WARN_ON_ONCE(!xa_is_value(entry))) | 
 | 			continue; | 
 | 		if (unlikely(dax_is_locked(entry))) | 
 | 			entry = get_unlocked_entry(&xas, 0); | 
 | 		if (entry) | 
 | 			page = dax_busy_page(entry); | 
 | 		put_unlocked_entry(&xas, entry, WAKE_NEXT); | 
 | 		if (page) | 
 | 			break; | 
 | 		if (++scanned % XA_CHECK_SCHED) | 
 | 			continue; | 
 |  | 
 | 		xas_pause(&xas); | 
 | 		xas_unlock_irq(&xas); | 
 | 		cond_resched(); | 
 | 		xas_lock_irq(&xas); | 
 | 	} | 
 | 	xas_unlock_irq(&xas); | 
 | 	return page; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dax_layout_busy_page_range); | 
 |  | 
 | struct page *dax_layout_busy_page(struct address_space *mapping) | 
 | { | 
 | 	return dax_layout_busy_page_range(mapping, 0, LLONG_MAX); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dax_layout_busy_page); | 
 |  | 
 | static int __dax_invalidate_entry(struct address_space *mapping, | 
 | 					  pgoff_t index, bool trunc) | 
 | { | 
 | 	XA_STATE(xas, &mapping->i_pages, index); | 
 | 	int ret = 0; | 
 | 	void *entry; | 
 |  | 
 | 	xas_lock_irq(&xas); | 
 | 	entry = get_unlocked_entry(&xas, 0); | 
 | 	if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) | 
 | 		goto out; | 
 | 	if (!trunc && | 
 | 	    (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) || | 
 | 	     xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE))) | 
 | 		goto out; | 
 | 	dax_disassociate_entry(entry, mapping, trunc); | 
 | 	xas_store(&xas, NULL); | 
 | 	mapping->nrpages -= 1UL << dax_entry_order(entry); | 
 | 	ret = 1; | 
 | out: | 
 | 	put_unlocked_entry(&xas, entry, WAKE_ALL); | 
 | 	xas_unlock_irq(&xas); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Delete DAX entry at @index from @mapping.  Wait for it | 
 |  * to be unlocked before deleting it. | 
 |  */ | 
 | int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) | 
 | { | 
 | 	int ret = __dax_invalidate_entry(mapping, index, true); | 
 |  | 
 | 	/* | 
 | 	 * This gets called from truncate / punch_hole path. As such, the caller | 
 | 	 * must hold locks protecting against concurrent modifications of the | 
 | 	 * page cache (usually fs-private i_mmap_sem for writing). Since the | 
 | 	 * caller has seen a DAX entry for this index, we better find it | 
 | 	 * at that index as well... | 
 | 	 */ | 
 | 	WARN_ON_ONCE(!ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Invalidate DAX entry if it is clean. | 
 |  */ | 
 | int dax_invalidate_mapping_entry_sync(struct address_space *mapping, | 
 | 				      pgoff_t index) | 
 | { | 
 | 	return __dax_invalidate_entry(mapping, index, false); | 
 | } | 
 |  | 
 | static int copy_cow_page_dax(struct block_device *bdev, struct dax_device *dax_dev, | 
 | 			     sector_t sector, struct page *to, unsigned long vaddr) | 
 | { | 
 | 	void *vto, *kaddr; | 
 | 	pgoff_t pgoff; | 
 | 	long rc; | 
 | 	int id; | 
 |  | 
 | 	rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	id = dax_read_lock(); | 
 | 	rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL); | 
 | 	if (rc < 0) { | 
 | 		dax_read_unlock(id); | 
 | 		return rc; | 
 | 	} | 
 | 	vto = kmap_atomic(to); | 
 | 	copy_user_page(vto, (void __force *)kaddr, vaddr, to); | 
 | 	kunmap_atomic(vto); | 
 | 	dax_read_unlock(id); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * By this point grab_mapping_entry() has ensured that we have a locked entry | 
 |  * of the appropriate size so we don't have to worry about downgrading PMDs to | 
 |  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD | 
 |  * already in the tree, we will skip the insertion and just dirty the PMD as | 
 |  * appropriate. | 
 |  */ | 
 | static void *dax_insert_entry(struct xa_state *xas, | 
 | 		struct address_space *mapping, struct vm_fault *vmf, | 
 | 		void *entry, pfn_t pfn, unsigned long flags, bool dirty) | 
 | { | 
 | 	void *new_entry = dax_make_entry(pfn, flags); | 
 |  | 
 | 	if (dirty) | 
 | 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES); | 
 |  | 
 | 	if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) { | 
 | 		unsigned long index = xas->xa_index; | 
 | 		/* we are replacing a zero page with block mapping */ | 
 | 		if (dax_is_pmd_entry(entry)) | 
 | 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, | 
 | 					PG_PMD_NR, false); | 
 | 		else /* pte entry */ | 
 | 			unmap_mapping_pages(mapping, index, 1, false); | 
 | 	} | 
 |  | 
 | 	xas_reset(xas); | 
 | 	xas_lock_irq(xas); | 
 | 	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { | 
 | 		void *old; | 
 |  | 
 | 		dax_disassociate_entry(entry, mapping, false); | 
 | 		dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address); | 
 | 		/* | 
 | 		 * Only swap our new entry into the page cache if the current | 
 | 		 * entry is a zero page or an empty entry.  If a normal PTE or | 
 | 		 * PMD entry is already in the cache, we leave it alone.  This | 
 | 		 * means that if we are trying to insert a PTE and the | 
 | 		 * existing entry is a PMD, we will just leave the PMD in the | 
 | 		 * tree and dirty it if necessary. | 
 | 		 */ | 
 | 		old = dax_lock_entry(xas, new_entry); | 
 | 		WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) | | 
 | 					DAX_LOCKED)); | 
 | 		entry = new_entry; | 
 | 	} else { | 
 | 		xas_load(xas);	/* Walk the xa_state */ | 
 | 	} | 
 |  | 
 | 	if (dirty) | 
 | 		xas_set_mark(xas, PAGECACHE_TAG_DIRTY); | 
 |  | 
 | 	xas_unlock_irq(xas); | 
 | 	return entry; | 
 | } | 
 |  | 
 | static inline | 
 | unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma) | 
 | { | 
 | 	unsigned long address; | 
 |  | 
 | 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); | 
 | 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); | 
 | 	return address; | 
 | } | 
 |  | 
 | /* Walk all mappings of a given index of a file and writeprotect them */ | 
 | static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index, | 
 | 		unsigned long pfn) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	pte_t pte, *ptep = NULL; | 
 | 	pmd_t *pmdp = NULL; | 
 | 	spinlock_t *ptl; | 
 |  | 
 | 	i_mmap_lock_read(mapping); | 
 | 	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) { | 
 | 		struct mmu_notifier_range range; | 
 | 		unsigned long address; | 
 |  | 
 | 		cond_resched(); | 
 |  | 
 | 		if (!(vma->vm_flags & VM_SHARED)) | 
 | 			continue; | 
 |  | 
 | 		address = pgoff_address(index, vma); | 
 |  | 
 | 		/* | 
 | 		 * follow_invalidate_pte() will use the range to call | 
 | 		 * mmu_notifier_invalidate_range_start() on our behalf before | 
 | 		 * taking any lock. | 
 | 		 */ | 
 | 		if (follow_invalidate_pte(vma->vm_mm, address, &range, &ptep, | 
 | 					  &pmdp, &ptl)) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * No need to call mmu_notifier_invalidate_range() as we are | 
 | 		 * downgrading page table protection not changing it to point | 
 | 		 * to a new page. | 
 | 		 * | 
 | 		 * See Documentation/vm/mmu_notifier.rst | 
 | 		 */ | 
 | 		if (pmdp) { | 
 | #ifdef CONFIG_FS_DAX_PMD | 
 | 			pmd_t pmd; | 
 |  | 
 | 			if (pfn != pmd_pfn(*pmdp)) | 
 | 				goto unlock_pmd; | 
 | 			if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp)) | 
 | 				goto unlock_pmd; | 
 |  | 
 | 			flush_cache_range(vma, address, | 
 | 					  address + HPAGE_PMD_SIZE); | 
 | 			pmd = pmdp_invalidate(vma, address, pmdp); | 
 | 			pmd = pmd_wrprotect(pmd); | 
 | 			pmd = pmd_mkclean(pmd); | 
 | 			set_pmd_at(vma->vm_mm, address, pmdp, pmd); | 
 | unlock_pmd: | 
 | #endif | 
 | 			spin_unlock(ptl); | 
 | 		} else { | 
 | 			if (pfn != pte_pfn(*ptep)) | 
 | 				goto unlock_pte; | 
 | 			if (!pte_dirty(*ptep) && !pte_write(*ptep)) | 
 | 				goto unlock_pte; | 
 |  | 
 | 			flush_cache_page(vma, address, pfn); | 
 | 			pte = ptep_clear_flush(vma, address, ptep); | 
 | 			pte = pte_wrprotect(pte); | 
 | 			pte = pte_mkclean(pte); | 
 | 			set_pte_at(vma->vm_mm, address, ptep, pte); | 
 | unlock_pte: | 
 | 			pte_unmap_unlock(ptep, ptl); | 
 | 		} | 
 |  | 
 | 		mmu_notifier_invalidate_range_end(&range); | 
 | 	} | 
 | 	i_mmap_unlock_read(mapping); | 
 | } | 
 |  | 
 | static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev, | 
 | 		struct address_space *mapping, void *entry) | 
 | { | 
 | 	unsigned long pfn, index, count; | 
 | 	long ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * A page got tagged dirty in DAX mapping? Something is seriously | 
 | 	 * wrong. | 
 | 	 */ | 
 | 	if (WARN_ON(!xa_is_value(entry))) | 
 | 		return -EIO; | 
 |  | 
 | 	if (unlikely(dax_is_locked(entry))) { | 
 | 		void *old_entry = entry; | 
 |  | 
 | 		entry = get_unlocked_entry(xas, 0); | 
 |  | 
 | 		/* Entry got punched out / reallocated? */ | 
 | 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) | 
 | 			goto put_unlocked; | 
 | 		/* | 
 | 		 * Entry got reallocated elsewhere? No need to writeback. | 
 | 		 * We have to compare pfns as we must not bail out due to | 
 | 		 * difference in lockbit or entry type. | 
 | 		 */ | 
 | 		if (dax_to_pfn(old_entry) != dax_to_pfn(entry)) | 
 | 			goto put_unlocked; | 
 | 		if (WARN_ON_ONCE(dax_is_empty_entry(entry) || | 
 | 					dax_is_zero_entry(entry))) { | 
 | 			ret = -EIO; | 
 | 			goto put_unlocked; | 
 | 		} | 
 |  | 
 | 		/* Another fsync thread may have already done this entry */ | 
 | 		if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE)) | 
 | 			goto put_unlocked; | 
 | 	} | 
 |  | 
 | 	/* Lock the entry to serialize with page faults */ | 
 | 	dax_lock_entry(xas, entry); | 
 |  | 
 | 	/* | 
 | 	 * We can clear the tag now but we have to be careful so that concurrent | 
 | 	 * dax_writeback_one() calls for the same index cannot finish before we | 
 | 	 * actually flush the caches. This is achieved as the calls will look | 
 | 	 * at the entry only under the i_pages lock and once they do that | 
 | 	 * they will see the entry locked and wait for it to unlock. | 
 | 	 */ | 
 | 	xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE); | 
 | 	xas_unlock_irq(xas); | 
 |  | 
 | 	/* | 
 | 	 * If dax_writeback_mapping_range() was given a wbc->range_start | 
 | 	 * in the middle of a PMD, the 'index' we use needs to be | 
 | 	 * aligned to the start of the PMD. | 
 | 	 * This allows us to flush for PMD_SIZE and not have to worry about | 
 | 	 * partial PMD writebacks. | 
 | 	 */ | 
 | 	pfn = dax_to_pfn(entry); | 
 | 	count = 1UL << dax_entry_order(entry); | 
 | 	index = xas->xa_index & ~(count - 1); | 
 |  | 
 | 	dax_entry_mkclean(mapping, index, pfn); | 
 | 	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE); | 
 | 	/* | 
 | 	 * After we have flushed the cache, we can clear the dirty tag. There | 
 | 	 * cannot be new dirty data in the pfn after the flush has completed as | 
 | 	 * the pfn mappings are writeprotected and fault waits for mapping | 
 | 	 * entry lock. | 
 | 	 */ | 
 | 	xas_reset(xas); | 
 | 	xas_lock_irq(xas); | 
 | 	xas_store(xas, entry); | 
 | 	xas_clear_mark(xas, PAGECACHE_TAG_DIRTY); | 
 | 	dax_wake_entry(xas, entry, WAKE_NEXT); | 
 |  | 
 | 	trace_dax_writeback_one(mapping->host, index, count); | 
 | 	return ret; | 
 |  | 
 |  put_unlocked: | 
 | 	put_unlocked_entry(xas, entry, WAKE_NEXT); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Flush the mapping to the persistent domain within the byte range of [start, | 
 |  * end]. This is required by data integrity operations to ensure file data is | 
 |  * on persistent storage prior to completion of the operation. | 
 |  */ | 
 | int dax_writeback_mapping_range(struct address_space *mapping, | 
 | 		struct dax_device *dax_dev, struct writeback_control *wbc) | 
 | { | 
 | 	XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT); | 
 | 	struct inode *inode = mapping->host; | 
 | 	pgoff_t end_index = wbc->range_end >> PAGE_SHIFT; | 
 | 	void *entry; | 
 | 	int ret = 0; | 
 | 	unsigned int scanned = 0; | 
 |  | 
 | 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) | 
 | 		return -EIO; | 
 |  | 
 | 	if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL) | 
 | 		return 0; | 
 |  | 
 | 	trace_dax_writeback_range(inode, xas.xa_index, end_index); | 
 |  | 
 | 	tag_pages_for_writeback(mapping, xas.xa_index, end_index); | 
 |  | 
 | 	xas_lock_irq(&xas); | 
 | 	xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) { | 
 | 		ret = dax_writeback_one(&xas, dax_dev, mapping, entry); | 
 | 		if (ret < 0) { | 
 | 			mapping_set_error(mapping, ret); | 
 | 			break; | 
 | 		} | 
 | 		if (++scanned % XA_CHECK_SCHED) | 
 | 			continue; | 
 |  | 
 | 		xas_pause(&xas); | 
 | 		xas_unlock_irq(&xas); | 
 | 		cond_resched(); | 
 | 		xas_lock_irq(&xas); | 
 | 	} | 
 | 	xas_unlock_irq(&xas); | 
 | 	trace_dax_writeback_range_done(inode, xas.xa_index, end_index); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); | 
 |  | 
 | static sector_t dax_iomap_sector(const struct iomap *iomap, loff_t pos) | 
 | { | 
 | 	return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9; | 
 | } | 
 |  | 
 | static int dax_iomap_pfn(const struct iomap *iomap, loff_t pos, size_t size, | 
 | 			 pfn_t *pfnp) | 
 | { | 
 | 	const sector_t sector = dax_iomap_sector(iomap, pos); | 
 | 	pgoff_t pgoff; | 
 | 	int id, rc; | 
 | 	long length; | 
 |  | 
 | 	rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff); | 
 | 	if (rc) | 
 | 		return rc; | 
 | 	id = dax_read_lock(); | 
 | 	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size), | 
 | 				   NULL, pfnp); | 
 | 	if (length < 0) { | 
 | 		rc = length; | 
 | 		goto out; | 
 | 	} | 
 | 	rc = -EINVAL; | 
 | 	if (PFN_PHYS(length) < size) | 
 | 		goto out; | 
 | 	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1)) | 
 | 		goto out; | 
 | 	/* For larger pages we need devmap */ | 
 | 	if (length > 1 && !pfn_t_devmap(*pfnp)) | 
 | 		goto out; | 
 | 	rc = 0; | 
 | out: | 
 | 	dax_read_unlock(id); | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* | 
 |  * The user has performed a load from a hole in the file.  Allocating a new | 
 |  * page in the file would cause excessive storage usage for workloads with | 
 |  * sparse files.  Instead we insert a read-only mapping of the 4k zero page. | 
 |  * If this page is ever written to we will re-fault and change the mapping to | 
 |  * point to real DAX storage instead. | 
 |  */ | 
 | static vm_fault_t dax_load_hole(struct xa_state *xas, | 
 | 		struct address_space *mapping, void **entry, | 
 | 		struct vm_fault *vmf) | 
 | { | 
 | 	struct inode *inode = mapping->host; | 
 | 	unsigned long vaddr = vmf->address; | 
 | 	pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr)); | 
 | 	vm_fault_t ret; | 
 |  | 
 | 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, | 
 | 			DAX_ZERO_PAGE, false); | 
 |  | 
 | 	ret = vmf_insert_mixed(vmf->vma, vaddr, pfn); | 
 | 	trace_dax_load_hole(inode, vmf, ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_FS_DAX_PMD | 
 | static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, | 
 | 		const struct iomap *iomap, void **entry) | 
 | { | 
 | 	struct address_space *mapping = vmf->vma->vm_file->f_mapping; | 
 | 	unsigned long pmd_addr = vmf->address & PMD_MASK; | 
 | 	struct vm_area_struct *vma = vmf->vma; | 
 | 	struct inode *inode = mapping->host; | 
 | 	pgtable_t pgtable = NULL; | 
 | 	struct page *zero_page; | 
 | 	spinlock_t *ptl; | 
 | 	pmd_t pmd_entry; | 
 | 	pfn_t pfn; | 
 |  | 
 | 	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm); | 
 |  | 
 | 	if (unlikely(!zero_page)) | 
 | 		goto fallback; | 
 |  | 
 | 	pfn = page_to_pfn_t(zero_page); | 
 | 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, | 
 | 			DAX_PMD | DAX_ZERO_PAGE, false); | 
 |  | 
 | 	if (arch_needs_pgtable_deposit()) { | 
 | 		pgtable = pte_alloc_one(vma->vm_mm); | 
 | 		if (!pgtable) | 
 | 			return VM_FAULT_OOM; | 
 | 	} | 
 |  | 
 | 	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); | 
 | 	if (!pmd_none(*(vmf->pmd))) { | 
 | 		spin_unlock(ptl); | 
 | 		goto fallback; | 
 | 	} | 
 |  | 
 | 	if (pgtable) { | 
 | 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); | 
 | 		mm_inc_nr_ptes(vma->vm_mm); | 
 | 	} | 
 | 	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot); | 
 | 	pmd_entry = pmd_mkhuge(pmd_entry); | 
 | 	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry); | 
 | 	spin_unlock(ptl); | 
 | 	trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry); | 
 | 	return VM_FAULT_NOPAGE; | 
 |  | 
 | fallback: | 
 | 	if (pgtable) | 
 | 		pte_free(vma->vm_mm, pgtable); | 
 | 	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry); | 
 | 	return VM_FAULT_FALLBACK; | 
 | } | 
 | #else | 
 | static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, | 
 | 		const struct iomap *iomap, void **entry) | 
 | { | 
 | 	return VM_FAULT_FALLBACK; | 
 | } | 
 | #endif /* CONFIG_FS_DAX_PMD */ | 
 |  | 
 | s64 dax_iomap_zero(loff_t pos, u64 length, struct iomap *iomap) | 
 | { | 
 | 	sector_t sector = iomap_sector(iomap, pos & PAGE_MASK); | 
 | 	pgoff_t pgoff; | 
 | 	long rc, id; | 
 | 	void *kaddr; | 
 | 	bool page_aligned = false; | 
 | 	unsigned offset = offset_in_page(pos); | 
 | 	unsigned size = min_t(u64, PAGE_SIZE - offset, length); | 
 |  | 
 | 	if (IS_ALIGNED(sector << SECTOR_SHIFT, PAGE_SIZE) && | 
 | 	    (size == PAGE_SIZE)) | 
 | 		page_aligned = true; | 
 |  | 
 | 	rc = bdev_dax_pgoff(iomap->bdev, sector, PAGE_SIZE, &pgoff); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	id = dax_read_lock(); | 
 |  | 
 | 	if (page_aligned) | 
 | 		rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1); | 
 | 	else | 
 | 		rc = dax_direct_access(iomap->dax_dev, pgoff, 1, &kaddr, NULL); | 
 | 	if (rc < 0) { | 
 | 		dax_read_unlock(id); | 
 | 		return rc; | 
 | 	} | 
 |  | 
 | 	if (!page_aligned) { | 
 | 		memset(kaddr + offset, 0, size); | 
 | 		dax_flush(iomap->dax_dev, kaddr + offset, size); | 
 | 	} | 
 | 	dax_read_unlock(id); | 
 | 	return size; | 
 | } | 
 |  | 
 | static loff_t dax_iomap_iter(const struct iomap_iter *iomi, | 
 | 		struct iov_iter *iter) | 
 | { | 
 | 	const struct iomap *iomap = &iomi->iomap; | 
 | 	loff_t length = iomap_length(iomi); | 
 | 	loff_t pos = iomi->pos; | 
 | 	struct block_device *bdev = iomap->bdev; | 
 | 	struct dax_device *dax_dev = iomap->dax_dev; | 
 | 	loff_t end = pos + length, done = 0; | 
 | 	ssize_t ret = 0; | 
 | 	size_t xfer; | 
 | 	int id; | 
 |  | 
 | 	if (iov_iter_rw(iter) == READ) { | 
 | 		end = min(end, i_size_read(iomi->inode)); | 
 | 		if (pos >= end) | 
 | 			return 0; | 
 |  | 
 | 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) | 
 | 			return iov_iter_zero(min(length, end - pos), iter); | 
 | 	} | 
 |  | 
 | 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED)) | 
 | 		return -EIO; | 
 |  | 
 | 	/* | 
 | 	 * Write can allocate block for an area which has a hole page mapped | 
 | 	 * into page tables. We have to tear down these mappings so that data | 
 | 	 * written by write(2) is visible in mmap. | 
 | 	 */ | 
 | 	if (iomap->flags & IOMAP_F_NEW) { | 
 | 		invalidate_inode_pages2_range(iomi->inode->i_mapping, | 
 | 					      pos >> PAGE_SHIFT, | 
 | 					      (end - 1) >> PAGE_SHIFT); | 
 | 	} | 
 |  | 
 | 	id = dax_read_lock(); | 
 | 	while (pos < end) { | 
 | 		unsigned offset = pos & (PAGE_SIZE - 1); | 
 | 		const size_t size = ALIGN(length + offset, PAGE_SIZE); | 
 | 		const sector_t sector = dax_iomap_sector(iomap, pos); | 
 | 		ssize_t map_len; | 
 | 		pgoff_t pgoff; | 
 | 		void *kaddr; | 
 |  | 
 | 		if (fatal_signal_pending(current)) { | 
 | 			ret = -EINTR; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		ret = bdev_dax_pgoff(bdev, sector, size, &pgoff); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), | 
 | 				&kaddr, NULL); | 
 | 		if (map_len < 0) { | 
 | 			ret = map_len; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		map_len = PFN_PHYS(map_len); | 
 | 		kaddr += offset; | 
 | 		map_len -= offset; | 
 | 		if (map_len > end - pos) | 
 | 			map_len = end - pos; | 
 |  | 
 | 		/* | 
 | 		 * The userspace address for the memory copy has already been | 
 | 		 * validated via access_ok() in either vfs_read() or | 
 | 		 * vfs_write(), depending on which operation we are doing. | 
 | 		 */ | 
 | 		if (iov_iter_rw(iter) == WRITE) | 
 | 			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr, | 
 | 					map_len, iter); | 
 | 		else | 
 | 			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr, | 
 | 					map_len, iter); | 
 |  | 
 | 		pos += xfer; | 
 | 		length -= xfer; | 
 | 		done += xfer; | 
 |  | 
 | 		if (xfer == 0) | 
 | 			ret = -EFAULT; | 
 | 		if (xfer < map_len) | 
 | 			break; | 
 | 	} | 
 | 	dax_read_unlock(id); | 
 |  | 
 | 	return done ? done : ret; | 
 | } | 
 |  | 
 | /** | 
 |  * dax_iomap_rw - Perform I/O to a DAX file | 
 |  * @iocb:	The control block for this I/O | 
 |  * @iter:	The addresses to do I/O from or to | 
 |  * @ops:	iomap ops passed from the file system | 
 |  * | 
 |  * This function performs read and write operations to directly mapped | 
 |  * persistent memory.  The callers needs to take care of read/write exclusion | 
 |  * and evicting any page cache pages in the region under I/O. | 
 |  */ | 
 | ssize_t | 
 | dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, | 
 | 		const struct iomap_ops *ops) | 
 | { | 
 | 	struct iomap_iter iomi = { | 
 | 		.inode		= iocb->ki_filp->f_mapping->host, | 
 | 		.pos		= iocb->ki_pos, | 
 | 		.len		= iov_iter_count(iter), | 
 | 	}; | 
 | 	loff_t done = 0; | 
 | 	int ret; | 
 |  | 
 | 	if (!iomi.len) | 
 | 		return 0; | 
 |  | 
 | 	if (iov_iter_rw(iter) == WRITE) { | 
 | 		lockdep_assert_held_write(&iomi.inode->i_rwsem); | 
 | 		iomi.flags |= IOMAP_WRITE; | 
 | 	} else { | 
 | 		lockdep_assert_held(&iomi.inode->i_rwsem); | 
 | 	} | 
 |  | 
 | 	if (iocb->ki_flags & IOCB_NOWAIT) | 
 | 		iomi.flags |= IOMAP_NOWAIT; | 
 |  | 
 | 	while ((ret = iomap_iter(&iomi, ops)) > 0) | 
 | 		iomi.processed = dax_iomap_iter(&iomi, iter); | 
 |  | 
 | 	done = iomi.pos - iocb->ki_pos; | 
 | 	iocb->ki_pos = iomi.pos; | 
 | 	return done ? done : ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dax_iomap_rw); | 
 |  | 
 | static vm_fault_t dax_fault_return(int error) | 
 | { | 
 | 	if (error == 0) | 
 | 		return VM_FAULT_NOPAGE; | 
 | 	return vmf_error(error); | 
 | } | 
 |  | 
 | /* | 
 |  * MAP_SYNC on a dax mapping guarantees dirty metadata is | 
 |  * flushed on write-faults (non-cow), but not read-faults. | 
 |  */ | 
 | static bool dax_fault_is_synchronous(unsigned long flags, | 
 | 		struct vm_area_struct *vma, const struct iomap *iomap) | 
 | { | 
 | 	return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) | 
 | 		&& (iomap->flags & IOMAP_F_DIRTY); | 
 | } | 
 |  | 
 | /* | 
 |  * When handling a synchronous page fault and the inode need a fsync, we can | 
 |  * insert the PTE/PMD into page tables only after that fsync happened. Skip | 
 |  * insertion for now and return the pfn so that caller can insert it after the | 
 |  * fsync is done. | 
 |  */ | 
 | static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn) | 
 | { | 
 | 	if (WARN_ON_ONCE(!pfnp)) | 
 | 		return VM_FAULT_SIGBUS; | 
 | 	*pfnp = pfn; | 
 | 	return VM_FAULT_NEEDDSYNC; | 
 | } | 
 |  | 
 | static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf, | 
 | 		const struct iomap_iter *iter) | 
 | { | 
 | 	sector_t sector = dax_iomap_sector(&iter->iomap, iter->pos); | 
 | 	unsigned long vaddr = vmf->address; | 
 | 	vm_fault_t ret; | 
 | 	int error = 0; | 
 |  | 
 | 	switch (iter->iomap.type) { | 
 | 	case IOMAP_HOLE: | 
 | 	case IOMAP_UNWRITTEN: | 
 | 		clear_user_highpage(vmf->cow_page, vaddr); | 
 | 		break; | 
 | 	case IOMAP_MAPPED: | 
 | 		error = copy_cow_page_dax(iter->iomap.bdev, iter->iomap.dax_dev, | 
 | 					  sector, vmf->cow_page, vaddr); | 
 | 		break; | 
 | 	default: | 
 | 		WARN_ON_ONCE(1); | 
 | 		error = -EIO; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (error) | 
 | 		return dax_fault_return(error); | 
 |  | 
 | 	__SetPageUptodate(vmf->cow_page); | 
 | 	ret = finish_fault(vmf); | 
 | 	if (!ret) | 
 | 		return VM_FAULT_DONE_COW; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault. | 
 |  * @vmf:	vm fault instance | 
 |  * @iter:	iomap iter | 
 |  * @pfnp:	pfn to be returned | 
 |  * @xas:	the dax mapping tree of a file | 
 |  * @entry:	an unlocked dax entry to be inserted | 
 |  * @pmd:	distinguish whether it is a pmd fault | 
 |  */ | 
 | static vm_fault_t dax_fault_iter(struct vm_fault *vmf, | 
 | 		const struct iomap_iter *iter, pfn_t *pfnp, | 
 | 		struct xa_state *xas, void **entry, bool pmd) | 
 | { | 
 | 	struct address_space *mapping = vmf->vma->vm_file->f_mapping; | 
 | 	const struct iomap *iomap = &iter->iomap; | 
 | 	size_t size = pmd ? PMD_SIZE : PAGE_SIZE; | 
 | 	loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT; | 
 | 	bool write = vmf->flags & FAULT_FLAG_WRITE; | 
 | 	bool sync = dax_fault_is_synchronous(iter->flags, vmf->vma, iomap); | 
 | 	unsigned long entry_flags = pmd ? DAX_PMD : 0; | 
 | 	int err = 0; | 
 | 	pfn_t pfn; | 
 |  | 
 | 	if (!pmd && vmf->cow_page) | 
 | 		return dax_fault_cow_page(vmf, iter); | 
 |  | 
 | 	/* if we are reading UNWRITTEN and HOLE, return a hole. */ | 
 | 	if (!write && | 
 | 	    (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) { | 
 | 		if (!pmd) | 
 | 			return dax_load_hole(xas, mapping, entry, vmf); | 
 | 		return dax_pmd_load_hole(xas, vmf, iomap, entry); | 
 | 	} | 
 |  | 
 | 	if (iomap->type != IOMAP_MAPPED) { | 
 | 		WARN_ON_ONCE(1); | 
 | 		return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS; | 
 | 	} | 
 |  | 
 | 	err = dax_iomap_pfn(&iter->iomap, pos, size, &pfn); | 
 | 	if (err) | 
 | 		return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err); | 
 |  | 
 | 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, entry_flags, | 
 | 				  write && !sync); | 
 |  | 
 | 	if (sync) | 
 | 		return dax_fault_synchronous_pfnp(pfnp, pfn); | 
 |  | 
 | 	/* insert PMD pfn */ | 
 | 	if (pmd) | 
 | 		return vmf_insert_pfn_pmd(vmf, pfn, write); | 
 |  | 
 | 	/* insert PTE pfn */ | 
 | 	if (write) | 
 | 		return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn); | 
 | 	return vmf_insert_mixed(vmf->vma, vmf->address, pfn); | 
 | } | 
 |  | 
 | static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp, | 
 | 			       int *iomap_errp, const struct iomap_ops *ops) | 
 | { | 
 | 	struct address_space *mapping = vmf->vma->vm_file->f_mapping; | 
 | 	XA_STATE(xas, &mapping->i_pages, vmf->pgoff); | 
 | 	struct iomap_iter iter = { | 
 | 		.inode		= mapping->host, | 
 | 		.pos		= (loff_t)vmf->pgoff << PAGE_SHIFT, | 
 | 		.len		= PAGE_SIZE, | 
 | 		.flags		= IOMAP_FAULT, | 
 | 	}; | 
 | 	vm_fault_t ret = 0; | 
 | 	void *entry; | 
 | 	int error; | 
 |  | 
 | 	trace_dax_pte_fault(iter.inode, vmf, ret); | 
 | 	/* | 
 | 	 * Check whether offset isn't beyond end of file now. Caller is supposed | 
 | 	 * to hold locks serializing us with truncate / punch hole so this is | 
 | 	 * a reliable test. | 
 | 	 */ | 
 | 	if (iter.pos >= i_size_read(iter.inode)) { | 
 | 		ret = VM_FAULT_SIGBUS; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page) | 
 | 		iter.flags |= IOMAP_WRITE; | 
 |  | 
 | 	entry = grab_mapping_entry(&xas, mapping, 0); | 
 | 	if (xa_is_internal(entry)) { | 
 | 		ret = xa_to_internal(entry); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * It is possible, particularly with mixed reads & writes to private | 
 | 	 * mappings, that we have raced with a PMD fault that overlaps with | 
 | 	 * the PTE we need to set up.  If so just return and the fault will be | 
 | 	 * retried. | 
 | 	 */ | 
 | 	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) { | 
 | 		ret = VM_FAULT_NOPAGE; | 
 | 		goto unlock_entry; | 
 | 	} | 
 |  | 
 | 	while ((error = iomap_iter(&iter, ops)) > 0) { | 
 | 		if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) { | 
 | 			iter.processed = -EIO;	/* fs corruption? */ | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false); | 
 | 		if (ret != VM_FAULT_SIGBUS && | 
 | 		    (iter.iomap.flags & IOMAP_F_NEW)) { | 
 | 			count_vm_event(PGMAJFAULT); | 
 | 			count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); | 
 | 			ret |= VM_FAULT_MAJOR; | 
 | 		} | 
 |  | 
 | 		if (!(ret & VM_FAULT_ERROR)) | 
 | 			iter.processed = PAGE_SIZE; | 
 | 	} | 
 |  | 
 | 	if (iomap_errp) | 
 | 		*iomap_errp = error; | 
 | 	if (!ret && error) | 
 | 		ret = dax_fault_return(error); | 
 |  | 
 | unlock_entry: | 
 | 	dax_unlock_entry(&xas, entry); | 
 | out: | 
 | 	trace_dax_pte_fault_done(iter.inode, vmf, ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_FS_DAX_PMD | 
 | static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas, | 
 | 		pgoff_t max_pgoff) | 
 | { | 
 | 	unsigned long pmd_addr = vmf->address & PMD_MASK; | 
 | 	bool write = vmf->flags & FAULT_FLAG_WRITE; | 
 |  | 
 | 	/* | 
 | 	 * Make sure that the faulting address's PMD offset (color) matches | 
 | 	 * the PMD offset from the start of the file.  This is necessary so | 
 | 	 * that a PMD range in the page table overlaps exactly with a PMD | 
 | 	 * range in the page cache. | 
 | 	 */ | 
 | 	if ((vmf->pgoff & PG_PMD_COLOUR) != | 
 | 	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR)) | 
 | 		return true; | 
 |  | 
 | 	/* Fall back to PTEs if we're going to COW */ | 
 | 	if (write && !(vmf->vma->vm_flags & VM_SHARED)) | 
 | 		return true; | 
 |  | 
 | 	/* If the PMD would extend outside the VMA */ | 
 | 	if (pmd_addr < vmf->vma->vm_start) | 
 | 		return true; | 
 | 	if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end) | 
 | 		return true; | 
 |  | 
 | 	/* If the PMD would extend beyond the file size */ | 
 | 	if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, | 
 | 			       const struct iomap_ops *ops) | 
 | { | 
 | 	struct address_space *mapping = vmf->vma->vm_file->f_mapping; | 
 | 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER); | 
 | 	struct iomap_iter iter = { | 
 | 		.inode		= mapping->host, | 
 | 		.len		= PMD_SIZE, | 
 | 		.flags		= IOMAP_FAULT, | 
 | 	}; | 
 | 	vm_fault_t ret = VM_FAULT_FALLBACK; | 
 | 	pgoff_t max_pgoff; | 
 | 	void *entry; | 
 | 	int error; | 
 |  | 
 | 	if (vmf->flags & FAULT_FLAG_WRITE) | 
 | 		iter.flags |= IOMAP_WRITE; | 
 |  | 
 | 	/* | 
 | 	 * Check whether offset isn't beyond end of file now. Caller is | 
 | 	 * supposed to hold locks serializing us with truncate / punch hole so | 
 | 	 * this is a reliable test. | 
 | 	 */ | 
 | 	max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE); | 
 |  | 
 | 	trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0); | 
 |  | 
 | 	if (xas.xa_index >= max_pgoff) { | 
 | 		ret = VM_FAULT_SIGBUS; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (dax_fault_check_fallback(vmf, &xas, max_pgoff)) | 
 | 		goto fallback; | 
 |  | 
 | 	/* | 
 | 	 * grab_mapping_entry() will make sure we get an empty PMD entry, | 
 | 	 * a zero PMD entry or a DAX PMD.  If it can't (because a PTE | 
 | 	 * entry is already in the array, for instance), it will return | 
 | 	 * VM_FAULT_FALLBACK. | 
 | 	 */ | 
 | 	entry = grab_mapping_entry(&xas, mapping, PMD_ORDER); | 
 | 	if (xa_is_internal(entry)) { | 
 | 		ret = xa_to_internal(entry); | 
 | 		goto fallback; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * It is possible, particularly with mixed reads & writes to private | 
 | 	 * mappings, that we have raced with a PTE fault that overlaps with | 
 | 	 * the PMD we need to set up.  If so just return and the fault will be | 
 | 	 * retried. | 
 | 	 */ | 
 | 	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) && | 
 | 			!pmd_devmap(*vmf->pmd)) { | 
 | 		ret = 0; | 
 | 		goto unlock_entry; | 
 | 	} | 
 |  | 
 | 	iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT; | 
 | 	while ((error = iomap_iter(&iter, ops)) > 0) { | 
 | 		if (iomap_length(&iter) < PMD_SIZE) | 
 | 			continue; /* actually breaks out of the loop */ | 
 |  | 
 | 		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true); | 
 | 		if (ret != VM_FAULT_FALLBACK) | 
 | 			iter.processed = PMD_SIZE; | 
 | 	} | 
 |  | 
 | unlock_entry: | 
 | 	dax_unlock_entry(&xas, entry); | 
 | fallback: | 
 | 	if (ret == VM_FAULT_FALLBACK) { | 
 | 		split_huge_pmd(vmf->vma, vmf->pmd, vmf->address); | 
 | 		count_vm_event(THP_FAULT_FALLBACK); | 
 | 	} | 
 | out: | 
 | 	trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret); | 
 | 	return ret; | 
 | } | 
 | #else | 
 | static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, | 
 | 			       const struct iomap_ops *ops) | 
 | { | 
 | 	return VM_FAULT_FALLBACK; | 
 | } | 
 | #endif /* CONFIG_FS_DAX_PMD */ | 
 |  | 
 | /** | 
 |  * dax_iomap_fault - handle a page fault on a DAX file | 
 |  * @vmf: The description of the fault | 
 |  * @pe_size: Size of the page to fault in | 
 |  * @pfnp: PFN to insert for synchronous faults if fsync is required | 
 |  * @iomap_errp: Storage for detailed error code in case of error | 
 |  * @ops: Iomap ops passed from the file system | 
 |  * | 
 |  * When a page fault occurs, filesystems may call this helper in | 
 |  * their fault handler for DAX files. dax_iomap_fault() assumes the caller | 
 |  * has done all the necessary locking for page fault to proceed | 
 |  * successfully. | 
 |  */ | 
 | vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size, | 
 | 		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops) | 
 | { | 
 | 	switch (pe_size) { | 
 | 	case PE_SIZE_PTE: | 
 | 		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops); | 
 | 	case PE_SIZE_PMD: | 
 | 		return dax_iomap_pmd_fault(vmf, pfnp, ops); | 
 | 	default: | 
 | 		return VM_FAULT_FALLBACK; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(dax_iomap_fault); | 
 |  | 
 | /* | 
 |  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables | 
 |  * @vmf: The description of the fault | 
 |  * @pfn: PFN to insert | 
 |  * @order: Order of entry to insert. | 
 |  * | 
 |  * This function inserts a writeable PTE or PMD entry into the page tables | 
 |  * for an mmaped DAX file.  It also marks the page cache entry as dirty. | 
 |  */ | 
 | static vm_fault_t | 
 | dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order) | 
 | { | 
 | 	struct address_space *mapping = vmf->vma->vm_file->f_mapping; | 
 | 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order); | 
 | 	void *entry; | 
 | 	vm_fault_t ret; | 
 |  | 
 | 	xas_lock_irq(&xas); | 
 | 	entry = get_unlocked_entry(&xas, order); | 
 | 	/* Did we race with someone splitting entry or so? */ | 
 | 	if (!entry || dax_is_conflict(entry) || | 
 | 	    (order == 0 && !dax_is_pte_entry(entry))) { | 
 | 		put_unlocked_entry(&xas, entry, WAKE_NEXT); | 
 | 		xas_unlock_irq(&xas); | 
 | 		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf, | 
 | 						      VM_FAULT_NOPAGE); | 
 | 		return VM_FAULT_NOPAGE; | 
 | 	} | 
 | 	xas_set_mark(&xas, PAGECACHE_TAG_DIRTY); | 
 | 	dax_lock_entry(&xas, entry); | 
 | 	xas_unlock_irq(&xas); | 
 | 	if (order == 0) | 
 | 		ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn); | 
 | #ifdef CONFIG_FS_DAX_PMD | 
 | 	else if (order == PMD_ORDER) | 
 | 		ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE); | 
 | #endif | 
 | 	else | 
 | 		ret = VM_FAULT_FALLBACK; | 
 | 	dax_unlock_entry(&xas, entry); | 
 | 	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * dax_finish_sync_fault - finish synchronous page fault | 
 |  * @vmf: The description of the fault | 
 |  * @pe_size: Size of entry to be inserted | 
 |  * @pfn: PFN to insert | 
 |  * | 
 |  * This function ensures that the file range touched by the page fault is | 
 |  * stored persistently on the media and handles inserting of appropriate page | 
 |  * table entry. | 
 |  */ | 
 | vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, | 
 | 		enum page_entry_size pe_size, pfn_t pfn) | 
 | { | 
 | 	int err; | 
 | 	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT; | 
 | 	unsigned int order = pe_order(pe_size); | 
 | 	size_t len = PAGE_SIZE << order; | 
 |  | 
 | 	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1); | 
 | 	if (err) | 
 | 		return VM_FAULT_SIGBUS; | 
 | 	return dax_insert_pfn_mkwrite(vmf, pfn, order); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dax_finish_sync_fault); |