| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (C) 2010 Red Hat, Inc. | 
 |  * Copyright (C) 2016-2019 Christoph Hellwig. | 
 |  */ | 
 | #include <linux/module.h> | 
 | #include <linux/compiler.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/iomap.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/uio.h> | 
 | #include <linux/buffer_head.h> | 
 | #include <linux/dax.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/list_sort.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/migrate.h> | 
 | #include "trace.h" | 
 |  | 
 | #include "../internal.h" | 
 |  | 
 | /* | 
 |  * Structure allocated for each page or THP when block size < page size | 
 |  * to track sub-page uptodate status and I/O completions. | 
 |  */ | 
 | struct iomap_page { | 
 | 	atomic_t		read_bytes_pending; | 
 | 	atomic_t		write_bytes_pending; | 
 | 	spinlock_t		uptodate_lock; | 
 | 	unsigned long		uptodate[]; | 
 | }; | 
 |  | 
 | static inline struct iomap_page *to_iomap_page(struct page *page) | 
 | { | 
 | 	/* | 
 | 	 * per-block data is stored in the head page.  Callers should | 
 | 	 * not be dealing with tail pages (and if they are, they can | 
 | 	 * call thp_head() first. | 
 | 	 */ | 
 | 	VM_BUG_ON_PGFLAGS(PageTail(page), page); | 
 |  | 
 | 	if (page_has_private(page)) | 
 | 		return (struct iomap_page *)page_private(page); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct bio_set iomap_ioend_bioset; | 
 |  | 
 | static struct iomap_page * | 
 | iomap_page_create(struct inode *inode, struct page *page) | 
 | { | 
 | 	struct iomap_page *iop = to_iomap_page(page); | 
 | 	unsigned int nr_blocks = i_blocks_per_page(inode, page); | 
 |  | 
 | 	if (iop || nr_blocks <= 1) | 
 | 		return iop; | 
 |  | 
 | 	iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)), | 
 | 			GFP_NOFS | __GFP_NOFAIL); | 
 | 	spin_lock_init(&iop->uptodate_lock); | 
 | 	if (PageUptodate(page)) | 
 | 		bitmap_fill(iop->uptodate, nr_blocks); | 
 | 	attach_page_private(page, iop); | 
 | 	return iop; | 
 | } | 
 |  | 
 | static void | 
 | iomap_page_release(struct page *page) | 
 | { | 
 | 	struct iomap_page *iop = detach_page_private(page); | 
 | 	unsigned int nr_blocks = i_blocks_per_page(page->mapping->host, page); | 
 |  | 
 | 	if (!iop) | 
 | 		return; | 
 | 	WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending)); | 
 | 	WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending)); | 
 | 	WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) != | 
 | 			PageUptodate(page)); | 
 | 	kfree(iop); | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate the range inside the page that we actually need to read. | 
 |  */ | 
 | static void | 
 | iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop, | 
 | 		loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp) | 
 | { | 
 | 	loff_t orig_pos = *pos; | 
 | 	loff_t isize = i_size_read(inode); | 
 | 	unsigned block_bits = inode->i_blkbits; | 
 | 	unsigned block_size = (1 << block_bits); | 
 | 	unsigned poff = offset_in_page(*pos); | 
 | 	unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length); | 
 | 	unsigned first = poff >> block_bits; | 
 | 	unsigned last = (poff + plen - 1) >> block_bits; | 
 |  | 
 | 	/* | 
 | 	 * If the block size is smaller than the page size we need to check the | 
 | 	 * per-block uptodate status and adjust the offset and length if needed | 
 | 	 * to avoid reading in already uptodate ranges. | 
 | 	 */ | 
 | 	if (iop) { | 
 | 		unsigned int i; | 
 |  | 
 | 		/* move forward for each leading block marked uptodate */ | 
 | 		for (i = first; i <= last; i++) { | 
 | 			if (!test_bit(i, iop->uptodate)) | 
 | 				break; | 
 | 			*pos += block_size; | 
 | 			poff += block_size; | 
 | 			plen -= block_size; | 
 | 			first++; | 
 | 		} | 
 |  | 
 | 		/* truncate len if we find any trailing uptodate block(s) */ | 
 | 		for ( ; i <= last; i++) { | 
 | 			if (test_bit(i, iop->uptodate)) { | 
 | 				plen -= (last - i + 1) * block_size; | 
 | 				last = i - 1; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the extent spans the block that contains the i_size we need to | 
 | 	 * handle both halves separately so that we properly zero data in the | 
 | 	 * page cache for blocks that are entirely outside of i_size. | 
 | 	 */ | 
 | 	if (orig_pos <= isize && orig_pos + length > isize) { | 
 | 		unsigned end = offset_in_page(isize - 1) >> block_bits; | 
 |  | 
 | 		if (first <= end && last > end) | 
 | 			plen -= (last - end) * block_size; | 
 | 	} | 
 |  | 
 | 	*offp = poff; | 
 | 	*lenp = plen; | 
 | } | 
 |  | 
 | static void | 
 | iomap_iop_set_range_uptodate(struct page *page, unsigned off, unsigned len) | 
 | { | 
 | 	struct iomap_page *iop = to_iomap_page(page); | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	unsigned first = off >> inode->i_blkbits; | 
 | 	unsigned last = (off + len - 1) >> inode->i_blkbits; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&iop->uptodate_lock, flags); | 
 | 	bitmap_set(iop->uptodate, first, last - first + 1); | 
 | 	if (bitmap_full(iop->uptodate, i_blocks_per_page(inode, page))) | 
 | 		SetPageUptodate(page); | 
 | 	spin_unlock_irqrestore(&iop->uptodate_lock, flags); | 
 | } | 
 |  | 
 | static void | 
 | iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len) | 
 | { | 
 | 	if (PageError(page)) | 
 | 		return; | 
 |  | 
 | 	if (page_has_private(page)) | 
 | 		iomap_iop_set_range_uptodate(page, off, len); | 
 | 	else | 
 | 		SetPageUptodate(page); | 
 | } | 
 |  | 
 | static void | 
 | iomap_read_page_end_io(struct bio_vec *bvec, int error) | 
 | { | 
 | 	struct page *page = bvec->bv_page; | 
 | 	struct iomap_page *iop = to_iomap_page(page); | 
 |  | 
 | 	if (unlikely(error)) { | 
 | 		ClearPageUptodate(page); | 
 | 		SetPageError(page); | 
 | 	} else { | 
 | 		iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len); | 
 | 	} | 
 |  | 
 | 	if (!iop || atomic_sub_and_test(bvec->bv_len, &iop->read_bytes_pending)) | 
 | 		unlock_page(page); | 
 | } | 
 |  | 
 | static void | 
 | iomap_read_end_io(struct bio *bio) | 
 | { | 
 | 	int error = blk_status_to_errno(bio->bi_status); | 
 | 	struct bio_vec *bvec; | 
 | 	struct bvec_iter_all iter_all; | 
 |  | 
 | 	bio_for_each_segment_all(bvec, bio, iter_all) | 
 | 		iomap_read_page_end_io(bvec, error); | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | struct iomap_readpage_ctx { | 
 | 	struct page		*cur_page; | 
 | 	bool			cur_page_in_bio; | 
 | 	struct bio		*bio; | 
 | 	struct readahead_control *rac; | 
 | }; | 
 |  | 
 | static void | 
 | iomap_read_inline_data(struct inode *inode, struct page *page, | 
 | 		struct iomap *iomap) | 
 | { | 
 | 	size_t size = i_size_read(inode); | 
 | 	void *addr; | 
 |  | 
 | 	if (PageUptodate(page)) | 
 | 		return; | 
 |  | 
 | 	BUG_ON(page->index); | 
 | 	BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data)); | 
 |  | 
 | 	addr = kmap_atomic(page); | 
 | 	memcpy(addr, iomap->inline_data, size); | 
 | 	memset(addr + size, 0, PAGE_SIZE - size); | 
 | 	kunmap_atomic(addr); | 
 | 	SetPageUptodate(page); | 
 | } | 
 |  | 
 | static inline bool iomap_block_needs_zeroing(struct inode *inode, | 
 | 		struct iomap *iomap, loff_t pos) | 
 | { | 
 | 	return iomap->type != IOMAP_MAPPED || | 
 | 		(iomap->flags & IOMAP_F_NEW) || | 
 | 		pos >= i_size_read(inode); | 
 | } | 
 |  | 
 | static loff_t | 
 | iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data, | 
 | 		struct iomap *iomap, struct iomap *srcmap) | 
 | { | 
 | 	struct iomap_readpage_ctx *ctx = data; | 
 | 	struct page *page = ctx->cur_page; | 
 | 	struct iomap_page *iop = iomap_page_create(inode, page); | 
 | 	bool same_page = false, is_contig = false; | 
 | 	loff_t orig_pos = pos; | 
 | 	unsigned poff, plen; | 
 | 	sector_t sector; | 
 |  | 
 | 	if (iomap->type == IOMAP_INLINE) { | 
 | 		WARN_ON_ONCE(pos); | 
 | 		iomap_read_inline_data(inode, page, iomap); | 
 | 		return PAGE_SIZE; | 
 | 	} | 
 |  | 
 | 	/* zero post-eof blocks as the page may be mapped */ | 
 | 	iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen); | 
 | 	if (plen == 0) | 
 | 		goto done; | 
 |  | 
 | 	if (iomap_block_needs_zeroing(inode, iomap, pos)) { | 
 | 		zero_user(page, poff, plen); | 
 | 		iomap_set_range_uptodate(page, poff, plen); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	ctx->cur_page_in_bio = true; | 
 | 	if (iop) | 
 | 		atomic_add(plen, &iop->read_bytes_pending); | 
 |  | 
 | 	/* Try to merge into a previous segment if we can */ | 
 | 	sector = iomap_sector(iomap, pos); | 
 | 	if (ctx->bio && bio_end_sector(ctx->bio) == sector) { | 
 | 		if (__bio_try_merge_page(ctx->bio, page, plen, poff, | 
 | 				&same_page)) | 
 | 			goto done; | 
 | 		is_contig = true; | 
 | 	} | 
 |  | 
 | 	if (!is_contig || bio_full(ctx->bio, plen)) { | 
 | 		gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL); | 
 | 		gfp_t orig_gfp = gfp; | 
 | 		int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
 |  | 
 | 		if (ctx->bio) | 
 | 			submit_bio(ctx->bio); | 
 |  | 
 | 		if (ctx->rac) /* same as readahead_gfp_mask */ | 
 | 			gfp |= __GFP_NORETRY | __GFP_NOWARN; | 
 | 		ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs)); | 
 | 		/* | 
 | 		 * If the bio_alloc fails, try it again for a single page to | 
 | 		 * avoid having to deal with partial page reads.  This emulates | 
 | 		 * what do_mpage_readpage does. | 
 | 		 */ | 
 | 		if (!ctx->bio) | 
 | 			ctx->bio = bio_alloc(orig_gfp, 1); | 
 | 		ctx->bio->bi_opf = REQ_OP_READ; | 
 | 		if (ctx->rac) | 
 | 			ctx->bio->bi_opf |= REQ_RAHEAD; | 
 | 		ctx->bio->bi_iter.bi_sector = sector; | 
 | 		bio_set_dev(ctx->bio, iomap->bdev); | 
 | 		ctx->bio->bi_end_io = iomap_read_end_io; | 
 | 	} | 
 |  | 
 | 	bio_add_page(ctx->bio, page, plen, poff); | 
 | done: | 
 | 	/* | 
 | 	 * Move the caller beyond our range so that it keeps making progress. | 
 | 	 * For that we have to include any leading non-uptodate ranges, but | 
 | 	 * we can skip trailing ones as they will be handled in the next | 
 | 	 * iteration. | 
 | 	 */ | 
 | 	return pos - orig_pos + plen; | 
 | } | 
 |  | 
 | int | 
 | iomap_readpage(struct page *page, const struct iomap_ops *ops) | 
 | { | 
 | 	struct iomap_readpage_ctx ctx = { .cur_page = page }; | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	unsigned poff; | 
 | 	loff_t ret; | 
 |  | 
 | 	trace_iomap_readpage(page->mapping->host, 1); | 
 |  | 
 | 	for (poff = 0; poff < PAGE_SIZE; poff += ret) { | 
 | 		ret = iomap_apply(inode, page_offset(page) + poff, | 
 | 				PAGE_SIZE - poff, 0, ops, &ctx, | 
 | 				iomap_readpage_actor); | 
 | 		if (ret <= 0) { | 
 | 			WARN_ON_ONCE(ret == 0); | 
 | 			SetPageError(page); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (ctx.bio) { | 
 | 		submit_bio(ctx.bio); | 
 | 		WARN_ON_ONCE(!ctx.cur_page_in_bio); | 
 | 	} else { | 
 | 		WARN_ON_ONCE(ctx.cur_page_in_bio); | 
 | 		unlock_page(page); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Just like mpage_readahead and block_read_full_page we always | 
 | 	 * return 0 and just mark the page as PageError on errors.  This | 
 | 	 * should be cleaned up all through the stack eventually. | 
 | 	 */ | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_readpage); | 
 |  | 
 | static loff_t | 
 | iomap_readahead_actor(struct inode *inode, loff_t pos, loff_t length, | 
 | 		void *data, struct iomap *iomap, struct iomap *srcmap) | 
 | { | 
 | 	struct iomap_readpage_ctx *ctx = data; | 
 | 	loff_t done, ret; | 
 |  | 
 | 	for (done = 0; done < length; done += ret) { | 
 | 		if (ctx->cur_page && offset_in_page(pos + done) == 0) { | 
 | 			if (!ctx->cur_page_in_bio) | 
 | 				unlock_page(ctx->cur_page); | 
 | 			put_page(ctx->cur_page); | 
 | 			ctx->cur_page = NULL; | 
 | 		} | 
 | 		if (!ctx->cur_page) { | 
 | 			ctx->cur_page = readahead_page(ctx->rac); | 
 | 			ctx->cur_page_in_bio = false; | 
 | 		} | 
 | 		ret = iomap_readpage_actor(inode, pos + done, length - done, | 
 | 				ctx, iomap, srcmap); | 
 | 	} | 
 |  | 
 | 	return done; | 
 | } | 
 |  | 
 | /** | 
 |  * iomap_readahead - Attempt to read pages from a file. | 
 |  * @rac: Describes the pages to be read. | 
 |  * @ops: The operations vector for the filesystem. | 
 |  * | 
 |  * This function is for filesystems to call to implement their readahead | 
 |  * address_space operation. | 
 |  * | 
 |  * Context: The @ops callbacks may submit I/O (eg to read the addresses of | 
 |  * blocks from disc), and may wait for it.  The caller may be trying to | 
 |  * access a different page, and so sleeping excessively should be avoided. | 
 |  * It may allocate memory, but should avoid costly allocations.  This | 
 |  * function is called with memalloc_nofs set, so allocations will not cause | 
 |  * the filesystem to be reentered. | 
 |  */ | 
 | void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops) | 
 | { | 
 | 	struct inode *inode = rac->mapping->host; | 
 | 	loff_t pos = readahead_pos(rac); | 
 | 	loff_t length = readahead_length(rac); | 
 | 	struct iomap_readpage_ctx ctx = { | 
 | 		.rac	= rac, | 
 | 	}; | 
 |  | 
 | 	trace_iomap_readahead(inode, readahead_count(rac)); | 
 |  | 
 | 	while (length > 0) { | 
 | 		loff_t ret = iomap_apply(inode, pos, length, 0, ops, | 
 | 				&ctx, iomap_readahead_actor); | 
 | 		if (ret <= 0) { | 
 | 			WARN_ON_ONCE(ret == 0); | 
 | 			break; | 
 | 		} | 
 | 		pos += ret; | 
 | 		length -= ret; | 
 | 	} | 
 |  | 
 | 	if (ctx.bio) | 
 | 		submit_bio(ctx.bio); | 
 | 	if (ctx.cur_page) { | 
 | 		if (!ctx.cur_page_in_bio) | 
 | 			unlock_page(ctx.cur_page); | 
 | 		put_page(ctx.cur_page); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_readahead); | 
 |  | 
 | /* | 
 |  * iomap_is_partially_uptodate checks whether blocks within a page are | 
 |  * uptodate or not. | 
 |  * | 
 |  * Returns true if all blocks which correspond to a file portion | 
 |  * we want to read within the page are uptodate. | 
 |  */ | 
 | int | 
 | iomap_is_partially_uptodate(struct page *page, unsigned long from, | 
 | 		unsigned long count) | 
 | { | 
 | 	struct iomap_page *iop = to_iomap_page(page); | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	unsigned len, first, last; | 
 | 	unsigned i; | 
 |  | 
 | 	/* Limit range to one page */ | 
 | 	len = min_t(unsigned, PAGE_SIZE - from, count); | 
 |  | 
 | 	/* First and last blocks in range within page */ | 
 | 	first = from >> inode->i_blkbits; | 
 | 	last = (from + len - 1) >> inode->i_blkbits; | 
 |  | 
 | 	if (iop) { | 
 | 		for (i = first; i <= last; i++) | 
 | 			if (!test_bit(i, iop->uptodate)) | 
 | 				return 0; | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); | 
 |  | 
 | int | 
 | iomap_releasepage(struct page *page, gfp_t gfp_mask) | 
 | { | 
 | 	trace_iomap_releasepage(page->mapping->host, page_offset(page), | 
 | 			PAGE_SIZE); | 
 |  | 
 | 	/* | 
 | 	 * mm accommodates an old ext3 case where clean pages might not have had | 
 | 	 * the dirty bit cleared. Thus, it can send actual dirty pages to | 
 | 	 * ->releasepage() via shrink_active_list(), skip those here. | 
 | 	 */ | 
 | 	if (PageDirty(page) || PageWriteback(page)) | 
 | 		return 0; | 
 | 	iomap_page_release(page); | 
 | 	return 1; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_releasepage); | 
 |  | 
 | void | 
 | iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len) | 
 | { | 
 | 	trace_iomap_invalidatepage(page->mapping->host, offset, len); | 
 |  | 
 | 	/* | 
 | 	 * If we are invalidating the entire page, clear the dirty state from it | 
 | 	 * and release it to avoid unnecessary buildup of the LRU. | 
 | 	 */ | 
 | 	if (offset == 0 && len == PAGE_SIZE) { | 
 | 		WARN_ON_ONCE(PageWriteback(page)); | 
 | 		cancel_dirty_page(page); | 
 | 		iomap_page_release(page); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_invalidatepage); | 
 |  | 
 | #ifdef CONFIG_MIGRATION | 
 | int | 
 | iomap_migrate_page(struct address_space *mapping, struct page *newpage, | 
 | 		struct page *page, enum migrate_mode mode) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = migrate_page_move_mapping(mapping, newpage, page, 0); | 
 | 	if (ret != MIGRATEPAGE_SUCCESS) | 
 | 		return ret; | 
 |  | 
 | 	if (page_has_private(page)) | 
 | 		attach_page_private(newpage, detach_page_private(page)); | 
 |  | 
 | 	if (mode != MIGRATE_SYNC_NO_COPY) | 
 | 		migrate_page_copy(newpage, page); | 
 | 	else | 
 | 		migrate_page_states(newpage, page); | 
 | 	return MIGRATEPAGE_SUCCESS; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_migrate_page); | 
 | #endif /* CONFIG_MIGRATION */ | 
 |  | 
 | enum { | 
 | 	IOMAP_WRITE_F_UNSHARE		= (1 << 0), | 
 | }; | 
 |  | 
 | static void | 
 | iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) | 
 | { | 
 | 	loff_t i_size = i_size_read(inode); | 
 |  | 
 | 	/* | 
 | 	 * Only truncate newly allocated pages beyoned EOF, even if the | 
 | 	 * write started inside the existing inode size. | 
 | 	 */ | 
 | 	if (pos + len > i_size) | 
 | 		truncate_pagecache_range(inode, max(pos, i_size), | 
 | 					 pos + len - 1); | 
 | } | 
 |  | 
 | static int | 
 | iomap_read_page_sync(loff_t block_start, struct page *page, unsigned poff, | 
 | 		unsigned plen, struct iomap *iomap) | 
 | { | 
 | 	struct bio_vec bvec; | 
 | 	struct bio bio; | 
 |  | 
 | 	bio_init(&bio, &bvec, 1); | 
 | 	bio.bi_opf = REQ_OP_READ; | 
 | 	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start); | 
 | 	bio_set_dev(&bio, iomap->bdev); | 
 | 	__bio_add_page(&bio, page, plen, poff); | 
 | 	return submit_bio_wait(&bio); | 
 | } | 
 |  | 
 | static int | 
 | __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, int flags, | 
 | 		struct page *page, struct iomap *srcmap) | 
 | { | 
 | 	struct iomap_page *iop = iomap_page_create(inode, page); | 
 | 	loff_t block_size = i_blocksize(inode); | 
 | 	loff_t block_start = round_down(pos, block_size); | 
 | 	loff_t block_end = round_up(pos + len, block_size); | 
 | 	unsigned from = offset_in_page(pos), to = from + len, poff, plen; | 
 |  | 
 | 	if (PageUptodate(page)) | 
 | 		return 0; | 
 | 	ClearPageError(page); | 
 |  | 
 | 	do { | 
 | 		iomap_adjust_read_range(inode, iop, &block_start, | 
 | 				block_end - block_start, &poff, &plen); | 
 | 		if (plen == 0) | 
 | 			break; | 
 |  | 
 | 		if (!(flags & IOMAP_WRITE_F_UNSHARE) && | 
 | 		    (from <= poff || from >= poff + plen) && | 
 | 		    (to <= poff || to >= poff + plen)) | 
 | 			continue; | 
 |  | 
 | 		if (iomap_block_needs_zeroing(inode, srcmap, block_start)) { | 
 | 			if (WARN_ON_ONCE(flags & IOMAP_WRITE_F_UNSHARE)) | 
 | 				return -EIO; | 
 | 			zero_user_segments(page, poff, from, to, poff + plen); | 
 | 		} else { | 
 | 			int status = iomap_read_page_sync(block_start, page, | 
 | 					poff, plen, srcmap); | 
 | 			if (status) | 
 | 				return status; | 
 | 		} | 
 | 		iomap_set_range_uptodate(page, poff, plen); | 
 | 	} while ((block_start += plen) < block_end); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags, | 
 | 		struct page **pagep, struct iomap *iomap, struct iomap *srcmap) | 
 | { | 
 | 	const struct iomap_page_ops *page_ops = iomap->page_ops; | 
 | 	struct page *page; | 
 | 	int status = 0; | 
 |  | 
 | 	BUG_ON(pos + len > iomap->offset + iomap->length); | 
 | 	if (srcmap != iomap) | 
 | 		BUG_ON(pos + len > srcmap->offset + srcmap->length); | 
 |  | 
 | 	if (fatal_signal_pending(current)) | 
 | 		return -EINTR; | 
 |  | 
 | 	if (page_ops && page_ops->page_prepare) { | 
 | 		status = page_ops->page_prepare(inode, pos, len, iomap); | 
 | 		if (status) | 
 | 			return status; | 
 | 	} | 
 |  | 
 | 	page = grab_cache_page_write_begin(inode->i_mapping, pos >> PAGE_SHIFT, | 
 | 			AOP_FLAG_NOFS); | 
 | 	if (!page) { | 
 | 		status = -ENOMEM; | 
 | 		goto out_no_page; | 
 | 	} | 
 |  | 
 | 	if (srcmap->type == IOMAP_INLINE) | 
 | 		iomap_read_inline_data(inode, page, srcmap); | 
 | 	else if (iomap->flags & IOMAP_F_BUFFER_HEAD) | 
 | 		status = __block_write_begin_int(page, pos, len, NULL, srcmap); | 
 | 	else | 
 | 		status = __iomap_write_begin(inode, pos, len, flags, page, | 
 | 				srcmap); | 
 |  | 
 | 	if (unlikely(status)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	*pagep = page; | 
 | 	return 0; | 
 |  | 
 | out_unlock: | 
 | 	unlock_page(page); | 
 | 	put_page(page); | 
 | 	iomap_write_failed(inode, pos, len); | 
 |  | 
 | out_no_page: | 
 | 	if (page_ops && page_ops->page_done) | 
 | 		page_ops->page_done(inode, pos, 0, NULL, iomap); | 
 | 	return status; | 
 | } | 
 |  | 
 | int | 
 | iomap_set_page_dirty(struct page *page) | 
 | { | 
 | 	struct address_space *mapping = page_mapping(page); | 
 | 	int newly_dirty; | 
 |  | 
 | 	if (unlikely(!mapping)) | 
 | 		return !TestSetPageDirty(page); | 
 |  | 
 | 	/* | 
 | 	 * Lock out page->mem_cgroup migration to keep PageDirty | 
 | 	 * synchronized with per-memcg dirty page counters. | 
 | 	 */ | 
 | 	lock_page_memcg(page); | 
 | 	newly_dirty = !TestSetPageDirty(page); | 
 | 	if (newly_dirty) | 
 | 		__set_page_dirty(page, mapping, 0); | 
 | 	unlock_page_memcg(page); | 
 |  | 
 | 	if (newly_dirty) | 
 | 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES); | 
 | 	return newly_dirty; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_set_page_dirty); | 
 |  | 
 | static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len, | 
 | 		size_t copied, struct page *page) | 
 | { | 
 | 	flush_dcache_page(page); | 
 |  | 
 | 	/* | 
 | 	 * The blocks that were entirely written will now be uptodate, so we | 
 | 	 * don't have to worry about a readpage reading them and overwriting a | 
 | 	 * partial write.  However if we have encountered a short write and only | 
 | 	 * partially written into a block, it will not be marked uptodate, so a | 
 | 	 * readpage might come in and destroy our partial write. | 
 | 	 * | 
 | 	 * Do the simplest thing, and just treat any short write to a non | 
 | 	 * uptodate page as a zero-length write, and force the caller to redo | 
 | 	 * the whole thing. | 
 | 	 */ | 
 | 	if (unlikely(copied < len && !PageUptodate(page))) | 
 | 		return 0; | 
 | 	iomap_set_range_uptodate(page, offset_in_page(pos), len); | 
 | 	iomap_set_page_dirty(page); | 
 | 	return copied; | 
 | } | 
 |  | 
 | static size_t iomap_write_end_inline(struct inode *inode, struct page *page, | 
 | 		struct iomap *iomap, loff_t pos, size_t copied) | 
 | { | 
 | 	void *addr; | 
 |  | 
 | 	WARN_ON_ONCE(!PageUptodate(page)); | 
 | 	BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data)); | 
 |  | 
 | 	flush_dcache_page(page); | 
 | 	addr = kmap_atomic(page); | 
 | 	memcpy(iomap->inline_data + pos, addr + pos, copied); | 
 | 	kunmap_atomic(addr); | 
 |  | 
 | 	mark_inode_dirty(inode); | 
 | 	return copied; | 
 | } | 
 |  | 
 | /* Returns the number of bytes copied.  May be 0.  Cannot be an errno. */ | 
 | static size_t iomap_write_end(struct inode *inode, loff_t pos, size_t len, | 
 | 		size_t copied, struct page *page, struct iomap *iomap, | 
 | 		struct iomap *srcmap) | 
 | { | 
 | 	const struct iomap_page_ops *page_ops = iomap->page_ops; | 
 | 	loff_t old_size = inode->i_size; | 
 | 	size_t ret; | 
 |  | 
 | 	if (srcmap->type == IOMAP_INLINE) { | 
 | 		ret = iomap_write_end_inline(inode, page, iomap, pos, copied); | 
 | 	} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) { | 
 | 		ret = block_write_end(NULL, inode->i_mapping, pos, len, copied, | 
 | 				page, NULL); | 
 | 	} else { | 
 | 		ret = __iomap_write_end(inode, pos, len, copied, page); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Update the in-memory inode size after copying the data into the page | 
 | 	 * cache.  It's up to the file system to write the updated size to disk, | 
 | 	 * preferably after I/O completion so that no stale data is exposed. | 
 | 	 */ | 
 | 	if (pos + ret > old_size) { | 
 | 		i_size_write(inode, pos + ret); | 
 | 		iomap->flags |= IOMAP_F_SIZE_CHANGED; | 
 | 	} | 
 | 	unlock_page(page); | 
 |  | 
 | 	if (old_size < pos) | 
 | 		pagecache_isize_extended(inode, old_size, pos); | 
 | 	if (page_ops && page_ops->page_done) | 
 | 		page_ops->page_done(inode, pos, ret, page, iomap); | 
 | 	put_page(page); | 
 |  | 
 | 	if (ret < len) | 
 | 		iomap_write_failed(inode, pos, len); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static loff_t | 
 | iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data, | 
 | 		struct iomap *iomap, struct iomap *srcmap) | 
 | { | 
 | 	struct iov_iter *i = data; | 
 | 	long status = 0; | 
 | 	ssize_t written = 0; | 
 |  | 
 | 	do { | 
 | 		struct page *page; | 
 | 		unsigned long offset;	/* Offset into pagecache page */ | 
 | 		unsigned long bytes;	/* Bytes to write to page */ | 
 | 		size_t copied;		/* Bytes copied from user */ | 
 |  | 
 | 		offset = offset_in_page(pos); | 
 | 		bytes = min_t(unsigned long, PAGE_SIZE - offset, | 
 | 						iov_iter_count(i)); | 
 | again: | 
 | 		if (bytes > length) | 
 | 			bytes = length; | 
 |  | 
 | 		/* | 
 | 		 * Bring in the user page that we will copy from _first_. | 
 | 		 * Otherwise there's a nasty deadlock on copying from the | 
 | 		 * same page as we're writing to, without it being marked | 
 | 		 * up-to-date. | 
 | 		 * | 
 | 		 * Not only is this an optimisation, but it is also required | 
 | 		 * to check that the address is actually valid, when atomic | 
 | 		 * usercopies are used, below. | 
 | 		 */ | 
 | 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) { | 
 | 			status = -EFAULT; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap, | 
 | 				srcmap); | 
 | 		if (unlikely(status)) | 
 | 			break; | 
 |  | 
 | 		if (mapping_writably_mapped(inode->i_mapping)) | 
 | 			flush_dcache_page(page); | 
 |  | 
 | 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); | 
 |  | 
 | 		copied = iomap_write_end(inode, pos, bytes, copied, page, iomap, | 
 | 				srcmap); | 
 |  | 
 | 		cond_resched(); | 
 |  | 
 | 		iov_iter_advance(i, copied); | 
 | 		if (unlikely(copied == 0)) { | 
 | 			/* | 
 | 			 * If we were unable to copy any data at all, we must | 
 | 			 * fall back to a single segment length write. | 
 | 			 * | 
 | 			 * If we didn't fallback here, we could livelock | 
 | 			 * because not all segments in the iov can be copied at | 
 | 			 * once without a pagefault. | 
 | 			 */ | 
 | 			bytes = min_t(unsigned long, PAGE_SIZE - offset, | 
 | 						iov_iter_single_seg_count(i)); | 
 | 			goto again; | 
 | 		} | 
 | 		pos += copied; | 
 | 		written += copied; | 
 | 		length -= copied; | 
 |  | 
 | 		balance_dirty_pages_ratelimited(inode->i_mapping); | 
 | 	} while (iov_iter_count(i) && length); | 
 |  | 
 | 	return written ? written : status; | 
 | } | 
 |  | 
 | ssize_t | 
 | iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter, | 
 | 		const struct iomap_ops *ops) | 
 | { | 
 | 	struct inode *inode = iocb->ki_filp->f_mapping->host; | 
 | 	loff_t pos = iocb->ki_pos, ret = 0, written = 0; | 
 |  | 
 | 	while (iov_iter_count(iter)) { | 
 | 		ret = iomap_apply(inode, pos, iov_iter_count(iter), | 
 | 				IOMAP_WRITE, ops, iter, iomap_write_actor); | 
 | 		if (ret <= 0) | 
 | 			break; | 
 | 		pos += ret; | 
 | 		written += ret; | 
 | 	} | 
 |  | 
 | 	return written ? written : ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_file_buffered_write); | 
 |  | 
 | static loff_t | 
 | iomap_unshare_actor(struct inode *inode, loff_t pos, loff_t length, void *data, | 
 | 		struct iomap *iomap, struct iomap *srcmap) | 
 | { | 
 | 	long status = 0; | 
 | 	loff_t written = 0; | 
 |  | 
 | 	/* don't bother with blocks that are not shared to start with */ | 
 | 	if (!(iomap->flags & IOMAP_F_SHARED)) | 
 | 		return length; | 
 | 	/* don't bother with holes or unwritten extents */ | 
 | 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) | 
 | 		return length; | 
 |  | 
 | 	do { | 
 | 		unsigned long offset = offset_in_page(pos); | 
 | 		unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length); | 
 | 		struct page *page; | 
 |  | 
 | 		status = iomap_write_begin(inode, pos, bytes, | 
 | 				IOMAP_WRITE_F_UNSHARE, &page, iomap, srcmap); | 
 | 		if (unlikely(status)) | 
 | 			return status; | 
 |  | 
 | 		status = iomap_write_end(inode, pos, bytes, bytes, page, iomap, | 
 | 				srcmap); | 
 | 		if (WARN_ON_ONCE(status == 0)) | 
 | 			return -EIO; | 
 |  | 
 | 		cond_resched(); | 
 |  | 
 | 		pos += status; | 
 | 		written += status; | 
 | 		length -= status; | 
 |  | 
 | 		balance_dirty_pages_ratelimited(inode->i_mapping); | 
 | 	} while (length); | 
 |  | 
 | 	return written; | 
 | } | 
 |  | 
 | int | 
 | iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len, | 
 | 		const struct iomap_ops *ops) | 
 | { | 
 | 	loff_t ret; | 
 |  | 
 | 	while (len) { | 
 | 		ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL, | 
 | 				iomap_unshare_actor); | 
 | 		if (ret <= 0) | 
 | 			return ret; | 
 | 		pos += ret; | 
 | 		len -= ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_file_unshare); | 
 |  | 
 | static s64 iomap_zero(struct inode *inode, loff_t pos, u64 length, | 
 | 		struct iomap *iomap, struct iomap *srcmap) | 
 | { | 
 | 	struct page *page; | 
 | 	int status; | 
 | 	unsigned offset = offset_in_page(pos); | 
 | 	unsigned bytes = min_t(u64, PAGE_SIZE - offset, length); | 
 |  | 
 | 	status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap, srcmap); | 
 | 	if (status) | 
 | 		return status; | 
 |  | 
 | 	zero_user(page, offset, bytes); | 
 | 	mark_page_accessed(page); | 
 |  | 
 | 	return iomap_write_end(inode, pos, bytes, bytes, page, iomap, srcmap); | 
 | } | 
 |  | 
 | static loff_t iomap_zero_range_actor(struct inode *inode, loff_t pos, | 
 | 		loff_t length, void *data, struct iomap *iomap, | 
 | 		struct iomap *srcmap) | 
 | { | 
 | 	bool *did_zero = data; | 
 | 	loff_t written = 0; | 
 |  | 
 | 	/* already zeroed?  we're done. */ | 
 | 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) | 
 | 		return length; | 
 |  | 
 | 	do { | 
 | 		s64 bytes; | 
 |  | 
 | 		if (IS_DAX(inode)) | 
 | 			bytes = dax_iomap_zero(pos, length, iomap); | 
 | 		else | 
 | 			bytes = iomap_zero(inode, pos, length, iomap, srcmap); | 
 | 		if (bytes < 0) | 
 | 			return bytes; | 
 |  | 
 | 		pos += bytes; | 
 | 		length -= bytes; | 
 | 		written += bytes; | 
 | 		if (did_zero) | 
 | 			*did_zero = true; | 
 | 	} while (length > 0); | 
 |  | 
 | 	return written; | 
 | } | 
 |  | 
 | int | 
 | iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, | 
 | 		const struct iomap_ops *ops) | 
 | { | 
 | 	loff_t ret; | 
 |  | 
 | 	while (len > 0) { | 
 | 		ret = iomap_apply(inode, pos, len, IOMAP_ZERO, | 
 | 				ops, did_zero, iomap_zero_range_actor); | 
 | 		if (ret <= 0) | 
 | 			return ret; | 
 |  | 
 | 		pos += ret; | 
 | 		len -= ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_zero_range); | 
 |  | 
 | int | 
 | iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, | 
 | 		const struct iomap_ops *ops) | 
 | { | 
 | 	unsigned int blocksize = i_blocksize(inode); | 
 | 	unsigned int off = pos & (blocksize - 1); | 
 |  | 
 | 	/* Block boundary? Nothing to do */ | 
 | 	if (!off) | 
 | 		return 0; | 
 | 	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops); | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_truncate_page); | 
 |  | 
 | static loff_t | 
 | iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length, | 
 | 		void *data, struct iomap *iomap, struct iomap *srcmap) | 
 | { | 
 | 	struct page *page = data; | 
 | 	int ret; | 
 |  | 
 | 	if (iomap->flags & IOMAP_F_BUFFER_HEAD) { | 
 | 		ret = __block_write_begin_int(page, pos, length, NULL, iomap); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 		block_commit_write(page, 0, length); | 
 | 	} else { | 
 | 		WARN_ON_ONCE(!PageUptodate(page)); | 
 | 		iomap_page_create(inode, page); | 
 | 		set_page_dirty(page); | 
 | 	} | 
 |  | 
 | 	return length; | 
 | } | 
 |  | 
 | vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops) | 
 | { | 
 | 	struct page *page = vmf->page; | 
 | 	struct inode *inode = file_inode(vmf->vma->vm_file); | 
 | 	unsigned long length; | 
 | 	loff_t offset; | 
 | 	ssize_t ret; | 
 |  | 
 | 	lock_page(page); | 
 | 	ret = page_mkwrite_check_truncate(page, inode); | 
 | 	if (ret < 0) | 
 | 		goto out_unlock; | 
 | 	length = ret; | 
 |  | 
 | 	offset = page_offset(page); | 
 | 	while (length > 0) { | 
 | 		ret = iomap_apply(inode, offset, length, | 
 | 				IOMAP_WRITE | IOMAP_FAULT, ops, page, | 
 | 				iomap_page_mkwrite_actor); | 
 | 		if (unlikely(ret <= 0)) | 
 | 			goto out_unlock; | 
 | 		offset += ret; | 
 | 		length -= ret; | 
 | 	} | 
 |  | 
 | 	wait_for_stable_page(page); | 
 | 	return VM_FAULT_LOCKED; | 
 | out_unlock: | 
 | 	unlock_page(page); | 
 | 	return block_page_mkwrite_return(ret); | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_page_mkwrite); | 
 |  | 
 | static void | 
 | iomap_finish_page_writeback(struct inode *inode, struct page *page, | 
 | 		int error, unsigned int len) | 
 | { | 
 | 	struct iomap_page *iop = to_iomap_page(page); | 
 |  | 
 | 	if (error) { | 
 | 		SetPageError(page); | 
 | 		mapping_set_error(inode->i_mapping, error); | 
 | 	} | 
 |  | 
 | 	WARN_ON_ONCE(i_blocks_per_page(inode, page) > 1 && !iop); | 
 | 	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0); | 
 |  | 
 | 	if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending)) | 
 | 		end_page_writeback(page); | 
 | } | 
 |  | 
 | /* | 
 |  * We're now finished for good with this ioend structure.  Update the page | 
 |  * state, release holds on bios, and finally free up memory.  Do not use the | 
 |  * ioend after this. | 
 |  */ | 
 | static void | 
 | iomap_finish_ioend(struct iomap_ioend *ioend, int error) | 
 | { | 
 | 	struct inode *inode = ioend->io_inode; | 
 | 	struct bio *bio = &ioend->io_inline_bio; | 
 | 	struct bio *last = ioend->io_bio, *next; | 
 | 	u64 start = bio->bi_iter.bi_sector; | 
 | 	loff_t offset = ioend->io_offset; | 
 | 	bool quiet = bio_flagged(bio, BIO_QUIET); | 
 |  | 
 | 	for (bio = &ioend->io_inline_bio; bio; bio = next) { | 
 | 		struct bio_vec *bv; | 
 | 		struct bvec_iter_all iter_all; | 
 |  | 
 | 		/* | 
 | 		 * For the last bio, bi_private points to the ioend, so we | 
 | 		 * need to explicitly end the iteration here. | 
 | 		 */ | 
 | 		if (bio == last) | 
 | 			next = NULL; | 
 | 		else | 
 | 			next = bio->bi_private; | 
 |  | 
 | 		/* walk each page on bio, ending page IO on them */ | 
 | 		bio_for_each_segment_all(bv, bio, iter_all) | 
 | 			iomap_finish_page_writeback(inode, bv->bv_page, error, | 
 | 					bv->bv_len); | 
 | 		bio_put(bio); | 
 | 	} | 
 | 	/* The ioend has been freed by bio_put() */ | 
 |  | 
 | 	if (unlikely(error && !quiet)) { | 
 | 		printk_ratelimited(KERN_ERR | 
 | "%s: writeback error on inode %lu, offset %lld, sector %llu", | 
 | 			inode->i_sb->s_id, inode->i_ino, offset, start); | 
 | 	} | 
 | } | 
 |  | 
 | void | 
 | iomap_finish_ioends(struct iomap_ioend *ioend, int error) | 
 | { | 
 | 	struct list_head tmp; | 
 |  | 
 | 	list_replace_init(&ioend->io_list, &tmp); | 
 | 	iomap_finish_ioend(ioend, error); | 
 |  | 
 | 	while (!list_empty(&tmp)) { | 
 | 		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list); | 
 | 		list_del_init(&ioend->io_list); | 
 | 		iomap_finish_ioend(ioend, error); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_finish_ioends); | 
 |  | 
 | /* | 
 |  * We can merge two adjacent ioends if they have the same set of work to do. | 
 |  */ | 
 | static bool | 
 | iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next) | 
 | { | 
 | 	if (ioend->io_bio->bi_status != next->io_bio->bi_status) | 
 | 		return false; | 
 | 	if ((ioend->io_flags & IOMAP_F_SHARED) ^ | 
 | 	    (next->io_flags & IOMAP_F_SHARED)) | 
 | 		return false; | 
 | 	if ((ioend->io_type == IOMAP_UNWRITTEN) ^ | 
 | 	    (next->io_type == IOMAP_UNWRITTEN)) | 
 | 		return false; | 
 | 	if (ioend->io_offset + ioend->io_size != next->io_offset) | 
 | 		return false; | 
 | 	return true; | 
 | } | 
 |  | 
 | void | 
 | iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends, | 
 | 		void (*merge_private)(struct iomap_ioend *ioend, | 
 | 				struct iomap_ioend *next)) | 
 | { | 
 | 	struct iomap_ioend *next; | 
 |  | 
 | 	INIT_LIST_HEAD(&ioend->io_list); | 
 |  | 
 | 	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend, | 
 | 			io_list))) { | 
 | 		if (!iomap_ioend_can_merge(ioend, next)) | 
 | 			break; | 
 | 		list_move_tail(&next->io_list, &ioend->io_list); | 
 | 		ioend->io_size += next->io_size; | 
 | 		if (next->io_private && merge_private) | 
 | 			merge_private(ioend, next); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_ioend_try_merge); | 
 |  | 
 | static int | 
 | iomap_ioend_compare(void *priv, const struct list_head *a, | 
 | 		const struct list_head *b) | 
 | { | 
 | 	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list); | 
 | 	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list); | 
 |  | 
 | 	if (ia->io_offset < ib->io_offset) | 
 | 		return -1; | 
 | 	if (ia->io_offset > ib->io_offset) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | void | 
 | iomap_sort_ioends(struct list_head *ioend_list) | 
 | { | 
 | 	list_sort(NULL, ioend_list, iomap_ioend_compare); | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_sort_ioends); | 
 |  | 
 | static void iomap_writepage_end_bio(struct bio *bio) | 
 | { | 
 | 	struct iomap_ioend *ioend = bio->bi_private; | 
 |  | 
 | 	iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status)); | 
 | } | 
 |  | 
 | /* | 
 |  * Submit the final bio for an ioend. | 
 |  * | 
 |  * If @error is non-zero, it means that we have a situation where some part of | 
 |  * the submission process has failed after we have marked paged for writeback | 
 |  * and unlocked them.  In this situation, we need to fail the bio instead of | 
 |  * submitting it.  This typically only happens on a filesystem shutdown. | 
 |  */ | 
 | static int | 
 | iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend, | 
 | 		int error) | 
 | { | 
 | 	ioend->io_bio->bi_private = ioend; | 
 | 	ioend->io_bio->bi_end_io = iomap_writepage_end_bio; | 
 |  | 
 | 	if (wpc->ops->prepare_ioend) | 
 | 		error = wpc->ops->prepare_ioend(ioend, error); | 
 | 	if (error) { | 
 | 		/* | 
 | 		 * If we are failing the IO now, just mark the ioend with an | 
 | 		 * error and finish it.  This will run IO completion immediately | 
 | 		 * as there is only one reference to the ioend at this point in | 
 | 		 * time. | 
 | 		 */ | 
 | 		ioend->io_bio->bi_status = errno_to_blk_status(error); | 
 | 		bio_endio(ioend->io_bio); | 
 | 		return error; | 
 | 	} | 
 |  | 
 | 	submit_bio(ioend->io_bio); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct iomap_ioend * | 
 | iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc, | 
 | 		loff_t offset, sector_t sector, struct writeback_control *wbc) | 
 | { | 
 | 	struct iomap_ioend *ioend; | 
 | 	struct bio *bio; | 
 |  | 
 | 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &iomap_ioend_bioset); | 
 | 	bio_set_dev(bio, wpc->iomap.bdev); | 
 | 	bio->bi_iter.bi_sector = sector; | 
 | 	bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); | 
 | 	bio->bi_write_hint = inode->i_write_hint; | 
 | 	wbc_init_bio(wbc, bio); | 
 |  | 
 | 	ioend = container_of(bio, struct iomap_ioend, io_inline_bio); | 
 | 	INIT_LIST_HEAD(&ioend->io_list); | 
 | 	ioend->io_type = wpc->iomap.type; | 
 | 	ioend->io_flags = wpc->iomap.flags; | 
 | 	ioend->io_inode = inode; | 
 | 	ioend->io_size = 0; | 
 | 	ioend->io_offset = offset; | 
 | 	ioend->io_private = NULL; | 
 | 	ioend->io_bio = bio; | 
 | 	return ioend; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate a new bio, and chain the old bio to the new one. | 
 |  * | 
 |  * Note that we have to do perform the chaining in this unintuitive order | 
 |  * so that the bi_private linkage is set up in the right direction for the | 
 |  * traversal in iomap_finish_ioend(). | 
 |  */ | 
 | static struct bio * | 
 | iomap_chain_bio(struct bio *prev) | 
 | { | 
 | 	struct bio *new; | 
 |  | 
 | 	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES); | 
 | 	bio_copy_dev(new, prev);/* also copies over blkcg information */ | 
 | 	new->bi_iter.bi_sector = bio_end_sector(prev); | 
 | 	new->bi_opf = prev->bi_opf; | 
 | 	new->bi_write_hint = prev->bi_write_hint; | 
 |  | 
 | 	bio_chain(prev, new); | 
 | 	bio_get(prev);		/* for iomap_finish_ioend */ | 
 | 	submit_bio(prev); | 
 | 	return new; | 
 | } | 
 |  | 
 | static bool | 
 | iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset, | 
 | 		sector_t sector) | 
 | { | 
 | 	if ((wpc->iomap.flags & IOMAP_F_SHARED) != | 
 | 	    (wpc->ioend->io_flags & IOMAP_F_SHARED)) | 
 | 		return false; | 
 | 	if (wpc->iomap.type != wpc->ioend->io_type) | 
 | 		return false; | 
 | 	if (offset != wpc->ioend->io_offset + wpc->ioend->io_size) | 
 | 		return false; | 
 | 	if (sector != bio_end_sector(wpc->ioend->io_bio)) | 
 | 		return false; | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Test to see if we have an existing ioend structure that we could append to | 
 |  * first, otherwise finish off the current ioend and start another. | 
 |  */ | 
 | static void | 
 | iomap_add_to_ioend(struct inode *inode, loff_t offset, struct page *page, | 
 | 		struct iomap_page *iop, struct iomap_writepage_ctx *wpc, | 
 | 		struct writeback_control *wbc, struct list_head *iolist) | 
 | { | 
 | 	sector_t sector = iomap_sector(&wpc->iomap, offset); | 
 | 	unsigned len = i_blocksize(inode); | 
 | 	unsigned poff = offset & (PAGE_SIZE - 1); | 
 | 	bool merged, same_page = false; | 
 |  | 
 | 	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, offset, sector)) { | 
 | 		if (wpc->ioend) | 
 | 			list_add(&wpc->ioend->io_list, iolist); | 
 | 		wpc->ioend = iomap_alloc_ioend(inode, wpc, offset, sector, wbc); | 
 | 	} | 
 |  | 
 | 	merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff, | 
 | 			&same_page); | 
 | 	if (iop) | 
 | 		atomic_add(len, &iop->write_bytes_pending); | 
 |  | 
 | 	if (!merged) { | 
 | 		if (bio_full(wpc->ioend->io_bio, len)) { | 
 | 			wpc->ioend->io_bio = | 
 | 				iomap_chain_bio(wpc->ioend->io_bio); | 
 | 		} | 
 | 		bio_add_page(wpc->ioend->io_bio, page, len, poff); | 
 | 	} | 
 |  | 
 | 	wpc->ioend->io_size += len; | 
 | 	wbc_account_cgroup_owner(wbc, page, len); | 
 | } | 
 |  | 
 | /* | 
 |  * We implement an immediate ioend submission policy here to avoid needing to | 
 |  * chain multiple ioends and hence nest mempool allocations which can violate | 
 |  * forward progress guarantees we need to provide. The current ioend we are | 
 |  * adding blocks to is cached on the writepage context, and if the new block | 
 |  * does not append to the cached ioend it will create a new ioend and cache that | 
 |  * instead. | 
 |  * | 
 |  * If a new ioend is created and cached, the old ioend is returned and queued | 
 |  * locally for submission once the entire page is processed or an error has been | 
 |  * detected.  While ioends are submitted immediately after they are completed, | 
 |  * batching optimisations are provided by higher level block plugging. | 
 |  * | 
 |  * At the end of a writeback pass, there will be a cached ioend remaining on the | 
 |  * writepage context that the caller will need to submit. | 
 |  */ | 
 | static int | 
 | iomap_writepage_map(struct iomap_writepage_ctx *wpc, | 
 | 		struct writeback_control *wbc, struct inode *inode, | 
 | 		struct page *page, u64 end_offset) | 
 | { | 
 | 	struct iomap_page *iop = to_iomap_page(page); | 
 | 	struct iomap_ioend *ioend, *next; | 
 | 	unsigned len = i_blocksize(inode); | 
 | 	u64 file_offset; /* file offset of page */ | 
 | 	int error = 0, count = 0, i; | 
 | 	LIST_HEAD(submit_list); | 
 |  | 
 | 	WARN_ON_ONCE(i_blocks_per_page(inode, page) > 1 && !iop); | 
 | 	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0); | 
 |  | 
 | 	/* | 
 | 	 * Walk through the page to find areas to write back. If we run off the | 
 | 	 * end of the current map or find the current map invalid, grab a new | 
 | 	 * one. | 
 | 	 */ | 
 | 	for (i = 0, file_offset = page_offset(page); | 
 | 	     i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset; | 
 | 	     i++, file_offset += len) { | 
 | 		if (iop && !test_bit(i, iop->uptodate)) | 
 | 			continue; | 
 |  | 
 | 		error = wpc->ops->map_blocks(wpc, inode, file_offset); | 
 | 		if (error) | 
 | 			break; | 
 | 		if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE)) | 
 | 			continue; | 
 | 		if (wpc->iomap.type == IOMAP_HOLE) | 
 | 			continue; | 
 | 		iomap_add_to_ioend(inode, file_offset, page, iop, wpc, wbc, | 
 | 				 &submit_list); | 
 | 		count++; | 
 | 	} | 
 |  | 
 | 	WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list)); | 
 | 	WARN_ON_ONCE(!PageLocked(page)); | 
 | 	WARN_ON_ONCE(PageWriteback(page)); | 
 | 	WARN_ON_ONCE(PageDirty(page)); | 
 |  | 
 | 	/* | 
 | 	 * We cannot cancel the ioend directly here on error.  We may have | 
 | 	 * already set other pages under writeback and hence we have to run I/O | 
 | 	 * completion to mark the error state of the pages under writeback | 
 | 	 * appropriately. | 
 | 	 */ | 
 | 	if (unlikely(error)) { | 
 | 		/* | 
 | 		 * Let the filesystem know what portion of the current page | 
 | 		 * failed to map. If the page wasn't been added to ioend, it | 
 | 		 * won't be affected by I/O completion and we must unlock it | 
 | 		 * now. | 
 | 		 */ | 
 | 		if (wpc->ops->discard_page) | 
 | 			wpc->ops->discard_page(page, file_offset); | 
 | 		if (!count) { | 
 | 			ClearPageUptodate(page); | 
 | 			unlock_page(page); | 
 | 			goto done; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	set_page_writeback(page); | 
 | 	unlock_page(page); | 
 |  | 
 | 	/* | 
 | 	 * Preserve the original error if there was one, otherwise catch | 
 | 	 * submission errors here and propagate into subsequent ioend | 
 | 	 * submissions. | 
 | 	 */ | 
 | 	list_for_each_entry_safe(ioend, next, &submit_list, io_list) { | 
 | 		int error2; | 
 |  | 
 | 		list_del_init(&ioend->io_list); | 
 | 		error2 = iomap_submit_ioend(wpc, ioend, error); | 
 | 		if (error2 && !error) | 
 | 			error = error2; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We can end up here with no error and nothing to write only if we race | 
 | 	 * with a partial page truncate on a sub-page block sized filesystem. | 
 | 	 */ | 
 | 	if (!count) | 
 | 		end_page_writeback(page); | 
 | done: | 
 | 	mapping_set_error(page->mapping, error); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Write out a dirty page. | 
 |  * | 
 |  * For delalloc space on the page we need to allocate space and flush it. | 
 |  * For unwritten space on the page we need to start the conversion to | 
 |  * regular allocated space. | 
 |  */ | 
 | static int | 
 | iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data) | 
 | { | 
 | 	struct iomap_writepage_ctx *wpc = data; | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	pgoff_t end_index; | 
 | 	u64 end_offset; | 
 | 	loff_t offset; | 
 |  | 
 | 	trace_iomap_writepage(inode, page_offset(page), PAGE_SIZE); | 
 |  | 
 | 	/* | 
 | 	 * Refuse to write the page out if we are called from reclaim context. | 
 | 	 * | 
 | 	 * This avoids stack overflows when called from deeply used stacks in | 
 | 	 * random callers for direct reclaim or memcg reclaim.  We explicitly | 
 | 	 * allow reclaim from kswapd as the stack usage there is relatively low. | 
 | 	 * | 
 | 	 * This should never happen except in the case of a VM regression so | 
 | 	 * warn about it. | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == | 
 | 			PF_MEMALLOC)) | 
 | 		goto redirty; | 
 |  | 
 | 	/* | 
 | 	 * Is this page beyond the end of the file? | 
 | 	 * | 
 | 	 * The page index is less than the end_index, adjust the end_offset | 
 | 	 * to the highest offset that this page should represent. | 
 | 	 * ----------------------------------------------------- | 
 | 	 * |			file mapping	       | <EOF> | | 
 | 	 * ----------------------------------------------------- | 
 | 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       | | 
 | 	 * ^--------------------------------^----------|-------- | 
 | 	 * |     desired writeback range    |      see else    | | 
 | 	 * ---------------------------------^------------------| | 
 | 	 */ | 
 | 	offset = i_size_read(inode); | 
 | 	end_index = offset >> PAGE_SHIFT; | 
 | 	if (page->index < end_index) | 
 | 		end_offset = (loff_t)(page->index + 1) << PAGE_SHIFT; | 
 | 	else { | 
 | 		/* | 
 | 		 * Check whether the page to write out is beyond or straddles | 
 | 		 * i_size or not. | 
 | 		 * ------------------------------------------------------- | 
 | 		 * |		file mapping		        | <EOF>  | | 
 | 		 * ------------------------------------------------------- | 
 | 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond | | 
 | 		 * ^--------------------------------^-----------|--------- | 
 | 		 * |				    |      Straddles     | | 
 | 		 * ---------------------------------^-----------|--------| | 
 | 		 */ | 
 | 		unsigned offset_into_page = offset & (PAGE_SIZE - 1); | 
 |  | 
 | 		/* | 
 | 		 * Skip the page if it is fully outside i_size, e.g. due to a | 
 | 		 * truncate operation that is in progress. We must redirty the | 
 | 		 * page so that reclaim stops reclaiming it. Otherwise | 
 | 		 * iomap_vm_releasepage() is called on it and gets confused. | 
 | 		 * | 
 | 		 * Note that the end_index is unsigned long, it would overflow | 
 | 		 * if the given offset is greater than 16TB on 32-bit system | 
 | 		 * and if we do check the page is fully outside i_size or not | 
 | 		 * via "if (page->index >= end_index + 1)" as "end_index + 1" | 
 | 		 * will be evaluated to 0.  Hence this page will be redirtied | 
 | 		 * and be written out repeatedly which would result in an | 
 | 		 * infinite loop, the user program that perform this operation | 
 | 		 * will hang.  Instead, we can verify this situation by checking | 
 | 		 * if the page to write is totally beyond the i_size or if it's | 
 | 		 * offset is just equal to the EOF. | 
 | 		 */ | 
 | 		if (page->index > end_index || | 
 | 		    (page->index == end_index && offset_into_page == 0)) | 
 | 			goto redirty; | 
 |  | 
 | 		/* | 
 | 		 * The page straddles i_size.  It must be zeroed out on each | 
 | 		 * and every writepage invocation because it may be mmapped. | 
 | 		 * "A file is mapped in multiples of the page size.  For a file | 
 | 		 * that is not a multiple of the page size, the remaining | 
 | 		 * memory is zeroed when mapped, and writes to that region are | 
 | 		 * not written out to the file." | 
 | 		 */ | 
 | 		zero_user_segment(page, offset_into_page, PAGE_SIZE); | 
 |  | 
 | 		/* Adjust the end_offset to the end of file */ | 
 | 		end_offset = offset; | 
 | 	} | 
 |  | 
 | 	return iomap_writepage_map(wpc, wbc, inode, page, end_offset); | 
 |  | 
 | redirty: | 
 | 	redirty_page_for_writepage(wbc, page); | 
 | 	unlock_page(page); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int | 
 | iomap_writepage(struct page *page, struct writeback_control *wbc, | 
 | 		struct iomap_writepage_ctx *wpc, | 
 | 		const struct iomap_writeback_ops *ops) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	wpc->ops = ops; | 
 | 	ret = iomap_do_writepage(page, wbc, wpc); | 
 | 	if (!wpc->ioend) | 
 | 		return ret; | 
 | 	return iomap_submit_ioend(wpc, wpc->ioend, ret); | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_writepage); | 
 |  | 
 | int | 
 | iomap_writepages(struct address_space *mapping, struct writeback_control *wbc, | 
 | 		struct iomap_writepage_ctx *wpc, | 
 | 		const struct iomap_writeback_ops *ops) | 
 | { | 
 | 	int			ret; | 
 |  | 
 | 	wpc->ops = ops; | 
 | 	ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc); | 
 | 	if (!wpc->ioend) | 
 | 		return ret; | 
 | 	return iomap_submit_ioend(wpc, wpc->ioend, ret); | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_writepages); | 
 |  | 
 | static int __init iomap_init(void) | 
 | { | 
 | 	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE), | 
 | 			   offsetof(struct iomap_ioend, io_inline_bio), | 
 | 			   BIOSET_NEED_BVECS); | 
 | } | 
 | fs_initcall(iomap_init); |