|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Testsuite for eBPF verifier | 
|  | * | 
|  | * Copyright (c) 2014 PLUMgrid, http://plumgrid.com | 
|  | * Copyright (c) 2017 Facebook | 
|  | * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io | 
|  | */ | 
|  |  | 
|  | #include <endian.h> | 
|  | #include <asm/types.h> | 
|  | #include <linux/types.h> | 
|  | #include <stdint.h> | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <unistd.h> | 
|  | #include <errno.h> | 
|  | #include <string.h> | 
|  | #include <stddef.h> | 
|  | #include <stdbool.h> | 
|  | #include <sched.h> | 
|  | #include <limits.h> | 
|  | #include <assert.h> | 
|  |  | 
|  | #include <linux/unistd.h> | 
|  | #include <linux/filter.h> | 
|  | #include <linux/bpf_perf_event.h> | 
|  | #include <linux/bpf.h> | 
|  | #include <linux/if_ether.h> | 
|  | #include <linux/btf.h> | 
|  |  | 
|  | #include <bpf/btf.h> | 
|  | #include <bpf/bpf.h> | 
|  | #include <bpf/libbpf.h> | 
|  |  | 
|  | #ifdef HAVE_GENHDR | 
|  | # include "autoconf.h" | 
|  | #else | 
|  | # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__) | 
|  | #  define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1 | 
|  | # endif | 
|  | #endif | 
|  | #include "cap_helpers.h" | 
|  | #include "bpf_rand.h" | 
|  | #include "bpf_util.h" | 
|  | #include "test_btf.h" | 
|  | #include "../../../include/linux/filter.h" | 
|  |  | 
|  | #ifndef ENOTSUPP | 
|  | #define ENOTSUPP 524 | 
|  | #endif | 
|  |  | 
|  | #define MAX_INSNS	BPF_MAXINSNS | 
|  | #define MAX_EXPECTED_INSNS	32 | 
|  | #define MAX_UNEXPECTED_INSNS	32 | 
|  | #define MAX_TEST_INSNS	1000000 | 
|  | #define MAX_FIXUPS	8 | 
|  | #define MAX_NR_MAPS	23 | 
|  | #define MAX_TEST_RUNS	8 | 
|  | #define POINTER_VALUE	0xcafe4all | 
|  | #define TEST_DATA_LEN	64 | 
|  | #define MAX_FUNC_INFOS	8 | 
|  | #define MAX_BTF_STRINGS	256 | 
|  | #define MAX_BTF_TYPES	256 | 
|  |  | 
|  | #define INSN_OFF_MASK	((__s16)0xFFFF) | 
|  | #define INSN_IMM_MASK	((__s32)0xFFFFFFFF) | 
|  | #define SKIP_INSNS()	BPF_RAW_INSN(0xde, 0xa, 0xd, 0xbeef, 0xdeadbeef) | 
|  |  | 
|  | #define DEFAULT_LIBBPF_LOG_LEVEL	4 | 
|  | #define VERBOSE_LIBBPF_LOG_LEVEL	1 | 
|  |  | 
|  | #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS	(1 << 0) | 
|  | #define F_LOAD_WITH_STRICT_ALIGNMENT		(1 << 1) | 
|  |  | 
|  | /* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */ | 
|  | #define ADMIN_CAPS (1ULL << CAP_NET_ADMIN |	\ | 
|  | 1ULL << CAP_PERFMON |	\ | 
|  | 1ULL << CAP_BPF) | 
|  | #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled" | 
|  | static bool unpriv_disabled = false; | 
|  | static int skips; | 
|  | static bool verbose = false; | 
|  |  | 
|  | struct kfunc_btf_id_pair { | 
|  | const char *kfunc; | 
|  | int insn_idx; | 
|  | }; | 
|  |  | 
|  | struct bpf_test { | 
|  | const char *descr; | 
|  | struct bpf_insn	insns[MAX_INSNS]; | 
|  | struct bpf_insn	*fill_insns; | 
|  | /* If specified, test engine looks for this sequence of | 
|  | * instructions in the BPF program after loading. Allows to | 
|  | * test rewrites applied by verifier.  Use values | 
|  | * INSN_OFF_MASK and INSN_IMM_MASK to mask `off` and `imm` | 
|  | * fields if content does not matter.  The test case fails if | 
|  | * specified instructions are not found. | 
|  | * | 
|  | * The sequence could be split into sub-sequences by adding | 
|  | * SKIP_INSNS instruction at the end of each sub-sequence. In | 
|  | * such case sub-sequences are searched for one after another. | 
|  | */ | 
|  | struct bpf_insn expected_insns[MAX_EXPECTED_INSNS]; | 
|  | /* If specified, test engine applies same pattern matching | 
|  | * logic as for `expected_insns`. If the specified pattern is | 
|  | * matched test case is marked as failed. | 
|  | */ | 
|  | struct bpf_insn unexpected_insns[MAX_UNEXPECTED_INSNS]; | 
|  | int fixup_map_hash_8b[MAX_FIXUPS]; | 
|  | int fixup_map_hash_48b[MAX_FIXUPS]; | 
|  | int fixup_map_hash_16b[MAX_FIXUPS]; | 
|  | int fixup_map_array_48b[MAX_FIXUPS]; | 
|  | int fixup_map_sockmap[MAX_FIXUPS]; | 
|  | int fixup_map_sockhash[MAX_FIXUPS]; | 
|  | int fixup_map_xskmap[MAX_FIXUPS]; | 
|  | int fixup_map_stacktrace[MAX_FIXUPS]; | 
|  | int fixup_prog1[MAX_FIXUPS]; | 
|  | int fixup_prog2[MAX_FIXUPS]; | 
|  | int fixup_map_in_map[MAX_FIXUPS]; | 
|  | int fixup_cgroup_storage[MAX_FIXUPS]; | 
|  | int fixup_percpu_cgroup_storage[MAX_FIXUPS]; | 
|  | int fixup_map_spin_lock[MAX_FIXUPS]; | 
|  | int fixup_map_array_ro[MAX_FIXUPS]; | 
|  | int fixup_map_array_wo[MAX_FIXUPS]; | 
|  | int fixup_map_array_small[MAX_FIXUPS]; | 
|  | int fixup_sk_storage_map[MAX_FIXUPS]; | 
|  | int fixup_map_event_output[MAX_FIXUPS]; | 
|  | int fixup_map_reuseport_array[MAX_FIXUPS]; | 
|  | int fixup_map_ringbuf[MAX_FIXUPS]; | 
|  | int fixup_map_timer[MAX_FIXUPS]; | 
|  | int fixup_map_kptr[MAX_FIXUPS]; | 
|  | struct kfunc_btf_id_pair fixup_kfunc_btf_id[MAX_FIXUPS]; | 
|  | /* Expected verifier log output for result REJECT or VERBOSE_ACCEPT. | 
|  | * Can be a tab-separated sequence of expected strings. An empty string | 
|  | * means no log verification. | 
|  | */ | 
|  | const char *errstr; | 
|  | const char *errstr_unpriv; | 
|  | uint32_t insn_processed; | 
|  | int prog_len; | 
|  | enum { | 
|  | UNDEF, | 
|  | ACCEPT, | 
|  | REJECT, | 
|  | VERBOSE_ACCEPT, | 
|  | } result, result_unpriv; | 
|  | enum bpf_prog_type prog_type; | 
|  | uint8_t flags; | 
|  | void (*fill_helper)(struct bpf_test *self); | 
|  | int runs; | 
|  | #define bpf_testdata_struct_t					\ | 
|  | struct {						\ | 
|  | uint32_t retval, retval_unpriv;			\ | 
|  | union {						\ | 
|  | __u8 data[TEST_DATA_LEN];		\ | 
|  | __u64 data64[TEST_DATA_LEN / 8];	\ | 
|  | };						\ | 
|  | } | 
|  | union { | 
|  | bpf_testdata_struct_t; | 
|  | bpf_testdata_struct_t retvals[MAX_TEST_RUNS]; | 
|  | }; | 
|  | enum bpf_attach_type expected_attach_type; | 
|  | const char *kfunc; | 
|  | struct bpf_func_info func_info[MAX_FUNC_INFOS]; | 
|  | int func_info_cnt; | 
|  | char btf_strings[MAX_BTF_STRINGS]; | 
|  | /* A set of BTF types to load when specified, | 
|  | * use macro definitions from test_btf.h, | 
|  | * must end with BTF_END_RAW | 
|  | */ | 
|  | __u32 btf_types[MAX_BTF_TYPES]; | 
|  | }; | 
|  |  | 
|  | /* Note we want this to be 64 bit aligned so that the end of our array is | 
|  | * actually the end of the structure. | 
|  | */ | 
|  | #define MAX_ENTRIES 11 | 
|  |  | 
|  | struct test_val { | 
|  | unsigned int index; | 
|  | int foo[MAX_ENTRIES]; | 
|  | }; | 
|  |  | 
|  | struct other_val { | 
|  | long long foo; | 
|  | long long bar; | 
|  | }; | 
|  |  | 
|  | static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self) | 
|  | { | 
|  | /* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */ | 
|  | #define PUSH_CNT 51 | 
|  | /* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */ | 
|  | unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6; | 
|  | struct bpf_insn *insn = self->fill_insns; | 
|  | int i = 0, j, k = 0; | 
|  |  | 
|  | insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); | 
|  | loop: | 
|  | for (j = 0; j < PUSH_CNT; j++) { | 
|  | insn[i++] = BPF_LD_ABS(BPF_B, 0); | 
|  | /* jump to error label */ | 
|  | insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); | 
|  | i++; | 
|  | insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); | 
|  | insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1); | 
|  | insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2); | 
|  | insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, | 
|  | BPF_FUNC_skb_vlan_push), | 
|  | insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); | 
|  | i++; | 
|  | } | 
|  |  | 
|  | for (j = 0; j < PUSH_CNT; j++) { | 
|  | insn[i++] = BPF_LD_ABS(BPF_B, 0); | 
|  | insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); | 
|  | i++; | 
|  | insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); | 
|  | insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, | 
|  | BPF_FUNC_skb_vlan_pop), | 
|  | insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); | 
|  | i++; | 
|  | } | 
|  | if (++k < 5) | 
|  | goto loop; | 
|  |  | 
|  | for (; i < len - 3; i++) | 
|  | insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef); | 
|  | insn[len - 3] = BPF_JMP_A(1); | 
|  | /* error label */ | 
|  | insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0); | 
|  | insn[len - 1] = BPF_EXIT_INSN(); | 
|  | self->prog_len = len; | 
|  | } | 
|  |  | 
|  | static void bpf_fill_jump_around_ld_abs(struct bpf_test *self) | 
|  | { | 
|  | struct bpf_insn *insn = self->fill_insns; | 
|  | /* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns, | 
|  | * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted | 
|  | * to extend the error value of the inlined ld_abs sequence which then | 
|  | * contains 7 insns. so, set the dividend to 7 so the testcase could | 
|  | * work on all arches. | 
|  | */ | 
|  | unsigned int len = (1 << 15) / 7; | 
|  | int i = 0; | 
|  |  | 
|  | insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); | 
|  | insn[i++] = BPF_LD_ABS(BPF_B, 0); | 
|  | insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2); | 
|  | i++; | 
|  | while (i < len - 1) | 
|  | insn[i++] = BPF_LD_ABS(BPF_B, 1); | 
|  | insn[i] = BPF_EXIT_INSN(); | 
|  | self->prog_len = i + 1; | 
|  | } | 
|  |  | 
|  | static void bpf_fill_rand_ld_dw(struct bpf_test *self) | 
|  | { | 
|  | struct bpf_insn *insn = self->fill_insns; | 
|  | uint64_t res = 0; | 
|  | int i = 0; | 
|  |  | 
|  | insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0); | 
|  | while (i < self->retval) { | 
|  | uint64_t val = bpf_semi_rand_get(); | 
|  | struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) }; | 
|  |  | 
|  | res ^= val; | 
|  | insn[i++] = tmp[0]; | 
|  | insn[i++] = tmp[1]; | 
|  | insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); | 
|  | } | 
|  | insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0); | 
|  | insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32); | 
|  | insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); | 
|  | insn[i] = BPF_EXIT_INSN(); | 
|  | self->prog_len = i + 1; | 
|  | res ^= (res >> 32); | 
|  | self->retval = (uint32_t)res; | 
|  | } | 
|  |  | 
|  | #define MAX_JMP_SEQ 8192 | 
|  |  | 
|  | /* test the sequence of 8k jumps */ | 
|  | static void bpf_fill_scale1(struct bpf_test *self) | 
|  | { | 
|  | struct bpf_insn *insn = self->fill_insns; | 
|  | int i = 0, k = 0; | 
|  |  | 
|  | insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); | 
|  | /* test to check that the long sequence of jumps is acceptable */ | 
|  | while (k++ < MAX_JMP_SEQ) { | 
|  | insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, | 
|  | BPF_FUNC_get_prandom_u32); | 
|  | insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); | 
|  | insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); | 
|  | insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, | 
|  | -8 * (k % 64 + 1)); | 
|  | } | 
|  | /* is_state_visited() doesn't allocate state for pruning for every jump. | 
|  | * Hence multiply jmps by 4 to accommodate that heuristic | 
|  | */ | 
|  | while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) | 
|  | insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); | 
|  | insn[i] = BPF_EXIT_INSN(); | 
|  | self->prog_len = i + 1; | 
|  | self->retval = 42; | 
|  | } | 
|  |  | 
|  | /* test the sequence of 8k jumps in inner most function (function depth 8)*/ | 
|  | static void bpf_fill_scale2(struct bpf_test *self) | 
|  | { | 
|  | struct bpf_insn *insn = self->fill_insns; | 
|  | int i = 0, k = 0; | 
|  |  | 
|  | #define FUNC_NEST 7 | 
|  | for (k = 0; k < FUNC_NEST; k++) { | 
|  | insn[i++] = BPF_CALL_REL(1); | 
|  | insn[i++] = BPF_EXIT_INSN(); | 
|  | } | 
|  | insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); | 
|  | /* test to check that the long sequence of jumps is acceptable */ | 
|  | k = 0; | 
|  | while (k++ < MAX_JMP_SEQ) { | 
|  | insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, | 
|  | BPF_FUNC_get_prandom_u32); | 
|  | insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); | 
|  | insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); | 
|  | insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, | 
|  | -8 * (k % (64 - 4 * FUNC_NEST) + 1)); | 
|  | } | 
|  | while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) | 
|  | insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); | 
|  | insn[i] = BPF_EXIT_INSN(); | 
|  | self->prog_len = i + 1; | 
|  | self->retval = 42; | 
|  | } | 
|  |  | 
|  | static void bpf_fill_scale(struct bpf_test *self) | 
|  | { | 
|  | switch (self->retval) { | 
|  | case 1: | 
|  | return bpf_fill_scale1(self); | 
|  | case 2: | 
|  | return bpf_fill_scale2(self); | 
|  | default: | 
|  | self->prog_len = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int bpf_fill_torturous_jumps_insn_1(struct bpf_insn *insn) | 
|  | { | 
|  | unsigned int len = 259, hlen = 128; | 
|  | int i; | 
|  |  | 
|  | insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32); | 
|  | for (i = 1; i <= hlen; i++) { | 
|  | insn[i]        = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, hlen); | 
|  | insn[i + hlen] = BPF_JMP_A(hlen - i); | 
|  | } | 
|  | insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 1); | 
|  | insn[len - 1] = BPF_EXIT_INSN(); | 
|  |  | 
|  | return len; | 
|  | } | 
|  |  | 
|  | static int bpf_fill_torturous_jumps_insn_2(struct bpf_insn *insn) | 
|  | { | 
|  | unsigned int len = 4100, jmp_off = 2048; | 
|  | int i, j; | 
|  |  | 
|  | insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32); | 
|  | for (i = 1; i <= jmp_off; i++) { | 
|  | insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, jmp_off); | 
|  | } | 
|  | insn[i++] = BPF_JMP_A(jmp_off); | 
|  | for (; i <= jmp_off * 2 + 1; i+=16) { | 
|  | for (j = 0; j < 16; j++) { | 
|  | insn[i + j] = BPF_JMP_A(16 - j - 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 2); | 
|  | insn[len - 1] = BPF_EXIT_INSN(); | 
|  |  | 
|  | return len; | 
|  | } | 
|  |  | 
|  | static void bpf_fill_torturous_jumps(struct bpf_test *self) | 
|  | { | 
|  | struct bpf_insn *insn = self->fill_insns; | 
|  | int i = 0; | 
|  |  | 
|  | switch (self->retval) { | 
|  | case 1: | 
|  | self->prog_len = bpf_fill_torturous_jumps_insn_1(insn); | 
|  | return; | 
|  | case 2: | 
|  | self->prog_len = bpf_fill_torturous_jumps_insn_2(insn); | 
|  | return; | 
|  | case 3: | 
|  | /* main */ | 
|  | insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4); | 
|  | insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 262); | 
|  | insn[i++] = BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0); | 
|  | insn[i++] = BPF_MOV64_IMM(BPF_REG_0, 3); | 
|  | insn[i++] = BPF_EXIT_INSN(); | 
|  |  | 
|  | /* subprog 1 */ | 
|  | i += bpf_fill_torturous_jumps_insn_1(insn + i); | 
|  |  | 
|  | /* subprog 2 */ | 
|  | i += bpf_fill_torturous_jumps_insn_2(insn + i); | 
|  |  | 
|  | self->prog_len = i; | 
|  | return; | 
|  | default: | 
|  | self->prog_len = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bpf_fill_big_prog_with_loop_1(struct bpf_test *self) | 
|  | { | 
|  | struct bpf_insn *insn = self->fill_insns; | 
|  | /* This test was added to catch a specific use after free | 
|  | * error, which happened upon BPF program reallocation. | 
|  | * Reallocation is handled by core.c:bpf_prog_realloc, which | 
|  | * reuses old memory if page boundary is not crossed. The | 
|  | * value of `len` is chosen to cross this boundary on bpf_loop | 
|  | * patching. | 
|  | */ | 
|  | const int len = getpagesize() - 25; | 
|  | int callback_load_idx; | 
|  | int callback_idx; | 
|  | int i = 0; | 
|  |  | 
|  | insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_1, 1); | 
|  | callback_load_idx = i; | 
|  | insn[i++] = BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, | 
|  | BPF_REG_2, BPF_PSEUDO_FUNC, 0, | 
|  | 777 /* filled below */); | 
|  | insn[i++] = BPF_RAW_INSN(0, 0, 0, 0, 0); | 
|  | insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_3, 0); | 
|  | insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_4, 0); | 
|  | insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_loop); | 
|  |  | 
|  | while (i < len - 3) | 
|  | insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0); | 
|  | insn[i++] = BPF_EXIT_INSN(); | 
|  |  | 
|  | callback_idx = i; | 
|  | insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0); | 
|  | insn[i++] = BPF_EXIT_INSN(); | 
|  |  | 
|  | insn[callback_load_idx].imm = callback_idx - callback_load_idx - 1; | 
|  | self->func_info[1].insn_off = callback_idx; | 
|  | self->prog_len = i; | 
|  | assert(i == len); | 
|  | } | 
|  |  | 
|  | /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */ | 
|  | #define BPF_SK_LOOKUP(func)						\ | 
|  | /* struct bpf_sock_tuple tuple = {} */				\ | 
|  | BPF_MOV64_IMM(BPF_REG_2, 0),					\ | 
|  | BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8),			\ | 
|  | BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16),		\ | 
|  | BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24),		\ | 
|  | BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32),		\ | 
|  | BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40),		\ | 
|  | BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48),		\ | 
|  | /* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */		\ | 
|  | BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),				\ | 
|  | BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48),				\ | 
|  | BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)),	\ | 
|  | BPF_MOV64_IMM(BPF_REG_4, 0),					\ | 
|  | BPF_MOV64_IMM(BPF_REG_5, 0),					\ | 
|  | BPF_EMIT_CALL(BPF_FUNC_ ## func) | 
|  |  | 
|  | /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return | 
|  | * value into 0 and does necessary preparation for direct packet access | 
|  | * through r2. The allowed access range is 8 bytes. | 
|  | */ | 
|  | #define BPF_DIRECT_PKT_R2						\ | 
|  | BPF_MOV64_IMM(BPF_REG_0, 0),					\ | 
|  | BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,			\ | 
|  | offsetof(struct __sk_buff, data)),			\ | 
|  | BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,			\ | 
|  | offsetof(struct __sk_buff, data_end)),		\ | 
|  | BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),				\ | 
|  | BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),				\ | 
|  | BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1),			\ | 
|  | BPF_EXIT_INSN() | 
|  |  | 
|  | /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random | 
|  | * positive u32, and zero-extend it into 64-bit. | 
|  | */ | 
|  | #define BPF_RAND_UEXT_R7						\ | 
|  | BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\ | 
|  | BPF_FUNC_get_prandom_u32),				\ | 
|  | BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\ | 
|  | BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33),				\ | 
|  | BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33) | 
|  |  | 
|  | /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random | 
|  | * negative u32, and sign-extend it into 64-bit. | 
|  | */ | 
|  | #define BPF_RAND_SEXT_R7						\ | 
|  | BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\ | 
|  | BPF_FUNC_get_prandom_u32),				\ | 
|  | BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\ | 
|  | BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000),			\ | 
|  | BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32),				\ | 
|  | BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32) | 
|  |  | 
|  | static struct bpf_test tests[] = { | 
|  | #define FILL_ARRAY | 
|  | #include <verifier/tests.h> | 
|  | #undef FILL_ARRAY | 
|  | }; | 
|  |  | 
|  | static int probe_filter_length(const struct bpf_insn *fp) | 
|  | { | 
|  | int len; | 
|  |  | 
|  | for (len = MAX_INSNS - 1; len > 0; --len) | 
|  | if (fp[len].code != 0 || fp[len].imm != 0) | 
|  | break; | 
|  | return len + 1; | 
|  | } | 
|  |  | 
|  | static bool skip_unsupported_map(enum bpf_map_type map_type) | 
|  | { | 
|  | if (!libbpf_probe_bpf_map_type(map_type, NULL)) { | 
|  | printf("SKIP (unsupported map type %d)\n", map_type); | 
|  | skips++; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int __create_map(uint32_t type, uint32_t size_key, | 
|  | uint32_t size_value, uint32_t max_elem, | 
|  | uint32_t extra_flags) | 
|  | { | 
|  | LIBBPF_OPTS(bpf_map_create_opts, opts); | 
|  | int fd; | 
|  |  | 
|  | opts.map_flags = (type == BPF_MAP_TYPE_HASH ? BPF_F_NO_PREALLOC : 0) | extra_flags; | 
|  | fd = bpf_map_create(type, NULL, size_key, size_value, max_elem, &opts); | 
|  | if (fd < 0) { | 
|  | if (skip_unsupported_map(type)) | 
|  | return -1; | 
|  | printf("Failed to create hash map '%s'!\n", strerror(errno)); | 
|  | } | 
|  |  | 
|  | return fd; | 
|  | } | 
|  |  | 
|  | static int create_map(uint32_t type, uint32_t size_key, | 
|  | uint32_t size_value, uint32_t max_elem) | 
|  | { | 
|  | return __create_map(type, size_key, size_value, max_elem, 0); | 
|  | } | 
|  |  | 
|  | static void update_map(int fd, int index) | 
|  | { | 
|  | struct test_val value = { | 
|  | .index = (6 + 1) * sizeof(int), | 
|  | .foo[6] = 0xabcdef12, | 
|  | }; | 
|  |  | 
|  | assert(!bpf_map_update_elem(fd, &index, &value, 0)); | 
|  | } | 
|  |  | 
|  | static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret) | 
|  | { | 
|  | struct bpf_insn prog[] = { | 
|  | BPF_MOV64_IMM(BPF_REG_0, ret), | 
|  | BPF_EXIT_INSN(), | 
|  | }; | 
|  |  | 
|  | return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL); | 
|  | } | 
|  |  | 
|  | static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd, | 
|  | int idx, int ret) | 
|  | { | 
|  | struct bpf_insn prog[] = { | 
|  | BPF_MOV64_IMM(BPF_REG_3, idx), | 
|  | BPF_LD_MAP_FD(BPF_REG_2, mfd), | 
|  | BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, | 
|  | BPF_FUNC_tail_call), | 
|  | BPF_MOV64_IMM(BPF_REG_0, ret), | 
|  | BPF_EXIT_INSN(), | 
|  | }; | 
|  |  | 
|  | return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL); | 
|  | } | 
|  |  | 
|  | static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem, | 
|  | int p1key, int p2key, int p3key) | 
|  | { | 
|  | int mfd, p1fd, p2fd, p3fd; | 
|  |  | 
|  | mfd = bpf_map_create(BPF_MAP_TYPE_PROG_ARRAY, NULL, sizeof(int), | 
|  | sizeof(int), max_elem, NULL); | 
|  | if (mfd < 0) { | 
|  | if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY)) | 
|  | return -1; | 
|  | printf("Failed to create prog array '%s'!\n", strerror(errno)); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | p1fd = create_prog_dummy_simple(prog_type, 42); | 
|  | p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41); | 
|  | p3fd = create_prog_dummy_simple(prog_type, 24); | 
|  | if (p1fd < 0 || p2fd < 0 || p3fd < 0) | 
|  | goto err; | 
|  | if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0) | 
|  | goto err; | 
|  | if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0) | 
|  | goto err; | 
|  | if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) { | 
|  | err: | 
|  | close(mfd); | 
|  | mfd = -1; | 
|  | } | 
|  | close(p3fd); | 
|  | close(p2fd); | 
|  | close(p1fd); | 
|  | return mfd; | 
|  | } | 
|  |  | 
|  | static int create_map_in_map(void) | 
|  | { | 
|  | LIBBPF_OPTS(bpf_map_create_opts, opts); | 
|  | int inner_map_fd, outer_map_fd; | 
|  |  | 
|  | inner_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), | 
|  | sizeof(int), 1, NULL); | 
|  | if (inner_map_fd < 0) { | 
|  | if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY)) | 
|  | return -1; | 
|  | printf("Failed to create array '%s'!\n", strerror(errno)); | 
|  | return inner_map_fd; | 
|  | } | 
|  |  | 
|  | opts.inner_map_fd = inner_map_fd; | 
|  | outer_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL, | 
|  | sizeof(int), sizeof(int), 1, &opts); | 
|  | if (outer_map_fd < 0) { | 
|  | if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS)) | 
|  | return -1; | 
|  | printf("Failed to create array of maps '%s'!\n", | 
|  | strerror(errno)); | 
|  | } | 
|  |  | 
|  | close(inner_map_fd); | 
|  |  | 
|  | return outer_map_fd; | 
|  | } | 
|  |  | 
|  | static int create_cgroup_storage(bool percpu) | 
|  | { | 
|  | enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE : | 
|  | BPF_MAP_TYPE_CGROUP_STORAGE; | 
|  | int fd; | 
|  |  | 
|  | fd = bpf_map_create(type, NULL, sizeof(struct bpf_cgroup_storage_key), | 
|  | TEST_DATA_LEN, 0, NULL); | 
|  | if (fd < 0) { | 
|  | if (skip_unsupported_map(type)) | 
|  | return -1; | 
|  | printf("Failed to create cgroup storage '%s'!\n", | 
|  | strerror(errno)); | 
|  | } | 
|  |  | 
|  | return fd; | 
|  | } | 
|  |  | 
|  | /* struct bpf_spin_lock { | 
|  | *   int val; | 
|  | * }; | 
|  | * struct val { | 
|  | *   int cnt; | 
|  | *   struct bpf_spin_lock l; | 
|  | * }; | 
|  | * struct bpf_timer { | 
|  | *   __u64 :64; | 
|  | *   __u64 :64; | 
|  | * } __attribute__((aligned(8))); | 
|  | * struct timer { | 
|  | *   struct bpf_timer t; | 
|  | * }; | 
|  | * struct btf_ptr { | 
|  | *   struct prog_test_ref_kfunc __kptr *ptr; | 
|  | *   struct prog_test_ref_kfunc __kptr_ref *ptr; | 
|  | *   struct prog_test_member __kptr_ref *ptr; | 
|  | * } | 
|  | */ | 
|  | static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l\0bpf_timer\0timer\0t" | 
|  | "\0btf_ptr\0prog_test_ref_kfunc\0ptr\0kptr\0kptr_ref" | 
|  | "\0prog_test_member"; | 
|  | static __u32 btf_raw_types[] = { | 
|  | /* int */ | 
|  | BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */ | 
|  | /* struct bpf_spin_lock */                      /* [2] */ | 
|  | BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4), | 
|  | BTF_MEMBER_ENC(15, 1, 0), /* int val; */ | 
|  | /* struct val */                                /* [3] */ | 
|  | BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8), | 
|  | BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */ | 
|  | BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */ | 
|  | /* struct bpf_timer */                          /* [4] */ | 
|  | BTF_TYPE_ENC(25, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0), 16), | 
|  | /* struct timer */                              /* [5] */ | 
|  | BTF_TYPE_ENC(35, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 16), | 
|  | BTF_MEMBER_ENC(41, 4, 0), /* struct bpf_timer t; */ | 
|  | /* struct prog_test_ref_kfunc */		/* [6] */ | 
|  | BTF_STRUCT_ENC(51, 0, 0), | 
|  | BTF_STRUCT_ENC(89, 0, 0),			/* [7] */ | 
|  | /* type tag "kptr" */ | 
|  | BTF_TYPE_TAG_ENC(75, 6),			/* [8] */ | 
|  | /* type tag "kptr_ref" */ | 
|  | BTF_TYPE_TAG_ENC(80, 6),			/* [9] */ | 
|  | BTF_TYPE_TAG_ENC(80, 7),			/* [10] */ | 
|  | BTF_PTR_ENC(8),					/* [11] */ | 
|  | BTF_PTR_ENC(9),					/* [12] */ | 
|  | BTF_PTR_ENC(10),				/* [13] */ | 
|  | /* struct btf_ptr */				/* [14] */ | 
|  | BTF_STRUCT_ENC(43, 3, 24), | 
|  | BTF_MEMBER_ENC(71, 11, 0), /* struct prog_test_ref_kfunc __kptr *ptr; */ | 
|  | BTF_MEMBER_ENC(71, 12, 64), /* struct prog_test_ref_kfunc __kptr_ref *ptr; */ | 
|  | BTF_MEMBER_ENC(71, 13, 128), /* struct prog_test_member __kptr_ref *ptr; */ | 
|  | }; | 
|  |  | 
|  | static char bpf_vlog[UINT_MAX >> 8]; | 
|  |  | 
|  | static int load_btf_spec(__u32 *types, int types_len, | 
|  | const char *strings, int strings_len) | 
|  | { | 
|  | struct btf_header hdr = { | 
|  | .magic = BTF_MAGIC, | 
|  | .version = BTF_VERSION, | 
|  | .hdr_len = sizeof(struct btf_header), | 
|  | .type_len = types_len, | 
|  | .str_off = types_len, | 
|  | .str_len = strings_len, | 
|  | }; | 
|  | void *ptr, *raw_btf; | 
|  | int btf_fd; | 
|  | LIBBPF_OPTS(bpf_btf_load_opts, opts, | 
|  | .log_buf = bpf_vlog, | 
|  | .log_size = sizeof(bpf_vlog), | 
|  | .log_level = (verbose | 
|  | ? VERBOSE_LIBBPF_LOG_LEVEL | 
|  | : DEFAULT_LIBBPF_LOG_LEVEL), | 
|  | ); | 
|  |  | 
|  | raw_btf = malloc(sizeof(hdr) + types_len + strings_len); | 
|  |  | 
|  | ptr = raw_btf; | 
|  | memcpy(ptr, &hdr, sizeof(hdr)); | 
|  | ptr += sizeof(hdr); | 
|  | memcpy(ptr, types, hdr.type_len); | 
|  | ptr += hdr.type_len; | 
|  | memcpy(ptr, strings, hdr.str_len); | 
|  | ptr += hdr.str_len; | 
|  |  | 
|  | btf_fd = bpf_btf_load(raw_btf, ptr - raw_btf, &opts); | 
|  | if (btf_fd < 0) | 
|  | printf("Failed to load BTF spec: '%s'\n", strerror(errno)); | 
|  |  | 
|  | free(raw_btf); | 
|  |  | 
|  | return btf_fd < 0 ? -1 : btf_fd; | 
|  | } | 
|  |  | 
|  | static int load_btf(void) | 
|  | { | 
|  | return load_btf_spec(btf_raw_types, sizeof(btf_raw_types), | 
|  | btf_str_sec, sizeof(btf_str_sec)); | 
|  | } | 
|  |  | 
|  | static int load_btf_for_test(struct bpf_test *test) | 
|  | { | 
|  | int types_num = 0; | 
|  |  | 
|  | while (types_num < MAX_BTF_TYPES && | 
|  | test->btf_types[types_num] != BTF_END_RAW) | 
|  | ++types_num; | 
|  |  | 
|  | int types_len = types_num * sizeof(test->btf_types[0]); | 
|  |  | 
|  | return load_btf_spec(test->btf_types, types_len, | 
|  | test->btf_strings, sizeof(test->btf_strings)); | 
|  | } | 
|  |  | 
|  | static int create_map_spin_lock(void) | 
|  | { | 
|  | LIBBPF_OPTS(bpf_map_create_opts, opts, | 
|  | .btf_key_type_id = 1, | 
|  | .btf_value_type_id = 3, | 
|  | ); | 
|  | int fd, btf_fd; | 
|  |  | 
|  | btf_fd = load_btf(); | 
|  | if (btf_fd < 0) | 
|  | return -1; | 
|  | opts.btf_fd = btf_fd; | 
|  | fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 8, 1, &opts); | 
|  | if (fd < 0) | 
|  | printf("Failed to create map with spin_lock\n"); | 
|  | return fd; | 
|  | } | 
|  |  | 
|  | static int create_sk_storage_map(void) | 
|  | { | 
|  | LIBBPF_OPTS(bpf_map_create_opts, opts, | 
|  | .map_flags = BPF_F_NO_PREALLOC, | 
|  | .btf_key_type_id = 1, | 
|  | .btf_value_type_id = 3, | 
|  | ); | 
|  | int fd, btf_fd; | 
|  |  | 
|  | btf_fd = load_btf(); | 
|  | if (btf_fd < 0) | 
|  | return -1; | 
|  | opts.btf_fd = btf_fd; | 
|  | fd = bpf_map_create(BPF_MAP_TYPE_SK_STORAGE, "test_map", 4, 8, 0, &opts); | 
|  | close(opts.btf_fd); | 
|  | if (fd < 0) | 
|  | printf("Failed to create sk_storage_map\n"); | 
|  | return fd; | 
|  | } | 
|  |  | 
|  | static int create_map_timer(void) | 
|  | { | 
|  | LIBBPF_OPTS(bpf_map_create_opts, opts, | 
|  | .btf_key_type_id = 1, | 
|  | .btf_value_type_id = 5, | 
|  | ); | 
|  | int fd, btf_fd; | 
|  |  | 
|  | btf_fd = load_btf(); | 
|  | if (btf_fd < 0) | 
|  | return -1; | 
|  |  | 
|  | opts.btf_fd = btf_fd; | 
|  | fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 16, 1, &opts); | 
|  | if (fd < 0) | 
|  | printf("Failed to create map with timer\n"); | 
|  | return fd; | 
|  | } | 
|  |  | 
|  | static int create_map_kptr(void) | 
|  | { | 
|  | LIBBPF_OPTS(bpf_map_create_opts, opts, | 
|  | .btf_key_type_id = 1, | 
|  | .btf_value_type_id = 14, | 
|  | ); | 
|  | int fd, btf_fd; | 
|  |  | 
|  | btf_fd = load_btf(); | 
|  | if (btf_fd < 0) | 
|  | return -1; | 
|  |  | 
|  | opts.btf_fd = btf_fd; | 
|  | fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 24, 1, &opts); | 
|  | if (fd < 0) | 
|  | printf("Failed to create map with btf_id pointer\n"); | 
|  | return fd; | 
|  | } | 
|  |  | 
|  | static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type, | 
|  | struct bpf_insn *prog, int *map_fds) | 
|  | { | 
|  | int *fixup_map_hash_8b = test->fixup_map_hash_8b; | 
|  | int *fixup_map_hash_48b = test->fixup_map_hash_48b; | 
|  | int *fixup_map_hash_16b = test->fixup_map_hash_16b; | 
|  | int *fixup_map_array_48b = test->fixup_map_array_48b; | 
|  | int *fixup_map_sockmap = test->fixup_map_sockmap; | 
|  | int *fixup_map_sockhash = test->fixup_map_sockhash; | 
|  | int *fixup_map_xskmap = test->fixup_map_xskmap; | 
|  | int *fixup_map_stacktrace = test->fixup_map_stacktrace; | 
|  | int *fixup_prog1 = test->fixup_prog1; | 
|  | int *fixup_prog2 = test->fixup_prog2; | 
|  | int *fixup_map_in_map = test->fixup_map_in_map; | 
|  | int *fixup_cgroup_storage = test->fixup_cgroup_storage; | 
|  | int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage; | 
|  | int *fixup_map_spin_lock = test->fixup_map_spin_lock; | 
|  | int *fixup_map_array_ro = test->fixup_map_array_ro; | 
|  | int *fixup_map_array_wo = test->fixup_map_array_wo; | 
|  | int *fixup_map_array_small = test->fixup_map_array_small; | 
|  | int *fixup_sk_storage_map = test->fixup_sk_storage_map; | 
|  | int *fixup_map_event_output = test->fixup_map_event_output; | 
|  | int *fixup_map_reuseport_array = test->fixup_map_reuseport_array; | 
|  | int *fixup_map_ringbuf = test->fixup_map_ringbuf; | 
|  | int *fixup_map_timer = test->fixup_map_timer; | 
|  | int *fixup_map_kptr = test->fixup_map_kptr; | 
|  | struct kfunc_btf_id_pair *fixup_kfunc_btf_id = test->fixup_kfunc_btf_id; | 
|  |  | 
|  | if (test->fill_helper) { | 
|  | test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn)); | 
|  | test->fill_helper(test); | 
|  | } | 
|  |  | 
|  | /* Allocating HTs with 1 elem is fine here, since we only test | 
|  | * for verifier and not do a runtime lookup, so the only thing | 
|  | * that really matters is value size in this case. | 
|  | */ | 
|  | if (*fixup_map_hash_8b) { | 
|  | map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), | 
|  | sizeof(long long), 1); | 
|  | do { | 
|  | prog[*fixup_map_hash_8b].imm = map_fds[0]; | 
|  | fixup_map_hash_8b++; | 
|  | } while (*fixup_map_hash_8b); | 
|  | } | 
|  |  | 
|  | if (*fixup_map_hash_48b) { | 
|  | map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), | 
|  | sizeof(struct test_val), 1); | 
|  | do { | 
|  | prog[*fixup_map_hash_48b].imm = map_fds[1]; | 
|  | fixup_map_hash_48b++; | 
|  | } while (*fixup_map_hash_48b); | 
|  | } | 
|  |  | 
|  | if (*fixup_map_hash_16b) { | 
|  | map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), | 
|  | sizeof(struct other_val), 1); | 
|  | do { | 
|  | prog[*fixup_map_hash_16b].imm = map_fds[2]; | 
|  | fixup_map_hash_16b++; | 
|  | } while (*fixup_map_hash_16b); | 
|  | } | 
|  |  | 
|  | if (*fixup_map_array_48b) { | 
|  | map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), | 
|  | sizeof(struct test_val), 1); | 
|  | update_map(map_fds[3], 0); | 
|  | do { | 
|  | prog[*fixup_map_array_48b].imm = map_fds[3]; | 
|  | fixup_map_array_48b++; | 
|  | } while (*fixup_map_array_48b); | 
|  | } | 
|  |  | 
|  | if (*fixup_prog1) { | 
|  | map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2); | 
|  | do { | 
|  | prog[*fixup_prog1].imm = map_fds[4]; | 
|  | fixup_prog1++; | 
|  | } while (*fixup_prog1); | 
|  | } | 
|  |  | 
|  | if (*fixup_prog2) { | 
|  | map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2); | 
|  | do { | 
|  | prog[*fixup_prog2].imm = map_fds[5]; | 
|  | fixup_prog2++; | 
|  | } while (*fixup_prog2); | 
|  | } | 
|  |  | 
|  | if (*fixup_map_in_map) { | 
|  | map_fds[6] = create_map_in_map(); | 
|  | do { | 
|  | prog[*fixup_map_in_map].imm = map_fds[6]; | 
|  | fixup_map_in_map++; | 
|  | } while (*fixup_map_in_map); | 
|  | } | 
|  |  | 
|  | if (*fixup_cgroup_storage) { | 
|  | map_fds[7] = create_cgroup_storage(false); | 
|  | do { | 
|  | prog[*fixup_cgroup_storage].imm = map_fds[7]; | 
|  | fixup_cgroup_storage++; | 
|  | } while (*fixup_cgroup_storage); | 
|  | } | 
|  |  | 
|  | if (*fixup_percpu_cgroup_storage) { | 
|  | map_fds[8] = create_cgroup_storage(true); | 
|  | do { | 
|  | prog[*fixup_percpu_cgroup_storage].imm = map_fds[8]; | 
|  | fixup_percpu_cgroup_storage++; | 
|  | } while (*fixup_percpu_cgroup_storage); | 
|  | } | 
|  | if (*fixup_map_sockmap) { | 
|  | map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int), | 
|  | sizeof(int), 1); | 
|  | do { | 
|  | prog[*fixup_map_sockmap].imm = map_fds[9]; | 
|  | fixup_map_sockmap++; | 
|  | } while (*fixup_map_sockmap); | 
|  | } | 
|  | if (*fixup_map_sockhash) { | 
|  | map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int), | 
|  | sizeof(int), 1); | 
|  | do { | 
|  | prog[*fixup_map_sockhash].imm = map_fds[10]; | 
|  | fixup_map_sockhash++; | 
|  | } while (*fixup_map_sockhash); | 
|  | } | 
|  | if (*fixup_map_xskmap) { | 
|  | map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int), | 
|  | sizeof(int), 1); | 
|  | do { | 
|  | prog[*fixup_map_xskmap].imm = map_fds[11]; | 
|  | fixup_map_xskmap++; | 
|  | } while (*fixup_map_xskmap); | 
|  | } | 
|  | if (*fixup_map_stacktrace) { | 
|  | map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32), | 
|  | sizeof(u64), 1); | 
|  | do { | 
|  | prog[*fixup_map_stacktrace].imm = map_fds[12]; | 
|  | fixup_map_stacktrace++; | 
|  | } while (*fixup_map_stacktrace); | 
|  | } | 
|  | if (*fixup_map_spin_lock) { | 
|  | map_fds[13] = create_map_spin_lock(); | 
|  | do { | 
|  | prog[*fixup_map_spin_lock].imm = map_fds[13]; | 
|  | fixup_map_spin_lock++; | 
|  | } while (*fixup_map_spin_lock); | 
|  | } | 
|  | if (*fixup_map_array_ro) { | 
|  | map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), | 
|  | sizeof(struct test_val), 1, | 
|  | BPF_F_RDONLY_PROG); | 
|  | update_map(map_fds[14], 0); | 
|  | do { | 
|  | prog[*fixup_map_array_ro].imm = map_fds[14]; | 
|  | fixup_map_array_ro++; | 
|  | } while (*fixup_map_array_ro); | 
|  | } | 
|  | if (*fixup_map_array_wo) { | 
|  | map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), | 
|  | sizeof(struct test_val), 1, | 
|  | BPF_F_WRONLY_PROG); | 
|  | update_map(map_fds[15], 0); | 
|  | do { | 
|  | prog[*fixup_map_array_wo].imm = map_fds[15]; | 
|  | fixup_map_array_wo++; | 
|  | } while (*fixup_map_array_wo); | 
|  | } | 
|  | if (*fixup_map_array_small) { | 
|  | map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), | 
|  | 1, 1, 0); | 
|  | update_map(map_fds[16], 0); | 
|  | do { | 
|  | prog[*fixup_map_array_small].imm = map_fds[16]; | 
|  | fixup_map_array_small++; | 
|  | } while (*fixup_map_array_small); | 
|  | } | 
|  | if (*fixup_sk_storage_map) { | 
|  | map_fds[17] = create_sk_storage_map(); | 
|  | do { | 
|  | prog[*fixup_sk_storage_map].imm = map_fds[17]; | 
|  | fixup_sk_storage_map++; | 
|  | } while (*fixup_sk_storage_map); | 
|  | } | 
|  | if (*fixup_map_event_output) { | 
|  | map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY, | 
|  | sizeof(int), sizeof(int), 1, 0); | 
|  | do { | 
|  | prog[*fixup_map_event_output].imm = map_fds[18]; | 
|  | fixup_map_event_output++; | 
|  | } while (*fixup_map_event_output); | 
|  | } | 
|  | if (*fixup_map_reuseport_array) { | 
|  | map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, | 
|  | sizeof(u32), sizeof(u64), 1, 0); | 
|  | do { | 
|  | prog[*fixup_map_reuseport_array].imm = map_fds[19]; | 
|  | fixup_map_reuseport_array++; | 
|  | } while (*fixup_map_reuseport_array); | 
|  | } | 
|  | if (*fixup_map_ringbuf) { | 
|  | map_fds[20] = create_map(BPF_MAP_TYPE_RINGBUF, 0, | 
|  | 0, 4096); | 
|  | do { | 
|  | prog[*fixup_map_ringbuf].imm = map_fds[20]; | 
|  | fixup_map_ringbuf++; | 
|  | } while (*fixup_map_ringbuf); | 
|  | } | 
|  | if (*fixup_map_timer) { | 
|  | map_fds[21] = create_map_timer(); | 
|  | do { | 
|  | prog[*fixup_map_timer].imm = map_fds[21]; | 
|  | fixup_map_timer++; | 
|  | } while (*fixup_map_timer); | 
|  | } | 
|  | if (*fixup_map_kptr) { | 
|  | map_fds[22] = create_map_kptr(); | 
|  | do { | 
|  | prog[*fixup_map_kptr].imm = map_fds[22]; | 
|  | fixup_map_kptr++; | 
|  | } while (*fixup_map_kptr); | 
|  | } | 
|  |  | 
|  | /* Patch in kfunc BTF IDs */ | 
|  | if (fixup_kfunc_btf_id->kfunc) { | 
|  | struct btf *btf; | 
|  | int btf_id; | 
|  |  | 
|  | do { | 
|  | btf_id = 0; | 
|  | btf = btf__load_vmlinux_btf(); | 
|  | if (btf) { | 
|  | btf_id = btf__find_by_name_kind(btf, | 
|  | fixup_kfunc_btf_id->kfunc, | 
|  | BTF_KIND_FUNC); | 
|  | btf_id = btf_id < 0 ? 0 : btf_id; | 
|  | } | 
|  | btf__free(btf); | 
|  | prog[fixup_kfunc_btf_id->insn_idx].imm = btf_id; | 
|  | fixup_kfunc_btf_id++; | 
|  | } while (fixup_kfunc_btf_id->kfunc); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct libcap { | 
|  | struct __user_cap_header_struct hdr; | 
|  | struct __user_cap_data_struct data[2]; | 
|  | }; | 
|  |  | 
|  | static int set_admin(bool admin) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (admin) { | 
|  | err = cap_enable_effective(ADMIN_CAPS, NULL); | 
|  | if (err) | 
|  | perror("cap_enable_effective(ADMIN_CAPS)"); | 
|  | } else { | 
|  | err = cap_disable_effective(ADMIN_CAPS, NULL); | 
|  | if (err) | 
|  | perror("cap_disable_effective(ADMIN_CAPS)"); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val, | 
|  | void *data, size_t size_data) | 
|  | { | 
|  | __u8 tmp[TEST_DATA_LEN << 2]; | 
|  | __u32 size_tmp = sizeof(tmp); | 
|  | int err, saved_errno; | 
|  | LIBBPF_OPTS(bpf_test_run_opts, topts, | 
|  | .data_in = data, | 
|  | .data_size_in = size_data, | 
|  | .data_out = tmp, | 
|  | .data_size_out = size_tmp, | 
|  | .repeat = 1, | 
|  | ); | 
|  |  | 
|  | if (unpriv) | 
|  | set_admin(true); | 
|  | err = bpf_prog_test_run_opts(fd_prog, &topts); | 
|  | saved_errno = errno; | 
|  |  | 
|  | if (unpriv) | 
|  | set_admin(false); | 
|  |  | 
|  | if (err) { | 
|  | switch (saved_errno) { | 
|  | case ENOTSUPP: | 
|  | printf("Did not run the program (not supported) "); | 
|  | return 0; | 
|  | case EPERM: | 
|  | if (unpriv) { | 
|  | printf("Did not run the program (no permission) "); | 
|  | return 0; | 
|  | } | 
|  | /* fallthrough; */ | 
|  | default: | 
|  | printf("FAIL: Unexpected bpf_prog_test_run error (%s) ", | 
|  | strerror(saved_errno)); | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (topts.retval != expected_val && expected_val != POINTER_VALUE) { | 
|  | printf("FAIL retval %d != %d ", topts.retval, expected_val); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Returns true if every part of exp (tab-separated) appears in log, in order. | 
|  | * | 
|  | * If exp is an empty string, returns true. | 
|  | */ | 
|  | static bool cmp_str_seq(const char *log, const char *exp) | 
|  | { | 
|  | char needle[200]; | 
|  | const char *p, *q; | 
|  | int len; | 
|  |  | 
|  | do { | 
|  | if (!strlen(exp)) | 
|  | break; | 
|  | p = strchr(exp, '\t'); | 
|  | if (!p) | 
|  | p = exp + strlen(exp); | 
|  |  | 
|  | len = p - exp; | 
|  | if (len >= sizeof(needle) || !len) { | 
|  | printf("FAIL\nTestcase bug\n"); | 
|  | return false; | 
|  | } | 
|  | strncpy(needle, exp, len); | 
|  | needle[len] = 0; | 
|  | q = strstr(log, needle); | 
|  | if (!q) { | 
|  | printf("FAIL\nUnexpected verifier log!\n" | 
|  | "EXP: %s\nRES:\n", needle); | 
|  | return false; | 
|  | } | 
|  | log = q + len; | 
|  | exp = p + 1; | 
|  | } while (*p); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int get_xlated_program(int fd_prog, struct bpf_insn **buf, int *cnt) | 
|  | { | 
|  | struct bpf_prog_info info = {}; | 
|  | __u32 info_len = sizeof(info); | 
|  | __u32 xlated_prog_len; | 
|  | __u32 buf_element_size = sizeof(struct bpf_insn); | 
|  |  | 
|  | if (bpf_obj_get_info_by_fd(fd_prog, &info, &info_len)) { | 
|  | perror("bpf_obj_get_info_by_fd failed"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | xlated_prog_len = info.xlated_prog_len; | 
|  | if (xlated_prog_len % buf_element_size) { | 
|  | printf("Program length %d is not multiple of %d\n", | 
|  | xlated_prog_len, buf_element_size); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | *cnt = xlated_prog_len / buf_element_size; | 
|  | *buf = calloc(*cnt, buf_element_size); | 
|  | if (!buf) { | 
|  | perror("can't allocate xlated program buffer"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | bzero(&info, sizeof(info)); | 
|  | info.xlated_prog_len = xlated_prog_len; | 
|  | info.xlated_prog_insns = (__u64)(unsigned long)*buf; | 
|  | if (bpf_obj_get_info_by_fd(fd_prog, &info, &info_len)) { | 
|  | perror("second bpf_obj_get_info_by_fd failed"); | 
|  | goto out_free_buf; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_free_buf: | 
|  | free(*buf); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static bool is_null_insn(struct bpf_insn *insn) | 
|  | { | 
|  | struct bpf_insn null_insn = {}; | 
|  |  | 
|  | return memcmp(insn, &null_insn, sizeof(null_insn)) == 0; | 
|  | } | 
|  |  | 
|  | static bool is_skip_insn(struct bpf_insn *insn) | 
|  | { | 
|  | struct bpf_insn skip_insn = SKIP_INSNS(); | 
|  |  | 
|  | return memcmp(insn, &skip_insn, sizeof(skip_insn)) == 0; | 
|  | } | 
|  |  | 
|  | static int null_terminated_insn_len(struct bpf_insn *seq, int max_len) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < max_len; ++i) { | 
|  | if (is_null_insn(&seq[i])) | 
|  | return i; | 
|  | } | 
|  | return max_len; | 
|  | } | 
|  |  | 
|  | static bool compare_masked_insn(struct bpf_insn *orig, struct bpf_insn *masked) | 
|  | { | 
|  | struct bpf_insn orig_masked; | 
|  |  | 
|  | memcpy(&orig_masked, orig, sizeof(orig_masked)); | 
|  | if (masked->imm == INSN_IMM_MASK) | 
|  | orig_masked.imm = INSN_IMM_MASK; | 
|  | if (masked->off == INSN_OFF_MASK) | 
|  | orig_masked.off = INSN_OFF_MASK; | 
|  |  | 
|  | return memcmp(&orig_masked, masked, sizeof(orig_masked)) == 0; | 
|  | } | 
|  |  | 
|  | static int find_insn_subseq(struct bpf_insn *seq, struct bpf_insn *subseq, | 
|  | int seq_len, int subseq_len) | 
|  | { | 
|  | int i, j; | 
|  |  | 
|  | if (subseq_len > seq_len) | 
|  | return -1; | 
|  |  | 
|  | for (i = 0; i < seq_len - subseq_len + 1; ++i) { | 
|  | bool found = true; | 
|  |  | 
|  | for (j = 0; j < subseq_len; ++j) { | 
|  | if (!compare_masked_insn(&seq[i + j], &subseq[j])) { | 
|  | found = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (found) | 
|  | return i; | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int find_skip_insn_marker(struct bpf_insn *seq, int len) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < len; ++i) | 
|  | if (is_skip_insn(&seq[i])) | 
|  | return i; | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Return true if all sub-sequences in `subseqs` could be found in | 
|  | * `seq` one after another. Sub-sequences are separated by a single | 
|  | * nil instruction. | 
|  | */ | 
|  | static bool find_all_insn_subseqs(struct bpf_insn *seq, struct bpf_insn *subseqs, | 
|  | int seq_len, int max_subseqs_len) | 
|  | { | 
|  | int subseqs_len = null_terminated_insn_len(subseqs, max_subseqs_len); | 
|  |  | 
|  | while (subseqs_len > 0) { | 
|  | int skip_idx = find_skip_insn_marker(subseqs, subseqs_len); | 
|  | int cur_subseq_len = skip_idx < 0 ? subseqs_len : skip_idx; | 
|  | int subseq_idx = find_insn_subseq(seq, subseqs, | 
|  | seq_len, cur_subseq_len); | 
|  |  | 
|  | if (subseq_idx < 0) | 
|  | return false; | 
|  | seq += subseq_idx + cur_subseq_len; | 
|  | seq_len -= subseq_idx + cur_subseq_len; | 
|  | subseqs += cur_subseq_len + 1; | 
|  | subseqs_len -= cur_subseq_len + 1; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void print_insn(struct bpf_insn *buf, int cnt) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | printf("  addr  op d s off  imm\n"); | 
|  | for (i = 0; i < cnt; ++i) { | 
|  | struct bpf_insn *insn = &buf[i]; | 
|  |  | 
|  | if (is_null_insn(insn)) | 
|  | break; | 
|  |  | 
|  | if (is_skip_insn(insn)) | 
|  | printf("  ...\n"); | 
|  | else | 
|  | printf("  %04x: %02x %1x %x %04hx %08x\n", | 
|  | i, insn->code, insn->dst_reg, | 
|  | insn->src_reg, insn->off, insn->imm); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool check_xlated_program(struct bpf_test *test, int fd_prog) | 
|  | { | 
|  | struct bpf_insn *buf; | 
|  | int cnt; | 
|  | bool result = true; | 
|  | bool check_expected = !is_null_insn(test->expected_insns); | 
|  | bool check_unexpected = !is_null_insn(test->unexpected_insns); | 
|  |  | 
|  | if (!check_expected && !check_unexpected) | 
|  | goto out; | 
|  |  | 
|  | if (get_xlated_program(fd_prog, &buf, &cnt)) { | 
|  | printf("FAIL: can't get xlated program\n"); | 
|  | result = false; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (check_expected && | 
|  | !find_all_insn_subseqs(buf, test->expected_insns, | 
|  | cnt, MAX_EXPECTED_INSNS)) { | 
|  | printf("FAIL: can't find expected subsequence of instructions\n"); | 
|  | result = false; | 
|  | if (verbose) { | 
|  | printf("Program:\n"); | 
|  | print_insn(buf, cnt); | 
|  | printf("Expected subsequence:\n"); | 
|  | print_insn(test->expected_insns, MAX_EXPECTED_INSNS); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (check_unexpected && | 
|  | find_all_insn_subseqs(buf, test->unexpected_insns, | 
|  | cnt, MAX_UNEXPECTED_INSNS)) { | 
|  | printf("FAIL: found unexpected subsequence of instructions\n"); | 
|  | result = false; | 
|  | if (verbose) { | 
|  | printf("Program:\n"); | 
|  | print_insn(buf, cnt); | 
|  | printf("Un-expected subsequence:\n"); | 
|  | print_insn(test->unexpected_insns, MAX_UNEXPECTED_INSNS); | 
|  | } | 
|  | } | 
|  |  | 
|  | free(buf); | 
|  | out: | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static void do_test_single(struct bpf_test *test, bool unpriv, | 
|  | int *passes, int *errors) | 
|  | { | 
|  | int fd_prog, btf_fd, expected_ret, alignment_prevented_execution; | 
|  | int prog_len, prog_type = test->prog_type; | 
|  | struct bpf_insn *prog = test->insns; | 
|  | LIBBPF_OPTS(bpf_prog_load_opts, opts); | 
|  | int run_errs, run_successes; | 
|  | int map_fds[MAX_NR_MAPS]; | 
|  | const char *expected_err; | 
|  | int saved_errno; | 
|  | int fixup_skips; | 
|  | __u32 pflags; | 
|  | int i, err; | 
|  |  | 
|  | fd_prog = -1; | 
|  | for (i = 0; i < MAX_NR_MAPS; i++) | 
|  | map_fds[i] = -1; | 
|  | btf_fd = -1; | 
|  |  | 
|  | if (!prog_type) | 
|  | prog_type = BPF_PROG_TYPE_SOCKET_FILTER; | 
|  | fixup_skips = skips; | 
|  | do_test_fixup(test, prog_type, prog, map_fds); | 
|  | if (test->fill_insns) { | 
|  | prog = test->fill_insns; | 
|  | prog_len = test->prog_len; | 
|  | } else { | 
|  | prog_len = probe_filter_length(prog); | 
|  | } | 
|  | /* If there were some map skips during fixup due to missing bpf | 
|  | * features, skip this test. | 
|  | */ | 
|  | if (fixup_skips != skips) | 
|  | return; | 
|  |  | 
|  | pflags = BPF_F_TEST_RND_HI32; | 
|  | if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT) | 
|  | pflags |= BPF_F_STRICT_ALIGNMENT; | 
|  | if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) | 
|  | pflags |= BPF_F_ANY_ALIGNMENT; | 
|  | if (test->flags & ~3) | 
|  | pflags |= test->flags; | 
|  |  | 
|  | expected_ret = unpriv && test->result_unpriv != UNDEF ? | 
|  | test->result_unpriv : test->result; | 
|  | expected_err = unpriv && test->errstr_unpriv ? | 
|  | test->errstr_unpriv : test->errstr; | 
|  |  | 
|  | opts.expected_attach_type = test->expected_attach_type; | 
|  | if (verbose) | 
|  | opts.log_level = VERBOSE_LIBBPF_LOG_LEVEL; | 
|  | else if (expected_ret == VERBOSE_ACCEPT) | 
|  | opts.log_level = 2; | 
|  | else | 
|  | opts.log_level = DEFAULT_LIBBPF_LOG_LEVEL; | 
|  | opts.prog_flags = pflags; | 
|  |  | 
|  | if ((prog_type == BPF_PROG_TYPE_TRACING || | 
|  | prog_type == BPF_PROG_TYPE_LSM) && test->kfunc) { | 
|  | int attach_btf_id; | 
|  |  | 
|  | attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc, | 
|  | opts.expected_attach_type); | 
|  | if (attach_btf_id < 0) { | 
|  | printf("FAIL\nFailed to find BTF ID for '%s'!\n", | 
|  | test->kfunc); | 
|  | (*errors)++; | 
|  | return; | 
|  | } | 
|  |  | 
|  | opts.attach_btf_id = attach_btf_id; | 
|  | } | 
|  |  | 
|  | if (test->btf_types[0] != 0) { | 
|  | btf_fd = load_btf_for_test(test); | 
|  | if (btf_fd < 0) | 
|  | goto fail_log; | 
|  | opts.prog_btf_fd = btf_fd; | 
|  | } | 
|  |  | 
|  | if (test->func_info_cnt != 0) { | 
|  | opts.func_info = test->func_info; | 
|  | opts.func_info_cnt = test->func_info_cnt; | 
|  | opts.func_info_rec_size = sizeof(test->func_info[0]); | 
|  | } | 
|  |  | 
|  | opts.log_buf = bpf_vlog; | 
|  | opts.log_size = sizeof(bpf_vlog); | 
|  | fd_prog = bpf_prog_load(prog_type, NULL, "GPL", prog, prog_len, &opts); | 
|  | saved_errno = errno; | 
|  |  | 
|  | /* BPF_PROG_TYPE_TRACING requires more setup and | 
|  | * bpf_probe_prog_type won't give correct answer | 
|  | */ | 
|  | if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING && | 
|  | !libbpf_probe_bpf_prog_type(prog_type, NULL)) { | 
|  | printf("SKIP (unsupported program type %d)\n", prog_type); | 
|  | skips++; | 
|  | goto close_fds; | 
|  | } | 
|  |  | 
|  | if (fd_prog < 0 && saved_errno == ENOTSUPP) { | 
|  | printf("SKIP (program uses an unsupported feature)\n"); | 
|  | skips++; | 
|  | goto close_fds; | 
|  | } | 
|  |  | 
|  | alignment_prevented_execution = 0; | 
|  |  | 
|  | if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) { | 
|  | if (fd_prog < 0) { | 
|  | printf("FAIL\nFailed to load prog '%s'!\n", | 
|  | strerror(saved_errno)); | 
|  | goto fail_log; | 
|  | } | 
|  | #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS | 
|  | if (fd_prog >= 0 && | 
|  | (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)) | 
|  | alignment_prevented_execution = 1; | 
|  | #endif | 
|  | if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) { | 
|  | goto fail_log; | 
|  | } | 
|  | } else { | 
|  | if (fd_prog >= 0) { | 
|  | printf("FAIL\nUnexpected success to load!\n"); | 
|  | goto fail_log; | 
|  | } | 
|  | if (!expected_err || !cmp_str_seq(bpf_vlog, expected_err)) { | 
|  | printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n", | 
|  | expected_err, bpf_vlog); | 
|  | goto fail_log; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!unpriv && test->insn_processed) { | 
|  | uint32_t insn_processed; | 
|  | char *proc; | 
|  |  | 
|  | proc = strstr(bpf_vlog, "processed "); | 
|  | insn_processed = atoi(proc + 10); | 
|  | if (test->insn_processed != insn_processed) { | 
|  | printf("FAIL\nUnexpected insn_processed %u vs %u\n", | 
|  | insn_processed, test->insn_processed); | 
|  | goto fail_log; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (verbose) | 
|  | printf(", verifier log:\n%s", bpf_vlog); | 
|  |  | 
|  | if (!check_xlated_program(test, fd_prog)) | 
|  | goto fail_log; | 
|  |  | 
|  | run_errs = 0; | 
|  | run_successes = 0; | 
|  | if (!alignment_prevented_execution && fd_prog >= 0 && test->runs >= 0) { | 
|  | uint32_t expected_val; | 
|  | int i; | 
|  |  | 
|  | if (!test->runs) | 
|  | test->runs = 1; | 
|  |  | 
|  | for (i = 0; i < test->runs; i++) { | 
|  | if (unpriv && test->retvals[i].retval_unpriv) | 
|  | expected_val = test->retvals[i].retval_unpriv; | 
|  | else | 
|  | expected_val = test->retvals[i].retval; | 
|  |  | 
|  | err = do_prog_test_run(fd_prog, unpriv, expected_val, | 
|  | test->retvals[i].data, | 
|  | sizeof(test->retvals[i].data)); | 
|  | if (err) { | 
|  | printf("(run %d/%d) ", i + 1, test->runs); | 
|  | run_errs++; | 
|  | } else { | 
|  | run_successes++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!run_errs) { | 
|  | (*passes)++; | 
|  | if (run_successes > 1) | 
|  | printf("%d cases ", run_successes); | 
|  | printf("OK"); | 
|  | if (alignment_prevented_execution) | 
|  | printf(" (NOTE: not executed due to unknown alignment)"); | 
|  | printf("\n"); | 
|  | } else { | 
|  | printf("\n"); | 
|  | goto fail_log; | 
|  | } | 
|  | close_fds: | 
|  | if (test->fill_insns) | 
|  | free(test->fill_insns); | 
|  | close(fd_prog); | 
|  | close(btf_fd); | 
|  | for (i = 0; i < MAX_NR_MAPS; i++) | 
|  | close(map_fds[i]); | 
|  | sched_yield(); | 
|  | return; | 
|  | fail_log: | 
|  | (*errors)++; | 
|  | printf("%s", bpf_vlog); | 
|  | goto close_fds; | 
|  | } | 
|  |  | 
|  | static bool is_admin(void) | 
|  | { | 
|  | __u64 caps; | 
|  |  | 
|  | /* The test checks for finer cap as CAP_NET_ADMIN, | 
|  | * CAP_PERFMON, and CAP_BPF instead of CAP_SYS_ADMIN. | 
|  | * Thus, disable CAP_SYS_ADMIN at the beginning. | 
|  | */ | 
|  | if (cap_disable_effective(1ULL << CAP_SYS_ADMIN, &caps)) { | 
|  | perror("cap_disable_effective(CAP_SYS_ADMIN)"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return (caps & ADMIN_CAPS) == ADMIN_CAPS; | 
|  | } | 
|  |  | 
|  | static void get_unpriv_disabled() | 
|  | { | 
|  | char buf[2]; | 
|  | FILE *fd; | 
|  |  | 
|  | fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r"); | 
|  | if (!fd) { | 
|  | perror("fopen /proc/sys/"UNPRIV_SYSCTL); | 
|  | unpriv_disabled = true; | 
|  | return; | 
|  | } | 
|  | if (fgets(buf, 2, fd) == buf && atoi(buf)) | 
|  | unpriv_disabled = true; | 
|  | fclose(fd); | 
|  | } | 
|  |  | 
|  | static bool test_as_unpriv(struct bpf_test *test) | 
|  | { | 
|  | #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS | 
|  | /* Some architectures have strict alignment requirements. In | 
|  | * that case, the BPF verifier detects if a program has | 
|  | * unaligned accesses and rejects them. A user can pass | 
|  | * BPF_F_ANY_ALIGNMENT to a program to override this | 
|  | * check. That, however, will only work when a privileged user | 
|  | * loads a program. An unprivileged user loading a program | 
|  | * with this flag will be rejected prior entering the | 
|  | * verifier. | 
|  | */ | 
|  | if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) | 
|  | return false; | 
|  | #endif | 
|  | return !test->prog_type || | 
|  | test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER || | 
|  | test->prog_type == BPF_PROG_TYPE_CGROUP_SKB; | 
|  | } | 
|  |  | 
|  | static int do_test(bool unpriv, unsigned int from, unsigned int to) | 
|  | { | 
|  | int i, passes = 0, errors = 0; | 
|  |  | 
|  | for (i = from; i < to; i++) { | 
|  | struct bpf_test *test = &tests[i]; | 
|  |  | 
|  | /* Program types that are not supported by non-root we | 
|  | * skip right away. | 
|  | */ | 
|  | if (test_as_unpriv(test) && unpriv_disabled) { | 
|  | printf("#%d/u %s SKIP\n", i, test->descr); | 
|  | skips++; | 
|  | } else if (test_as_unpriv(test)) { | 
|  | if (!unpriv) | 
|  | set_admin(false); | 
|  | printf("#%d/u %s ", i, test->descr); | 
|  | do_test_single(test, true, &passes, &errors); | 
|  | if (!unpriv) | 
|  | set_admin(true); | 
|  | } | 
|  |  | 
|  | if (unpriv) { | 
|  | printf("#%d/p %s SKIP\n", i, test->descr); | 
|  | skips++; | 
|  | } else { | 
|  | printf("#%d/p %s ", i, test->descr); | 
|  | do_test_single(test, false, &passes, &errors); | 
|  | } | 
|  | } | 
|  |  | 
|  | printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes, | 
|  | skips, errors); | 
|  | return errors ? EXIT_FAILURE : EXIT_SUCCESS; | 
|  | } | 
|  |  | 
|  | int main(int argc, char **argv) | 
|  | { | 
|  | unsigned int from = 0, to = ARRAY_SIZE(tests); | 
|  | bool unpriv = !is_admin(); | 
|  | int arg = 1; | 
|  |  | 
|  | if (argc > 1 && strcmp(argv[1], "-v") == 0) { | 
|  | arg++; | 
|  | verbose = true; | 
|  | argc--; | 
|  | } | 
|  |  | 
|  | if (argc == 3) { | 
|  | unsigned int l = atoi(argv[arg]); | 
|  | unsigned int u = atoi(argv[arg + 1]); | 
|  |  | 
|  | if (l < to && u < to) { | 
|  | from = l; | 
|  | to   = u + 1; | 
|  | } | 
|  | } else if (argc == 2) { | 
|  | unsigned int t = atoi(argv[arg]); | 
|  |  | 
|  | if (t < to) { | 
|  | from = t; | 
|  | to   = t + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | get_unpriv_disabled(); | 
|  | if (unpriv && unpriv_disabled) { | 
|  | printf("Cannot run as unprivileged user with sysctl %s.\n", | 
|  | UNPRIV_SYSCTL); | 
|  | return EXIT_FAILURE; | 
|  | } | 
|  |  | 
|  | /* Use libbpf 1.0 API mode */ | 
|  | libbpf_set_strict_mode(LIBBPF_STRICT_ALL); | 
|  |  | 
|  | bpf_semi_rand_init(); | 
|  | return do_test(unpriv, from, to); | 
|  | } |