|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright(C) 2015-2018 Linaro Limited. | 
|  | * | 
|  | * Author: Tor Jeremiassen <tor@ti.com> | 
|  | * Author: Mathieu Poirier <mathieu.poirier@linaro.org> | 
|  | */ | 
|  |  | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/coresight-pmu.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/log2.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/zalloc.h> | 
|  |  | 
|  | #include <opencsd/ocsd_if_types.h> | 
|  | #include <stdlib.h> | 
|  |  | 
|  | #include "auxtrace.h" | 
|  | #include "color.h" | 
|  | #include "cs-etm.h" | 
|  | #include "cs-etm-decoder/cs-etm-decoder.h" | 
|  | #include "debug.h" | 
|  | #include "dso.h" | 
|  | #include "evlist.h" | 
|  | #include "intlist.h" | 
|  | #include "machine.h" | 
|  | #include "map.h" | 
|  | #include "perf.h" | 
|  | #include "session.h" | 
|  | #include "map_symbol.h" | 
|  | #include "branch.h" | 
|  | #include "symbol.h" | 
|  | #include "tool.h" | 
|  | #include "thread.h" | 
|  | #include "thread-stack.h" | 
|  | #include <tools/libc_compat.h> | 
|  | #include "util/synthetic-events.h" | 
|  |  | 
|  | struct cs_etm_auxtrace { | 
|  | struct auxtrace auxtrace; | 
|  | struct auxtrace_queues queues; | 
|  | struct auxtrace_heap heap; | 
|  | struct itrace_synth_opts synth_opts; | 
|  | struct perf_session *session; | 
|  | struct machine *machine; | 
|  | struct thread *unknown_thread; | 
|  |  | 
|  | u8 timeless_decoding; | 
|  | u8 snapshot_mode; | 
|  | u8 data_queued; | 
|  |  | 
|  | int num_cpu; | 
|  | u64 latest_kernel_timestamp; | 
|  | u32 auxtrace_type; | 
|  | u64 branches_sample_type; | 
|  | u64 branches_id; | 
|  | u64 instructions_sample_type; | 
|  | u64 instructions_sample_period; | 
|  | u64 instructions_id; | 
|  | u64 **metadata; | 
|  | unsigned int pmu_type; | 
|  | }; | 
|  |  | 
|  | struct cs_etm_traceid_queue { | 
|  | u8 trace_chan_id; | 
|  | pid_t pid, tid; | 
|  | u64 period_instructions; | 
|  | size_t last_branch_pos; | 
|  | union perf_event *event_buf; | 
|  | struct thread *thread; | 
|  | struct branch_stack *last_branch; | 
|  | struct branch_stack *last_branch_rb; | 
|  | struct cs_etm_packet *prev_packet; | 
|  | struct cs_etm_packet *packet; | 
|  | struct cs_etm_packet_queue packet_queue; | 
|  | }; | 
|  |  | 
|  | struct cs_etm_queue { | 
|  | struct cs_etm_auxtrace *etm; | 
|  | struct cs_etm_decoder *decoder; | 
|  | struct auxtrace_buffer *buffer; | 
|  | unsigned int queue_nr; | 
|  | u8 pending_timestamp_chan_id; | 
|  | u64 offset; | 
|  | const unsigned char *buf; | 
|  | size_t buf_len, buf_used; | 
|  | /* Conversion between traceID and index in traceid_queues array */ | 
|  | struct intlist *traceid_queues_list; | 
|  | struct cs_etm_traceid_queue **traceid_queues; | 
|  | }; | 
|  |  | 
|  | /* RB tree for quick conversion between traceID and metadata pointers */ | 
|  | static struct intlist *traceid_list; | 
|  |  | 
|  | static int cs_etm__process_queues(struct cs_etm_auxtrace *etm); | 
|  | static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, | 
|  | pid_t tid); | 
|  | static int cs_etm__get_data_block(struct cs_etm_queue *etmq); | 
|  | static int cs_etm__decode_data_block(struct cs_etm_queue *etmq); | 
|  |  | 
|  | /* PTMs ETMIDR [11:8] set to b0011 */ | 
|  | #define ETMIDR_PTM_VERSION 0x00000300 | 
|  |  | 
|  | /* | 
|  | * A struct auxtrace_heap_item only has a queue_nr and a timestamp to | 
|  | * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply | 
|  | * encode the etm queue number as the upper 16 bit and the channel as | 
|  | * the lower 16 bit. | 
|  | */ | 
|  | #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id)	\ | 
|  | (queue_nr << 16 | trace_chan_id) | 
|  | #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16) | 
|  | #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff) | 
|  |  | 
|  | static u32 cs_etm__get_v7_protocol_version(u32 etmidr) | 
|  | { | 
|  | etmidr &= ETMIDR_PTM_VERSION; | 
|  |  | 
|  | if (etmidr == ETMIDR_PTM_VERSION) | 
|  | return CS_ETM_PROTO_PTM; | 
|  |  | 
|  | return CS_ETM_PROTO_ETMV3; | 
|  | } | 
|  |  | 
|  | static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic) | 
|  | { | 
|  | struct int_node *inode; | 
|  | u64 *metadata; | 
|  |  | 
|  | inode = intlist__find(traceid_list, trace_chan_id); | 
|  | if (!inode) | 
|  | return -EINVAL; | 
|  |  | 
|  | metadata = inode->priv; | 
|  | *magic = metadata[CS_ETM_MAGIC]; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int cs_etm__get_cpu(u8 trace_chan_id, int *cpu) | 
|  | { | 
|  | struct int_node *inode; | 
|  | u64 *metadata; | 
|  |  | 
|  | inode = intlist__find(traceid_list, trace_chan_id); | 
|  | if (!inode) | 
|  | return -EINVAL; | 
|  |  | 
|  | metadata = inode->priv; | 
|  | *cpu = (int)metadata[CS_ETM_CPU]; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The returned PID format is presented by two bits: | 
|  | * | 
|  | *   Bit ETM_OPT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced; | 
|  | *   Bit ETM_OPT_CTXTID2: CONTEXTIDR_EL2 is traced. | 
|  | * | 
|  | * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2 | 
|  | * are enabled at the same time when the session runs on an EL2 kernel. | 
|  | * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be | 
|  | * recorded in the trace data, the tool will selectively use | 
|  | * CONTEXTIDR_EL2 as PID. | 
|  | */ | 
|  | int cs_etm__get_pid_fmt(u8 trace_chan_id, u64 *pid_fmt) | 
|  | { | 
|  | struct int_node *inode; | 
|  | u64 *metadata, val; | 
|  |  | 
|  | inode = intlist__find(traceid_list, trace_chan_id); | 
|  | if (!inode) | 
|  | return -EINVAL; | 
|  |  | 
|  | metadata = inode->priv; | 
|  |  | 
|  | if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) { | 
|  | val = metadata[CS_ETM_ETMCR]; | 
|  | /* CONTEXTIDR is traced */ | 
|  | if (val & BIT(ETM_OPT_CTXTID)) | 
|  | *pid_fmt = BIT(ETM_OPT_CTXTID); | 
|  | } else { | 
|  | val = metadata[CS_ETMV4_TRCCONFIGR]; | 
|  | /* CONTEXTIDR_EL2 is traced */ | 
|  | if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT))) | 
|  | *pid_fmt = BIT(ETM_OPT_CTXTID2); | 
|  | /* CONTEXTIDR_EL1 is traced */ | 
|  | else if (val & BIT(ETM4_CFG_BIT_CTXTID)) | 
|  | *pid_fmt = BIT(ETM_OPT_CTXTID); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq, | 
|  | u8 trace_chan_id) | 
|  | { | 
|  | /* | 
|  | * When a timestamp packet is encountered the backend code | 
|  | * is stopped so that the front end has time to process packets | 
|  | * that were accumulated in the traceID queue.  Since there can | 
|  | * be more than one channel per cs_etm_queue, we need to specify | 
|  | * what traceID queue needs servicing. | 
|  | */ | 
|  | etmq->pending_timestamp_chan_id = trace_chan_id; | 
|  | } | 
|  |  | 
|  | static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq, | 
|  | u8 *trace_chan_id) | 
|  | { | 
|  | struct cs_etm_packet_queue *packet_queue; | 
|  |  | 
|  | if (!etmq->pending_timestamp_chan_id) | 
|  | return 0; | 
|  |  | 
|  | if (trace_chan_id) | 
|  | *trace_chan_id = etmq->pending_timestamp_chan_id; | 
|  |  | 
|  | packet_queue = cs_etm__etmq_get_packet_queue(etmq, | 
|  | etmq->pending_timestamp_chan_id); | 
|  | if (!packet_queue) | 
|  | return 0; | 
|  |  | 
|  | /* Acknowledge pending status */ | 
|  | etmq->pending_timestamp_chan_id = 0; | 
|  |  | 
|  | /* See function cs_etm_decoder__do_{hard|soft}_timestamp() */ | 
|  | return packet_queue->cs_timestamp; | 
|  | } | 
|  |  | 
|  | static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | queue->head = 0; | 
|  | queue->tail = 0; | 
|  | queue->packet_count = 0; | 
|  | for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) { | 
|  | queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN; | 
|  | queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR; | 
|  | queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR; | 
|  | queue->packet_buffer[i].instr_count = 0; | 
|  | queue->packet_buffer[i].last_instr_taken_branch = false; | 
|  | queue->packet_buffer[i].last_instr_size = 0; | 
|  | queue->packet_buffer[i].last_instr_type = 0; | 
|  | queue->packet_buffer[i].last_instr_subtype = 0; | 
|  | queue->packet_buffer[i].last_instr_cond = 0; | 
|  | queue->packet_buffer[i].flags = 0; | 
|  | queue->packet_buffer[i].exception_number = UINT32_MAX; | 
|  | queue->packet_buffer[i].trace_chan_id = UINT8_MAX; | 
|  | queue->packet_buffer[i].cpu = INT_MIN; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq) | 
|  | { | 
|  | int idx; | 
|  | struct int_node *inode; | 
|  | struct cs_etm_traceid_queue *tidq; | 
|  | struct intlist *traceid_queues_list = etmq->traceid_queues_list; | 
|  |  | 
|  | intlist__for_each_entry(inode, traceid_queues_list) { | 
|  | idx = (int)(intptr_t)inode->priv; | 
|  | tidq = etmq->traceid_queues[idx]; | 
|  | cs_etm__clear_packet_queue(&tidq->packet_queue); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq, | 
|  | struct cs_etm_traceid_queue *tidq, | 
|  | u8 trace_chan_id) | 
|  | { | 
|  | int rc = -ENOMEM; | 
|  | struct auxtrace_queue *queue; | 
|  | struct cs_etm_auxtrace *etm = etmq->etm; | 
|  |  | 
|  | cs_etm__clear_packet_queue(&tidq->packet_queue); | 
|  |  | 
|  | queue = &etmq->etm->queues.queue_array[etmq->queue_nr]; | 
|  | tidq->tid = queue->tid; | 
|  | tidq->pid = -1; | 
|  | tidq->trace_chan_id = trace_chan_id; | 
|  |  | 
|  | tidq->packet = zalloc(sizeof(struct cs_etm_packet)); | 
|  | if (!tidq->packet) | 
|  | goto out; | 
|  |  | 
|  | tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet)); | 
|  | if (!tidq->prev_packet) | 
|  | goto out_free; | 
|  |  | 
|  | if (etm->synth_opts.last_branch) { | 
|  | size_t sz = sizeof(struct branch_stack); | 
|  |  | 
|  | sz += etm->synth_opts.last_branch_sz * | 
|  | sizeof(struct branch_entry); | 
|  | tidq->last_branch = zalloc(sz); | 
|  | if (!tidq->last_branch) | 
|  | goto out_free; | 
|  | tidq->last_branch_rb = zalloc(sz); | 
|  | if (!tidq->last_branch_rb) | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); | 
|  | if (!tidq->event_buf) | 
|  | goto out_free; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_free: | 
|  | zfree(&tidq->last_branch_rb); | 
|  | zfree(&tidq->last_branch); | 
|  | zfree(&tidq->prev_packet); | 
|  | zfree(&tidq->packet); | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static struct cs_etm_traceid_queue | 
|  | *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id) | 
|  | { | 
|  | int idx; | 
|  | struct int_node *inode; | 
|  | struct intlist *traceid_queues_list; | 
|  | struct cs_etm_traceid_queue *tidq, **traceid_queues; | 
|  | struct cs_etm_auxtrace *etm = etmq->etm; | 
|  |  | 
|  | if (etm->timeless_decoding) | 
|  | trace_chan_id = CS_ETM_PER_THREAD_TRACEID; | 
|  |  | 
|  | traceid_queues_list = etmq->traceid_queues_list; | 
|  |  | 
|  | /* | 
|  | * Check if the traceid_queue exist for this traceID by looking | 
|  | * in the queue list. | 
|  | */ | 
|  | inode = intlist__find(traceid_queues_list, trace_chan_id); | 
|  | if (inode) { | 
|  | idx = (int)(intptr_t)inode->priv; | 
|  | return etmq->traceid_queues[idx]; | 
|  | } | 
|  |  | 
|  | /* We couldn't find a traceid_queue for this traceID, allocate one */ | 
|  | tidq = malloc(sizeof(*tidq)); | 
|  | if (!tidq) | 
|  | return NULL; | 
|  |  | 
|  | memset(tidq, 0, sizeof(*tidq)); | 
|  |  | 
|  | /* Get a valid index for the new traceid_queue */ | 
|  | idx = intlist__nr_entries(traceid_queues_list); | 
|  | /* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */ | 
|  | inode = intlist__findnew(traceid_queues_list, trace_chan_id); | 
|  | if (!inode) | 
|  | goto out_free; | 
|  |  | 
|  | /* Associate this traceID with this index */ | 
|  | inode->priv = (void *)(intptr_t)idx; | 
|  |  | 
|  | if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id)) | 
|  | goto out_free; | 
|  |  | 
|  | /* Grow the traceid_queues array by one unit */ | 
|  | traceid_queues = etmq->traceid_queues; | 
|  | traceid_queues = reallocarray(traceid_queues, | 
|  | idx + 1, | 
|  | sizeof(*traceid_queues)); | 
|  |  | 
|  | /* | 
|  | * On failure reallocarray() returns NULL and the original block of | 
|  | * memory is left untouched. | 
|  | */ | 
|  | if (!traceid_queues) | 
|  | goto out_free; | 
|  |  | 
|  | traceid_queues[idx] = tidq; | 
|  | etmq->traceid_queues = traceid_queues; | 
|  |  | 
|  | return etmq->traceid_queues[idx]; | 
|  |  | 
|  | out_free: | 
|  | /* | 
|  | * Function intlist__remove() removes the inode from the list | 
|  | * and delete the memory associated to it. | 
|  | */ | 
|  | intlist__remove(traceid_queues_list, inode); | 
|  | free(tidq); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | struct cs_etm_packet_queue | 
|  | *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id) | 
|  | { | 
|  | struct cs_etm_traceid_queue *tidq; | 
|  |  | 
|  | tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); | 
|  | if (tidq) | 
|  | return &tidq->packet_queue; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm, | 
|  | struct cs_etm_traceid_queue *tidq) | 
|  | { | 
|  | struct cs_etm_packet *tmp; | 
|  |  | 
|  | if (etm->synth_opts.branches || etm->synth_opts.last_branch || | 
|  | etm->synth_opts.instructions) { | 
|  | /* | 
|  | * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for | 
|  | * the next incoming packet. | 
|  | */ | 
|  | tmp = tidq->packet; | 
|  | tidq->packet = tidq->prev_packet; | 
|  | tidq->prev_packet = tmp; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cs_etm__packet_dump(const char *pkt_string) | 
|  | { | 
|  | const char *color = PERF_COLOR_BLUE; | 
|  | int len = strlen(pkt_string); | 
|  |  | 
|  | if (len && (pkt_string[len-1] == '\n')) | 
|  | color_fprintf(stdout, color, "	%s", pkt_string); | 
|  | else | 
|  | color_fprintf(stdout, color, "	%s\n", pkt_string); | 
|  |  | 
|  | fflush(stdout); | 
|  | } | 
|  |  | 
|  | static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params, | 
|  | struct cs_etm_auxtrace *etm, int idx, | 
|  | u32 etmidr) | 
|  | { | 
|  | u64 **metadata = etm->metadata; | 
|  |  | 
|  | t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr); | 
|  | t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR]; | 
|  | t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR]; | 
|  | } | 
|  |  | 
|  | static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params, | 
|  | struct cs_etm_auxtrace *etm, int idx) | 
|  | { | 
|  | u64 **metadata = etm->metadata; | 
|  |  | 
|  | t_params[idx].protocol = CS_ETM_PROTO_ETMV4i; | 
|  | t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0]; | 
|  | t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1]; | 
|  | t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2]; | 
|  | t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8]; | 
|  | t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR]; | 
|  | t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR]; | 
|  | } | 
|  |  | 
|  | static void cs_etm__set_trace_param_ete(struct cs_etm_trace_params *t_params, | 
|  | struct cs_etm_auxtrace *etm, int idx) | 
|  | { | 
|  | u64 **metadata = etm->metadata; | 
|  |  | 
|  | t_params[idx].protocol = CS_ETM_PROTO_ETE; | 
|  | t_params[idx].ete.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0]; | 
|  | t_params[idx].ete.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1]; | 
|  | t_params[idx].ete.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2]; | 
|  | t_params[idx].ete.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8]; | 
|  | t_params[idx].ete.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR]; | 
|  | t_params[idx].ete.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR]; | 
|  | t_params[idx].ete.reg_devarch = metadata[idx][CS_ETE_TRCDEVARCH]; | 
|  | } | 
|  |  | 
|  | static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params, | 
|  | struct cs_etm_auxtrace *etm, | 
|  | int decoders) | 
|  | { | 
|  | int i; | 
|  | u32 etmidr; | 
|  | u64 architecture; | 
|  |  | 
|  | for (i = 0; i < decoders; i++) { | 
|  | architecture = etm->metadata[i][CS_ETM_MAGIC]; | 
|  |  | 
|  | switch (architecture) { | 
|  | case __perf_cs_etmv3_magic: | 
|  | etmidr = etm->metadata[i][CS_ETM_ETMIDR]; | 
|  | cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr); | 
|  | break; | 
|  | case __perf_cs_etmv4_magic: | 
|  | cs_etm__set_trace_param_etmv4(t_params, etm, i); | 
|  | break; | 
|  | case __perf_cs_ete_magic: | 
|  | cs_etm__set_trace_param_ete(t_params, etm, i); | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params, | 
|  | struct cs_etm_queue *etmq, | 
|  | enum cs_etm_decoder_operation mode, | 
|  | bool formatted) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | if (!(mode < CS_ETM_OPERATION_MAX)) | 
|  | goto out; | 
|  |  | 
|  | d_params->packet_printer = cs_etm__packet_dump; | 
|  | d_params->operation = mode; | 
|  | d_params->data = etmq; | 
|  | d_params->formatted = formatted; | 
|  | d_params->fsyncs = false; | 
|  | d_params->hsyncs = false; | 
|  | d_params->frame_aligned = true; | 
|  |  | 
|  | ret = 0; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void cs_etm__dump_event(struct cs_etm_queue *etmq, | 
|  | struct auxtrace_buffer *buffer) | 
|  | { | 
|  | int ret; | 
|  | const char *color = PERF_COLOR_BLUE; | 
|  | size_t buffer_used = 0; | 
|  |  | 
|  | fprintf(stdout, "\n"); | 
|  | color_fprintf(stdout, color, | 
|  | ". ... CoreSight %s Trace data: size %#zx bytes\n", | 
|  | cs_etm_decoder__get_name(etmq->decoder), buffer->size); | 
|  |  | 
|  | do { | 
|  | size_t consumed; | 
|  |  | 
|  | ret = cs_etm_decoder__process_data_block( | 
|  | etmq->decoder, buffer->offset, | 
|  | &((u8 *)buffer->data)[buffer_used], | 
|  | buffer->size - buffer_used, &consumed); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | buffer_used += consumed; | 
|  | } while (buffer_used < buffer->size); | 
|  |  | 
|  | cs_etm_decoder__reset(etmq->decoder); | 
|  | } | 
|  |  | 
|  | static int cs_etm__flush_events(struct perf_session *session, | 
|  | struct perf_tool *tool) | 
|  | { | 
|  | struct cs_etm_auxtrace *etm = container_of(session->auxtrace, | 
|  | struct cs_etm_auxtrace, | 
|  | auxtrace); | 
|  | if (dump_trace) | 
|  | return 0; | 
|  |  | 
|  | if (!tool->ordered_events) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (etm->timeless_decoding) | 
|  | return cs_etm__process_timeless_queues(etm, -1); | 
|  |  | 
|  | return cs_etm__process_queues(etm); | 
|  | } | 
|  |  | 
|  | static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq) | 
|  | { | 
|  | int idx; | 
|  | uintptr_t priv; | 
|  | struct int_node *inode, *tmp; | 
|  | struct cs_etm_traceid_queue *tidq; | 
|  | struct intlist *traceid_queues_list = etmq->traceid_queues_list; | 
|  |  | 
|  | intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) { | 
|  | priv = (uintptr_t)inode->priv; | 
|  | idx = priv; | 
|  |  | 
|  | /* Free this traceid_queue from the array */ | 
|  | tidq = etmq->traceid_queues[idx]; | 
|  | thread__zput(tidq->thread); | 
|  | zfree(&tidq->event_buf); | 
|  | zfree(&tidq->last_branch); | 
|  | zfree(&tidq->last_branch_rb); | 
|  | zfree(&tidq->prev_packet); | 
|  | zfree(&tidq->packet); | 
|  | zfree(&tidq); | 
|  |  | 
|  | /* | 
|  | * Function intlist__remove() removes the inode from the list | 
|  | * and delete the memory associated to it. | 
|  | */ | 
|  | intlist__remove(traceid_queues_list, inode); | 
|  | } | 
|  |  | 
|  | /* Then the RB tree itself */ | 
|  | intlist__delete(traceid_queues_list); | 
|  | etmq->traceid_queues_list = NULL; | 
|  |  | 
|  | /* finally free the traceid_queues array */ | 
|  | zfree(&etmq->traceid_queues); | 
|  | } | 
|  |  | 
|  | static void cs_etm__free_queue(void *priv) | 
|  | { | 
|  | struct cs_etm_queue *etmq = priv; | 
|  |  | 
|  | if (!etmq) | 
|  | return; | 
|  |  | 
|  | cs_etm_decoder__free(etmq->decoder); | 
|  | cs_etm__free_traceid_queues(etmq); | 
|  | free(etmq); | 
|  | } | 
|  |  | 
|  | static void cs_etm__free_events(struct perf_session *session) | 
|  | { | 
|  | unsigned int i; | 
|  | struct cs_etm_auxtrace *aux = container_of(session->auxtrace, | 
|  | struct cs_etm_auxtrace, | 
|  | auxtrace); | 
|  | struct auxtrace_queues *queues = &aux->queues; | 
|  |  | 
|  | for (i = 0; i < queues->nr_queues; i++) { | 
|  | cs_etm__free_queue(queues->queue_array[i].priv); | 
|  | queues->queue_array[i].priv = NULL; | 
|  | } | 
|  |  | 
|  | auxtrace_queues__free(queues); | 
|  | } | 
|  |  | 
|  | static void cs_etm__free(struct perf_session *session) | 
|  | { | 
|  | int i; | 
|  | struct int_node *inode, *tmp; | 
|  | struct cs_etm_auxtrace *aux = container_of(session->auxtrace, | 
|  | struct cs_etm_auxtrace, | 
|  | auxtrace); | 
|  | cs_etm__free_events(session); | 
|  | session->auxtrace = NULL; | 
|  |  | 
|  | /* First remove all traceID/metadata nodes for the RB tree */ | 
|  | intlist__for_each_entry_safe(inode, tmp, traceid_list) | 
|  | intlist__remove(traceid_list, inode); | 
|  | /* Then the RB tree itself */ | 
|  | intlist__delete(traceid_list); | 
|  |  | 
|  | for (i = 0; i < aux->num_cpu; i++) | 
|  | zfree(&aux->metadata[i]); | 
|  |  | 
|  | thread__zput(aux->unknown_thread); | 
|  | zfree(&aux->metadata); | 
|  | zfree(&aux); | 
|  | } | 
|  |  | 
|  | static bool cs_etm__evsel_is_auxtrace(struct perf_session *session, | 
|  | struct evsel *evsel) | 
|  | { | 
|  | struct cs_etm_auxtrace *aux = container_of(session->auxtrace, | 
|  | struct cs_etm_auxtrace, | 
|  | auxtrace); | 
|  |  | 
|  | return evsel->core.attr.type == aux->pmu_type; | 
|  | } | 
|  |  | 
|  | static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address) | 
|  | { | 
|  | struct machine *machine; | 
|  |  | 
|  | machine = etmq->etm->machine; | 
|  |  | 
|  | if (address >= machine__kernel_start(machine)) { | 
|  | if (machine__is_host(machine)) | 
|  | return PERF_RECORD_MISC_KERNEL; | 
|  | else | 
|  | return PERF_RECORD_MISC_GUEST_KERNEL; | 
|  | } else { | 
|  | if (machine__is_host(machine)) | 
|  | return PERF_RECORD_MISC_USER; | 
|  | else if (perf_guest) | 
|  | return PERF_RECORD_MISC_GUEST_USER; | 
|  | else | 
|  | return PERF_RECORD_MISC_HYPERVISOR; | 
|  | } | 
|  | } | 
|  |  | 
|  | static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id, | 
|  | u64 address, size_t size, u8 *buffer) | 
|  | { | 
|  | u8  cpumode; | 
|  | u64 offset; | 
|  | int len; | 
|  | struct thread *thread; | 
|  | struct machine *machine; | 
|  | struct addr_location al; | 
|  | struct cs_etm_traceid_queue *tidq; | 
|  |  | 
|  | if (!etmq) | 
|  | return 0; | 
|  |  | 
|  | machine = etmq->etm->machine; | 
|  | cpumode = cs_etm__cpu_mode(etmq, address); | 
|  | tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); | 
|  | if (!tidq) | 
|  | return 0; | 
|  |  | 
|  | thread = tidq->thread; | 
|  | if (!thread) { | 
|  | if (cpumode != PERF_RECORD_MISC_KERNEL) | 
|  | return 0; | 
|  | thread = etmq->etm->unknown_thread; | 
|  | } | 
|  |  | 
|  | if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso) | 
|  | return 0; | 
|  |  | 
|  | if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR && | 
|  | dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE)) | 
|  | return 0; | 
|  |  | 
|  | offset = al.map->map_ip(al.map, address); | 
|  |  | 
|  | map__load(al.map); | 
|  |  | 
|  | len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size); | 
|  |  | 
|  | if (len <= 0) { | 
|  | ui__warning_once("CS ETM Trace: Missing DSO. Use 'perf archive' or debuginfod to export data from the traced system.\n" | 
|  | "              Enable CONFIG_PROC_KCORE or use option '-k /path/to/vmlinux' for kernel symbols.\n"); | 
|  | if (!al.map->dso->auxtrace_warned) { | 
|  | pr_err("CS ETM Trace: Debug data not found for address %#"PRIx64" in %s\n", | 
|  | address, | 
|  | al.map->dso->long_name ? al.map->dso->long_name : "Unknown"); | 
|  | al.map->dso->auxtrace_warned = true; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return len; | 
|  | } | 
|  |  | 
|  | static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm, | 
|  | bool formatted) | 
|  | { | 
|  | struct cs_etm_decoder_params d_params; | 
|  | struct cs_etm_trace_params  *t_params = NULL; | 
|  | struct cs_etm_queue *etmq; | 
|  | /* | 
|  | * Each queue can only contain data from one CPU when unformatted, so only one decoder is | 
|  | * needed. | 
|  | */ | 
|  | int decoders = formatted ? etm->num_cpu : 1; | 
|  |  | 
|  | etmq = zalloc(sizeof(*etmq)); | 
|  | if (!etmq) | 
|  | return NULL; | 
|  |  | 
|  | etmq->traceid_queues_list = intlist__new(NULL); | 
|  | if (!etmq->traceid_queues_list) | 
|  | goto out_free; | 
|  |  | 
|  | /* Use metadata to fill in trace parameters for trace decoder */ | 
|  | t_params = zalloc(sizeof(*t_params) * decoders); | 
|  |  | 
|  | if (!t_params) | 
|  | goto out_free; | 
|  |  | 
|  | if (cs_etm__init_trace_params(t_params, etm, decoders)) | 
|  | goto out_free; | 
|  |  | 
|  | /* Set decoder parameters to decode trace packets */ | 
|  | if (cs_etm__init_decoder_params(&d_params, etmq, | 
|  | dump_trace ? CS_ETM_OPERATION_PRINT : | 
|  | CS_ETM_OPERATION_DECODE, | 
|  | formatted)) | 
|  | goto out_free; | 
|  |  | 
|  | etmq->decoder = cs_etm_decoder__new(decoders, &d_params, | 
|  | t_params); | 
|  |  | 
|  | if (!etmq->decoder) | 
|  | goto out_free; | 
|  |  | 
|  | /* | 
|  | * Register a function to handle all memory accesses required by | 
|  | * the trace decoder library. | 
|  | */ | 
|  | if (cs_etm_decoder__add_mem_access_cb(etmq->decoder, | 
|  | 0x0L, ((u64) -1L), | 
|  | cs_etm__mem_access)) | 
|  | goto out_free_decoder; | 
|  |  | 
|  | zfree(&t_params); | 
|  | return etmq; | 
|  |  | 
|  | out_free_decoder: | 
|  | cs_etm_decoder__free(etmq->decoder); | 
|  | out_free: | 
|  | intlist__delete(etmq->traceid_queues_list); | 
|  | free(etmq); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm, | 
|  | struct auxtrace_queue *queue, | 
|  | unsigned int queue_nr, | 
|  | bool formatted) | 
|  | { | 
|  | struct cs_etm_queue *etmq = queue->priv; | 
|  |  | 
|  | if (list_empty(&queue->head) || etmq) | 
|  | return 0; | 
|  |  | 
|  | etmq = cs_etm__alloc_queue(etm, formatted); | 
|  |  | 
|  | if (!etmq) | 
|  | return -ENOMEM; | 
|  |  | 
|  | queue->priv = etmq; | 
|  | etmq->etm = etm; | 
|  | etmq->queue_nr = queue_nr; | 
|  | etmq->offset = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cs_etm__queue_first_cs_timestamp(struct cs_etm_auxtrace *etm, | 
|  | struct cs_etm_queue *etmq, | 
|  | unsigned int queue_nr) | 
|  | { | 
|  | int ret = 0; | 
|  | unsigned int cs_queue_nr; | 
|  | u8 trace_chan_id; | 
|  | u64 cs_timestamp; | 
|  |  | 
|  | /* | 
|  | * We are under a CPU-wide trace scenario.  As such we need to know | 
|  | * when the code that generated the traces started to execute so that | 
|  | * it can be correlated with execution on other CPUs.  So we get a | 
|  | * handle on the beginning of traces and decode until we find a | 
|  | * timestamp.  The timestamp is then added to the auxtrace min heap | 
|  | * in order to know what nibble (of all the etmqs) to decode first. | 
|  | */ | 
|  | while (1) { | 
|  | /* | 
|  | * Fetch an aux_buffer from this etmq.  Bail if no more | 
|  | * blocks or an error has been encountered. | 
|  | */ | 
|  | ret = cs_etm__get_data_block(etmq); | 
|  | if (ret <= 0) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Run decoder on the trace block.  The decoder will stop when | 
|  | * encountering a CS timestamp, a full packet queue or the end of | 
|  | * trace for that block. | 
|  | */ | 
|  | ret = cs_etm__decode_data_block(etmq); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all | 
|  | * the timestamp calculation for us. | 
|  | */ | 
|  | cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id); | 
|  |  | 
|  | /* We found a timestamp, no need to continue. */ | 
|  | if (cs_timestamp) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * We didn't find a timestamp so empty all the traceid packet | 
|  | * queues before looking for another timestamp packet, either | 
|  | * in the current data block or a new one.  Packets that were | 
|  | * just decoded are useless since no timestamp has been | 
|  | * associated with them.  As such simply discard them. | 
|  | */ | 
|  | cs_etm__clear_all_packet_queues(etmq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have a timestamp.  Add it to the min heap to reflect when | 
|  | * instructions conveyed by the range packets of this traceID queue | 
|  | * started to execute.  Once the same has been done for all the traceID | 
|  | * queues of each etmq, redenring and decoding can start in | 
|  | * chronological order. | 
|  | * | 
|  | * Note that packets decoded above are still in the traceID's packet | 
|  | * queue and will be processed in cs_etm__process_queues(). | 
|  | */ | 
|  | cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id); | 
|  | ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline | 
|  | void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq, | 
|  | struct cs_etm_traceid_queue *tidq) | 
|  | { | 
|  | struct branch_stack *bs_src = tidq->last_branch_rb; | 
|  | struct branch_stack *bs_dst = tidq->last_branch; | 
|  | size_t nr = 0; | 
|  |  | 
|  | /* | 
|  | * Set the number of records before early exit: ->nr is used to | 
|  | * determine how many branches to copy from ->entries. | 
|  | */ | 
|  | bs_dst->nr = bs_src->nr; | 
|  |  | 
|  | /* | 
|  | * Early exit when there is nothing to copy. | 
|  | */ | 
|  | if (!bs_src->nr) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * As bs_src->entries is a circular buffer, we need to copy from it in | 
|  | * two steps.  First, copy the branches from the most recently inserted | 
|  | * branch ->last_branch_pos until the end of bs_src->entries buffer. | 
|  | */ | 
|  | nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos; | 
|  | memcpy(&bs_dst->entries[0], | 
|  | &bs_src->entries[tidq->last_branch_pos], | 
|  | sizeof(struct branch_entry) * nr); | 
|  |  | 
|  | /* | 
|  | * If we wrapped around at least once, the branches from the beginning | 
|  | * of the bs_src->entries buffer and until the ->last_branch_pos element | 
|  | * are older valid branches: copy them over.  The total number of | 
|  | * branches copied over will be equal to the number of branches asked by | 
|  | * the user in last_branch_sz. | 
|  | */ | 
|  | if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) { | 
|  | memcpy(&bs_dst->entries[nr], | 
|  | &bs_src->entries[0], | 
|  | sizeof(struct branch_entry) * tidq->last_branch_pos); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline | 
|  | void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq) | 
|  | { | 
|  | tidq->last_branch_pos = 0; | 
|  | tidq->last_branch_rb->nr = 0; | 
|  | } | 
|  |  | 
|  | static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq, | 
|  | u8 trace_chan_id, u64 addr) | 
|  | { | 
|  | u8 instrBytes[2]; | 
|  |  | 
|  | cs_etm__mem_access(etmq, trace_chan_id, addr, | 
|  | ARRAY_SIZE(instrBytes), instrBytes); | 
|  | /* | 
|  | * T32 instruction size is indicated by bits[15:11] of the first | 
|  | * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111 | 
|  | * denote a 32-bit instruction. | 
|  | */ | 
|  | return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2; | 
|  | } | 
|  |  | 
|  | static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet) | 
|  | { | 
|  | /* Returns 0 for the CS_ETM_DISCONTINUITY packet */ | 
|  | if (packet->sample_type == CS_ETM_DISCONTINUITY) | 
|  | return 0; | 
|  |  | 
|  | return packet->start_addr; | 
|  | } | 
|  |  | 
|  | static inline | 
|  | u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet) | 
|  | { | 
|  | /* Returns 0 for the CS_ETM_DISCONTINUITY packet */ | 
|  | if (packet->sample_type == CS_ETM_DISCONTINUITY) | 
|  | return 0; | 
|  |  | 
|  | return packet->end_addr - packet->last_instr_size; | 
|  | } | 
|  |  | 
|  | static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq, | 
|  | u64 trace_chan_id, | 
|  | const struct cs_etm_packet *packet, | 
|  | u64 offset) | 
|  | { | 
|  | if (packet->isa == CS_ETM_ISA_T32) { | 
|  | u64 addr = packet->start_addr; | 
|  |  | 
|  | while (offset) { | 
|  | addr += cs_etm__t32_instr_size(etmq, | 
|  | trace_chan_id, addr); | 
|  | offset--; | 
|  | } | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | /* Assume a 4 byte instruction size (A32/A64) */ | 
|  | return packet->start_addr + offset * 4; | 
|  | } | 
|  |  | 
|  | static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq, | 
|  | struct cs_etm_traceid_queue *tidq) | 
|  | { | 
|  | struct branch_stack *bs = tidq->last_branch_rb; | 
|  | struct branch_entry *be; | 
|  |  | 
|  | /* | 
|  | * The branches are recorded in a circular buffer in reverse | 
|  | * chronological order: we start recording from the last element of the | 
|  | * buffer down.  After writing the first element of the stack, move the | 
|  | * insert position back to the end of the buffer. | 
|  | */ | 
|  | if (!tidq->last_branch_pos) | 
|  | tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz; | 
|  |  | 
|  | tidq->last_branch_pos -= 1; | 
|  |  | 
|  | be       = &bs->entries[tidq->last_branch_pos]; | 
|  | be->from = cs_etm__last_executed_instr(tidq->prev_packet); | 
|  | be->to	 = cs_etm__first_executed_instr(tidq->packet); | 
|  | /* No support for mispredict */ | 
|  | be->flags.mispred = 0; | 
|  | be->flags.predicted = 1; | 
|  |  | 
|  | /* | 
|  | * Increment bs->nr until reaching the number of last branches asked by | 
|  | * the user on the command line. | 
|  | */ | 
|  | if (bs->nr < etmq->etm->synth_opts.last_branch_sz) | 
|  | bs->nr += 1; | 
|  | } | 
|  |  | 
|  | static int cs_etm__inject_event(union perf_event *event, | 
|  | struct perf_sample *sample, u64 type) | 
|  | { | 
|  | event->header.size = perf_event__sample_event_size(sample, type, 0); | 
|  | return perf_event__synthesize_sample(event, type, 0, sample); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int | 
|  | cs_etm__get_trace(struct cs_etm_queue *etmq) | 
|  | { | 
|  | struct auxtrace_buffer *aux_buffer = etmq->buffer; | 
|  | struct auxtrace_buffer *old_buffer = aux_buffer; | 
|  | struct auxtrace_queue *queue; | 
|  |  | 
|  | queue = &etmq->etm->queues.queue_array[etmq->queue_nr]; | 
|  |  | 
|  | aux_buffer = auxtrace_buffer__next(queue, aux_buffer); | 
|  |  | 
|  | /* If no more data, drop the previous auxtrace_buffer and return */ | 
|  | if (!aux_buffer) { | 
|  | if (old_buffer) | 
|  | auxtrace_buffer__drop_data(old_buffer); | 
|  | etmq->buf_len = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | etmq->buffer = aux_buffer; | 
|  |  | 
|  | /* If the aux_buffer doesn't have data associated, try to load it */ | 
|  | if (!aux_buffer->data) { | 
|  | /* get the file desc associated with the perf data file */ | 
|  | int fd = perf_data__fd(etmq->etm->session->data); | 
|  |  | 
|  | aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd); | 
|  | if (!aux_buffer->data) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* If valid, drop the previous buffer */ | 
|  | if (old_buffer) | 
|  | auxtrace_buffer__drop_data(old_buffer); | 
|  |  | 
|  | etmq->buf_used = 0; | 
|  | etmq->buf_len = aux_buffer->size; | 
|  | etmq->buf = aux_buffer->data; | 
|  |  | 
|  | return etmq->buf_len; | 
|  | } | 
|  |  | 
|  | static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm, | 
|  | struct cs_etm_traceid_queue *tidq) | 
|  | { | 
|  | if ((!tidq->thread) && (tidq->tid != -1)) | 
|  | tidq->thread = machine__find_thread(etm->machine, -1, | 
|  | tidq->tid); | 
|  |  | 
|  | if (tidq->thread) | 
|  | tidq->pid = tidq->thread->pid_; | 
|  | } | 
|  |  | 
|  | int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq, | 
|  | pid_t tid, u8 trace_chan_id) | 
|  | { | 
|  | int cpu, err = -EINVAL; | 
|  | struct cs_etm_auxtrace *etm = etmq->etm; | 
|  | struct cs_etm_traceid_queue *tidq; | 
|  |  | 
|  | tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); | 
|  | if (!tidq) | 
|  | return err; | 
|  |  | 
|  | if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0) | 
|  | return err; | 
|  |  | 
|  | err = machine__set_current_tid(etm->machine, cpu, tid, tid); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | tidq->tid = tid; | 
|  | thread__zput(tidq->thread); | 
|  |  | 
|  | cs_etm__set_pid_tid_cpu(etm, tidq); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq) | 
|  | { | 
|  | return !!etmq->etm->timeless_decoding; | 
|  | } | 
|  |  | 
|  | static void cs_etm__copy_insn(struct cs_etm_queue *etmq, | 
|  | u64 trace_chan_id, | 
|  | const struct cs_etm_packet *packet, | 
|  | struct perf_sample *sample) | 
|  | { | 
|  | /* | 
|  | * It's pointless to read instructions for the CS_ETM_DISCONTINUITY | 
|  | * packet, so directly bail out with 'insn_len' = 0. | 
|  | */ | 
|  | if (packet->sample_type == CS_ETM_DISCONTINUITY) { | 
|  | sample->insn_len = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * T32 instruction size might be 32-bit or 16-bit, decide by calling | 
|  | * cs_etm__t32_instr_size(). | 
|  | */ | 
|  | if (packet->isa == CS_ETM_ISA_T32) | 
|  | sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id, | 
|  | sample->ip); | 
|  | /* Otherwise, A64 and A32 instruction size are always 32-bit. */ | 
|  | else | 
|  | sample->insn_len = 4; | 
|  |  | 
|  | cs_etm__mem_access(etmq, trace_chan_id, sample->ip, | 
|  | sample->insn_len, (void *)sample->insn); | 
|  | } | 
|  |  | 
|  | static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq, | 
|  | struct cs_etm_traceid_queue *tidq, | 
|  | u64 addr, u64 period) | 
|  | { | 
|  | int ret = 0; | 
|  | struct cs_etm_auxtrace *etm = etmq->etm; | 
|  | union perf_event *event = tidq->event_buf; | 
|  | struct perf_sample sample = {.ip = 0,}; | 
|  |  | 
|  | event->sample.header.type = PERF_RECORD_SAMPLE; | 
|  | event->sample.header.misc = cs_etm__cpu_mode(etmq, addr); | 
|  | event->sample.header.size = sizeof(struct perf_event_header); | 
|  |  | 
|  | if (!etm->timeless_decoding) | 
|  | sample.time = etm->latest_kernel_timestamp; | 
|  | sample.ip = addr; | 
|  | sample.pid = tidq->pid; | 
|  | sample.tid = tidq->tid; | 
|  | sample.id = etmq->etm->instructions_id; | 
|  | sample.stream_id = etmq->etm->instructions_id; | 
|  | sample.period = period; | 
|  | sample.cpu = tidq->packet->cpu; | 
|  | sample.flags = tidq->prev_packet->flags; | 
|  | sample.cpumode = event->sample.header.misc; | 
|  |  | 
|  | cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample); | 
|  |  | 
|  | if (etm->synth_opts.last_branch) | 
|  | sample.branch_stack = tidq->last_branch; | 
|  |  | 
|  | if (etm->synth_opts.inject) { | 
|  | ret = cs_etm__inject_event(event, &sample, | 
|  | etm->instructions_sample_type); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = perf_session__deliver_synth_event(etm->session, event, &sample); | 
|  |  | 
|  | if (ret) | 
|  | pr_err( | 
|  | "CS ETM Trace: failed to deliver instruction event, error %d\n", | 
|  | ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The cs etm packet encodes an instruction range between a branch target | 
|  | * and the next taken branch. Generate sample accordingly. | 
|  | */ | 
|  | static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq, | 
|  | struct cs_etm_traceid_queue *tidq) | 
|  | { | 
|  | int ret = 0; | 
|  | struct cs_etm_auxtrace *etm = etmq->etm; | 
|  | struct perf_sample sample = {.ip = 0,}; | 
|  | union perf_event *event = tidq->event_buf; | 
|  | struct dummy_branch_stack { | 
|  | u64			nr; | 
|  | u64			hw_idx; | 
|  | struct branch_entry	entries; | 
|  | } dummy_bs; | 
|  | u64 ip; | 
|  |  | 
|  | ip = cs_etm__last_executed_instr(tidq->prev_packet); | 
|  |  | 
|  | event->sample.header.type = PERF_RECORD_SAMPLE; | 
|  | event->sample.header.misc = cs_etm__cpu_mode(etmq, ip); | 
|  | event->sample.header.size = sizeof(struct perf_event_header); | 
|  |  | 
|  | if (!etm->timeless_decoding) | 
|  | sample.time = etm->latest_kernel_timestamp; | 
|  | sample.ip = ip; | 
|  | sample.pid = tidq->pid; | 
|  | sample.tid = tidq->tid; | 
|  | sample.addr = cs_etm__first_executed_instr(tidq->packet); | 
|  | sample.id = etmq->etm->branches_id; | 
|  | sample.stream_id = etmq->etm->branches_id; | 
|  | sample.period = 1; | 
|  | sample.cpu = tidq->packet->cpu; | 
|  | sample.flags = tidq->prev_packet->flags; | 
|  | sample.cpumode = event->sample.header.misc; | 
|  |  | 
|  | cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet, | 
|  | &sample); | 
|  |  | 
|  | /* | 
|  | * perf report cannot handle events without a branch stack | 
|  | */ | 
|  | if (etm->synth_opts.last_branch) { | 
|  | dummy_bs = (struct dummy_branch_stack){ | 
|  | .nr = 1, | 
|  | .hw_idx = -1ULL, | 
|  | .entries = { | 
|  | .from = sample.ip, | 
|  | .to = sample.addr, | 
|  | }, | 
|  | }; | 
|  | sample.branch_stack = (struct branch_stack *)&dummy_bs; | 
|  | } | 
|  |  | 
|  | if (etm->synth_opts.inject) { | 
|  | ret = cs_etm__inject_event(event, &sample, | 
|  | etm->branches_sample_type); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = perf_session__deliver_synth_event(etm->session, event, &sample); | 
|  |  | 
|  | if (ret) | 
|  | pr_err( | 
|  | "CS ETM Trace: failed to deliver instruction event, error %d\n", | 
|  | ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct cs_etm_synth { | 
|  | struct perf_tool dummy_tool; | 
|  | struct perf_session *session; | 
|  | }; | 
|  |  | 
|  | static int cs_etm__event_synth(struct perf_tool *tool, | 
|  | union perf_event *event, | 
|  | struct perf_sample *sample __maybe_unused, | 
|  | struct machine *machine __maybe_unused) | 
|  | { | 
|  | struct cs_etm_synth *cs_etm_synth = | 
|  | container_of(tool, struct cs_etm_synth, dummy_tool); | 
|  |  | 
|  | return perf_session__deliver_synth_event(cs_etm_synth->session, | 
|  | event, NULL); | 
|  | } | 
|  |  | 
|  | static int cs_etm__synth_event(struct perf_session *session, | 
|  | struct perf_event_attr *attr, u64 id) | 
|  | { | 
|  | struct cs_etm_synth cs_etm_synth; | 
|  |  | 
|  | memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth)); | 
|  | cs_etm_synth.session = session; | 
|  |  | 
|  | return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1, | 
|  | &id, cs_etm__event_synth); | 
|  | } | 
|  |  | 
|  | static int cs_etm__synth_events(struct cs_etm_auxtrace *etm, | 
|  | struct perf_session *session) | 
|  | { | 
|  | struct evlist *evlist = session->evlist; | 
|  | struct evsel *evsel; | 
|  | struct perf_event_attr attr; | 
|  | bool found = false; | 
|  | u64 id; | 
|  | int err; | 
|  |  | 
|  | evlist__for_each_entry(evlist, evsel) { | 
|  | if (evsel->core.attr.type == etm->pmu_type) { | 
|  | found = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!found) { | 
|  | pr_debug("No selected events with CoreSight Trace data\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | memset(&attr, 0, sizeof(struct perf_event_attr)); | 
|  | attr.size = sizeof(struct perf_event_attr); | 
|  | attr.type = PERF_TYPE_HARDWARE; | 
|  | attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK; | 
|  | attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | | 
|  | PERF_SAMPLE_PERIOD; | 
|  | if (etm->timeless_decoding) | 
|  | attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; | 
|  | else | 
|  | attr.sample_type |= PERF_SAMPLE_TIME; | 
|  |  | 
|  | attr.exclude_user = evsel->core.attr.exclude_user; | 
|  | attr.exclude_kernel = evsel->core.attr.exclude_kernel; | 
|  | attr.exclude_hv = evsel->core.attr.exclude_hv; | 
|  | attr.exclude_host = evsel->core.attr.exclude_host; | 
|  | attr.exclude_guest = evsel->core.attr.exclude_guest; | 
|  | attr.sample_id_all = evsel->core.attr.sample_id_all; | 
|  | attr.read_format = evsel->core.attr.read_format; | 
|  |  | 
|  | /* create new id val to be a fixed offset from evsel id */ | 
|  | id = evsel->core.id[0] + 1000000000; | 
|  |  | 
|  | if (!id) | 
|  | id = 1; | 
|  |  | 
|  | if (etm->synth_opts.branches) { | 
|  | attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS; | 
|  | attr.sample_period = 1; | 
|  | attr.sample_type |= PERF_SAMPLE_ADDR; | 
|  | err = cs_etm__synth_event(session, &attr, id); | 
|  | if (err) | 
|  | return err; | 
|  | etm->branches_sample_type = attr.sample_type; | 
|  | etm->branches_id = id; | 
|  | id += 1; | 
|  | attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR; | 
|  | } | 
|  |  | 
|  | if (etm->synth_opts.last_branch) { | 
|  | attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; | 
|  | /* | 
|  | * We don't use the hardware index, but the sample generation | 
|  | * code uses the new format branch_stack with this field, | 
|  | * so the event attributes must indicate that it's present. | 
|  | */ | 
|  | attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX; | 
|  | } | 
|  |  | 
|  | if (etm->synth_opts.instructions) { | 
|  | attr.config = PERF_COUNT_HW_INSTRUCTIONS; | 
|  | attr.sample_period = etm->synth_opts.period; | 
|  | etm->instructions_sample_period = attr.sample_period; | 
|  | err = cs_etm__synth_event(session, &attr, id); | 
|  | if (err) | 
|  | return err; | 
|  | etm->instructions_sample_type = attr.sample_type; | 
|  | etm->instructions_id = id; | 
|  | id += 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cs_etm__sample(struct cs_etm_queue *etmq, | 
|  | struct cs_etm_traceid_queue *tidq) | 
|  | { | 
|  | struct cs_etm_auxtrace *etm = etmq->etm; | 
|  | int ret; | 
|  | u8 trace_chan_id = tidq->trace_chan_id; | 
|  | u64 instrs_prev; | 
|  |  | 
|  | /* Get instructions remainder from previous packet */ | 
|  | instrs_prev = tidq->period_instructions; | 
|  |  | 
|  | tidq->period_instructions += tidq->packet->instr_count; | 
|  |  | 
|  | /* | 
|  | * Record a branch when the last instruction in | 
|  | * PREV_PACKET is a branch. | 
|  | */ | 
|  | if (etm->synth_opts.last_branch && | 
|  | tidq->prev_packet->sample_type == CS_ETM_RANGE && | 
|  | tidq->prev_packet->last_instr_taken_branch) | 
|  | cs_etm__update_last_branch_rb(etmq, tidq); | 
|  |  | 
|  | if (etm->synth_opts.instructions && | 
|  | tidq->period_instructions >= etm->instructions_sample_period) { | 
|  | /* | 
|  | * Emit instruction sample periodically | 
|  | * TODO: allow period to be defined in cycles and clock time | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Below diagram demonstrates the instruction samples | 
|  | * generation flows: | 
|  | * | 
|  | *    Instrs     Instrs       Instrs       Instrs | 
|  | *   Sample(n)  Sample(n+1)  Sample(n+2)  Sample(n+3) | 
|  | *    |            |            |            | | 
|  | *    V            V            V            V | 
|  | *   -------------------------------------------------- | 
|  | *            ^                                  ^ | 
|  | *            |                                  | | 
|  | *         Period                             Period | 
|  | *    instructions(Pi)                   instructions(Pi') | 
|  | * | 
|  | *            |                                  | | 
|  | *            \---------------- -----------------/ | 
|  | *                             V | 
|  | *                 tidq->packet->instr_count | 
|  | * | 
|  | * Instrs Sample(n...) are the synthesised samples occurring | 
|  | * every etm->instructions_sample_period instructions - as | 
|  | * defined on the perf command line.  Sample(n) is being the | 
|  | * last sample before the current etm packet, n+1 to n+3 | 
|  | * samples are generated from the current etm packet. | 
|  | * | 
|  | * tidq->packet->instr_count represents the number of | 
|  | * instructions in the current etm packet. | 
|  | * | 
|  | * Period instructions (Pi) contains the number of | 
|  | * instructions executed after the sample point(n) from the | 
|  | * previous etm packet.  This will always be less than | 
|  | * etm->instructions_sample_period. | 
|  | * | 
|  | * When generate new samples, it combines with two parts | 
|  | * instructions, one is the tail of the old packet and another | 
|  | * is the head of the new coming packet, to generate | 
|  | * sample(n+1); sample(n+2) and sample(n+3) consume the | 
|  | * instructions with sample period.  After sample(n+3), the rest | 
|  | * instructions will be used by later packet and it is assigned | 
|  | * to tidq->period_instructions for next round calculation. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Get the initial offset into the current packet instructions; | 
|  | * entry conditions ensure that instrs_prev is less than | 
|  | * etm->instructions_sample_period. | 
|  | */ | 
|  | u64 offset = etm->instructions_sample_period - instrs_prev; | 
|  | u64 addr; | 
|  |  | 
|  | /* Prepare last branches for instruction sample */ | 
|  | if (etm->synth_opts.last_branch) | 
|  | cs_etm__copy_last_branch_rb(etmq, tidq); | 
|  |  | 
|  | while (tidq->period_instructions >= | 
|  | etm->instructions_sample_period) { | 
|  | /* | 
|  | * Calculate the address of the sampled instruction (-1 | 
|  | * as sample is reported as though instruction has just | 
|  | * been executed, but PC has not advanced to next | 
|  | * instruction) | 
|  | */ | 
|  | addr = cs_etm__instr_addr(etmq, trace_chan_id, | 
|  | tidq->packet, offset - 1); | 
|  | ret = cs_etm__synth_instruction_sample( | 
|  | etmq, tidq, addr, | 
|  | etm->instructions_sample_period); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | offset += etm->instructions_sample_period; | 
|  | tidq->period_instructions -= | 
|  | etm->instructions_sample_period; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (etm->synth_opts.branches) { | 
|  | bool generate_sample = false; | 
|  |  | 
|  | /* Generate sample for tracing on packet */ | 
|  | if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY) | 
|  | generate_sample = true; | 
|  |  | 
|  | /* Generate sample for branch taken packet */ | 
|  | if (tidq->prev_packet->sample_type == CS_ETM_RANGE && | 
|  | tidq->prev_packet->last_instr_taken_branch) | 
|  | generate_sample = true; | 
|  |  | 
|  | if (generate_sample) { | 
|  | ret = cs_etm__synth_branch_sample(etmq, tidq); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | cs_etm__packet_swap(etm, tidq); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cs_etm__exception(struct cs_etm_traceid_queue *tidq) | 
|  | { | 
|  | /* | 
|  | * When the exception packet is inserted, whether the last instruction | 
|  | * in previous range packet is taken branch or not, we need to force | 
|  | * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures | 
|  | * to generate branch sample for the instruction range before the | 
|  | * exception is trapped to kernel or before the exception returning. | 
|  | * | 
|  | * The exception packet includes the dummy address values, so don't | 
|  | * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful | 
|  | * for generating instruction and branch samples. | 
|  | */ | 
|  | if (tidq->prev_packet->sample_type == CS_ETM_RANGE) | 
|  | tidq->prev_packet->last_instr_taken_branch = true; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cs_etm__flush(struct cs_etm_queue *etmq, | 
|  | struct cs_etm_traceid_queue *tidq) | 
|  | { | 
|  | int err = 0; | 
|  | struct cs_etm_auxtrace *etm = etmq->etm; | 
|  |  | 
|  | /* Handle start tracing packet */ | 
|  | if (tidq->prev_packet->sample_type == CS_ETM_EMPTY) | 
|  | goto swap_packet; | 
|  |  | 
|  | if (etmq->etm->synth_opts.last_branch && | 
|  | etmq->etm->synth_opts.instructions && | 
|  | tidq->prev_packet->sample_type == CS_ETM_RANGE) { | 
|  | u64 addr; | 
|  |  | 
|  | /* Prepare last branches for instruction sample */ | 
|  | cs_etm__copy_last_branch_rb(etmq, tidq); | 
|  |  | 
|  | /* | 
|  | * Generate a last branch event for the branches left in the | 
|  | * circular buffer at the end of the trace. | 
|  | * | 
|  | * Use the address of the end of the last reported execution | 
|  | * range | 
|  | */ | 
|  | addr = cs_etm__last_executed_instr(tidq->prev_packet); | 
|  |  | 
|  | err = cs_etm__synth_instruction_sample( | 
|  | etmq, tidq, addr, | 
|  | tidq->period_instructions); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | tidq->period_instructions = 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | if (etm->synth_opts.branches && | 
|  | tidq->prev_packet->sample_type == CS_ETM_RANGE) { | 
|  | err = cs_etm__synth_branch_sample(etmq, tidq); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | swap_packet: | 
|  | cs_etm__packet_swap(etm, tidq); | 
|  |  | 
|  | /* Reset last branches after flush the trace */ | 
|  | if (etm->synth_opts.last_branch) | 
|  | cs_etm__reset_last_branch_rb(tidq); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int cs_etm__end_block(struct cs_etm_queue *etmq, | 
|  | struct cs_etm_traceid_queue *tidq) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * It has no new packet coming and 'etmq->packet' contains the stale | 
|  | * packet which was set at the previous time with packets swapping; | 
|  | * so skip to generate branch sample to avoid stale packet. | 
|  | * | 
|  | * For this case only flush branch stack and generate a last branch | 
|  | * event for the branches left in the circular buffer at the end of | 
|  | * the trace. | 
|  | */ | 
|  | if (etmq->etm->synth_opts.last_branch && | 
|  | etmq->etm->synth_opts.instructions && | 
|  | tidq->prev_packet->sample_type == CS_ETM_RANGE) { | 
|  | u64 addr; | 
|  |  | 
|  | /* Prepare last branches for instruction sample */ | 
|  | cs_etm__copy_last_branch_rb(etmq, tidq); | 
|  |  | 
|  | /* | 
|  | * Use the address of the end of the last reported execution | 
|  | * range. | 
|  | */ | 
|  | addr = cs_etm__last_executed_instr(tidq->prev_packet); | 
|  |  | 
|  | err = cs_etm__synth_instruction_sample( | 
|  | etmq, tidq, addr, | 
|  | tidq->period_instructions); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | tidq->period_instructions = 0; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue | 
|  | *			   if need be. | 
|  | * Returns:	< 0	if error | 
|  | *		= 0	if no more auxtrace_buffer to read | 
|  | *		> 0	if the current buffer isn't empty yet | 
|  | */ | 
|  | static int cs_etm__get_data_block(struct cs_etm_queue *etmq) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!etmq->buf_len) { | 
|  | ret = cs_etm__get_trace(etmq); | 
|  | if (ret <= 0) | 
|  | return ret; | 
|  | /* | 
|  | * We cannot assume consecutive blocks in the data file | 
|  | * are contiguous, reset the decoder to force re-sync. | 
|  | */ | 
|  | ret = cs_etm_decoder__reset(etmq->decoder); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return etmq->buf_len; | 
|  | } | 
|  |  | 
|  | static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id, | 
|  | struct cs_etm_packet *packet, | 
|  | u64 end_addr) | 
|  | { | 
|  | /* Initialise to keep compiler happy */ | 
|  | u16 instr16 = 0; | 
|  | u32 instr32 = 0; | 
|  | u64 addr; | 
|  |  | 
|  | switch (packet->isa) { | 
|  | case CS_ETM_ISA_T32: | 
|  | /* | 
|  | * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247: | 
|  | * | 
|  | *  b'15         b'8 | 
|  | * +-----------------+--------+ | 
|  | * | 1 1 0 1 1 1 1 1 |  imm8  | | 
|  | * +-----------------+--------+ | 
|  | * | 
|  | * According to the specification, it only defines SVC for T32 | 
|  | * with 16 bits instruction and has no definition for 32bits; | 
|  | * so below only read 2 bytes as instruction size for T32. | 
|  | */ | 
|  | addr = end_addr - 2; | 
|  | cs_etm__mem_access(etmq, trace_chan_id, addr, | 
|  | sizeof(instr16), (u8 *)&instr16); | 
|  | if ((instr16 & 0xFF00) == 0xDF00) | 
|  | return true; | 
|  |  | 
|  | break; | 
|  | case CS_ETM_ISA_A32: | 
|  | /* | 
|  | * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247: | 
|  | * | 
|  | *  b'31 b'28 b'27 b'24 | 
|  | * +---------+---------+-------------------------+ | 
|  | * |  !1111  | 1 1 1 1 |        imm24            | | 
|  | * +---------+---------+-------------------------+ | 
|  | */ | 
|  | addr = end_addr - 4; | 
|  | cs_etm__mem_access(etmq, trace_chan_id, addr, | 
|  | sizeof(instr32), (u8 *)&instr32); | 
|  | if ((instr32 & 0x0F000000) == 0x0F000000 && | 
|  | (instr32 & 0xF0000000) != 0xF0000000) | 
|  | return true; | 
|  |  | 
|  | break; | 
|  | case CS_ETM_ISA_A64: | 
|  | /* | 
|  | * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294: | 
|  | * | 
|  | *  b'31               b'21           b'4     b'0 | 
|  | * +-----------------------+---------+-----------+ | 
|  | * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 | | 
|  | * +-----------------------+---------+-----------+ | 
|  | */ | 
|  | addr = end_addr - 4; | 
|  | cs_etm__mem_access(etmq, trace_chan_id, addr, | 
|  | sizeof(instr32), (u8 *)&instr32); | 
|  | if ((instr32 & 0xFFE0001F) == 0xd4000001) | 
|  | return true; | 
|  |  | 
|  | break; | 
|  | case CS_ETM_ISA_UNKNOWN: | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool cs_etm__is_syscall(struct cs_etm_queue *etmq, | 
|  | struct cs_etm_traceid_queue *tidq, u64 magic) | 
|  | { | 
|  | u8 trace_chan_id = tidq->trace_chan_id; | 
|  | struct cs_etm_packet *packet = tidq->packet; | 
|  | struct cs_etm_packet *prev_packet = tidq->prev_packet; | 
|  |  | 
|  | if (magic == __perf_cs_etmv3_magic) | 
|  | if (packet->exception_number == CS_ETMV3_EXC_SVC) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and | 
|  | * HVC cases; need to check if it's SVC instruction based on | 
|  | * packet address. | 
|  | */ | 
|  | if (magic == __perf_cs_etmv4_magic) { | 
|  | if (packet->exception_number == CS_ETMV4_EXC_CALL && | 
|  | cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet, | 
|  | prev_packet->end_addr)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq, | 
|  | u64 magic) | 
|  | { | 
|  | struct cs_etm_packet *packet = tidq->packet; | 
|  |  | 
|  | if (magic == __perf_cs_etmv3_magic) | 
|  | if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT || | 
|  | packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT || | 
|  | packet->exception_number == CS_ETMV3_EXC_PE_RESET || | 
|  | packet->exception_number == CS_ETMV3_EXC_IRQ || | 
|  | packet->exception_number == CS_ETMV3_EXC_FIQ) | 
|  | return true; | 
|  |  | 
|  | if (magic == __perf_cs_etmv4_magic) | 
|  | if (packet->exception_number == CS_ETMV4_EXC_RESET || | 
|  | packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT || | 
|  | packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR || | 
|  | packet->exception_number == CS_ETMV4_EXC_INST_DEBUG || | 
|  | packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG || | 
|  | packet->exception_number == CS_ETMV4_EXC_IRQ || | 
|  | packet->exception_number == CS_ETMV4_EXC_FIQ) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq, | 
|  | struct cs_etm_traceid_queue *tidq, | 
|  | u64 magic) | 
|  | { | 
|  | u8 trace_chan_id = tidq->trace_chan_id; | 
|  | struct cs_etm_packet *packet = tidq->packet; | 
|  | struct cs_etm_packet *prev_packet = tidq->prev_packet; | 
|  |  | 
|  | if (magic == __perf_cs_etmv3_magic) | 
|  | if (packet->exception_number == CS_ETMV3_EXC_SMC || | 
|  | packet->exception_number == CS_ETMV3_EXC_HYP || | 
|  | packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE || | 
|  | packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR || | 
|  | packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT || | 
|  | packet->exception_number == CS_ETMV3_EXC_DATA_FAULT || | 
|  | packet->exception_number == CS_ETMV3_EXC_GENERIC) | 
|  | return true; | 
|  |  | 
|  | if (magic == __perf_cs_etmv4_magic) { | 
|  | if (packet->exception_number == CS_ETMV4_EXC_TRAP || | 
|  | packet->exception_number == CS_ETMV4_EXC_ALIGNMENT || | 
|  | packet->exception_number == CS_ETMV4_EXC_INST_FAULT || | 
|  | packet->exception_number == CS_ETMV4_EXC_DATA_FAULT) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * For CS_ETMV4_EXC_CALL, except SVC other instructions | 
|  | * (SMC, HVC) are taken as sync exceptions. | 
|  | */ | 
|  | if (packet->exception_number == CS_ETMV4_EXC_CALL && | 
|  | !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet, | 
|  | prev_packet->end_addr)) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * ETMv4 has 5 bits for exception number; if the numbers | 
|  | * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ] | 
|  | * they are implementation defined exceptions. | 
|  | * | 
|  | * For this case, simply take it as sync exception. | 
|  | */ | 
|  | if (packet->exception_number > CS_ETMV4_EXC_FIQ && | 
|  | packet->exception_number <= CS_ETMV4_EXC_END) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq, | 
|  | struct cs_etm_traceid_queue *tidq) | 
|  | { | 
|  | struct cs_etm_packet *packet = tidq->packet; | 
|  | struct cs_etm_packet *prev_packet = tidq->prev_packet; | 
|  | u8 trace_chan_id = tidq->trace_chan_id; | 
|  | u64 magic; | 
|  | int ret; | 
|  |  | 
|  | switch (packet->sample_type) { | 
|  | case CS_ETM_RANGE: | 
|  | /* | 
|  | * Immediate branch instruction without neither link nor | 
|  | * return flag, it's normal branch instruction within | 
|  | * the function. | 
|  | */ | 
|  | if (packet->last_instr_type == OCSD_INSTR_BR && | 
|  | packet->last_instr_subtype == OCSD_S_INSTR_NONE) { | 
|  | packet->flags = PERF_IP_FLAG_BRANCH; | 
|  |  | 
|  | if (packet->last_instr_cond) | 
|  | packet->flags |= PERF_IP_FLAG_CONDITIONAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Immediate branch instruction with link (e.g. BL), this is | 
|  | * branch instruction for function call. | 
|  | */ | 
|  | if (packet->last_instr_type == OCSD_INSTR_BR && | 
|  | packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK) | 
|  | packet->flags = PERF_IP_FLAG_BRANCH | | 
|  | PERF_IP_FLAG_CALL; | 
|  |  | 
|  | /* | 
|  | * Indirect branch instruction with link (e.g. BLR), this is | 
|  | * branch instruction for function call. | 
|  | */ | 
|  | if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && | 
|  | packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK) | 
|  | packet->flags = PERF_IP_FLAG_BRANCH | | 
|  | PERF_IP_FLAG_CALL; | 
|  |  | 
|  | /* | 
|  | * Indirect branch instruction with subtype of | 
|  | * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for | 
|  | * function return for A32/T32. | 
|  | */ | 
|  | if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && | 
|  | packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET) | 
|  | packet->flags = PERF_IP_FLAG_BRANCH | | 
|  | PERF_IP_FLAG_RETURN; | 
|  |  | 
|  | /* | 
|  | * Indirect branch instruction without link (e.g. BR), usually | 
|  | * this is used for function return, especially for functions | 
|  | * within dynamic link lib. | 
|  | */ | 
|  | if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && | 
|  | packet->last_instr_subtype == OCSD_S_INSTR_NONE) | 
|  | packet->flags = PERF_IP_FLAG_BRANCH | | 
|  | PERF_IP_FLAG_RETURN; | 
|  |  | 
|  | /* Return instruction for function return. */ | 
|  | if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && | 
|  | packet->last_instr_subtype == OCSD_S_INSTR_V8_RET) | 
|  | packet->flags = PERF_IP_FLAG_BRANCH | | 
|  | PERF_IP_FLAG_RETURN; | 
|  |  | 
|  | /* | 
|  | * Decoder might insert a discontinuity in the middle of | 
|  | * instruction packets, fixup prev_packet with flag | 
|  | * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace. | 
|  | */ | 
|  | if (prev_packet->sample_type == CS_ETM_DISCONTINUITY) | 
|  | prev_packet->flags |= PERF_IP_FLAG_BRANCH | | 
|  | PERF_IP_FLAG_TRACE_BEGIN; | 
|  |  | 
|  | /* | 
|  | * If the previous packet is an exception return packet | 
|  | * and the return address just follows SVC instruction, | 
|  | * it needs to calibrate the previous packet sample flags | 
|  | * as PERF_IP_FLAG_SYSCALLRET. | 
|  | */ | 
|  | if (prev_packet->flags == (PERF_IP_FLAG_BRANCH | | 
|  | PERF_IP_FLAG_RETURN | | 
|  | PERF_IP_FLAG_INTERRUPT) && | 
|  | cs_etm__is_svc_instr(etmq, trace_chan_id, | 
|  | packet, packet->start_addr)) | 
|  | prev_packet->flags = PERF_IP_FLAG_BRANCH | | 
|  | PERF_IP_FLAG_RETURN | | 
|  | PERF_IP_FLAG_SYSCALLRET; | 
|  | break; | 
|  | case CS_ETM_DISCONTINUITY: | 
|  | /* | 
|  | * The trace is discontinuous, if the previous packet is | 
|  | * instruction packet, set flag PERF_IP_FLAG_TRACE_END | 
|  | * for previous packet. | 
|  | */ | 
|  | if (prev_packet->sample_type == CS_ETM_RANGE) | 
|  | prev_packet->flags |= PERF_IP_FLAG_BRANCH | | 
|  | PERF_IP_FLAG_TRACE_END; | 
|  | break; | 
|  | case CS_ETM_EXCEPTION: | 
|  | ret = cs_etm__get_magic(packet->trace_chan_id, &magic); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* The exception is for system call. */ | 
|  | if (cs_etm__is_syscall(etmq, tidq, magic)) | 
|  | packet->flags = PERF_IP_FLAG_BRANCH | | 
|  | PERF_IP_FLAG_CALL | | 
|  | PERF_IP_FLAG_SYSCALLRET; | 
|  | /* | 
|  | * The exceptions are triggered by external signals from bus, | 
|  | * interrupt controller, debug module, PE reset or halt. | 
|  | */ | 
|  | else if (cs_etm__is_async_exception(tidq, magic)) | 
|  | packet->flags = PERF_IP_FLAG_BRANCH | | 
|  | PERF_IP_FLAG_CALL | | 
|  | PERF_IP_FLAG_ASYNC | | 
|  | PERF_IP_FLAG_INTERRUPT; | 
|  | /* | 
|  | * Otherwise, exception is caused by trap, instruction & | 
|  | * data fault, or alignment errors. | 
|  | */ | 
|  | else if (cs_etm__is_sync_exception(etmq, tidq, magic)) | 
|  | packet->flags = PERF_IP_FLAG_BRANCH | | 
|  | PERF_IP_FLAG_CALL | | 
|  | PERF_IP_FLAG_INTERRUPT; | 
|  |  | 
|  | /* | 
|  | * When the exception packet is inserted, since exception | 
|  | * packet is not used standalone for generating samples | 
|  | * and it's affiliation to the previous instruction range | 
|  | * packet; so set previous range packet flags to tell perf | 
|  | * it is an exception taken branch. | 
|  | */ | 
|  | if (prev_packet->sample_type == CS_ETM_RANGE) | 
|  | prev_packet->flags = packet->flags; | 
|  | break; | 
|  | case CS_ETM_EXCEPTION_RET: | 
|  | /* | 
|  | * When the exception return packet is inserted, since | 
|  | * exception return packet is not used standalone for | 
|  | * generating samples and it's affiliation to the previous | 
|  | * instruction range packet; so set previous range packet | 
|  | * flags to tell perf it is an exception return branch. | 
|  | * | 
|  | * The exception return can be for either system call or | 
|  | * other exception types; unfortunately the packet doesn't | 
|  | * contain exception type related info so we cannot decide | 
|  | * the exception type purely based on exception return packet. | 
|  | * If we record the exception number from exception packet and | 
|  | * reuse it for exception return packet, this is not reliable | 
|  | * due the trace can be discontinuity or the interrupt can | 
|  | * be nested, thus the recorded exception number cannot be | 
|  | * used for exception return packet for these two cases. | 
|  | * | 
|  | * For exception return packet, we only need to distinguish the | 
|  | * packet is for system call or for other types.  Thus the | 
|  | * decision can be deferred when receive the next packet which | 
|  | * contains the return address, based on the return address we | 
|  | * can read out the previous instruction and check if it's a | 
|  | * system call instruction and then calibrate the sample flag | 
|  | * as needed. | 
|  | */ | 
|  | if (prev_packet->sample_type == CS_ETM_RANGE) | 
|  | prev_packet->flags = PERF_IP_FLAG_BRANCH | | 
|  | PERF_IP_FLAG_RETURN | | 
|  | PERF_IP_FLAG_INTERRUPT; | 
|  | break; | 
|  | case CS_ETM_EMPTY: | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cs_etm__decode_data_block(struct cs_etm_queue *etmq) | 
|  | { | 
|  | int ret = 0; | 
|  | size_t processed = 0; | 
|  |  | 
|  | /* | 
|  | * Packets are decoded and added to the decoder's packet queue | 
|  | * until the decoder packet processing callback has requested that | 
|  | * processing stops or there is nothing left in the buffer.  Normal | 
|  | * operations that stop processing are a timestamp packet or a full | 
|  | * decoder buffer queue. | 
|  | */ | 
|  | ret = cs_etm_decoder__process_data_block(etmq->decoder, | 
|  | etmq->offset, | 
|  | &etmq->buf[etmq->buf_used], | 
|  | etmq->buf_len, | 
|  | &processed); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | etmq->offset += processed; | 
|  | etmq->buf_used += processed; | 
|  | etmq->buf_len -= processed; | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq, | 
|  | struct cs_etm_traceid_queue *tidq) | 
|  | { | 
|  | int ret; | 
|  | struct cs_etm_packet_queue *packet_queue; | 
|  |  | 
|  | packet_queue = &tidq->packet_queue; | 
|  |  | 
|  | /* Process each packet in this chunk */ | 
|  | while (1) { | 
|  | ret = cs_etm_decoder__get_packet(packet_queue, | 
|  | tidq->packet); | 
|  | if (ret <= 0) | 
|  | /* | 
|  | * Stop processing this chunk on | 
|  | * end of data or error | 
|  | */ | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Since packet addresses are swapped in packet | 
|  | * handling within below switch() statements, | 
|  | * thus setting sample flags must be called | 
|  | * prior to switch() statement to use address | 
|  | * information before packets swapping. | 
|  | */ | 
|  | ret = cs_etm__set_sample_flags(etmq, tidq); | 
|  | if (ret < 0) | 
|  | break; | 
|  |  | 
|  | switch (tidq->packet->sample_type) { | 
|  | case CS_ETM_RANGE: | 
|  | /* | 
|  | * If the packet contains an instruction | 
|  | * range, generate instruction sequence | 
|  | * events. | 
|  | */ | 
|  | cs_etm__sample(etmq, tidq); | 
|  | break; | 
|  | case CS_ETM_EXCEPTION: | 
|  | case CS_ETM_EXCEPTION_RET: | 
|  | /* | 
|  | * If the exception packet is coming, | 
|  | * make sure the previous instruction | 
|  | * range packet to be handled properly. | 
|  | */ | 
|  | cs_etm__exception(tidq); | 
|  | break; | 
|  | case CS_ETM_DISCONTINUITY: | 
|  | /* | 
|  | * Discontinuity in trace, flush | 
|  | * previous branch stack | 
|  | */ | 
|  | cs_etm__flush(etmq, tidq); | 
|  | break; | 
|  | case CS_ETM_EMPTY: | 
|  | /* | 
|  | * Should not receive empty packet, | 
|  | * report error. | 
|  | */ | 
|  | pr_err("CS ETM Trace: empty packet\n"); | 
|  | return -EINVAL; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq) | 
|  | { | 
|  | int idx; | 
|  | struct int_node *inode; | 
|  | struct cs_etm_traceid_queue *tidq; | 
|  | struct intlist *traceid_queues_list = etmq->traceid_queues_list; | 
|  |  | 
|  | intlist__for_each_entry(inode, traceid_queues_list) { | 
|  | idx = (int)(intptr_t)inode->priv; | 
|  | tidq = etmq->traceid_queues[idx]; | 
|  |  | 
|  | /* Ignore return value */ | 
|  | cs_etm__process_traceid_queue(etmq, tidq); | 
|  |  | 
|  | /* | 
|  | * Generate an instruction sample with the remaining | 
|  | * branchstack entries. | 
|  | */ | 
|  | cs_etm__flush(etmq, tidq); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int cs_etm__run_decoder(struct cs_etm_queue *etmq) | 
|  | { | 
|  | int err = 0; | 
|  | struct cs_etm_traceid_queue *tidq; | 
|  |  | 
|  | tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID); | 
|  | if (!tidq) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Go through each buffer in the queue and decode them one by one */ | 
|  | while (1) { | 
|  | err = cs_etm__get_data_block(etmq); | 
|  | if (err <= 0) | 
|  | return err; | 
|  |  | 
|  | /* Run trace decoder until buffer consumed or end of trace */ | 
|  | do { | 
|  | err = cs_etm__decode_data_block(etmq); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* | 
|  | * Process each packet in this chunk, nothing to do if | 
|  | * an error occurs other than hoping the next one will | 
|  | * be better. | 
|  | */ | 
|  | err = cs_etm__process_traceid_queue(etmq, tidq); | 
|  |  | 
|  | } while (etmq->buf_len); | 
|  |  | 
|  | if (err == 0) | 
|  | /* Flush any remaining branch stack entries */ | 
|  | err = cs_etm__end_block(etmq, tidq); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, | 
|  | pid_t tid) | 
|  | { | 
|  | unsigned int i; | 
|  | struct auxtrace_queues *queues = &etm->queues; | 
|  |  | 
|  | for (i = 0; i < queues->nr_queues; i++) { | 
|  | struct auxtrace_queue *queue = &etm->queues.queue_array[i]; | 
|  | struct cs_etm_queue *etmq = queue->priv; | 
|  | struct cs_etm_traceid_queue *tidq; | 
|  |  | 
|  | if (!etmq) | 
|  | continue; | 
|  |  | 
|  | tidq = cs_etm__etmq_get_traceid_queue(etmq, | 
|  | CS_ETM_PER_THREAD_TRACEID); | 
|  |  | 
|  | if (!tidq) | 
|  | continue; | 
|  |  | 
|  | if ((tid == -1) || (tidq->tid == tid)) { | 
|  | cs_etm__set_pid_tid_cpu(etm, tidq); | 
|  | cs_etm__run_decoder(etmq); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cs_etm__process_queues(struct cs_etm_auxtrace *etm) | 
|  | { | 
|  | int ret = 0; | 
|  | unsigned int cs_queue_nr, queue_nr, i; | 
|  | u8 trace_chan_id; | 
|  | u64 cs_timestamp; | 
|  | struct auxtrace_queue *queue; | 
|  | struct cs_etm_queue *etmq; | 
|  | struct cs_etm_traceid_queue *tidq; | 
|  |  | 
|  | /* | 
|  | * Pre-populate the heap with one entry from each queue so that we can | 
|  | * start processing in time order across all queues. | 
|  | */ | 
|  | for (i = 0; i < etm->queues.nr_queues; i++) { | 
|  | etmq = etm->queues.queue_array[i].priv; | 
|  | if (!etmq) | 
|  | continue; | 
|  |  | 
|  | ret = cs_etm__queue_first_cs_timestamp(etm, etmq, i); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | if (!etm->heap.heap_cnt) | 
|  | goto out; | 
|  |  | 
|  | /* Take the entry at the top of the min heap */ | 
|  | cs_queue_nr = etm->heap.heap_array[0].queue_nr; | 
|  | queue_nr = TO_QUEUE_NR(cs_queue_nr); | 
|  | trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr); | 
|  | queue = &etm->queues.queue_array[queue_nr]; | 
|  | etmq = queue->priv; | 
|  |  | 
|  | /* | 
|  | * Remove the top entry from the heap since we are about | 
|  | * to process it. | 
|  | */ | 
|  | auxtrace_heap__pop(&etm->heap); | 
|  |  | 
|  | tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); | 
|  | if (!tidq) { | 
|  | /* | 
|  | * No traceID queue has been allocated for this traceID, | 
|  | * which means something somewhere went very wrong.  No | 
|  | * other choice than simply exit. | 
|  | */ | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Packets associated with this timestamp are already in | 
|  | * the etmq's traceID queue, so process them. | 
|  | */ | 
|  | ret = cs_etm__process_traceid_queue(etmq, tidq); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Packets for this timestamp have been processed, time to | 
|  | * move on to the next timestamp, fetching a new auxtrace_buffer | 
|  | * if need be. | 
|  | */ | 
|  | refetch: | 
|  | ret = cs_etm__get_data_block(etmq); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * No more auxtrace_buffers to process in this etmq, simply | 
|  | * move on to another entry in the auxtrace_heap. | 
|  | */ | 
|  | if (!ret) | 
|  | continue; | 
|  |  | 
|  | ret = cs_etm__decode_data_block(etmq); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id); | 
|  |  | 
|  | if (!cs_timestamp) { | 
|  | /* | 
|  | * Function cs_etm__decode_data_block() returns when | 
|  | * there is no more traces to decode in the current | 
|  | * auxtrace_buffer OR when a timestamp has been | 
|  | * encountered on any of the traceID queues.  Since we | 
|  | * did not get a timestamp, there is no more traces to | 
|  | * process in this auxtrace_buffer.  As such empty and | 
|  | * flush all traceID queues. | 
|  | */ | 
|  | cs_etm__clear_all_traceid_queues(etmq); | 
|  |  | 
|  | /* Fetch another auxtrace_buffer for this etmq */ | 
|  | goto refetch; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add to the min heap the timestamp for packets that have | 
|  | * just been decoded.  They will be processed and synthesized | 
|  | * during the next call to cs_etm__process_traceid_queue() for | 
|  | * this queue/traceID. | 
|  | */ | 
|  | cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id); | 
|  | ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp); | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm, | 
|  | union perf_event *event) | 
|  | { | 
|  | struct thread *th; | 
|  |  | 
|  | if (etm->timeless_decoding) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Add the tid/pid to the log so that we can get a match when | 
|  | * we get a contextID from the decoder. | 
|  | */ | 
|  | th = machine__findnew_thread(etm->machine, | 
|  | event->itrace_start.pid, | 
|  | event->itrace_start.tid); | 
|  | if (!th) | 
|  | return -ENOMEM; | 
|  |  | 
|  | thread__put(th); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm, | 
|  | union perf_event *event) | 
|  | { | 
|  | struct thread *th; | 
|  | bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT; | 
|  |  | 
|  | /* | 
|  | * Context switch in per-thread mode are irrelevant since perf | 
|  | * will start/stop tracing as the process is scheduled. | 
|  | */ | 
|  | if (etm->timeless_decoding) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * SWITCH_IN events carry the next process to be switched out while | 
|  | * SWITCH_OUT events carry the process to be switched in.  As such | 
|  | * we don't care about IN events. | 
|  | */ | 
|  | if (!out) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Add the tid/pid to the log so that we can get a match when | 
|  | * we get a contextID from the decoder. | 
|  | */ | 
|  | th = machine__findnew_thread(etm->machine, | 
|  | event->context_switch.next_prev_pid, | 
|  | event->context_switch.next_prev_tid); | 
|  | if (!th) | 
|  | return -ENOMEM; | 
|  |  | 
|  | thread__put(th); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cs_etm__process_event(struct perf_session *session, | 
|  | union perf_event *event, | 
|  | struct perf_sample *sample, | 
|  | struct perf_tool *tool) | 
|  | { | 
|  | u64 sample_kernel_timestamp; | 
|  | struct cs_etm_auxtrace *etm = container_of(session->auxtrace, | 
|  | struct cs_etm_auxtrace, | 
|  | auxtrace); | 
|  |  | 
|  | if (dump_trace) | 
|  | return 0; | 
|  |  | 
|  | if (!tool->ordered_events) { | 
|  | pr_err("CoreSight ETM Trace requires ordered events\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (sample->time && (sample->time != (u64) -1)) | 
|  | sample_kernel_timestamp = sample->time; | 
|  | else | 
|  | sample_kernel_timestamp = 0; | 
|  |  | 
|  | /* | 
|  | * Don't wait for cs_etm__flush_events() in per-thread/timeless mode to start the decode. We | 
|  | * need the tid of the PERF_RECORD_EXIT event to assign to the synthesised samples because | 
|  | * ETM_OPT_CTXTID is not enabled. | 
|  | */ | 
|  | if (etm->timeless_decoding && | 
|  | event->header.type == PERF_RECORD_EXIT) | 
|  | return cs_etm__process_timeless_queues(etm, | 
|  | event->fork.tid); | 
|  |  | 
|  | if (event->header.type == PERF_RECORD_ITRACE_START) | 
|  | return cs_etm__process_itrace_start(etm, event); | 
|  | else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE) | 
|  | return cs_etm__process_switch_cpu_wide(etm, event); | 
|  |  | 
|  | if (!etm->timeless_decoding && event->header.type == PERF_RECORD_AUX) { | 
|  | /* | 
|  | * Record the latest kernel timestamp available in the header | 
|  | * for samples so that synthesised samples occur from this point | 
|  | * onwards. | 
|  | */ | 
|  | etm->latest_kernel_timestamp = sample_kernel_timestamp; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void dump_queued_data(struct cs_etm_auxtrace *etm, | 
|  | struct perf_record_auxtrace *event) | 
|  | { | 
|  | struct auxtrace_buffer *buf; | 
|  | unsigned int i; | 
|  | /* | 
|  | * Find all buffers with same reference in the queues and dump them. | 
|  | * This is because the queues can contain multiple entries of the same | 
|  | * buffer that were split on aux records. | 
|  | */ | 
|  | for (i = 0; i < etm->queues.nr_queues; ++i) | 
|  | list_for_each_entry(buf, &etm->queues.queue_array[i].head, list) | 
|  | if (buf->reference == event->reference) | 
|  | cs_etm__dump_event(etm->queues.queue_array[i].priv, buf); | 
|  | } | 
|  |  | 
|  | static int cs_etm__process_auxtrace_event(struct perf_session *session, | 
|  | union perf_event *event, | 
|  | struct perf_tool *tool __maybe_unused) | 
|  | { | 
|  | struct cs_etm_auxtrace *etm = container_of(session->auxtrace, | 
|  | struct cs_etm_auxtrace, | 
|  | auxtrace); | 
|  | if (!etm->data_queued) { | 
|  | struct auxtrace_buffer *buffer; | 
|  | off_t  data_offset; | 
|  | int fd = perf_data__fd(session->data); | 
|  | bool is_pipe = perf_data__is_pipe(session->data); | 
|  | int err; | 
|  | int idx = event->auxtrace.idx; | 
|  |  | 
|  | if (is_pipe) | 
|  | data_offset = 0; | 
|  | else { | 
|  | data_offset = lseek(fd, 0, SEEK_CUR); | 
|  | if (data_offset == -1) | 
|  | return -errno; | 
|  | } | 
|  |  | 
|  | err = auxtrace_queues__add_event(&etm->queues, session, | 
|  | event, data_offset, &buffer); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* | 
|  | * Knowing if the trace is formatted or not requires a lookup of | 
|  | * the aux record so only works in non-piped mode where data is | 
|  | * queued in cs_etm__queue_aux_records(). Always assume | 
|  | * formatted in piped mode (true). | 
|  | */ | 
|  | err = cs_etm__setup_queue(etm, &etm->queues.queue_array[idx], | 
|  | idx, true); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (dump_trace) | 
|  | if (auxtrace_buffer__get_data(buffer, fd)) { | 
|  | cs_etm__dump_event(etm->queues.queue_array[idx].priv, buffer); | 
|  | auxtrace_buffer__put_data(buffer); | 
|  | } | 
|  | } else if (dump_trace) | 
|  | dump_queued_data(etm, &event->auxtrace); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cs_etm__setup_timeless_decoding(struct cs_etm_auxtrace *etm) | 
|  | { | 
|  | struct evsel *evsel; | 
|  | struct evlist *evlist = etm->session->evlist; | 
|  |  | 
|  | /* Override timeless mode with user input from --itrace=Z */ | 
|  | if (etm->synth_opts.timeless_decoding) { | 
|  | etm->timeless_decoding = true; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the cs_etm evsel and look at what its timestamp setting was | 
|  | */ | 
|  | evlist__for_each_entry(evlist, evsel) | 
|  | if (cs_etm__evsel_is_auxtrace(etm->session, evsel)) { | 
|  | etm->timeless_decoding = | 
|  | !(evsel->core.attr.config & BIT(ETM_OPT_TS)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pr_err("CS ETM: Couldn't find ETM evsel\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static const char * const cs_etm_global_header_fmts[] = { | 
|  | [CS_HEADER_VERSION]	= "	Header version		       %llx\n", | 
|  | [CS_PMU_TYPE_CPUS]	= "	PMU type/num cpus	       %llx\n", | 
|  | [CS_ETM_SNAPSHOT]	= "	Snapshot		       %llx\n", | 
|  | }; | 
|  |  | 
|  | static const char * const cs_etm_priv_fmts[] = { | 
|  | [CS_ETM_MAGIC]		= "	Magic number		       %llx\n", | 
|  | [CS_ETM_CPU]		= "	CPU			       %lld\n", | 
|  | [CS_ETM_NR_TRC_PARAMS]	= "	NR_TRC_PARAMS		       %llx\n", | 
|  | [CS_ETM_ETMCR]		= "	ETMCR			       %llx\n", | 
|  | [CS_ETM_ETMTRACEIDR]	= "	ETMTRACEIDR		       %llx\n", | 
|  | [CS_ETM_ETMCCER]	= "	ETMCCER			       %llx\n", | 
|  | [CS_ETM_ETMIDR]		= "	ETMIDR			       %llx\n", | 
|  | }; | 
|  |  | 
|  | static const char * const cs_etmv4_priv_fmts[] = { | 
|  | [CS_ETM_MAGIC]		= "	Magic number		       %llx\n", | 
|  | [CS_ETM_CPU]		= "	CPU			       %lld\n", | 
|  | [CS_ETM_NR_TRC_PARAMS]	= "	NR_TRC_PARAMS		       %llx\n", | 
|  | [CS_ETMV4_TRCCONFIGR]	= "	TRCCONFIGR		       %llx\n", | 
|  | [CS_ETMV4_TRCTRACEIDR]	= "	TRCTRACEIDR		       %llx\n", | 
|  | [CS_ETMV4_TRCIDR0]	= "	TRCIDR0			       %llx\n", | 
|  | [CS_ETMV4_TRCIDR1]	= "	TRCIDR1			       %llx\n", | 
|  | [CS_ETMV4_TRCIDR2]	= "	TRCIDR2			       %llx\n", | 
|  | [CS_ETMV4_TRCIDR8]	= "	TRCIDR8			       %llx\n", | 
|  | [CS_ETMV4_TRCAUTHSTATUS] = "	TRCAUTHSTATUS		       %llx\n", | 
|  | [CS_ETE_TRCDEVARCH]	= "	TRCDEVARCH                     %llx\n" | 
|  | }; | 
|  |  | 
|  | static const char * const param_unk_fmt = | 
|  | "	Unknown parameter [%d]	       %llx\n"; | 
|  | static const char * const magic_unk_fmt = | 
|  | "	Magic number Unknown	       %llx\n"; | 
|  |  | 
|  | static int cs_etm__print_cpu_metadata_v0(__u64 *val, int *offset) | 
|  | { | 
|  | int i = *offset, j, nr_params = 0, fmt_offset; | 
|  | __u64 magic; | 
|  |  | 
|  | /* check magic value */ | 
|  | magic = val[i + CS_ETM_MAGIC]; | 
|  | if ((magic != __perf_cs_etmv3_magic) && | 
|  | (magic != __perf_cs_etmv4_magic)) { | 
|  | /* failure - note bad magic value */ | 
|  | fprintf(stdout, magic_unk_fmt, magic); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* print common header block */ | 
|  | fprintf(stdout, cs_etm_priv_fmts[CS_ETM_MAGIC], val[i++]); | 
|  | fprintf(stdout, cs_etm_priv_fmts[CS_ETM_CPU], val[i++]); | 
|  |  | 
|  | if (magic == __perf_cs_etmv3_magic) { | 
|  | nr_params = CS_ETM_NR_TRC_PARAMS_V0; | 
|  | fmt_offset = CS_ETM_ETMCR; | 
|  | /* after common block, offset format index past NR_PARAMS */ | 
|  | for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++) | 
|  | fprintf(stdout, cs_etm_priv_fmts[j], val[i]); | 
|  | } else if (magic == __perf_cs_etmv4_magic) { | 
|  | nr_params = CS_ETMV4_NR_TRC_PARAMS_V0; | 
|  | fmt_offset = CS_ETMV4_TRCCONFIGR; | 
|  | /* after common block, offset format index past NR_PARAMS */ | 
|  | for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++) | 
|  | fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]); | 
|  | } | 
|  | *offset = i; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cs_etm__print_cpu_metadata_v1(__u64 *val, int *offset) | 
|  | { | 
|  | int i = *offset, j, total_params = 0; | 
|  | __u64 magic; | 
|  |  | 
|  | magic = val[i + CS_ETM_MAGIC]; | 
|  | /* total params to print is NR_PARAMS + common block size for v1 */ | 
|  | total_params = val[i + CS_ETM_NR_TRC_PARAMS] + CS_ETM_COMMON_BLK_MAX_V1; | 
|  |  | 
|  | if (magic == __perf_cs_etmv3_magic) { | 
|  | for (j = 0; j < total_params; j++, i++) { | 
|  | /* if newer record - could be excess params */ | 
|  | if (j >= CS_ETM_PRIV_MAX) | 
|  | fprintf(stdout, param_unk_fmt, j, val[i]); | 
|  | else | 
|  | fprintf(stdout, cs_etm_priv_fmts[j], val[i]); | 
|  | } | 
|  | } else if (magic == __perf_cs_etmv4_magic || magic == __perf_cs_ete_magic) { | 
|  | /* | 
|  | * ETE and ETMv4 can be printed in the same block because the number of parameters | 
|  | * is saved and they share the list of parameter names. ETE is also only supported | 
|  | * in V1 files. | 
|  | */ | 
|  | for (j = 0; j < total_params; j++, i++) { | 
|  | /* if newer record - could be excess params */ | 
|  | if (j >= CS_ETE_PRIV_MAX) | 
|  | fprintf(stdout, param_unk_fmt, j, val[i]); | 
|  | else | 
|  | fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]); | 
|  | } | 
|  | } else { | 
|  | /* failure - note bad magic value and error out */ | 
|  | fprintf(stdout, magic_unk_fmt, magic); | 
|  | return -EINVAL; | 
|  | } | 
|  | *offset = i; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cs_etm__print_auxtrace_info(__u64 *val, int num) | 
|  | { | 
|  | int i, cpu = 0, version, err; | 
|  |  | 
|  | /* bail out early on bad header version */ | 
|  | version = val[0]; | 
|  | if (version > CS_HEADER_CURRENT_VERSION) { | 
|  | /* failure.. return */ | 
|  | fprintf(stdout, "	Unknown Header Version = %x, ", version); | 
|  | fprintf(stdout, "Version supported <= %x\n", CS_HEADER_CURRENT_VERSION); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < CS_HEADER_VERSION_MAX; i++) | 
|  | fprintf(stdout, cs_etm_global_header_fmts[i], val[i]); | 
|  |  | 
|  | for (i = CS_HEADER_VERSION_MAX; cpu < num; cpu++) { | 
|  | if (version == 0) | 
|  | err = cs_etm__print_cpu_metadata_v0(val, &i); | 
|  | else if (version == 1) | 
|  | err = cs_etm__print_cpu_metadata_v1(val, &i); | 
|  | if (err) | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read a single cpu parameter block from the auxtrace_info priv block. | 
|  | * | 
|  | * For version 1 there is a per cpu nr_params entry. If we are handling | 
|  | * version 1 file, then there may be less, the same, or more params | 
|  | * indicated by this value than the compile time number we understand. | 
|  | * | 
|  | * For a version 0 info block, there are a fixed number, and we need to | 
|  | * fill out the nr_param value in the metadata we create. | 
|  | */ | 
|  | static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset, | 
|  | int out_blk_size, int nr_params_v0) | 
|  | { | 
|  | u64 *metadata = NULL; | 
|  | int hdr_version; | 
|  | int nr_in_params, nr_out_params, nr_cmn_params; | 
|  | int i, k; | 
|  |  | 
|  | metadata = zalloc(sizeof(*metadata) * out_blk_size); | 
|  | if (!metadata) | 
|  | return NULL; | 
|  |  | 
|  | /* read block current index & version */ | 
|  | i = *buff_in_offset; | 
|  | hdr_version = buff_in[CS_HEADER_VERSION]; | 
|  |  | 
|  | if (!hdr_version) { | 
|  | /* read version 0 info block into a version 1 metadata block  */ | 
|  | nr_in_params = nr_params_v0; | 
|  | metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC]; | 
|  | metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU]; | 
|  | metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params; | 
|  | /* remaining block params at offset +1 from source */ | 
|  | for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++) | 
|  | metadata[k + 1] = buff_in[i + k]; | 
|  | /* version 0 has 2 common params */ | 
|  | nr_cmn_params = 2; | 
|  | } else { | 
|  | /* read version 1 info block - input and output nr_params may differ */ | 
|  | /* version 1 has 3 common params */ | 
|  | nr_cmn_params = 3; | 
|  | nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS]; | 
|  |  | 
|  | /* if input has more params than output - skip excess */ | 
|  | nr_out_params = nr_in_params + nr_cmn_params; | 
|  | if (nr_out_params > out_blk_size) | 
|  | nr_out_params = out_blk_size; | 
|  |  | 
|  | for (k = CS_ETM_MAGIC; k < nr_out_params; k++) | 
|  | metadata[k] = buff_in[i + k]; | 
|  |  | 
|  | /* record the actual nr params we copied */ | 
|  | metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params; | 
|  | } | 
|  |  | 
|  | /* adjust in offset by number of in params used */ | 
|  | i += nr_in_params + nr_cmn_params; | 
|  | *buff_in_offset = i; | 
|  | return metadata; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Puts a fragment of an auxtrace buffer into the auxtrace queues based | 
|  | * on the bounds of aux_event, if it matches with the buffer that's at | 
|  | * file_offset. | 
|  | * | 
|  | * Normally, whole auxtrace buffers would be added to the queue. But we | 
|  | * want to reset the decoder for every PERF_RECORD_AUX event, and the decoder | 
|  | * is reset across each buffer, so splitting the buffers up in advance has | 
|  | * the same effect. | 
|  | */ | 
|  | static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz, | 
|  | struct perf_record_aux *aux_event, struct perf_sample *sample) | 
|  | { | 
|  | int err; | 
|  | char buf[PERF_SAMPLE_MAX_SIZE]; | 
|  | union perf_event *auxtrace_event_union; | 
|  | struct perf_record_auxtrace *auxtrace_event; | 
|  | union perf_event auxtrace_fragment; | 
|  | __u64 aux_offset, aux_size; | 
|  | __u32 idx; | 
|  | bool formatted; | 
|  |  | 
|  | struct cs_etm_auxtrace *etm = container_of(session->auxtrace, | 
|  | struct cs_etm_auxtrace, | 
|  | auxtrace); | 
|  |  | 
|  | /* | 
|  | * There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got | 
|  | * from looping through the auxtrace index. | 
|  | */ | 
|  | err = perf_session__peek_event(session, file_offset, buf, | 
|  | PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL); | 
|  | if (err) | 
|  | return err; | 
|  | auxtrace_event = &auxtrace_event_union->auxtrace; | 
|  | if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) || | 
|  | auxtrace_event->header.size != sz) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In per-thread mode, CPU is set to -1, but TID will be set instead. See | 
|  | * auxtrace_mmap_params__set_idx(). Return 'not found' if neither CPU nor TID match. | 
|  | */ | 
|  | if ((auxtrace_event->cpu == (__u32) -1 && auxtrace_event->tid != sample->tid) || | 
|  | auxtrace_event->cpu != sample->cpu) | 
|  | return 1; | 
|  |  | 
|  | if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) { | 
|  | /* | 
|  | * Clamp size in snapshot mode. The buffer size is clamped in | 
|  | * __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect | 
|  | * the buffer size. | 
|  | */ | 
|  | aux_size = min(aux_event->aux_size, auxtrace_event->size); | 
|  |  | 
|  | /* | 
|  | * In this mode, the head also points to the end of the buffer so aux_offset | 
|  | * needs to have the size subtracted so it points to the beginning as in normal mode | 
|  | */ | 
|  | aux_offset = aux_event->aux_offset - aux_size; | 
|  | } else { | 
|  | aux_size = aux_event->aux_size; | 
|  | aux_offset = aux_event->aux_offset; | 
|  | } | 
|  |  | 
|  | if (aux_offset >= auxtrace_event->offset && | 
|  | aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) { | 
|  | /* | 
|  | * If this AUX event was inside this buffer somewhere, create a new auxtrace event | 
|  | * based on the sizes of the aux event, and queue that fragment. | 
|  | */ | 
|  | auxtrace_fragment.auxtrace = *auxtrace_event; | 
|  | auxtrace_fragment.auxtrace.size = aux_size; | 
|  | auxtrace_fragment.auxtrace.offset = aux_offset; | 
|  | file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size; | 
|  |  | 
|  | pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64 | 
|  | " tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu); | 
|  | err = auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment, | 
|  | file_offset, NULL); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | idx = auxtrace_event->idx; | 
|  | formatted = !(aux_event->flags & PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW); | 
|  | return cs_etm__setup_queue(etm, &etm->queues.queue_array[idx], | 
|  | idx, formatted); | 
|  | } | 
|  |  | 
|  | /* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event, | 
|  | u64 offset __maybe_unused, void *data __maybe_unused) | 
|  | { | 
|  | struct perf_sample sample; | 
|  | int ret; | 
|  | struct auxtrace_index_entry *ent; | 
|  | struct auxtrace_index *auxtrace_index; | 
|  | struct evsel *evsel; | 
|  | size_t i; | 
|  |  | 
|  | /* Don't care about any other events, we're only queuing buffers for AUX events */ | 
|  | if (event->header.type != PERF_RECORD_AUX) | 
|  | return 0; | 
|  |  | 
|  | if (event->header.size < sizeof(struct perf_record_aux)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */ | 
|  | if (!event->aux.aux_size) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Parse the sample, we need the sample_id_all data that comes after the event so that the | 
|  | * CPU or PID can be matched to an AUXTRACE buffer's CPU or PID. | 
|  | */ | 
|  | evsel = evlist__event2evsel(session->evlist, event); | 
|  | if (!evsel) | 
|  | return -EINVAL; | 
|  | ret = evsel__parse_sample(evsel, event, &sample); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Loop through the auxtrace index to find the buffer that matches up with this aux event. | 
|  | */ | 
|  | list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) { | 
|  | for (i = 0; i < auxtrace_index->nr; i++) { | 
|  | ent = &auxtrace_index->entries[i]; | 
|  | ret = cs_etm__queue_aux_fragment(session, ent->file_offset, | 
|  | ent->sz, &event->aux, &sample); | 
|  | /* | 
|  | * Stop search on error or successful values. Continue search on | 
|  | * 1 ('not found') | 
|  | */ | 
|  | if (ret != 1) | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but | 
|  | * don't exit with an error because it will still be possible to decode other aux records. | 
|  | */ | 
|  | pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64 | 
|  | " tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cs_etm__queue_aux_records(struct perf_session *session) | 
|  | { | 
|  | struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index, | 
|  | struct auxtrace_index, list); | 
|  | if (index && index->nr > 0) | 
|  | return perf_session__peek_events(session, session->header.data_offset, | 
|  | session->header.data_size, | 
|  | cs_etm__queue_aux_records_cb, NULL); | 
|  |  | 
|  | /* | 
|  | * We would get here if there are no entries in the index (either no auxtrace | 
|  | * buffers or no index at all). Fail silently as there is the possibility of | 
|  | * queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still | 
|  | * false. | 
|  | * | 
|  | * In that scenario, buffers will not be split by AUX records. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int cs_etm__process_auxtrace_info(union perf_event *event, | 
|  | struct perf_session *session) | 
|  | { | 
|  | struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info; | 
|  | struct cs_etm_auxtrace *etm = NULL; | 
|  | struct int_node *inode; | 
|  | unsigned int pmu_type; | 
|  | int event_header_size = sizeof(struct perf_event_header); | 
|  | int info_header_size; | 
|  | int total_size = auxtrace_info->header.size; | 
|  | int priv_size = 0; | 
|  | int num_cpu, trcidr_idx; | 
|  | int err = 0; | 
|  | int i, j; | 
|  | u64 *ptr, *hdr = NULL; | 
|  | u64 **metadata = NULL; | 
|  | u64 hdr_version; | 
|  |  | 
|  | /* | 
|  | * sizeof(auxtrace_info_event::type) + | 
|  | * sizeof(auxtrace_info_event::reserved) == 8 | 
|  | */ | 
|  | info_header_size = 8; | 
|  |  | 
|  | if (total_size < (event_header_size + info_header_size)) | 
|  | return -EINVAL; | 
|  |  | 
|  | priv_size = total_size - event_header_size - info_header_size; | 
|  |  | 
|  | /* First the global part */ | 
|  | ptr = (u64 *) auxtrace_info->priv; | 
|  |  | 
|  | /* Look for version of the header */ | 
|  | hdr_version = ptr[0]; | 
|  | if (hdr_version > CS_HEADER_CURRENT_VERSION) { | 
|  | /* print routine will print an error on bad version */ | 
|  | if (dump_trace) | 
|  | cs_etm__print_auxtrace_info(auxtrace_info->priv, 0); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_MAX); | 
|  | if (!hdr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Extract header information - see cs-etm.h for format */ | 
|  | for (i = 0; i < CS_HEADER_VERSION_MAX; i++) | 
|  | hdr[i] = ptr[i]; | 
|  | num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff; | 
|  | pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) & | 
|  | 0xffffffff); | 
|  |  | 
|  | /* | 
|  | * Create an RB tree for traceID-metadata tuple.  Since the conversion | 
|  | * has to be made for each packet that gets decoded, optimizing access | 
|  | * in anything other than a sequential array is worth doing. | 
|  | */ | 
|  | traceid_list = intlist__new(NULL); | 
|  | if (!traceid_list) { | 
|  | err = -ENOMEM; | 
|  | goto err_free_hdr; | 
|  | } | 
|  |  | 
|  | metadata = zalloc(sizeof(*metadata) * num_cpu); | 
|  | if (!metadata) { | 
|  | err = -ENOMEM; | 
|  | goto err_free_traceid_list; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The metadata is stored in the auxtrace_info section and encodes | 
|  | * the configuration of the ARM embedded trace macrocell which is | 
|  | * required by the trace decoder to properly decode the trace due | 
|  | * to its highly compressed nature. | 
|  | */ | 
|  | for (j = 0; j < num_cpu; j++) { | 
|  | if (ptr[i] == __perf_cs_etmv3_magic) { | 
|  | metadata[j] = | 
|  | cs_etm__create_meta_blk(ptr, &i, | 
|  | CS_ETM_PRIV_MAX, | 
|  | CS_ETM_NR_TRC_PARAMS_V0); | 
|  |  | 
|  | /* The traceID is our handle */ | 
|  | trcidr_idx = CS_ETM_ETMTRACEIDR; | 
|  |  | 
|  | } else if (ptr[i] == __perf_cs_etmv4_magic) { | 
|  | metadata[j] = | 
|  | cs_etm__create_meta_blk(ptr, &i, | 
|  | CS_ETMV4_PRIV_MAX, | 
|  | CS_ETMV4_NR_TRC_PARAMS_V0); | 
|  |  | 
|  | /* The traceID is our handle */ | 
|  | trcidr_idx = CS_ETMV4_TRCTRACEIDR; | 
|  | } else if (ptr[i] == __perf_cs_ete_magic) { | 
|  | metadata[j] = cs_etm__create_meta_blk(ptr, &i, CS_ETE_PRIV_MAX, -1); | 
|  |  | 
|  | /* ETE shares first part of metadata with ETMv4 */ | 
|  | trcidr_idx = CS_ETMV4_TRCTRACEIDR; | 
|  | } else { | 
|  | ui__error("CS ETM Trace: Unrecognised magic number %#"PRIx64". File could be from a newer version of perf.\n", | 
|  | ptr[i]); | 
|  | err = -EINVAL; | 
|  | goto err_free_metadata; | 
|  | } | 
|  |  | 
|  | if (!metadata[j]) { | 
|  | err = -ENOMEM; | 
|  | goto err_free_metadata; | 
|  | } | 
|  |  | 
|  | /* Get an RB node for this CPU */ | 
|  | inode = intlist__findnew(traceid_list, metadata[j][trcidr_idx]); | 
|  |  | 
|  | /* Something went wrong, no need to continue */ | 
|  | if (!inode) { | 
|  | err = -ENOMEM; | 
|  | goto err_free_metadata; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The node for that CPU should not be taken. | 
|  | * Back out if that's the case. | 
|  | */ | 
|  | if (inode->priv) { | 
|  | err = -EINVAL; | 
|  | goto err_free_metadata; | 
|  | } | 
|  | /* All good, associate the traceID with the metadata pointer */ | 
|  | inode->priv = metadata[j]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and | 
|  | * CS_ETMV4_PRIV_MAX mark how many double words are in the | 
|  | * global metadata, and each cpu's metadata respectively. | 
|  | * The following tests if the correct number of double words was | 
|  | * present in the auxtrace info section. | 
|  | */ | 
|  | if (i * 8 != priv_size) { | 
|  | err = -EINVAL; | 
|  | goto err_free_metadata; | 
|  | } | 
|  |  | 
|  | etm = zalloc(sizeof(*etm)); | 
|  |  | 
|  | if (!etm) { | 
|  | err = -ENOMEM; | 
|  | goto err_free_metadata; | 
|  | } | 
|  |  | 
|  | err = auxtrace_queues__init(&etm->queues); | 
|  | if (err) | 
|  | goto err_free_etm; | 
|  |  | 
|  | if (session->itrace_synth_opts->set) { | 
|  | etm->synth_opts = *session->itrace_synth_opts; | 
|  | } else { | 
|  | itrace_synth_opts__set_default(&etm->synth_opts, | 
|  | session->itrace_synth_opts->default_no_sample); | 
|  | etm->synth_opts.callchain = false; | 
|  | } | 
|  |  | 
|  | etm->session = session; | 
|  | etm->machine = &session->machines.host; | 
|  |  | 
|  | etm->num_cpu = num_cpu; | 
|  | etm->pmu_type = pmu_type; | 
|  | etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0); | 
|  | etm->metadata = metadata; | 
|  | etm->auxtrace_type = auxtrace_info->type; | 
|  |  | 
|  | etm->auxtrace.process_event = cs_etm__process_event; | 
|  | etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event; | 
|  | etm->auxtrace.flush_events = cs_etm__flush_events; | 
|  | etm->auxtrace.free_events = cs_etm__free_events; | 
|  | etm->auxtrace.free = cs_etm__free; | 
|  | etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace; | 
|  | session->auxtrace = &etm->auxtrace; | 
|  |  | 
|  | err = cs_etm__setup_timeless_decoding(etm); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | etm->unknown_thread = thread__new(999999999, 999999999); | 
|  | if (!etm->unknown_thread) { | 
|  | err = -ENOMEM; | 
|  | goto err_free_queues; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize list node so that at thread__zput() we can avoid | 
|  | * segmentation fault at list_del_init(). | 
|  | */ | 
|  | INIT_LIST_HEAD(&etm->unknown_thread->node); | 
|  |  | 
|  | err = thread__set_comm(etm->unknown_thread, "unknown", 0); | 
|  | if (err) | 
|  | goto err_delete_thread; | 
|  |  | 
|  | if (thread__init_maps(etm->unknown_thread, etm->machine)) { | 
|  | err = -ENOMEM; | 
|  | goto err_delete_thread; | 
|  | } | 
|  |  | 
|  | if (dump_trace) { | 
|  | cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu); | 
|  | } | 
|  |  | 
|  | err = cs_etm__synth_events(etm, session); | 
|  | if (err) | 
|  | goto err_delete_thread; | 
|  |  | 
|  | err = cs_etm__queue_aux_records(session); | 
|  | if (err) | 
|  | goto err_delete_thread; | 
|  |  | 
|  | etm->data_queued = etm->queues.populated; | 
|  | /* | 
|  | * Print warning in pipe mode, see cs_etm__process_auxtrace_event() and | 
|  | * cs_etm__queue_aux_fragment() for details relating to limitations. | 
|  | */ | 
|  | if (!etm->data_queued) | 
|  | pr_warning("CS ETM warning: Coresight decode and TRBE support requires random file access.\n" | 
|  | "Continuing with best effort decoding in piped mode.\n\n"); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_delete_thread: | 
|  | thread__zput(etm->unknown_thread); | 
|  | err_free_queues: | 
|  | auxtrace_queues__free(&etm->queues); | 
|  | session->auxtrace = NULL; | 
|  | err_free_etm: | 
|  | zfree(&etm); | 
|  | err_free_metadata: | 
|  | /* No need to check @metadata[j], free(NULL) is supported */ | 
|  | for (j = 0; j < num_cpu; j++) | 
|  | zfree(&metadata[j]); | 
|  | zfree(&metadata); | 
|  | err_free_traceid_list: | 
|  | intlist__delete(traceid_list); | 
|  | err_free_hdr: | 
|  | zfree(&hdr); | 
|  | /* | 
|  | * At this point, as a minimum we have valid header. Dump the rest of | 
|  | * the info section - the print routines will error out on structural | 
|  | * issues. | 
|  | */ | 
|  | if (dump_trace) | 
|  | cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu); | 
|  | return err; | 
|  | } |