| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* net/sched/sch_hhf.c		Heavy-Hitter Filter (HHF) | 
 |  * | 
 |  * Copyright (C) 2013 Terry Lam <vtlam@google.com> | 
 |  * Copyright (C) 2013 Nandita Dukkipati <nanditad@google.com> | 
 |  */ | 
 |  | 
 | #include <linux/jiffies.h> | 
 | #include <linux/module.h> | 
 | #include <linux/skbuff.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/siphash.h> | 
 | #include <net/pkt_sched.h> | 
 | #include <net/sock.h> | 
 |  | 
 | /*	Heavy-Hitter Filter (HHF) | 
 |  * | 
 |  * Principles : | 
 |  * Flows are classified into two buckets: non-heavy-hitter and heavy-hitter | 
 |  * buckets. Initially, a new flow starts as non-heavy-hitter. Once classified | 
 |  * as heavy-hitter, it is immediately switched to the heavy-hitter bucket. | 
 |  * The buckets are dequeued by a Weighted Deficit Round Robin (WDRR) scheduler, | 
 |  * in which the heavy-hitter bucket is served with less weight. | 
 |  * In other words, non-heavy-hitters (e.g., short bursts of critical traffic) | 
 |  * are isolated from heavy-hitters (e.g., persistent bulk traffic) and also have | 
 |  * higher share of bandwidth. | 
 |  * | 
 |  * To capture heavy-hitters, we use the "multi-stage filter" algorithm in the | 
 |  * following paper: | 
 |  * [EV02] C. Estan and G. Varghese, "New Directions in Traffic Measurement and | 
 |  * Accounting", in ACM SIGCOMM, 2002. | 
 |  * | 
 |  * Conceptually, a multi-stage filter comprises k independent hash functions | 
 |  * and k counter arrays. Packets are indexed into k counter arrays by k hash | 
 |  * functions, respectively. The counters are then increased by the packet sizes. | 
 |  * Therefore, | 
 |  *    - For a heavy-hitter flow: *all* of its k array counters must be large. | 
 |  *    - For a non-heavy-hitter flow: some of its k array counters can be large | 
 |  *      due to hash collision with other small flows; however, with high | 
 |  *      probability, not *all* k counters are large. | 
 |  * | 
 |  * By the design of the multi-stage filter algorithm, the false negative rate | 
 |  * (heavy-hitters getting away uncaptured) is zero. However, the algorithm is | 
 |  * susceptible to false positives (non-heavy-hitters mistakenly classified as | 
 |  * heavy-hitters). | 
 |  * Therefore, we also implement the following optimizations to reduce false | 
 |  * positives by avoiding unnecessary increment of the counter values: | 
 |  *    - Optimization O1: once a heavy-hitter is identified, its bytes are not | 
 |  *        accounted in the array counters. This technique is called "shielding" | 
 |  *        in Section 3.3.1 of [EV02]. | 
 |  *    - Optimization O2: conservative update of counters | 
 |  *                       (Section 3.3.2 of [EV02]), | 
 |  *        New counter value = max {old counter value, | 
 |  *                                 smallest counter value + packet bytes} | 
 |  * | 
 |  * Finally, we refresh the counters periodically since otherwise the counter | 
 |  * values will keep accumulating. | 
 |  * | 
 |  * Once a flow is classified as heavy-hitter, we also save its per-flow state | 
 |  * in an exact-matching flow table so that its subsequent packets can be | 
 |  * dispatched to the heavy-hitter bucket accordingly. | 
 |  * | 
 |  * | 
 |  * At a high level, this qdisc works as follows: | 
 |  * Given a packet p: | 
 |  *   - If the flow-id of p (e.g., TCP 5-tuple) is already in the exact-matching | 
 |  *     heavy-hitter flow table, denoted table T, then send p to the heavy-hitter | 
 |  *     bucket. | 
 |  *   - Otherwise, forward p to the multi-stage filter, denoted filter F | 
 |  *        + If F decides that p belongs to a non-heavy-hitter flow, then send p | 
 |  *          to the non-heavy-hitter bucket. | 
 |  *        + Otherwise, if F decides that p belongs to a new heavy-hitter flow, | 
 |  *          then set up a new flow entry for the flow-id of p in the table T and | 
 |  *          send p to the heavy-hitter bucket. | 
 |  * | 
 |  * In this implementation: | 
 |  *   - T is a fixed-size hash-table with 1024 entries. Hash collision is | 
 |  *     resolved by linked-list chaining. | 
 |  *   - F has four counter arrays, each array containing 1024 32-bit counters. | 
 |  *     That means 4 * 1024 * 32 bits = 16KB of memory. | 
 |  *   - Since each array in F contains 1024 counters, 10 bits are sufficient to | 
 |  *     index into each array. | 
 |  *     Hence, instead of having four hash functions, we chop the 32-bit | 
 |  *     skb-hash into three 10-bit chunks, and the remaining 10-bit chunk is | 
 |  *     computed as XOR sum of those three chunks. | 
 |  *   - We need to clear the counter arrays periodically; however, directly | 
 |  *     memsetting 16KB of memory can lead to cache eviction and unwanted delay. | 
 |  *     So by representing each counter by a valid bit, we only need to reset | 
 |  *     4K of 1 bit (i.e. 512 bytes) instead of 16KB of memory. | 
 |  *   - The Deficit Round Robin engine is taken from fq_codel implementation | 
 |  *     (net/sched/sch_fq_codel.c). Note that wdrr_bucket corresponds to | 
 |  *     fq_codel_flow in fq_codel implementation. | 
 |  * | 
 |  */ | 
 |  | 
 | /* Non-configurable parameters */ | 
 | #define HH_FLOWS_CNT	 1024  /* number of entries in exact-matching table T */ | 
 | #define HHF_ARRAYS_CNT	 4     /* number of arrays in multi-stage filter F */ | 
 | #define HHF_ARRAYS_LEN	 1024  /* number of counters in each array of F */ | 
 | #define HHF_BIT_MASK_LEN 10    /* masking 10 bits */ | 
 | #define HHF_BIT_MASK	 0x3FF /* bitmask of 10 bits */ | 
 |  | 
 | #define WDRR_BUCKET_CNT  2     /* two buckets for Weighted DRR */ | 
 | enum wdrr_bucket_idx { | 
 | 	WDRR_BUCKET_FOR_HH	= 0, /* bucket id for heavy-hitters */ | 
 | 	WDRR_BUCKET_FOR_NON_HH	= 1  /* bucket id for non-heavy-hitters */ | 
 | }; | 
 |  | 
 | #define hhf_time_before(a, b)	\ | 
 | 	(typecheck(u32, a) && typecheck(u32, b) && ((s32)((a) - (b)) < 0)) | 
 |  | 
 | /* Heavy-hitter per-flow state */ | 
 | struct hh_flow_state { | 
 | 	u32		 hash_id;	/* hash of flow-id (e.g. TCP 5-tuple) */ | 
 | 	u32		 hit_timestamp;	/* last time heavy-hitter was seen */ | 
 | 	struct list_head flowchain;	/* chaining under hash collision */ | 
 | }; | 
 |  | 
 | /* Weighted Deficit Round Robin (WDRR) scheduler */ | 
 | struct wdrr_bucket { | 
 | 	struct sk_buff	  *head; | 
 | 	struct sk_buff	  *tail; | 
 | 	struct list_head  bucketchain; | 
 | 	int		  deficit; | 
 | }; | 
 |  | 
 | struct hhf_sched_data { | 
 | 	struct wdrr_bucket buckets[WDRR_BUCKET_CNT]; | 
 | 	siphash_key_t	   perturbation;   /* hash perturbation */ | 
 | 	u32		   quantum;        /* psched_mtu(qdisc_dev(sch)); */ | 
 | 	u32		   drop_overlimit; /* number of times max qdisc packet | 
 | 					    * limit was hit | 
 | 					    */ | 
 | 	struct list_head   *hh_flows;       /* table T (currently active HHs) */ | 
 | 	u32		   hh_flows_limit;            /* max active HH allocs */ | 
 | 	u32		   hh_flows_overlimit; /* num of disallowed HH allocs */ | 
 | 	u32		   hh_flows_total_cnt;          /* total admitted HHs */ | 
 | 	u32		   hh_flows_current_cnt;        /* total current HHs  */ | 
 | 	u32		   *hhf_arrays[HHF_ARRAYS_CNT]; /* HH filter F */ | 
 | 	u32		   hhf_arrays_reset_timestamp;  /* last time hhf_arrays | 
 | 							 * was reset | 
 | 							 */ | 
 | 	unsigned long	   *hhf_valid_bits[HHF_ARRAYS_CNT]; /* shadow valid bits | 
 | 							     * of hhf_arrays | 
 | 							     */ | 
 | 	/* Similar to the "new_flows" vs. "old_flows" concept in fq_codel DRR */ | 
 | 	struct list_head   new_buckets; /* list of new buckets */ | 
 | 	struct list_head   old_buckets; /* list of old buckets */ | 
 |  | 
 | 	/* Configurable HHF parameters */ | 
 | 	u32		   hhf_reset_timeout; /* interval to reset counter | 
 | 					       * arrays in filter F | 
 | 					       * (default 40ms) | 
 | 					       */ | 
 | 	u32		   hhf_admit_bytes;   /* counter thresh to classify as | 
 | 					       * HH (default 128KB). | 
 | 					       * With these default values, | 
 | 					       * 128KB / 40ms = 25 Mbps | 
 | 					       * i.e., we expect to capture HHs | 
 | 					       * sending > 25 Mbps. | 
 | 					       */ | 
 | 	u32		   hhf_evict_timeout; /* aging threshold to evict idle | 
 | 					       * HHs out of table T. This should | 
 | 					       * be large enough to avoid | 
 | 					       * reordering during HH eviction. | 
 | 					       * (default 1s) | 
 | 					       */ | 
 | 	u32		   hhf_non_hh_weight; /* WDRR weight for non-HHs | 
 | 					       * (default 2, | 
 | 					       *  i.e., non-HH : HH = 2 : 1) | 
 | 					       */ | 
 | }; | 
 |  | 
 | static u32 hhf_time_stamp(void) | 
 | { | 
 | 	return jiffies; | 
 | } | 
 |  | 
 | /* Looks up a heavy-hitter flow in a chaining list of table T. */ | 
 | static struct hh_flow_state *seek_list(const u32 hash, | 
 | 				       struct list_head *head, | 
 | 				       struct hhf_sched_data *q) | 
 | { | 
 | 	struct hh_flow_state *flow, *next; | 
 | 	u32 now = hhf_time_stamp(); | 
 |  | 
 | 	if (list_empty(head)) | 
 | 		return NULL; | 
 |  | 
 | 	list_for_each_entry_safe(flow, next, head, flowchain) { | 
 | 		u32 prev = flow->hit_timestamp + q->hhf_evict_timeout; | 
 |  | 
 | 		if (hhf_time_before(prev, now)) { | 
 | 			/* Delete expired heavy-hitters, but preserve one entry | 
 | 			 * to avoid kzalloc() when next time this slot is hit. | 
 | 			 */ | 
 | 			if (list_is_last(&flow->flowchain, head)) | 
 | 				return NULL; | 
 | 			list_del(&flow->flowchain); | 
 | 			kfree(flow); | 
 | 			q->hh_flows_current_cnt--; | 
 | 		} else if (flow->hash_id == hash) { | 
 | 			return flow; | 
 | 		} | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* Returns a flow state entry for a new heavy-hitter.  Either reuses an expired | 
 |  * entry or dynamically alloc a new entry. | 
 |  */ | 
 | static struct hh_flow_state *alloc_new_hh(struct list_head *head, | 
 | 					  struct hhf_sched_data *q) | 
 | { | 
 | 	struct hh_flow_state *flow; | 
 | 	u32 now = hhf_time_stamp(); | 
 |  | 
 | 	if (!list_empty(head)) { | 
 | 		/* Find an expired heavy-hitter flow entry. */ | 
 | 		list_for_each_entry(flow, head, flowchain) { | 
 | 			u32 prev = flow->hit_timestamp + q->hhf_evict_timeout; | 
 |  | 
 | 			if (hhf_time_before(prev, now)) | 
 | 				return flow; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (q->hh_flows_current_cnt >= q->hh_flows_limit) { | 
 | 		q->hh_flows_overlimit++; | 
 | 		return NULL; | 
 | 	} | 
 | 	/* Create new entry. */ | 
 | 	flow = kzalloc(sizeof(struct hh_flow_state), GFP_ATOMIC); | 
 | 	if (!flow) | 
 | 		return NULL; | 
 |  | 
 | 	q->hh_flows_current_cnt++; | 
 | 	INIT_LIST_HEAD(&flow->flowchain); | 
 | 	list_add_tail(&flow->flowchain, head); | 
 |  | 
 | 	return flow; | 
 | } | 
 |  | 
 | /* Assigns packets to WDRR buckets.  Implements a multi-stage filter to | 
 |  * classify heavy-hitters. | 
 |  */ | 
 | static enum wdrr_bucket_idx hhf_classify(struct sk_buff *skb, struct Qdisc *sch) | 
 | { | 
 | 	struct hhf_sched_data *q = qdisc_priv(sch); | 
 | 	u32 tmp_hash, hash; | 
 | 	u32 xorsum, filter_pos[HHF_ARRAYS_CNT], flow_pos; | 
 | 	struct hh_flow_state *flow; | 
 | 	u32 pkt_len, min_hhf_val; | 
 | 	int i; | 
 | 	u32 prev; | 
 | 	u32 now = hhf_time_stamp(); | 
 |  | 
 | 	/* Reset the HHF counter arrays if this is the right time. */ | 
 | 	prev = q->hhf_arrays_reset_timestamp + q->hhf_reset_timeout; | 
 | 	if (hhf_time_before(prev, now)) { | 
 | 		for (i = 0; i < HHF_ARRAYS_CNT; i++) | 
 | 			bitmap_zero(q->hhf_valid_bits[i], HHF_ARRAYS_LEN); | 
 | 		q->hhf_arrays_reset_timestamp = now; | 
 | 	} | 
 |  | 
 | 	/* Get hashed flow-id of the skb. */ | 
 | 	hash = skb_get_hash_perturb(skb, &q->perturbation); | 
 |  | 
 | 	/* Check if this packet belongs to an already established HH flow. */ | 
 | 	flow_pos = hash & HHF_BIT_MASK; | 
 | 	flow = seek_list(hash, &q->hh_flows[flow_pos], q); | 
 | 	if (flow) { /* found its HH flow */ | 
 | 		flow->hit_timestamp = now; | 
 | 		return WDRR_BUCKET_FOR_HH; | 
 | 	} | 
 |  | 
 | 	/* Now pass the packet through the multi-stage filter. */ | 
 | 	tmp_hash = hash; | 
 | 	xorsum = 0; | 
 | 	for (i = 0; i < HHF_ARRAYS_CNT - 1; i++) { | 
 | 		/* Split the skb_hash into three 10-bit chunks. */ | 
 | 		filter_pos[i] = tmp_hash & HHF_BIT_MASK; | 
 | 		xorsum ^= filter_pos[i]; | 
 | 		tmp_hash >>= HHF_BIT_MASK_LEN; | 
 | 	} | 
 | 	/* The last chunk is computed as XOR sum of other chunks. */ | 
 | 	filter_pos[HHF_ARRAYS_CNT - 1] = xorsum ^ tmp_hash; | 
 |  | 
 | 	pkt_len = qdisc_pkt_len(skb); | 
 | 	min_hhf_val = ~0U; | 
 | 	for (i = 0; i < HHF_ARRAYS_CNT; i++) { | 
 | 		u32 val; | 
 |  | 
 | 		if (!test_bit(filter_pos[i], q->hhf_valid_bits[i])) { | 
 | 			q->hhf_arrays[i][filter_pos[i]] = 0; | 
 | 			__set_bit(filter_pos[i], q->hhf_valid_bits[i]); | 
 | 		} | 
 |  | 
 | 		val = q->hhf_arrays[i][filter_pos[i]] + pkt_len; | 
 | 		if (min_hhf_val > val) | 
 | 			min_hhf_val = val; | 
 | 	} | 
 |  | 
 | 	/* Found a new HH iff all counter values > HH admit threshold. */ | 
 | 	if (min_hhf_val > q->hhf_admit_bytes) { | 
 | 		/* Just captured a new heavy-hitter. */ | 
 | 		flow = alloc_new_hh(&q->hh_flows[flow_pos], q); | 
 | 		if (!flow) /* memory alloc problem */ | 
 | 			return WDRR_BUCKET_FOR_NON_HH; | 
 | 		flow->hash_id = hash; | 
 | 		flow->hit_timestamp = now; | 
 | 		q->hh_flows_total_cnt++; | 
 |  | 
 | 		/* By returning without updating counters in q->hhf_arrays, | 
 | 		 * we implicitly implement "shielding" (see Optimization O1). | 
 | 		 */ | 
 | 		return WDRR_BUCKET_FOR_HH; | 
 | 	} | 
 |  | 
 | 	/* Conservative update of HHF arrays (see Optimization O2). */ | 
 | 	for (i = 0; i < HHF_ARRAYS_CNT; i++) { | 
 | 		if (q->hhf_arrays[i][filter_pos[i]] < min_hhf_val) | 
 | 			q->hhf_arrays[i][filter_pos[i]] = min_hhf_val; | 
 | 	} | 
 | 	return WDRR_BUCKET_FOR_NON_HH; | 
 | } | 
 |  | 
 | /* Removes one skb from head of bucket. */ | 
 | static struct sk_buff *dequeue_head(struct wdrr_bucket *bucket) | 
 | { | 
 | 	struct sk_buff *skb = bucket->head; | 
 |  | 
 | 	bucket->head = skb->next; | 
 | 	skb_mark_not_on_list(skb); | 
 | 	return skb; | 
 | } | 
 |  | 
 | /* Tail-adds skb to bucket. */ | 
 | static void bucket_add(struct wdrr_bucket *bucket, struct sk_buff *skb) | 
 | { | 
 | 	if (bucket->head == NULL) | 
 | 		bucket->head = skb; | 
 | 	else | 
 | 		bucket->tail->next = skb; | 
 | 	bucket->tail = skb; | 
 | 	skb->next = NULL; | 
 | } | 
 |  | 
 | static unsigned int hhf_drop(struct Qdisc *sch, struct sk_buff **to_free) | 
 | { | 
 | 	struct hhf_sched_data *q = qdisc_priv(sch); | 
 | 	struct wdrr_bucket *bucket; | 
 |  | 
 | 	/* Always try to drop from heavy-hitters first. */ | 
 | 	bucket = &q->buckets[WDRR_BUCKET_FOR_HH]; | 
 | 	if (!bucket->head) | 
 | 		bucket = &q->buckets[WDRR_BUCKET_FOR_NON_HH]; | 
 |  | 
 | 	if (bucket->head) { | 
 | 		struct sk_buff *skb = dequeue_head(bucket); | 
 |  | 
 | 		sch->q.qlen--; | 
 | 		qdisc_qstats_backlog_dec(sch, skb); | 
 | 		qdisc_drop(skb, sch, to_free); | 
 | 	} | 
 |  | 
 | 	/* Return id of the bucket from which the packet was dropped. */ | 
 | 	return bucket - q->buckets; | 
 | } | 
 |  | 
 | static int hhf_enqueue(struct sk_buff *skb, struct Qdisc *sch, | 
 | 		       struct sk_buff **to_free) | 
 | { | 
 | 	struct hhf_sched_data *q = qdisc_priv(sch); | 
 | 	enum wdrr_bucket_idx idx; | 
 | 	struct wdrr_bucket *bucket; | 
 | 	unsigned int prev_backlog; | 
 |  | 
 | 	idx = hhf_classify(skb, sch); | 
 |  | 
 | 	bucket = &q->buckets[idx]; | 
 | 	bucket_add(bucket, skb); | 
 | 	qdisc_qstats_backlog_inc(sch, skb); | 
 |  | 
 | 	if (list_empty(&bucket->bucketchain)) { | 
 | 		unsigned int weight; | 
 |  | 
 | 		/* The logic of new_buckets vs. old_buckets is the same as | 
 | 		 * new_flows vs. old_flows in the implementation of fq_codel, | 
 | 		 * i.e., short bursts of non-HHs should have strict priority. | 
 | 		 */ | 
 | 		if (idx == WDRR_BUCKET_FOR_HH) { | 
 | 			/* Always move heavy-hitters to old bucket. */ | 
 | 			weight = 1; | 
 | 			list_add_tail(&bucket->bucketchain, &q->old_buckets); | 
 | 		} else { | 
 | 			weight = q->hhf_non_hh_weight; | 
 | 			list_add_tail(&bucket->bucketchain, &q->new_buckets); | 
 | 		} | 
 | 		bucket->deficit = weight * q->quantum; | 
 | 	} | 
 | 	if (++sch->q.qlen <= sch->limit) | 
 | 		return NET_XMIT_SUCCESS; | 
 |  | 
 | 	prev_backlog = sch->qstats.backlog; | 
 | 	q->drop_overlimit++; | 
 | 	/* Return Congestion Notification only if we dropped a packet from this | 
 | 	 * bucket. | 
 | 	 */ | 
 | 	if (hhf_drop(sch, to_free) == idx) | 
 | 		return NET_XMIT_CN; | 
 |  | 
 | 	/* As we dropped a packet, better let upper stack know this. */ | 
 | 	qdisc_tree_reduce_backlog(sch, 1, prev_backlog - sch->qstats.backlog); | 
 | 	return NET_XMIT_SUCCESS; | 
 | } | 
 |  | 
 | static struct sk_buff *hhf_dequeue(struct Qdisc *sch) | 
 | { | 
 | 	struct hhf_sched_data *q = qdisc_priv(sch); | 
 | 	struct sk_buff *skb = NULL; | 
 | 	struct wdrr_bucket *bucket; | 
 | 	struct list_head *head; | 
 |  | 
 | begin: | 
 | 	head = &q->new_buckets; | 
 | 	if (list_empty(head)) { | 
 | 		head = &q->old_buckets; | 
 | 		if (list_empty(head)) | 
 | 			return NULL; | 
 | 	} | 
 | 	bucket = list_first_entry(head, struct wdrr_bucket, bucketchain); | 
 |  | 
 | 	if (bucket->deficit <= 0) { | 
 | 		int weight = (bucket - q->buckets == WDRR_BUCKET_FOR_HH) ? | 
 | 			      1 : q->hhf_non_hh_weight; | 
 |  | 
 | 		bucket->deficit += weight * q->quantum; | 
 | 		list_move_tail(&bucket->bucketchain, &q->old_buckets); | 
 | 		goto begin; | 
 | 	} | 
 |  | 
 | 	if (bucket->head) { | 
 | 		skb = dequeue_head(bucket); | 
 | 		sch->q.qlen--; | 
 | 		qdisc_qstats_backlog_dec(sch, skb); | 
 | 	} | 
 |  | 
 | 	if (!skb) { | 
 | 		/* Force a pass through old_buckets to prevent starvation. */ | 
 | 		if ((head == &q->new_buckets) && !list_empty(&q->old_buckets)) | 
 | 			list_move_tail(&bucket->bucketchain, &q->old_buckets); | 
 | 		else | 
 | 			list_del_init(&bucket->bucketchain); | 
 | 		goto begin; | 
 | 	} | 
 | 	qdisc_bstats_update(sch, skb); | 
 | 	bucket->deficit -= qdisc_pkt_len(skb); | 
 |  | 
 | 	return skb; | 
 | } | 
 |  | 
 | static void hhf_reset(struct Qdisc *sch) | 
 | { | 
 | 	struct sk_buff *skb; | 
 |  | 
 | 	while ((skb = hhf_dequeue(sch)) != NULL) | 
 | 		rtnl_kfree_skbs(skb, skb); | 
 | } | 
 |  | 
 | static void hhf_destroy(struct Qdisc *sch) | 
 | { | 
 | 	int i; | 
 | 	struct hhf_sched_data *q = qdisc_priv(sch); | 
 |  | 
 | 	for (i = 0; i < HHF_ARRAYS_CNT; i++) { | 
 | 		kvfree(q->hhf_arrays[i]); | 
 | 		kvfree(q->hhf_valid_bits[i]); | 
 | 	} | 
 |  | 
 | 	if (!q->hh_flows) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < HH_FLOWS_CNT; i++) { | 
 | 		struct hh_flow_state *flow, *next; | 
 | 		struct list_head *head = &q->hh_flows[i]; | 
 |  | 
 | 		if (list_empty(head)) | 
 | 			continue; | 
 | 		list_for_each_entry_safe(flow, next, head, flowchain) { | 
 | 			list_del(&flow->flowchain); | 
 | 			kfree(flow); | 
 | 		} | 
 | 	} | 
 | 	kvfree(q->hh_flows); | 
 | } | 
 |  | 
 | static const struct nla_policy hhf_policy[TCA_HHF_MAX + 1] = { | 
 | 	[TCA_HHF_BACKLOG_LIMIT]	 = { .type = NLA_U32 }, | 
 | 	[TCA_HHF_QUANTUM]	 = { .type = NLA_U32 }, | 
 | 	[TCA_HHF_HH_FLOWS_LIMIT] = { .type = NLA_U32 }, | 
 | 	[TCA_HHF_RESET_TIMEOUT]	 = { .type = NLA_U32 }, | 
 | 	[TCA_HHF_ADMIT_BYTES]	 = { .type = NLA_U32 }, | 
 | 	[TCA_HHF_EVICT_TIMEOUT]	 = { .type = NLA_U32 }, | 
 | 	[TCA_HHF_NON_HH_WEIGHT]	 = { .type = NLA_U32 }, | 
 | }; | 
 |  | 
 | static int hhf_change(struct Qdisc *sch, struct nlattr *opt, | 
 | 		      struct netlink_ext_ack *extack) | 
 | { | 
 | 	struct hhf_sched_data *q = qdisc_priv(sch); | 
 | 	struct nlattr *tb[TCA_HHF_MAX + 1]; | 
 | 	unsigned int qlen, prev_backlog; | 
 | 	int err; | 
 | 	u64 non_hh_quantum; | 
 | 	u32 new_quantum = q->quantum; | 
 | 	u32 new_hhf_non_hh_weight = q->hhf_non_hh_weight; | 
 |  | 
 | 	if (!opt) | 
 | 		return -EINVAL; | 
 |  | 
 | 	err = nla_parse_nested_deprecated(tb, TCA_HHF_MAX, opt, hhf_policy, | 
 | 					  NULL); | 
 | 	if (err < 0) | 
 | 		return err; | 
 |  | 
 | 	if (tb[TCA_HHF_QUANTUM]) | 
 | 		new_quantum = nla_get_u32(tb[TCA_HHF_QUANTUM]); | 
 |  | 
 | 	if (tb[TCA_HHF_NON_HH_WEIGHT]) | 
 | 		new_hhf_non_hh_weight = nla_get_u32(tb[TCA_HHF_NON_HH_WEIGHT]); | 
 |  | 
 | 	non_hh_quantum = (u64)new_quantum * new_hhf_non_hh_weight; | 
 | 	if (non_hh_quantum == 0 || non_hh_quantum > INT_MAX) | 
 | 		return -EINVAL; | 
 |  | 
 | 	sch_tree_lock(sch); | 
 |  | 
 | 	if (tb[TCA_HHF_BACKLOG_LIMIT]) | 
 | 		sch->limit = nla_get_u32(tb[TCA_HHF_BACKLOG_LIMIT]); | 
 |  | 
 | 	q->quantum = new_quantum; | 
 | 	q->hhf_non_hh_weight = new_hhf_non_hh_weight; | 
 |  | 
 | 	if (tb[TCA_HHF_HH_FLOWS_LIMIT]) | 
 | 		q->hh_flows_limit = nla_get_u32(tb[TCA_HHF_HH_FLOWS_LIMIT]); | 
 |  | 
 | 	if (tb[TCA_HHF_RESET_TIMEOUT]) { | 
 | 		u32 us = nla_get_u32(tb[TCA_HHF_RESET_TIMEOUT]); | 
 |  | 
 | 		q->hhf_reset_timeout = usecs_to_jiffies(us); | 
 | 	} | 
 |  | 
 | 	if (tb[TCA_HHF_ADMIT_BYTES]) | 
 | 		q->hhf_admit_bytes = nla_get_u32(tb[TCA_HHF_ADMIT_BYTES]); | 
 |  | 
 | 	if (tb[TCA_HHF_EVICT_TIMEOUT]) { | 
 | 		u32 us = nla_get_u32(tb[TCA_HHF_EVICT_TIMEOUT]); | 
 |  | 
 | 		q->hhf_evict_timeout = usecs_to_jiffies(us); | 
 | 	} | 
 |  | 
 | 	qlen = sch->q.qlen; | 
 | 	prev_backlog = sch->qstats.backlog; | 
 | 	while (sch->q.qlen > sch->limit) { | 
 | 		struct sk_buff *skb = hhf_dequeue(sch); | 
 |  | 
 | 		rtnl_kfree_skbs(skb, skb); | 
 | 	} | 
 | 	qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, | 
 | 				  prev_backlog - sch->qstats.backlog); | 
 |  | 
 | 	sch_tree_unlock(sch); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int hhf_init(struct Qdisc *sch, struct nlattr *opt, | 
 | 		    struct netlink_ext_ack *extack) | 
 | { | 
 | 	struct hhf_sched_data *q = qdisc_priv(sch); | 
 | 	int i; | 
 |  | 
 | 	sch->limit = 1000; | 
 | 	q->quantum = psched_mtu(qdisc_dev(sch)); | 
 | 	get_random_bytes(&q->perturbation, sizeof(q->perturbation)); | 
 | 	INIT_LIST_HEAD(&q->new_buckets); | 
 | 	INIT_LIST_HEAD(&q->old_buckets); | 
 |  | 
 | 	/* Configurable HHF parameters */ | 
 | 	q->hhf_reset_timeout = HZ / 25; /* 40  ms */ | 
 | 	q->hhf_admit_bytes = 131072;    /* 128 KB */ | 
 | 	q->hhf_evict_timeout = HZ;      /* 1  sec */ | 
 | 	q->hhf_non_hh_weight = 2; | 
 |  | 
 | 	if (opt) { | 
 | 		int err = hhf_change(sch, opt, extack); | 
 |  | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	if (!q->hh_flows) { | 
 | 		/* Initialize heavy-hitter flow table. */ | 
 | 		q->hh_flows = kvcalloc(HH_FLOWS_CNT, sizeof(struct list_head), | 
 | 				       GFP_KERNEL); | 
 | 		if (!q->hh_flows) | 
 | 			return -ENOMEM; | 
 | 		for (i = 0; i < HH_FLOWS_CNT; i++) | 
 | 			INIT_LIST_HEAD(&q->hh_flows[i]); | 
 |  | 
 | 		/* Cap max active HHs at twice len of hh_flows table. */ | 
 | 		q->hh_flows_limit = 2 * HH_FLOWS_CNT; | 
 | 		q->hh_flows_overlimit = 0; | 
 | 		q->hh_flows_total_cnt = 0; | 
 | 		q->hh_flows_current_cnt = 0; | 
 |  | 
 | 		/* Initialize heavy-hitter filter arrays. */ | 
 | 		for (i = 0; i < HHF_ARRAYS_CNT; i++) { | 
 | 			q->hhf_arrays[i] = kvcalloc(HHF_ARRAYS_LEN, | 
 | 						    sizeof(u32), | 
 | 						    GFP_KERNEL); | 
 | 			if (!q->hhf_arrays[i]) { | 
 | 				/* Note: hhf_destroy() will be called | 
 | 				 * by our caller. | 
 | 				 */ | 
 | 				return -ENOMEM; | 
 | 			} | 
 | 		} | 
 | 		q->hhf_arrays_reset_timestamp = hhf_time_stamp(); | 
 |  | 
 | 		/* Initialize valid bits of heavy-hitter filter arrays. */ | 
 | 		for (i = 0; i < HHF_ARRAYS_CNT; i++) { | 
 | 			q->hhf_valid_bits[i] = kvzalloc(HHF_ARRAYS_LEN / | 
 | 							  BITS_PER_BYTE, GFP_KERNEL); | 
 | 			if (!q->hhf_valid_bits[i]) { | 
 | 				/* Note: hhf_destroy() will be called | 
 | 				 * by our caller. | 
 | 				 */ | 
 | 				return -ENOMEM; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* Initialize Weighted DRR buckets. */ | 
 | 		for (i = 0; i < WDRR_BUCKET_CNT; i++) { | 
 | 			struct wdrr_bucket *bucket = q->buckets + i; | 
 |  | 
 | 			INIT_LIST_HEAD(&bucket->bucketchain); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int hhf_dump(struct Qdisc *sch, struct sk_buff *skb) | 
 | { | 
 | 	struct hhf_sched_data *q = qdisc_priv(sch); | 
 | 	struct nlattr *opts; | 
 |  | 
 | 	opts = nla_nest_start_noflag(skb, TCA_OPTIONS); | 
 | 	if (opts == NULL) | 
 | 		goto nla_put_failure; | 
 |  | 
 | 	if (nla_put_u32(skb, TCA_HHF_BACKLOG_LIMIT, sch->limit) || | 
 | 	    nla_put_u32(skb, TCA_HHF_QUANTUM, q->quantum) || | 
 | 	    nla_put_u32(skb, TCA_HHF_HH_FLOWS_LIMIT, q->hh_flows_limit) || | 
 | 	    nla_put_u32(skb, TCA_HHF_RESET_TIMEOUT, | 
 | 			jiffies_to_usecs(q->hhf_reset_timeout)) || | 
 | 	    nla_put_u32(skb, TCA_HHF_ADMIT_BYTES, q->hhf_admit_bytes) || | 
 | 	    nla_put_u32(skb, TCA_HHF_EVICT_TIMEOUT, | 
 | 			jiffies_to_usecs(q->hhf_evict_timeout)) || | 
 | 	    nla_put_u32(skb, TCA_HHF_NON_HH_WEIGHT, q->hhf_non_hh_weight)) | 
 | 		goto nla_put_failure; | 
 |  | 
 | 	return nla_nest_end(skb, opts); | 
 |  | 
 | nla_put_failure: | 
 | 	return -1; | 
 | } | 
 |  | 
 | static int hhf_dump_stats(struct Qdisc *sch, struct gnet_dump *d) | 
 | { | 
 | 	struct hhf_sched_data *q = qdisc_priv(sch); | 
 | 	struct tc_hhf_xstats st = { | 
 | 		.drop_overlimit = q->drop_overlimit, | 
 | 		.hh_overlimit	= q->hh_flows_overlimit, | 
 | 		.hh_tot_count	= q->hh_flows_total_cnt, | 
 | 		.hh_cur_count	= q->hh_flows_current_cnt, | 
 | 	}; | 
 |  | 
 | 	return gnet_stats_copy_app(d, &st, sizeof(st)); | 
 | } | 
 |  | 
 | static struct Qdisc_ops hhf_qdisc_ops __read_mostly = { | 
 | 	.id		=	"hhf", | 
 | 	.priv_size	=	sizeof(struct hhf_sched_data), | 
 |  | 
 | 	.enqueue	=	hhf_enqueue, | 
 | 	.dequeue	=	hhf_dequeue, | 
 | 	.peek		=	qdisc_peek_dequeued, | 
 | 	.init		=	hhf_init, | 
 | 	.reset		=	hhf_reset, | 
 | 	.destroy	=	hhf_destroy, | 
 | 	.change		=	hhf_change, | 
 | 	.dump		=	hhf_dump, | 
 | 	.dump_stats	=	hhf_dump_stats, | 
 | 	.owner		=	THIS_MODULE, | 
 | }; | 
 |  | 
 | static int __init hhf_module_init(void) | 
 | { | 
 | 	return register_qdisc(&hhf_qdisc_ops); | 
 | } | 
 |  | 
 | static void __exit hhf_module_exit(void) | 
 | { | 
 | 	unregister_qdisc(&hhf_qdisc_ops); | 
 | } | 
 |  | 
 | module_init(hhf_module_init) | 
 | module_exit(hhf_module_exit) | 
 | MODULE_AUTHOR("Terry Lam"); | 
 | MODULE_AUTHOR("Nandita Dukkipati"); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_DESCRIPTION("Heavy-Hitter Filter (HHF)"); |