|  | /* SPDX-License-Identifier: GPL-2.0-or-later */ | 
|  | /* | 
|  | *	Definitions for the 'struct sk_buff' memory handlers. | 
|  | * | 
|  | *	Authors: | 
|  | *		Alan Cox, <gw4pts@gw4pts.ampr.org> | 
|  | *		Florian La Roche, <rzsfl@rz.uni-sb.de> | 
|  | */ | 
|  |  | 
|  | #ifndef _LINUX_SKBUFF_H | 
|  | #define _LINUX_SKBUFF_H | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/bug.h> | 
|  | #include <linux/bvec.h> | 
|  | #include <linux/cache.h> | 
|  | #include <linux/rbtree.h> | 
|  | #include <linux/socket.h> | 
|  | #include <linux/refcount.h> | 
|  |  | 
|  | #include <linux/atomic.h> | 
|  | #include <asm/types.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/net.h> | 
|  | #include <linux/textsearch.h> | 
|  | #include <net/checksum.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/hrtimer.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/netdev_features.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/clock.h> | 
|  | #include <net/flow_dissector.h> | 
|  | #include <linux/splice.h> | 
|  | #include <linux/in6.h> | 
|  | #include <linux/if_packet.h> | 
|  | #include <linux/llist.h> | 
|  | #include <net/flow.h> | 
|  | #include <net/page_pool.h> | 
|  | #if IS_ENABLED(CONFIG_NF_CONNTRACK) | 
|  | #include <linux/netfilter/nf_conntrack_common.h> | 
|  | #endif | 
|  | #include <net/net_debug.h> | 
|  | #include <net/dropreason.h> | 
|  | #include <linux/dma-buf.h> | 
|  |  | 
|  | /** | 
|  | * DOC: skb checksums | 
|  | * | 
|  | * The interface for checksum offload between the stack and networking drivers | 
|  | * is as follows... | 
|  | * | 
|  | * IP checksum related features | 
|  | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 
|  | * | 
|  | * Drivers advertise checksum offload capabilities in the features of a device. | 
|  | * From the stack's point of view these are capabilities offered by the driver. | 
|  | * A driver typically only advertises features that it is capable of offloading | 
|  | * to its device. | 
|  | * | 
|  | * .. flat-table:: Checksum related device features | 
|  | *   :widths: 1 10 | 
|  | * | 
|  | *   * - %NETIF_F_HW_CSUM | 
|  | *     - The driver (or its device) is able to compute one | 
|  | *	 IP (one's complement) checksum for any combination | 
|  | *	 of protocols or protocol layering. The checksum is | 
|  | *	 computed and set in a packet per the CHECKSUM_PARTIAL | 
|  | *	 interface (see below). | 
|  | * | 
|  | *   * - %NETIF_F_IP_CSUM | 
|  | *     - Driver (device) is only able to checksum plain | 
|  | *	 TCP or UDP packets over IPv4. These are specifically | 
|  | *	 unencapsulated packets of the form IPv4|TCP or | 
|  | *	 IPv4|UDP where the Protocol field in the IPv4 header | 
|  | *	 is TCP or UDP. The IPv4 header may contain IP options. | 
|  | *	 This feature cannot be set in features for a device | 
|  | *	 with NETIF_F_HW_CSUM also set. This feature is being | 
|  | *	 DEPRECATED (see below). | 
|  | * | 
|  | *   * - %NETIF_F_IPV6_CSUM | 
|  | *     - Driver (device) is only able to checksum plain | 
|  | *	 TCP or UDP packets over IPv6. These are specifically | 
|  | *	 unencapsulated packets of the form IPv6|TCP or | 
|  | *	 IPv6|UDP where the Next Header field in the IPv6 | 
|  | *	 header is either TCP or UDP. IPv6 extension headers | 
|  | *	 are not supported with this feature. This feature | 
|  | *	 cannot be set in features for a device with | 
|  | *	 NETIF_F_HW_CSUM also set. This feature is being | 
|  | *	 DEPRECATED (see below). | 
|  | * | 
|  | *   * - %NETIF_F_RXCSUM | 
|  | *     - Driver (device) performs receive checksum offload. | 
|  | *	 This flag is only used to disable the RX checksum | 
|  | *	 feature for a device. The stack will accept receive | 
|  | *	 checksum indication in packets received on a device | 
|  | *	 regardless of whether NETIF_F_RXCSUM is set. | 
|  | * | 
|  | * Checksumming of received packets by device | 
|  | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 
|  | * | 
|  | * Indication of checksum verification is set in &sk_buff.ip_summed. | 
|  | * Possible values are: | 
|  | * | 
|  | * - %CHECKSUM_NONE | 
|  | * | 
|  | *   Device did not checksum this packet e.g. due to lack of capabilities. | 
|  | *   The packet contains full (though not verified) checksum in packet but | 
|  | *   not in skb->csum. Thus, skb->csum is undefined in this case. | 
|  | * | 
|  | * - %CHECKSUM_UNNECESSARY | 
|  | * | 
|  | *   The hardware you're dealing with doesn't calculate the full checksum | 
|  | *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums | 
|  | *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY | 
|  | *   if their checksums are okay. &sk_buff.csum is still undefined in this case | 
|  | *   though. A driver or device must never modify the checksum field in the | 
|  | *   packet even if checksum is verified. | 
|  | * | 
|  | *   %CHECKSUM_UNNECESSARY is applicable to following protocols: | 
|  | * | 
|  | *     - TCP: IPv6 and IPv4. | 
|  | *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a | 
|  | *       zero UDP checksum for either IPv4 or IPv6, the networking stack | 
|  | *       may perform further validation in this case. | 
|  | *     - GRE: only if the checksum is present in the header. | 
|  | *     - SCTP: indicates the CRC in SCTP header has been validated. | 
|  | *     - FCOE: indicates the CRC in FC frame has been validated. | 
|  | * | 
|  | *   &sk_buff.csum_level indicates the number of consecutive checksums found in | 
|  | *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY. | 
|  | *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet | 
|  | *   and a device is able to verify the checksums for UDP (possibly zero), | 
|  | *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to | 
|  | *   two. If the device were only able to verify the UDP checksum and not | 
|  | *   GRE, either because it doesn't support GRE checksum or because GRE | 
|  | *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is | 
|  | *   not considered in this case). | 
|  | * | 
|  | * - %CHECKSUM_COMPLETE | 
|  | * | 
|  | *   This is the most generic way. The device supplied checksum of the _whole_ | 
|  | *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the | 
|  | *   hardware doesn't need to parse L3/L4 headers to implement this. | 
|  | * | 
|  | *   Notes: | 
|  | * | 
|  | *   - Even if device supports only some protocols, but is able to produce | 
|  | *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. | 
|  | *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. | 
|  | * | 
|  | * - %CHECKSUM_PARTIAL | 
|  | * | 
|  | *   A checksum is set up to be offloaded to a device as described in the | 
|  | *   output description for CHECKSUM_PARTIAL. This may occur on a packet | 
|  | *   received directly from another Linux OS, e.g., a virtualized Linux kernel | 
|  | *   on the same host, or it may be set in the input path in GRO or remote | 
|  | *   checksum offload. For the purposes of checksum verification, the checksum | 
|  | *   referred to by skb->csum_start + skb->csum_offset and any preceding | 
|  | *   checksums in the packet are considered verified. Any checksums in the | 
|  | *   packet that are after the checksum being offloaded are not considered to | 
|  | *   be verified. | 
|  | * | 
|  | * Checksumming on transmit for non-GSO | 
|  | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 
|  | * | 
|  | * The stack requests checksum offload in the &sk_buff.ip_summed for a packet. | 
|  | * Values are: | 
|  | * | 
|  | * - %CHECKSUM_PARTIAL | 
|  | * | 
|  | *   The driver is required to checksum the packet as seen by hard_start_xmit() | 
|  | *   from &sk_buff.csum_start up to the end, and to record/write the checksum at | 
|  | *   offset &sk_buff.csum_start + &sk_buff.csum_offset. | 
|  | *   A driver may verify that the | 
|  | *   csum_start and csum_offset values are valid values given the length and | 
|  | *   offset of the packet, but it should not attempt to validate that the | 
|  | *   checksum refers to a legitimate transport layer checksum -- it is the | 
|  | *   purview of the stack to validate that csum_start and csum_offset are set | 
|  | *   correctly. | 
|  | * | 
|  | *   When the stack requests checksum offload for a packet, the driver MUST | 
|  | *   ensure that the checksum is set correctly. A driver can either offload the | 
|  | *   checksum calculation to the device, or call skb_checksum_help (in the case | 
|  | *   that the device does not support offload for a particular checksum). | 
|  | * | 
|  | *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of | 
|  | *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate | 
|  | *   checksum offload capability. | 
|  | *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based | 
|  | *   on network device checksumming capabilities: if a packet does not match | 
|  | *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of | 
|  | *   &sk_buff.csum_not_inet, see :ref:`crc`) | 
|  | *   is called to resolve the checksum. | 
|  | * | 
|  | * - %CHECKSUM_NONE | 
|  | * | 
|  | *   The skb was already checksummed by the protocol, or a checksum is not | 
|  | *   required. | 
|  | * | 
|  | * - %CHECKSUM_UNNECESSARY | 
|  | * | 
|  | *   This has the same meaning as CHECKSUM_NONE for checksum offload on | 
|  | *   output. | 
|  | * | 
|  | * - %CHECKSUM_COMPLETE | 
|  | * | 
|  | *   Not used in checksum output. If a driver observes a packet with this value | 
|  | *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set. | 
|  | * | 
|  | * .. _crc: | 
|  | * | 
|  | * Non-IP checksum (CRC) offloads | 
|  | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 
|  | * | 
|  | * .. flat-table:: | 
|  | *   :widths: 1 10 | 
|  | * | 
|  | *   * - %NETIF_F_SCTP_CRC | 
|  | *     - This feature indicates that a device is capable of | 
|  | *	 offloading the SCTP CRC in a packet. To perform this offload the stack | 
|  | *	 will set csum_start and csum_offset accordingly, set ip_summed to | 
|  | *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication | 
|  | *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c. | 
|  | *	 A driver that supports both IP checksum offload and SCTP CRC32c offload | 
|  | *	 must verify which offload is configured for a packet by testing the | 
|  | *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to | 
|  | *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. | 
|  | * | 
|  | *   * - %NETIF_F_FCOE_CRC | 
|  | *     - This feature indicates that a device is capable of offloading the FCOE | 
|  | *	 CRC in a packet. To perform this offload the stack will set ip_summed | 
|  | *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset | 
|  | *	 accordingly. Note that there is no indication in the skbuff that the | 
|  | *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports | 
|  | *	 both IP checksum offload and FCOE CRC offload must verify which offload | 
|  | *	 is configured for a packet, presumably by inspecting packet headers. | 
|  | * | 
|  | * Checksumming on output with GSO | 
|  | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 
|  | * | 
|  | * In the case of a GSO packet (skb_is_gso() is true), checksum offload | 
|  | * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the | 
|  | * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as | 
|  | * part of the GSO operation is implied. If a checksum is being offloaded | 
|  | * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and | 
|  | * csum_offset are set to refer to the outermost checksum being offloaded | 
|  | * (two offloaded checksums are possible with UDP encapsulation). | 
|  | */ | 
|  |  | 
|  | /* Don't change this without changing skb_csum_unnecessary! */ | 
|  | #define CHECKSUM_NONE		0 | 
|  | #define CHECKSUM_UNNECESSARY	1 | 
|  | #define CHECKSUM_COMPLETE	2 | 
|  | #define CHECKSUM_PARTIAL	3 | 
|  |  | 
|  | /* Maximum value in skb->csum_level */ | 
|  | #define SKB_MAX_CSUM_LEVEL	3 | 
|  |  | 
|  | #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES) | 
|  | #define SKB_WITH_OVERHEAD(X)	\ | 
|  | ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) | 
|  |  | 
|  | /* For X bytes available in skb->head, what is the minimal | 
|  | * allocation needed, knowing struct skb_shared_info needs | 
|  | * to be aligned. | 
|  | */ | 
|  | #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \ | 
|  | SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) | 
|  |  | 
|  | #define SKB_MAX_ORDER(X, ORDER) \ | 
|  | SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) | 
|  | #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0)) | 
|  | #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2)) | 
|  |  | 
|  | /* return minimum truesize of one skb containing X bytes of data */ | 
|  | #define SKB_TRUESIZE(X) ((X) +						\ | 
|  | SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\ | 
|  | SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) | 
|  |  | 
|  | struct ahash_request; | 
|  | struct net_device; | 
|  | struct scatterlist; | 
|  | struct pipe_inode_info; | 
|  | struct iov_iter; | 
|  | struct napi_struct; | 
|  | struct bpf_prog; | 
|  | union bpf_attr; | 
|  | struct skb_ext; | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) | 
|  | struct nf_bridge_info { | 
|  | enum { | 
|  | BRNF_PROTO_UNCHANGED, | 
|  | BRNF_PROTO_8021Q, | 
|  | BRNF_PROTO_PPPOE | 
|  | } orig_proto:8; | 
|  | u8			pkt_otherhost:1; | 
|  | u8			in_prerouting:1; | 
|  | u8			bridged_dnat:1; | 
|  | u8			sabotage_in_done:1; | 
|  | __u16			frag_max_size; | 
|  | int			physinif; | 
|  |  | 
|  | /* always valid & non-NULL from FORWARD on, for physdev match */ | 
|  | struct net_device	*physoutdev; | 
|  | union { | 
|  | /* prerouting: detect dnat in orig/reply direction */ | 
|  | __be32          ipv4_daddr; | 
|  | struct in6_addr ipv6_daddr; | 
|  |  | 
|  | /* after prerouting + nat detected: store original source | 
|  | * mac since neigh resolution overwrites it, only used while | 
|  | * skb is out in neigh layer. | 
|  | */ | 
|  | char neigh_header[8]; | 
|  | }; | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) | 
|  | /* Chain in tc_skb_ext will be used to share the tc chain with | 
|  | * ovs recirc_id. It will be set to the current chain by tc | 
|  | * and read by ovs to recirc_id. | 
|  | */ | 
|  | struct tc_skb_ext { | 
|  | __u32 chain; | 
|  | __u16 mru; | 
|  | __u16 zone; | 
|  | u8 post_ct:1; | 
|  | u8 post_ct_snat:1; | 
|  | u8 post_ct_dnat:1; | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | struct sk_buff_head { | 
|  | /* These two members must be first to match sk_buff. */ | 
|  | struct_group_tagged(sk_buff_list, list, | 
|  | struct sk_buff	*next; | 
|  | struct sk_buff	*prev; | 
|  | ); | 
|  |  | 
|  | __u32		qlen; | 
|  | spinlock_t	lock; | 
|  | }; | 
|  |  | 
|  | struct sk_buff; | 
|  |  | 
|  | #ifndef CONFIG_MAX_SKB_FRAGS | 
|  | # define CONFIG_MAX_SKB_FRAGS 17 | 
|  | #endif | 
|  |  | 
|  | #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS | 
|  |  | 
|  | extern int sysctl_max_skb_frags; | 
|  |  | 
|  | /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to | 
|  | * segment using its current segmentation instead. | 
|  | */ | 
|  | #define GSO_BY_FRAGS	0xFFFF | 
|  |  | 
|  | typedef struct bio_vec skb_frag_t; | 
|  |  | 
|  | /** | 
|  | * skb_frag_size() - Returns the size of a skb fragment | 
|  | * @frag: skb fragment | 
|  | */ | 
|  | static inline unsigned int skb_frag_size(const skb_frag_t *frag) | 
|  | { | 
|  | return frag->bv_len; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_frag_size_set() - Sets the size of a skb fragment | 
|  | * @frag: skb fragment | 
|  | * @size: size of fragment | 
|  | */ | 
|  | static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) | 
|  | { | 
|  | frag->bv_len = size; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_frag_size_add() - Increments the size of a skb fragment by @delta | 
|  | * @frag: skb fragment | 
|  | * @delta: value to add | 
|  | */ | 
|  | static inline void skb_frag_size_add(skb_frag_t *frag, int delta) | 
|  | { | 
|  | frag->bv_len += delta; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta | 
|  | * @frag: skb fragment | 
|  | * @delta: value to subtract | 
|  | */ | 
|  | static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) | 
|  | { | 
|  | frag->bv_len -= delta; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_frag_must_loop - Test if %p is a high memory page | 
|  | * @p: fragment's page | 
|  | */ | 
|  | static inline bool skb_frag_must_loop(struct page *p) | 
|  | { | 
|  | #if defined(CONFIG_HIGHMEM) | 
|  | if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) | 
|  | return true; | 
|  | #endif | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_frag_foreach_page - loop over pages in a fragment | 
|  | * | 
|  | *	@f:		skb frag to operate on | 
|  | *	@f_off:		offset from start of f->bv_page | 
|  | *	@f_len:		length from f_off to loop over | 
|  | *	@p:		(temp var) current page | 
|  | *	@p_off:		(temp var) offset from start of current page, | 
|  | *	                           non-zero only on first page. | 
|  | *	@p_len:		(temp var) length in current page, | 
|  | *				   < PAGE_SIZE only on first and last page. | 
|  | *	@copied:	(temp var) length so far, excluding current p_len. | 
|  | * | 
|  | *	A fragment can hold a compound page, in which case per-page | 
|  | *	operations, notably kmap_atomic, must be called for each | 
|  | *	regular page. | 
|  | */ | 
|  | #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\ | 
|  | for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\ | 
|  | p_off = (f_off) & (PAGE_SIZE - 1),				\ | 
|  | p_len = skb_frag_must_loop(p) ?				\ | 
|  | min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\ | 
|  | copied = 0;						\ | 
|  | copied < f_len;						\ | 
|  | copied += p_len, p++, p_off = 0,				\ | 
|  | p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\ | 
|  |  | 
|  | #define HAVE_HW_TIME_STAMP | 
|  |  | 
|  | /** | 
|  | * struct skb_shared_hwtstamps - hardware time stamps | 
|  | * @hwtstamp:		hardware time stamp transformed into duration | 
|  | *			since arbitrary point in time | 
|  | * @netdev_data:	address/cookie of network device driver used as | 
|  | *			reference to actual hardware time stamp | 
|  | * | 
|  | * Software time stamps generated by ktime_get_real() are stored in | 
|  | * skb->tstamp. | 
|  | * | 
|  | * hwtstamps can only be compared against other hwtstamps from | 
|  | * the same device. | 
|  | * | 
|  | * This structure is attached to packets as part of the | 
|  | * &skb_shared_info. Use skb_hwtstamps() to get a pointer. | 
|  | */ | 
|  | struct skb_shared_hwtstamps { | 
|  | union { | 
|  | ktime_t	hwtstamp; | 
|  | void *netdev_data; | 
|  | }; | 
|  | }; | 
|  |  | 
|  | /* Definitions for tx_flags in struct skb_shared_info */ | 
|  | enum { | 
|  | /* generate hardware time stamp */ | 
|  | SKBTX_HW_TSTAMP = 1 << 0, | 
|  |  | 
|  | /* generate software time stamp when queueing packet to NIC */ | 
|  | SKBTX_SW_TSTAMP = 1 << 1, | 
|  |  | 
|  | /* device driver is going to provide hardware time stamp */ | 
|  | SKBTX_IN_PROGRESS = 1 << 2, | 
|  |  | 
|  | /* generate hardware time stamp based on cycles if supported */ | 
|  | SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3, | 
|  |  | 
|  | /* generate wifi status information (where possible) */ | 
|  | SKBTX_WIFI_STATUS = 1 << 4, | 
|  |  | 
|  | /* determine hardware time stamp based on time or cycles */ | 
|  | SKBTX_HW_TSTAMP_NETDEV = 1 << 5, | 
|  |  | 
|  | /* generate software time stamp when entering packet scheduling */ | 
|  | SKBTX_SCHED_TSTAMP = 1 << 6, | 
|  | }; | 
|  |  | 
|  | #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \ | 
|  | SKBTX_SCHED_TSTAMP) | 
|  | #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \ | 
|  | SKBTX_HW_TSTAMP_USE_CYCLES | \ | 
|  | SKBTX_ANY_SW_TSTAMP) | 
|  |  | 
|  | /* Definitions for flags in struct skb_shared_info */ | 
|  | enum { | 
|  | /* use zcopy routines */ | 
|  | SKBFL_ZEROCOPY_ENABLE = BIT(0), | 
|  |  | 
|  | /* This indicates at least one fragment might be overwritten | 
|  | * (as in vmsplice(), sendfile() ...) | 
|  | * If we need to compute a TX checksum, we'll need to copy | 
|  | * all frags to avoid possible bad checksum | 
|  | */ | 
|  | SKBFL_SHARED_FRAG = BIT(1), | 
|  |  | 
|  | /* segment contains only zerocopy data and should not be | 
|  | * charged to the kernel memory. | 
|  | */ | 
|  | SKBFL_PURE_ZEROCOPY = BIT(2), | 
|  |  | 
|  | SKBFL_DONT_ORPHAN = BIT(3), | 
|  |  | 
|  | /* page references are managed by the ubuf_info, so it's safe to | 
|  | * use frags only up until ubuf_info is released | 
|  | */ | 
|  | SKBFL_MANAGED_FRAG_REFS = BIT(4), | 
|  | }; | 
|  |  | 
|  | #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) | 
|  | #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \ | 
|  | SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS) | 
|  |  | 
|  | /* | 
|  | * The callback notifies userspace to release buffers when skb DMA is done in | 
|  | * lower device, the skb last reference should be 0 when calling this. | 
|  | * The zerocopy_success argument is true if zero copy transmit occurred, | 
|  | * false on data copy or out of memory error caused by data copy attempt. | 
|  | * The ctx field is used to track device context. | 
|  | * The desc field is used to track userspace buffer index. | 
|  | */ | 
|  | struct ubuf_info { | 
|  | void (*callback)(struct sk_buff *, struct ubuf_info *, | 
|  | bool zerocopy_success); | 
|  | refcount_t refcnt; | 
|  | u8 flags; | 
|  | }; | 
|  |  | 
|  | struct ubuf_info_msgzc { | 
|  | struct ubuf_info ubuf; | 
|  |  | 
|  | union { | 
|  | struct { | 
|  | unsigned long desc; | 
|  | void *ctx; | 
|  | }; | 
|  | struct { | 
|  | u32 id; | 
|  | u16 len; | 
|  | u16 zerocopy:1; | 
|  | u32 bytelen; | 
|  | }; | 
|  | }; | 
|  |  | 
|  | struct mmpin { | 
|  | struct user_struct *user; | 
|  | unsigned int num_pg; | 
|  | } mmp; | 
|  | }; | 
|  |  | 
|  | #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) | 
|  | #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \ | 
|  | ubuf) | 
|  |  | 
|  | int mm_account_pinned_pages(struct mmpin *mmp, size_t size); | 
|  | void mm_unaccount_pinned_pages(struct mmpin *mmp); | 
|  |  | 
|  | /* This data is invariant across clones and lives at | 
|  | * the end of the header data, ie. at skb->end. | 
|  | */ | 
|  | struct skb_shared_info { | 
|  | __u8		flags; | 
|  | __u8		meta_len; | 
|  | __u8		nr_frags; | 
|  | __u8		tx_flags; | 
|  | unsigned short	gso_size; | 
|  | /* Warning: this field is not always filled in (UFO)! */ | 
|  | unsigned short	gso_segs; | 
|  | struct sk_buff	*frag_list; | 
|  | struct skb_shared_hwtstamps hwtstamps; | 
|  | unsigned int	gso_type; | 
|  | u32		tskey; | 
|  |  | 
|  | /* | 
|  | * Warning : all fields before dataref are cleared in __alloc_skb() | 
|  | */ | 
|  | atomic_t	dataref; | 
|  | unsigned int	xdp_frags_size; | 
|  |  | 
|  | /* Intermediate layers must ensure that destructor_arg | 
|  | * remains valid until skb destructor */ | 
|  | void *		destructor_arg; | 
|  |  | 
|  | /* must be last field, see pskb_expand_head() */ | 
|  | skb_frag_t	frags[MAX_SKB_FRAGS]; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * DOC: dataref and headerless skbs | 
|  | * | 
|  | * Transport layers send out clones of payload skbs they hold for | 
|  | * retransmissions. To allow lower layers of the stack to prepend their headers | 
|  | * we split &skb_shared_info.dataref into two halves. | 
|  | * The lower 16 bits count the overall number of references. | 
|  | * The higher 16 bits indicate how many of the references are payload-only. | 
|  | * skb_header_cloned() checks if skb is allowed to add / write the headers. | 
|  | * | 
|  | * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr | 
|  | * (via __skb_header_release()). Any clone created from marked skb will get | 
|  | * &sk_buff.hdr_len populated with the available headroom. | 
|  | * If there's the only clone in existence it's able to modify the headroom | 
|  | * at will. The sequence of calls inside the transport layer is:: | 
|  | * | 
|  | *  <alloc skb> | 
|  | *  skb_reserve() | 
|  | *  __skb_header_release() | 
|  | *  skb_clone() | 
|  | *  // send the clone down the stack | 
|  | * | 
|  | * This is not a very generic construct and it depends on the transport layers | 
|  | * doing the right thing. In practice there's usually only one payload-only skb. | 
|  | * Having multiple payload-only skbs with different lengths of hdr_len is not | 
|  | * possible. The payload-only skbs should never leave their owner. | 
|  | */ | 
|  | #define SKB_DATAREF_SHIFT 16 | 
|  | #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) | 
|  |  | 
|  |  | 
|  | enum { | 
|  | SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */ | 
|  | SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */ | 
|  | SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */ | 
|  | }; | 
|  |  | 
|  | enum { | 
|  | SKB_GSO_TCPV4 = 1 << 0, | 
|  |  | 
|  | /* This indicates the skb is from an untrusted source. */ | 
|  | SKB_GSO_DODGY = 1 << 1, | 
|  |  | 
|  | /* This indicates the tcp segment has CWR set. */ | 
|  | SKB_GSO_TCP_ECN = 1 << 2, | 
|  |  | 
|  | SKB_GSO_TCP_FIXEDID = 1 << 3, | 
|  |  | 
|  | SKB_GSO_TCPV6 = 1 << 4, | 
|  |  | 
|  | SKB_GSO_FCOE = 1 << 5, | 
|  |  | 
|  | SKB_GSO_GRE = 1 << 6, | 
|  |  | 
|  | SKB_GSO_GRE_CSUM = 1 << 7, | 
|  |  | 
|  | SKB_GSO_IPXIP4 = 1 << 8, | 
|  |  | 
|  | SKB_GSO_IPXIP6 = 1 << 9, | 
|  |  | 
|  | SKB_GSO_UDP_TUNNEL = 1 << 10, | 
|  |  | 
|  | SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, | 
|  |  | 
|  | SKB_GSO_PARTIAL = 1 << 12, | 
|  |  | 
|  | SKB_GSO_TUNNEL_REMCSUM = 1 << 13, | 
|  |  | 
|  | SKB_GSO_SCTP = 1 << 14, | 
|  |  | 
|  | SKB_GSO_ESP = 1 << 15, | 
|  |  | 
|  | SKB_GSO_UDP = 1 << 16, | 
|  |  | 
|  | SKB_GSO_UDP_L4 = 1 << 17, | 
|  |  | 
|  | SKB_GSO_FRAGLIST = 1 << 18, | 
|  | }; | 
|  |  | 
|  | #if BITS_PER_LONG > 32 | 
|  | #define NET_SKBUFF_DATA_USES_OFFSET 1 | 
|  | #endif | 
|  |  | 
|  | #ifdef NET_SKBUFF_DATA_USES_OFFSET | 
|  | typedef unsigned int sk_buff_data_t; | 
|  | #else | 
|  | typedef unsigned char *sk_buff_data_t; | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * DOC: Basic sk_buff geometry | 
|  | * | 
|  | * struct sk_buff itself is a metadata structure and does not hold any packet | 
|  | * data. All the data is held in associated buffers. | 
|  | * | 
|  | * &sk_buff.head points to the main "head" buffer. The head buffer is divided | 
|  | * into two parts: | 
|  | * | 
|  | *  - data buffer, containing headers and sometimes payload; | 
|  | *    this is the part of the skb operated on by the common helpers | 
|  | *    such as skb_put() or skb_pull(); | 
|  | *  - shared info (struct skb_shared_info) which holds an array of pointers | 
|  | *    to read-only data in the (page, offset, length) format. | 
|  | * | 
|  | * Optionally &skb_shared_info.frag_list may point to another skb. | 
|  | * | 
|  | * Basic diagram may look like this:: | 
|  | * | 
|  | *                                  --------------- | 
|  | *                                 | sk_buff       | | 
|  | *                                  --------------- | 
|  | *     ,---------------------------  + head | 
|  | *    /          ,-----------------  + data | 
|  | *   /          /      ,-----------  + tail | 
|  | *  |          |      |            , + end | 
|  | *  |          |      |           | | 
|  | *  v          v      v           v | 
|  | *   ----------------------------------------------- | 
|  | *  | headroom | data |  tailroom | skb_shared_info | | 
|  | *   ----------------------------------------------- | 
|  | *                                 + [page frag] | 
|  | *                                 + [page frag] | 
|  | *                                 + [page frag] | 
|  | *                                 + [page frag]       --------- | 
|  | *                                 + frag_list    --> | sk_buff | | 
|  | *                                                     --------- | 
|  | * | 
|  | */ | 
|  |  | 
|  | /** | 
|  | *	struct sk_buff - socket buffer | 
|  | *	@next: Next buffer in list | 
|  | *	@prev: Previous buffer in list | 
|  | *	@tstamp: Time we arrived/left | 
|  | *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point | 
|  | *		for retransmit timer | 
|  | *	@rbnode: RB tree node, alternative to next/prev for netem/tcp | 
|  | *	@list: queue head | 
|  | *	@ll_node: anchor in an llist (eg socket defer_list) | 
|  | *	@sk: Socket we are owned by | 
|  | *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in | 
|  | *		fragmentation management | 
|  | *	@dev: Device we arrived on/are leaving by | 
|  | *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL | 
|  | *	@cb: Control buffer. Free for use by every layer. Put private vars here | 
|  | *	@_skb_refdst: destination entry (with norefcount bit) | 
|  | *	@sp: the security path, used for xfrm | 
|  | *	@len: Length of actual data | 
|  | *	@data_len: Data length | 
|  | *	@mac_len: Length of link layer header | 
|  | *	@hdr_len: writable header length of cloned skb | 
|  | *	@csum: Checksum (must include start/offset pair) | 
|  | *	@csum_start: Offset from skb->head where checksumming should start | 
|  | *	@csum_offset: Offset from csum_start where checksum should be stored | 
|  | *	@priority: Packet queueing priority | 
|  | *	@ignore_df: allow local fragmentation | 
|  | *	@cloned: Head may be cloned (check refcnt to be sure) | 
|  | *	@ip_summed: Driver fed us an IP checksum | 
|  | *	@nohdr: Payload reference only, must not modify header | 
|  | *	@pkt_type: Packet class | 
|  | *	@fclone: skbuff clone status | 
|  | *	@ipvs_property: skbuff is owned by ipvs | 
|  | *	@inner_protocol_type: whether the inner protocol is | 
|  | *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO | 
|  | *	@remcsum_offload: remote checksum offload is enabled | 
|  | *	@offload_fwd_mark: Packet was L2-forwarded in hardware | 
|  | *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware | 
|  | *	@tc_skip_classify: do not classify packet. set by IFB device | 
|  | *	@tc_at_ingress: used within tc_classify to distinguish in/egress | 
|  | *	@redirected: packet was redirected by packet classifier | 
|  | *	@from_ingress: packet was redirected from the ingress path | 
|  | *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h | 
|  | *	@peeked: this packet has been seen already, so stats have been | 
|  | *		done for it, don't do them again | 
|  | *	@nf_trace: netfilter packet trace flag | 
|  | *	@protocol: Packet protocol from driver | 
|  | *	@destructor: Destruct function | 
|  | *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) | 
|  | *	@_sk_redir: socket redirection information for skmsg | 
|  | *	@_nfct: Associated connection, if any (with nfctinfo bits) | 
|  | *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c | 
|  | *	@skb_iif: ifindex of device we arrived on | 
|  | *	@tc_index: Traffic control index | 
|  | *	@hash: the packet hash | 
|  | *	@queue_mapping: Queue mapping for multiqueue devices | 
|  | *	@head_frag: skb was allocated from page fragments, | 
|  | *		not allocated by kmalloc() or vmalloc(). | 
|  | *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves | 
|  | *	@pp_recycle: mark the packet for recycling instead of freeing (implies | 
|  | *		page_pool support on driver) | 
|  | *	@active_extensions: active extensions (skb_ext_id types) | 
|  | *	@ndisc_nodetype: router type (from link layer) | 
|  | *	@ooo_okay: allow the mapping of a socket to a queue to be changed | 
|  | *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport | 
|  | *		ports. | 
|  | *	@sw_hash: indicates hash was computed in software stack | 
|  | *	@wifi_acked_valid: wifi_acked was set | 
|  | *	@wifi_acked: whether frame was acked on wifi or not | 
|  | *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS | 
|  | *	@encapsulation: indicates the inner headers in the skbuff are valid | 
|  | *	@encap_hdr_csum: software checksum is needed | 
|  | *	@csum_valid: checksum is already valid | 
|  | *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL | 
|  | *	@csum_complete_sw: checksum was completed by software | 
|  | *	@csum_level: indicates the number of consecutive checksums found in | 
|  | *		the packet minus one that have been verified as | 
|  | *		CHECKSUM_UNNECESSARY (max 3) | 
|  | *	@scm_io_uring: SKB holds io_uring registered files | 
|  | *	@devmem: indicates that all the fragments in this skb is backed by | 
|  | *		device memory. | 
|  | *	@dst_pending_confirm: need to confirm neighbour | 
|  | *	@decrypted: Decrypted SKB | 
|  | *	@slow_gro: state present at GRO time, slower prepare step required | 
|  | *	@mono_delivery_time: When set, skb->tstamp has the | 
|  | *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the | 
|  | *		skb->tstamp has the (rcv) timestamp at ingress and | 
|  | *		delivery_time at egress. | 
|  | *	@napi_id: id of the NAPI struct this skb came from | 
|  | *	@sender_cpu: (aka @napi_id) source CPU in XPS | 
|  | *	@alloc_cpu: CPU which did the skb allocation. | 
|  | *	@secmark: security marking | 
|  | *	@mark: Generic packet mark | 
|  | *	@reserved_tailroom: (aka @mark) number of bytes of free space available | 
|  | *		at the tail of an sk_buff | 
|  | *	@vlan_present: VLAN tag is present | 
|  | *	@vlan_proto: vlan encapsulation protocol | 
|  | *	@vlan_tci: vlan tag control information | 
|  | *	@inner_protocol: Protocol (encapsulation) | 
|  | *	@inner_ipproto: (aka @inner_protocol) stores ipproto when | 
|  | *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; | 
|  | *	@inner_transport_header: Inner transport layer header (encapsulation) | 
|  | *	@inner_network_header: Network layer header (encapsulation) | 
|  | *	@inner_mac_header: Link layer header (encapsulation) | 
|  | *	@transport_header: Transport layer header | 
|  | *	@network_header: Network layer header | 
|  | *	@mac_header: Link layer header | 
|  | *	@kcov_handle: KCOV remote handle for remote coverage collection | 
|  | *	@tail: Tail pointer | 
|  | *	@end: End pointer | 
|  | *	@head: Head of buffer | 
|  | *	@data: Data head pointer | 
|  | *	@truesize: Buffer size | 
|  | *	@users: User count - see {datagram,tcp}.c | 
|  | *	@extensions: allocated extensions, valid if active_extensions is nonzero | 
|  | */ | 
|  |  | 
|  | struct sk_buff { | 
|  | union { | 
|  | struct { | 
|  | /* These two members must be first to match sk_buff_head. */ | 
|  | struct sk_buff		*next; | 
|  | struct sk_buff		*prev; | 
|  |  | 
|  | union { | 
|  | struct net_device	*dev; | 
|  | /* Some protocols might use this space to store information, | 
|  | * while device pointer would be NULL. | 
|  | * UDP receive path is one user. | 
|  | */ | 
|  | unsigned long		dev_scratch; | 
|  | }; | 
|  | }; | 
|  | struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */ | 
|  | struct list_head	list; | 
|  | struct llist_node	ll_node; | 
|  | }; | 
|  |  | 
|  | union { | 
|  | struct sock		*sk; | 
|  | int			ip_defrag_offset; | 
|  | }; | 
|  |  | 
|  | union { | 
|  | ktime_t		tstamp; | 
|  | u64		skb_mstamp_ns; /* earliest departure time */ | 
|  | }; | 
|  | /* | 
|  | * This is the control buffer. It is free to use for every | 
|  | * layer. Please put your private variables there. If you | 
|  | * want to keep them across layers you have to do a skb_clone() | 
|  | * first. This is owned by whoever has the skb queued ATM. | 
|  | */ | 
|  | char			cb[48] __aligned(8); | 
|  |  | 
|  | union { | 
|  | struct { | 
|  | unsigned long	_skb_refdst; | 
|  | void		(*destructor)(struct sk_buff *skb); | 
|  | }; | 
|  | struct list_head	tcp_tsorted_anchor; | 
|  | #ifdef CONFIG_NET_SOCK_MSG | 
|  | unsigned long		_sk_redir; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) | 
|  | unsigned long		 _nfct; | 
|  | #endif | 
|  | unsigned int		len, | 
|  | data_len; | 
|  | __u16			mac_len, | 
|  | hdr_len; | 
|  |  | 
|  | /* Following fields are _not_ copied in __copy_skb_header() | 
|  | * Note that queue_mapping is here mostly to fill a hole. | 
|  | */ | 
|  | __u16			queue_mapping; | 
|  |  | 
|  | /* if you move cloned around you also must adapt those constants */ | 
|  | #ifdef __BIG_ENDIAN_BITFIELD | 
|  | #define CLONED_MASK	(1 << 7) | 
|  | #else | 
|  | #define CLONED_MASK	1 | 
|  | #endif | 
|  | #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset) | 
|  |  | 
|  | /* private: */ | 
|  | __u8			__cloned_offset[0]; | 
|  | /* public: */ | 
|  | __u8			cloned:1, | 
|  | nohdr:1, | 
|  | fclone:2, | 
|  | peeked:1, | 
|  | head_frag:1, | 
|  | pfmemalloc:1, | 
|  | pp_recycle:1; /* page_pool recycle indicator */ | 
|  | #ifdef CONFIG_SKB_EXTENSIONS | 
|  | __u8			active_extensions; | 
|  | #endif | 
|  |  | 
|  | /* Fields enclosed in headers group are copied | 
|  | * using a single memcpy() in __copy_skb_header() | 
|  | */ | 
|  | struct_group(headers, | 
|  |  | 
|  | /* private: */ | 
|  | __u8			__pkt_type_offset[0]; | 
|  | /* public: */ | 
|  | __u8			pkt_type:3; /* see PKT_TYPE_MAX */ | 
|  | __u8			ignore_df:1; | 
|  | __u8			nf_trace:1; | 
|  | __u8			ip_summed:2; | 
|  | __u8			ooo_okay:1; | 
|  |  | 
|  | __u8			l4_hash:1; | 
|  | __u8			sw_hash:1; | 
|  | __u8			wifi_acked_valid:1; | 
|  | __u8			wifi_acked:1; | 
|  | __u8			no_fcs:1; | 
|  | /* Indicates the inner headers are valid in the skbuff. */ | 
|  | __u8			encapsulation:1; | 
|  | __u8			encap_hdr_csum:1; | 
|  | __u8			csum_valid:1; | 
|  |  | 
|  | /* private: */ | 
|  | __u8			__pkt_vlan_present_offset[0]; | 
|  | /* public: */ | 
|  | __u8			vlan_present:1;	/* See PKT_VLAN_PRESENT_BIT */ | 
|  | __u8			csum_complete_sw:1; | 
|  | __u8			csum_level:2; | 
|  | __u8			dst_pending_confirm:1; | 
|  | __u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */ | 
|  | #ifdef CONFIG_NET_CLS_ACT | 
|  | __u8			tc_skip_classify:1; | 
|  | __u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */ | 
|  | #endif | 
|  | #ifdef CONFIG_IPV6_NDISC_NODETYPE | 
|  | __u8			ndisc_nodetype:2; | 
|  | #endif | 
|  |  | 
|  | __u8			ipvs_property:1; | 
|  | __u8			inner_protocol_type:1; | 
|  | __u8			remcsum_offload:1; | 
|  | #ifdef CONFIG_NET_SWITCHDEV | 
|  | __u8			offload_fwd_mark:1; | 
|  | __u8			offload_l3_fwd_mark:1; | 
|  | #endif | 
|  | __u8			redirected:1; | 
|  | #ifdef CONFIG_NET_REDIRECT | 
|  | __u8			from_ingress:1; | 
|  | #endif | 
|  | #ifdef CONFIG_NETFILTER_SKIP_EGRESS | 
|  | __u8			nf_skip_egress:1; | 
|  | #endif | 
|  | #ifdef CONFIG_TLS_DEVICE | 
|  | __u8			decrypted:1; | 
|  | #endif | 
|  | __u8			slow_gro:1; | 
|  | __u8			csum_not_inet:1; | 
|  | __u8			scm_io_uring:1; | 
|  | __u8			devmem:1; | 
|  | #ifdef CONFIG_NET_SCHED | 
|  | __u16			tc_index;	/* traffic control index */ | 
|  | #endif | 
|  |  | 
|  | union { | 
|  | __wsum		csum; | 
|  | struct { | 
|  | __u16	csum_start; | 
|  | __u16	csum_offset; | 
|  | }; | 
|  | }; | 
|  | __u32			priority; | 
|  | int			skb_iif; | 
|  | __u32			hash; | 
|  | __be16			vlan_proto; | 
|  | __u16			vlan_tci; | 
|  | #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) | 
|  | union { | 
|  | unsigned int	napi_id; | 
|  | unsigned int	sender_cpu; | 
|  | }; | 
|  | #endif | 
|  | u16			alloc_cpu; | 
|  | #ifdef CONFIG_NETWORK_SECMARK | 
|  | __u32		secmark; | 
|  | #endif | 
|  |  | 
|  | union { | 
|  | __u32		mark; | 
|  | __u32		reserved_tailroom; | 
|  | }; | 
|  |  | 
|  | union { | 
|  | __be16		inner_protocol; | 
|  | __u8		inner_ipproto; | 
|  | }; | 
|  |  | 
|  | __u16			inner_transport_header; | 
|  | __u16			inner_network_header; | 
|  | __u16			inner_mac_header; | 
|  |  | 
|  | __be16			protocol; | 
|  | __u16			transport_header; | 
|  | __u16			network_header; | 
|  | __u16			mac_header; | 
|  |  | 
|  | #ifdef CONFIG_KCOV | 
|  | u64			kcov_handle; | 
|  | #endif | 
|  |  | 
|  | ); /* end headers group */ | 
|  |  | 
|  | /* These elements must be at the end, see alloc_skb() for details.  */ | 
|  | sk_buff_data_t		tail; | 
|  | sk_buff_data_t		end; | 
|  | unsigned char		*head, | 
|  | *data; | 
|  | unsigned int		truesize; | 
|  | refcount_t		users; | 
|  |  | 
|  | #ifdef CONFIG_SKB_EXTENSIONS | 
|  | /* only useable after checking ->active_extensions != 0 */ | 
|  | struct skb_ext		*extensions; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /* if you move pkt_type around you also must adapt those constants */ | 
|  | #ifdef __BIG_ENDIAN_BITFIELD | 
|  | #define PKT_TYPE_MAX	(7 << 5) | 
|  | #else | 
|  | #define PKT_TYPE_MAX	7 | 
|  | #endif | 
|  | #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset) | 
|  |  | 
|  | /* if you move pkt_vlan_present, tc_at_ingress, or mono_delivery_time | 
|  | * around, you also must adapt these constants. | 
|  | */ | 
|  | #ifdef __BIG_ENDIAN_BITFIELD | 
|  | #define PKT_VLAN_PRESENT_BIT	7 | 
|  | #define TC_AT_INGRESS_MASK		(1 << 0) | 
|  | #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 2) | 
|  | #else | 
|  | #define PKT_VLAN_PRESENT_BIT	0 | 
|  | #define TC_AT_INGRESS_MASK		(1 << 7) | 
|  | #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 5) | 
|  | #endif | 
|  | #define PKT_VLAN_PRESENT_OFFSET	offsetof(struct sk_buff, __pkt_vlan_present_offset) | 
|  |  | 
|  | #ifdef __KERNEL__ | 
|  | /* | 
|  | *	Handling routines are only of interest to the kernel | 
|  | */ | 
|  |  | 
|  | #define SKB_ALLOC_FCLONE	0x01 | 
|  | #define SKB_ALLOC_RX		0x02 | 
|  | #define SKB_ALLOC_NAPI		0x04 | 
|  |  | 
|  | /** | 
|  | * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves | 
|  | * @skb: buffer | 
|  | */ | 
|  | static inline bool skb_pfmemalloc(const struct sk_buff *skb) | 
|  | { | 
|  | return unlikely(skb->pfmemalloc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * skb might have a dst pointer attached, refcounted or not. | 
|  | * _skb_refdst low order bit is set if refcount was _not_ taken | 
|  | */ | 
|  | #define SKB_DST_NOREF	1UL | 
|  | #define SKB_DST_PTRMASK	~(SKB_DST_NOREF) | 
|  |  | 
|  | /** | 
|  | * skb_dst - returns skb dst_entry | 
|  | * @skb: buffer | 
|  | * | 
|  | * Returns skb dst_entry, regardless of reference taken or not. | 
|  | */ | 
|  | static inline struct dst_entry *skb_dst(const struct sk_buff *skb) | 
|  | { | 
|  | /* If refdst was not refcounted, check we still are in a | 
|  | * rcu_read_lock section | 
|  | */ | 
|  | WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && | 
|  | !rcu_read_lock_held() && | 
|  | !rcu_read_lock_bh_held()); | 
|  | return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_dst_set - sets skb dst | 
|  | * @skb: buffer | 
|  | * @dst: dst entry | 
|  | * | 
|  | * Sets skb dst, assuming a reference was taken on dst and should | 
|  | * be released by skb_dst_drop() | 
|  | */ | 
|  | static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) | 
|  | { | 
|  | skb->slow_gro |= !!dst; | 
|  | skb->_skb_refdst = (unsigned long)dst; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_dst_set_noref - sets skb dst, hopefully, without taking reference | 
|  | * @skb: buffer | 
|  | * @dst: dst entry | 
|  | * | 
|  | * Sets skb dst, assuming a reference was not taken on dst. | 
|  | * If dst entry is cached, we do not take reference and dst_release | 
|  | * will be avoided by refdst_drop. If dst entry is not cached, we take | 
|  | * reference, so that last dst_release can destroy the dst immediately. | 
|  | */ | 
|  | static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) | 
|  | { | 
|  | WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); | 
|  | skb->slow_gro |= !!dst; | 
|  | skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_dst_is_noref - Test if skb dst isn't refcounted | 
|  | * @skb: buffer | 
|  | */ | 
|  | static inline bool skb_dst_is_noref(const struct sk_buff *skb) | 
|  | { | 
|  | return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_rtable - Returns the skb &rtable | 
|  | * @skb: buffer | 
|  | */ | 
|  | static inline struct rtable *skb_rtable(const struct sk_buff *skb) | 
|  | { | 
|  | return (struct rtable *)skb_dst(skb); | 
|  | } | 
|  |  | 
|  | /* For mangling skb->pkt_type from user space side from applications | 
|  | * such as nft, tc, etc, we only allow a conservative subset of | 
|  | * possible pkt_types to be set. | 
|  | */ | 
|  | static inline bool skb_pkt_type_ok(u32 ptype) | 
|  | { | 
|  | return ptype <= PACKET_OTHERHOST; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_napi_id - Returns the skb's NAPI id | 
|  | * @skb: buffer | 
|  | */ | 
|  | static inline unsigned int skb_napi_id(const struct sk_buff *skb) | 
|  | { | 
|  | #ifdef CONFIG_NET_RX_BUSY_POLL | 
|  | return skb->napi_id; | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_unref - decrement the skb's reference count | 
|  | * @skb: buffer | 
|  | * | 
|  | * Returns true if we can free the skb. | 
|  | */ | 
|  | static inline bool skb_unref(struct sk_buff *skb) | 
|  | { | 
|  | if (unlikely(!skb)) | 
|  | return false; | 
|  | if (likely(refcount_read(&skb->users) == 1)) | 
|  | smp_rmb(); | 
|  | else if (likely(!refcount_dec_and_test(&skb->users))) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void __fix_address | 
|  | kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason); | 
|  |  | 
|  | /** | 
|  | *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason | 
|  | *	@skb: buffer to free | 
|  | */ | 
|  | static inline void kfree_skb(struct sk_buff *skb) | 
|  | { | 
|  | kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); | 
|  | } | 
|  |  | 
|  | void skb_release_head_state(struct sk_buff *skb); | 
|  | void kfree_skb_list_reason(struct sk_buff *segs, | 
|  | enum skb_drop_reason reason); | 
|  | void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); | 
|  | void skb_tx_error(struct sk_buff *skb); | 
|  |  | 
|  | static inline void kfree_skb_list(struct sk_buff *segs) | 
|  | { | 
|  | kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TRACEPOINTS | 
|  | void consume_skb(struct sk_buff *skb); | 
|  | #else | 
|  | static inline void consume_skb(struct sk_buff *skb) | 
|  | { | 
|  | return kfree_skb(skb); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void __consume_stateless_skb(struct sk_buff *skb); | 
|  | void  __kfree_skb(struct sk_buff *skb); | 
|  | extern struct kmem_cache *skbuff_head_cache; | 
|  |  | 
|  | void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); | 
|  | bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, | 
|  | bool *fragstolen, int *delta_truesize); | 
|  |  | 
|  | struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, | 
|  | int node); | 
|  | struct sk_buff *__build_skb(void *data, unsigned int frag_size); | 
|  | struct sk_buff *build_skb(void *data, unsigned int frag_size); | 
|  | struct sk_buff *build_skb_around(struct sk_buff *skb, | 
|  | void *data, unsigned int frag_size); | 
|  | void skb_attempt_defer_free(struct sk_buff *skb); | 
|  |  | 
|  | struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); | 
|  |  | 
|  | /** | 
|  | * alloc_skb - allocate a network buffer | 
|  | * @size: size to allocate | 
|  | * @priority: allocation mask | 
|  | * | 
|  | * This function is a convenient wrapper around __alloc_skb(). | 
|  | */ | 
|  | static inline struct sk_buff *alloc_skb(unsigned int size, | 
|  | gfp_t priority) | 
|  | { | 
|  | return __alloc_skb(size, priority, 0, NUMA_NO_NODE); | 
|  | } | 
|  |  | 
|  | struct sk_buff *alloc_skb_with_frags(unsigned long header_len, | 
|  | unsigned long data_len, | 
|  | int max_page_order, | 
|  | int *errcode, | 
|  | gfp_t gfp_mask); | 
|  | struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); | 
|  |  | 
|  | /* Layout of fast clones : [skb1][skb2][fclone_ref] */ | 
|  | struct sk_buff_fclones { | 
|  | struct sk_buff	skb1; | 
|  |  | 
|  | struct sk_buff	skb2; | 
|  |  | 
|  | refcount_t	fclone_ref; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | *	skb_fclone_busy - check if fclone is busy | 
|  | *	@sk: socket | 
|  | *	@skb: buffer | 
|  | * | 
|  | * Returns true if skb is a fast clone, and its clone is not freed. | 
|  | * Some drivers call skb_orphan() in their ndo_start_xmit(), | 
|  | * so we also check that this didnt happen. | 
|  | */ | 
|  | static inline bool skb_fclone_busy(const struct sock *sk, | 
|  | const struct sk_buff *skb) | 
|  | { | 
|  | const struct sk_buff_fclones *fclones; | 
|  |  | 
|  | fclones = container_of(skb, struct sk_buff_fclones, skb1); | 
|  |  | 
|  | return skb->fclone == SKB_FCLONE_ORIG && | 
|  | refcount_read(&fclones->fclone_ref) > 1 && | 
|  | READ_ONCE(fclones->skb2.sk) == sk; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * alloc_skb_fclone - allocate a network buffer from fclone cache | 
|  | * @size: size to allocate | 
|  | * @priority: allocation mask | 
|  | * | 
|  | * This function is a convenient wrapper around __alloc_skb(). | 
|  | */ | 
|  | static inline struct sk_buff *alloc_skb_fclone(unsigned int size, | 
|  | gfp_t priority) | 
|  | { | 
|  | return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); | 
|  | } | 
|  |  | 
|  | struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); | 
|  | void skb_headers_offset_update(struct sk_buff *skb, int off); | 
|  | int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); | 
|  | struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); | 
|  | void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); | 
|  | struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); | 
|  | struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, | 
|  | gfp_t gfp_mask, bool fclone); | 
|  | static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | return __pskb_copy_fclone(skb, headroom, gfp_mask, false); | 
|  | } | 
|  |  | 
|  | int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); | 
|  | struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, | 
|  | unsigned int headroom); | 
|  | struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); | 
|  | struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, | 
|  | int newtailroom, gfp_t priority); | 
|  | int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, | 
|  | int offset, int len); | 
|  | int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, | 
|  | int offset, int len); | 
|  | int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); | 
|  | int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); | 
|  |  | 
|  | /** | 
|  | *	skb_pad			-	zero pad the tail of an skb | 
|  | *	@skb: buffer to pad | 
|  | *	@pad: space to pad | 
|  | * | 
|  | *	Ensure that a buffer is followed by a padding area that is zero | 
|  | *	filled. Used by network drivers which may DMA or transfer data | 
|  | *	beyond the buffer end onto the wire. | 
|  | * | 
|  | *	May return error in out of memory cases. The skb is freed on error. | 
|  | */ | 
|  | static inline int skb_pad(struct sk_buff *skb, int pad) | 
|  | { | 
|  | return __skb_pad(skb, pad, true); | 
|  | } | 
|  | #define dev_kfree_skb(a)	consume_skb(a) | 
|  |  | 
|  | int skb_append_pagefrags(struct sk_buff *skb, struct page *page, | 
|  | int offset, size_t size); | 
|  |  | 
|  | struct skb_seq_state { | 
|  | __u32		lower_offset; | 
|  | __u32		upper_offset; | 
|  | __u32		frag_idx; | 
|  | __u32		stepped_offset; | 
|  | struct sk_buff	*root_skb; | 
|  | struct sk_buff	*cur_skb; | 
|  | __u8		*frag_data; | 
|  | __u32		frag_off; | 
|  | }; | 
|  |  | 
|  | void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, | 
|  | unsigned int to, struct skb_seq_state *st); | 
|  | unsigned int skb_seq_read(unsigned int consumed, const u8 **data, | 
|  | struct skb_seq_state *st); | 
|  | void skb_abort_seq_read(struct skb_seq_state *st); | 
|  |  | 
|  | unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, | 
|  | unsigned int to, struct ts_config *config); | 
|  |  | 
|  | /* | 
|  | * Packet hash types specify the type of hash in skb_set_hash. | 
|  | * | 
|  | * Hash types refer to the protocol layer addresses which are used to | 
|  | * construct a packet's hash. The hashes are used to differentiate or identify | 
|  | * flows of the protocol layer for the hash type. Hash types are either | 
|  | * layer-2 (L2), layer-3 (L3), or layer-4 (L4). | 
|  | * | 
|  | * Properties of hashes: | 
|  | * | 
|  | * 1) Two packets in different flows have different hash values | 
|  | * 2) Two packets in the same flow should have the same hash value | 
|  | * | 
|  | * A hash at a higher layer is considered to be more specific. A driver should | 
|  | * set the most specific hash possible. | 
|  | * | 
|  | * A driver cannot indicate a more specific hash than the layer at which a hash | 
|  | * was computed. For instance an L3 hash cannot be set as an L4 hash. | 
|  | * | 
|  | * A driver may indicate a hash level which is less specific than the | 
|  | * actual layer the hash was computed on. For instance, a hash computed | 
|  | * at L4 may be considered an L3 hash. This should only be done if the | 
|  | * driver can't unambiguously determine that the HW computed the hash at | 
|  | * the higher layer. Note that the "should" in the second property above | 
|  | * permits this. | 
|  | */ | 
|  | enum pkt_hash_types { | 
|  | PKT_HASH_TYPE_NONE,	/* Undefined type */ | 
|  | PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */ | 
|  | PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */ | 
|  | PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */ | 
|  | }; | 
|  |  | 
|  | static inline void skb_clear_hash(struct sk_buff *skb) | 
|  | { | 
|  | skb->hash = 0; | 
|  | skb->sw_hash = 0; | 
|  | skb->l4_hash = 0; | 
|  | } | 
|  |  | 
|  | static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) | 
|  | { | 
|  | if (!skb->l4_hash) | 
|  | skb_clear_hash(skb); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) | 
|  | { | 
|  | skb->l4_hash = is_l4; | 
|  | skb->sw_hash = is_sw; | 
|  | skb->hash = hash; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) | 
|  | { | 
|  | /* Used by drivers to set hash from HW */ | 
|  | __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) | 
|  | { | 
|  | __skb_set_hash(skb, hash, true, is_l4); | 
|  | } | 
|  |  | 
|  | void __skb_get_hash(struct sk_buff *skb); | 
|  | u32 __skb_get_hash_symmetric(const struct sk_buff *skb); | 
|  | u32 skb_get_poff(const struct sk_buff *skb); | 
|  | u32 __skb_get_poff(const struct sk_buff *skb, const void *data, | 
|  | const struct flow_keys_basic *keys, int hlen); | 
|  | __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, | 
|  | const void *data, int hlen_proto); | 
|  |  | 
|  | static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, | 
|  | int thoff, u8 ip_proto) | 
|  | { | 
|  | return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); | 
|  | } | 
|  |  | 
|  | void skb_flow_dissector_init(struct flow_dissector *flow_dissector, | 
|  | const struct flow_dissector_key *key, | 
|  | unsigned int key_count); | 
|  |  | 
|  | struct bpf_flow_dissector; | 
|  | u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, | 
|  | __be16 proto, int nhoff, int hlen, unsigned int flags); | 
|  |  | 
|  | bool __skb_flow_dissect(const struct net *net, | 
|  | const struct sk_buff *skb, | 
|  | struct flow_dissector *flow_dissector, | 
|  | void *target_container, const void *data, | 
|  | __be16 proto, int nhoff, int hlen, unsigned int flags); | 
|  |  | 
|  | static inline bool skb_flow_dissect(const struct sk_buff *skb, | 
|  | struct flow_dissector *flow_dissector, | 
|  | void *target_container, unsigned int flags) | 
|  | { | 
|  | return __skb_flow_dissect(NULL, skb, flow_dissector, | 
|  | target_container, NULL, 0, 0, 0, flags); | 
|  | } | 
|  |  | 
|  | static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, | 
|  | struct flow_keys *flow, | 
|  | unsigned int flags) | 
|  | { | 
|  | memset(flow, 0, sizeof(*flow)); | 
|  | return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, | 
|  | flow, NULL, 0, 0, 0, flags); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | skb_flow_dissect_flow_keys_basic(const struct net *net, | 
|  | const struct sk_buff *skb, | 
|  | struct flow_keys_basic *flow, | 
|  | const void *data, __be16 proto, | 
|  | int nhoff, int hlen, unsigned int flags) | 
|  | { | 
|  | memset(flow, 0, sizeof(*flow)); | 
|  | return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, | 
|  | data, proto, nhoff, hlen, flags); | 
|  | } | 
|  |  | 
|  | void skb_flow_dissect_meta(const struct sk_buff *skb, | 
|  | struct flow_dissector *flow_dissector, | 
|  | void *target_container); | 
|  |  | 
|  | /* Gets a skb connection tracking info, ctinfo map should be a | 
|  | * map of mapsize to translate enum ip_conntrack_info states | 
|  | * to user states. | 
|  | */ | 
|  | void | 
|  | skb_flow_dissect_ct(const struct sk_buff *skb, | 
|  | struct flow_dissector *flow_dissector, | 
|  | void *target_container, | 
|  | u16 *ctinfo_map, size_t mapsize, | 
|  | bool post_ct, u16 zone); | 
|  | void | 
|  | skb_flow_dissect_tunnel_info(const struct sk_buff *skb, | 
|  | struct flow_dissector *flow_dissector, | 
|  | void *target_container); | 
|  |  | 
|  | void skb_flow_dissect_hash(const struct sk_buff *skb, | 
|  | struct flow_dissector *flow_dissector, | 
|  | void *target_container); | 
|  |  | 
|  | static inline __u32 skb_get_hash(struct sk_buff *skb) | 
|  | { | 
|  | if (!skb->l4_hash && !skb->sw_hash) | 
|  | __skb_get_hash(skb); | 
|  |  | 
|  | return skb->hash; | 
|  | } | 
|  |  | 
|  | static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) | 
|  | { | 
|  | if (!skb->l4_hash && !skb->sw_hash) { | 
|  | struct flow_keys keys; | 
|  | __u32 hash = __get_hash_from_flowi6(fl6, &keys); | 
|  |  | 
|  | __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); | 
|  | } | 
|  |  | 
|  | return skb->hash; | 
|  | } | 
|  |  | 
|  | __u32 skb_get_hash_perturb(const struct sk_buff *skb, | 
|  | const siphash_key_t *perturb); | 
|  |  | 
|  | static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->hash; | 
|  | } | 
|  |  | 
|  | static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) | 
|  | { | 
|  | to->hash = from->hash; | 
|  | to->sw_hash = from->sw_hash; | 
|  | to->l4_hash = from->l4_hash; | 
|  | }; | 
|  |  | 
|  | static inline int skb_cmp_decrypted(const struct sk_buff *skb1, | 
|  | const struct sk_buff *skb2) | 
|  | { | 
|  | #ifdef CONFIG_TLS_DEVICE | 
|  | return skb2->decrypted - skb1->decrypted; | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void skb_copy_decrypted(struct sk_buff *to, | 
|  | const struct sk_buff *from) | 
|  | { | 
|  | #ifdef CONFIG_TLS_DEVICE | 
|  | to->decrypted = from->decrypted; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef NET_SKBUFF_DATA_USES_OFFSET | 
|  | static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->head + skb->end; | 
|  | } | 
|  |  | 
|  | static inline unsigned int skb_end_offset(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->end; | 
|  | } | 
|  |  | 
|  | static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) | 
|  | { | 
|  | skb->end = offset; | 
|  | } | 
|  | #else | 
|  | static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->end; | 
|  | } | 
|  |  | 
|  | static inline unsigned int skb_end_offset(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->end - skb->head; | 
|  | } | 
|  |  | 
|  | static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) | 
|  | { | 
|  | skb->end = skb->head + offset; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, | 
|  | struct ubuf_info *uarg); | 
|  |  | 
|  | void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); | 
|  |  | 
|  | void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, | 
|  | bool success); | 
|  |  | 
|  | int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk, | 
|  | struct sk_buff *skb, struct iov_iter *from, | 
|  | size_t length); | 
|  |  | 
|  | static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb, | 
|  | struct msghdr *msg, int len) | 
|  | { | 
|  | return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len); | 
|  | } | 
|  |  | 
|  | int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, | 
|  | struct msghdr *msg, int len, | 
|  | struct ubuf_info *uarg); | 
|  |  | 
|  | int skb_devmem_iter_stream(struct sock *sk, struct sk_buff *skb, | 
|  | struct msghdr *msg, struct iov_iter *iov_iter, int len, | 
|  | struct ubuf_info *uarg); | 
|  |  | 
|  | /* Internal */ | 
|  | #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB))) | 
|  |  | 
|  | static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) | 
|  | { | 
|  | return &skb_shinfo(skb)->hwtstamps; | 
|  | } | 
|  |  | 
|  | static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) | 
|  | { | 
|  | bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; | 
|  |  | 
|  | return is_zcopy ? skb_uarg(skb) : NULL; | 
|  | } | 
|  |  | 
|  | static inline bool skb_zcopy_pure(const struct sk_buff *skb) | 
|  | { | 
|  | return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; | 
|  | } | 
|  |  | 
|  | static inline bool skb_zcopy_managed(const struct sk_buff *skb) | 
|  | { | 
|  | return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS; | 
|  | } | 
|  |  | 
|  | static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, | 
|  | const struct sk_buff *skb2) | 
|  | { | 
|  | return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); | 
|  | } | 
|  |  | 
|  | static inline void net_zcopy_get(struct ubuf_info *uarg) | 
|  | { | 
|  | refcount_inc(&uarg->refcnt); | 
|  | } | 
|  |  | 
|  | static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) | 
|  | { | 
|  | skb_shinfo(skb)->destructor_arg = uarg; | 
|  | skb_shinfo(skb)->flags |= uarg->flags; | 
|  | } | 
|  |  | 
|  | static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, | 
|  | bool *have_ref) | 
|  | { | 
|  | if (skb && uarg && !skb_zcopy(skb)) { | 
|  | if (unlikely(have_ref && *have_ref)) | 
|  | *have_ref = false; | 
|  | else | 
|  | net_zcopy_get(uarg); | 
|  | skb_zcopy_init(skb, uarg); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) | 
|  | { | 
|  | skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); | 
|  | skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; | 
|  | } | 
|  |  | 
|  | static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) | 
|  | { | 
|  | return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; | 
|  | } | 
|  |  | 
|  | static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) | 
|  | { | 
|  | return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); | 
|  | } | 
|  |  | 
|  | static inline void net_zcopy_put(struct ubuf_info *uarg) | 
|  | { | 
|  | if (uarg) | 
|  | uarg->callback(NULL, uarg, true); | 
|  | } | 
|  |  | 
|  | static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) | 
|  | { | 
|  | if (uarg) { | 
|  | if (uarg->callback == msg_zerocopy_callback) | 
|  | msg_zerocopy_put_abort(uarg, have_uref); | 
|  | else if (have_uref) | 
|  | net_zcopy_put(uarg); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Release a reference on a zerocopy structure */ | 
|  | static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) | 
|  | { | 
|  | struct ubuf_info *uarg = skb_zcopy(skb); | 
|  |  | 
|  | if (uarg) { | 
|  | if (!skb_zcopy_is_nouarg(skb)) | 
|  | uarg->callback(skb, uarg, zerocopy_success); | 
|  |  | 
|  | skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; | 
|  | } | 
|  | } | 
|  |  | 
|  | void __skb_zcopy_downgrade_managed(struct sk_buff *skb); | 
|  |  | 
|  | static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb) | 
|  | { | 
|  | if (unlikely(skb_zcopy_managed(skb))) | 
|  | __skb_zcopy_downgrade_managed(skb); | 
|  | } | 
|  |  | 
|  | /* Return true if frags in this skb are not readable by the host. */ | 
|  | static inline bool skb_frags_not_readable(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->devmem; | 
|  | } | 
|  |  | 
|  | static inline void skb_mark_not_on_list(struct sk_buff *skb) | 
|  | { | 
|  | skb->next = NULL; | 
|  | } | 
|  |  | 
|  | /* Iterate through singly-linked GSO fragments of an skb. */ | 
|  | #define skb_list_walk_safe(first, skb, next_skb)                               \ | 
|  | for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \ | 
|  | (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) | 
|  |  | 
|  | static inline void skb_list_del_init(struct sk_buff *skb) | 
|  | { | 
|  | __list_del_entry(&skb->list); | 
|  | skb_mark_not_on_list(skb); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_queue_empty - check if a queue is empty | 
|  | *	@list: queue head | 
|  | * | 
|  | *	Returns true if the queue is empty, false otherwise. | 
|  | */ | 
|  | static inline int skb_queue_empty(const struct sk_buff_head *list) | 
|  | { | 
|  | return list->next == (const struct sk_buff *) list; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_queue_empty_lockless - check if a queue is empty | 
|  | *	@list: queue head | 
|  | * | 
|  | *	Returns true if the queue is empty, false otherwise. | 
|  | *	This variant can be used in lockless contexts. | 
|  | */ | 
|  | static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) | 
|  | { | 
|  | return READ_ONCE(list->next) == (const struct sk_buff *) list; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | *	skb_queue_is_last - check if skb is the last entry in the queue | 
|  | *	@list: queue head | 
|  | *	@skb: buffer | 
|  | * | 
|  | *	Returns true if @skb is the last buffer on the list. | 
|  | */ | 
|  | static inline bool skb_queue_is_last(const struct sk_buff_head *list, | 
|  | const struct sk_buff *skb) | 
|  | { | 
|  | return skb->next == (const struct sk_buff *) list; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_queue_is_first - check if skb is the first entry in the queue | 
|  | *	@list: queue head | 
|  | *	@skb: buffer | 
|  | * | 
|  | *	Returns true if @skb is the first buffer on the list. | 
|  | */ | 
|  | static inline bool skb_queue_is_first(const struct sk_buff_head *list, | 
|  | const struct sk_buff *skb) | 
|  | { | 
|  | return skb->prev == (const struct sk_buff *) list; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_queue_next - return the next packet in the queue | 
|  | *	@list: queue head | 
|  | *	@skb: current buffer | 
|  | * | 
|  | *	Return the next packet in @list after @skb.  It is only valid to | 
|  | *	call this if skb_queue_is_last() evaluates to false. | 
|  | */ | 
|  | static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, | 
|  | const struct sk_buff *skb) | 
|  | { | 
|  | /* This BUG_ON may seem severe, but if we just return then we | 
|  | * are going to dereference garbage. | 
|  | */ | 
|  | BUG_ON(skb_queue_is_last(list, skb)); | 
|  | return skb->next; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_queue_prev - return the prev packet in the queue | 
|  | *	@list: queue head | 
|  | *	@skb: current buffer | 
|  | * | 
|  | *	Return the prev packet in @list before @skb.  It is only valid to | 
|  | *	call this if skb_queue_is_first() evaluates to false. | 
|  | */ | 
|  | static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, | 
|  | const struct sk_buff *skb) | 
|  | { | 
|  | /* This BUG_ON may seem severe, but if we just return then we | 
|  | * are going to dereference garbage. | 
|  | */ | 
|  | BUG_ON(skb_queue_is_first(list, skb)); | 
|  | return skb->prev; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_get - reference buffer | 
|  | *	@skb: buffer to reference | 
|  | * | 
|  | *	Makes another reference to a socket buffer and returns a pointer | 
|  | *	to the buffer. | 
|  | */ | 
|  | static inline struct sk_buff *skb_get(struct sk_buff *skb) | 
|  | { | 
|  | refcount_inc(&skb->users); | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If users == 1, we are the only owner and can avoid redundant atomic changes. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | *	skb_cloned - is the buffer a clone | 
|  | *	@skb: buffer to check | 
|  | * | 
|  | *	Returns true if the buffer was generated with skb_clone() and is | 
|  | *	one of multiple shared copies of the buffer. Cloned buffers are | 
|  | *	shared data so must not be written to under normal circumstances. | 
|  | */ | 
|  | static inline int skb_cloned(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->cloned && | 
|  | (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; | 
|  | } | 
|  |  | 
|  | static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) | 
|  | { | 
|  | might_sleep_if(gfpflags_allow_blocking(pri)); | 
|  |  | 
|  | if (skb_cloned(skb)) | 
|  | return pskb_expand_head(skb, 0, 0, pri); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* This variant of skb_unclone() makes sure skb->truesize | 
|  | * and skb_end_offset() are not changed, whenever a new skb->head is needed. | 
|  | * | 
|  | * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) | 
|  | * when various debugging features are in place. | 
|  | */ | 
|  | int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); | 
|  | static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) | 
|  | { | 
|  | might_sleep_if(gfpflags_allow_blocking(pri)); | 
|  |  | 
|  | if (skb_cloned(skb)) | 
|  | return __skb_unclone_keeptruesize(skb, pri); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_header_cloned - is the header a clone | 
|  | *	@skb: buffer to check | 
|  | * | 
|  | *	Returns true if modifying the header part of the buffer requires | 
|  | *	the data to be copied. | 
|  | */ | 
|  | static inline int skb_header_cloned(const struct sk_buff *skb) | 
|  | { | 
|  | int dataref; | 
|  |  | 
|  | if (!skb->cloned) | 
|  | return 0; | 
|  |  | 
|  | dataref = atomic_read(&skb_shinfo(skb)->dataref); | 
|  | dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); | 
|  | return dataref != 1; | 
|  | } | 
|  |  | 
|  | static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) | 
|  | { | 
|  | might_sleep_if(gfpflags_allow_blocking(pri)); | 
|  |  | 
|  | if (skb_header_cloned(skb)) | 
|  | return pskb_expand_head(skb, 0, 0, pri); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __skb_header_release() - allow clones to use the headroom | 
|  | * @skb: buffer to operate on | 
|  | * | 
|  | * See "DOC: dataref and headerless skbs". | 
|  | */ | 
|  | static inline void __skb_header_release(struct sk_buff *skb) | 
|  | { | 
|  | skb->nohdr = 1; | 
|  | atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | *	skb_shared - is the buffer shared | 
|  | *	@skb: buffer to check | 
|  | * | 
|  | *	Returns true if more than one person has a reference to this | 
|  | *	buffer. | 
|  | */ | 
|  | static inline int skb_shared(const struct sk_buff *skb) | 
|  | { | 
|  | return refcount_read(&skb->users) != 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_share_check - check if buffer is shared and if so clone it | 
|  | *	@skb: buffer to check | 
|  | *	@pri: priority for memory allocation | 
|  | * | 
|  | *	If the buffer is shared the buffer is cloned and the old copy | 
|  | *	drops a reference. A new clone with a single reference is returned. | 
|  | *	If the buffer is not shared the original buffer is returned. When | 
|  | *	being called from interrupt status or with spinlocks held pri must | 
|  | *	be GFP_ATOMIC. | 
|  | * | 
|  | *	NULL is returned on a memory allocation failure. | 
|  | */ | 
|  | static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) | 
|  | { | 
|  | might_sleep_if(gfpflags_allow_blocking(pri)); | 
|  | if (skb_shared(skb)) { | 
|  | struct sk_buff *nskb = skb_clone(skb, pri); | 
|  |  | 
|  | if (likely(nskb)) | 
|  | consume_skb(skb); | 
|  | else | 
|  | kfree_skb(skb); | 
|  | skb = nskb; | 
|  | } | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Copy shared buffers into a new sk_buff. We effectively do COW on | 
|  | *	packets to handle cases where we have a local reader and forward | 
|  | *	and a couple of other messy ones. The normal one is tcpdumping | 
|  | *	a packet thats being forwarded. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | *	skb_unshare - make a copy of a shared buffer | 
|  | *	@skb: buffer to check | 
|  | *	@pri: priority for memory allocation | 
|  | * | 
|  | *	If the socket buffer is a clone then this function creates a new | 
|  | *	copy of the data, drops a reference count on the old copy and returns | 
|  | *	the new copy with the reference count at 1. If the buffer is not a clone | 
|  | *	the original buffer is returned. When called with a spinlock held or | 
|  | *	from interrupt state @pri must be %GFP_ATOMIC | 
|  | * | 
|  | *	%NULL is returned on a memory allocation failure. | 
|  | */ | 
|  | static inline struct sk_buff *skb_unshare(struct sk_buff *skb, | 
|  | gfp_t pri) | 
|  | { | 
|  | might_sleep_if(gfpflags_allow_blocking(pri)); | 
|  | if (skb_cloned(skb)) { | 
|  | struct sk_buff *nskb = skb_copy(skb, pri); | 
|  |  | 
|  | /* Free our shared copy */ | 
|  | if (likely(nskb)) | 
|  | consume_skb(skb); | 
|  | else | 
|  | kfree_skb(skb); | 
|  | skb = nskb; | 
|  | } | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_peek - peek at the head of an &sk_buff_head | 
|  | *	@list_: list to peek at | 
|  | * | 
|  | *	Peek an &sk_buff. Unlike most other operations you _MUST_ | 
|  | *	be careful with this one. A peek leaves the buffer on the | 
|  | *	list and someone else may run off with it. You must hold | 
|  | *	the appropriate locks or have a private queue to do this. | 
|  | * | 
|  | *	Returns %NULL for an empty list or a pointer to the head element. | 
|  | *	The reference count is not incremented and the reference is therefore | 
|  | *	volatile. Use with caution. | 
|  | */ | 
|  | static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) | 
|  | { | 
|  | struct sk_buff *skb = list_->next; | 
|  |  | 
|  | if (skb == (struct sk_buff *)list_) | 
|  | skb = NULL; | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__skb_peek - peek at the head of a non-empty &sk_buff_head | 
|  | *	@list_: list to peek at | 
|  | * | 
|  | *	Like skb_peek(), but the caller knows that the list is not empty. | 
|  | */ | 
|  | static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) | 
|  | { | 
|  | return list_->next; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_peek_next - peek skb following the given one from a queue | 
|  | *	@skb: skb to start from | 
|  | *	@list_: list to peek at | 
|  | * | 
|  | *	Returns %NULL when the end of the list is met or a pointer to the | 
|  | *	next element. The reference count is not incremented and the | 
|  | *	reference is therefore volatile. Use with caution. | 
|  | */ | 
|  | static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, | 
|  | const struct sk_buff_head *list_) | 
|  | { | 
|  | struct sk_buff *next = skb->next; | 
|  |  | 
|  | if (next == (struct sk_buff *)list_) | 
|  | next = NULL; | 
|  | return next; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_peek_tail - peek at the tail of an &sk_buff_head | 
|  | *	@list_: list to peek at | 
|  | * | 
|  | *	Peek an &sk_buff. Unlike most other operations you _MUST_ | 
|  | *	be careful with this one. A peek leaves the buffer on the | 
|  | *	list and someone else may run off with it. You must hold | 
|  | *	the appropriate locks or have a private queue to do this. | 
|  | * | 
|  | *	Returns %NULL for an empty list or a pointer to the tail element. | 
|  | *	The reference count is not incremented and the reference is therefore | 
|  | *	volatile. Use with caution. | 
|  | */ | 
|  | static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) | 
|  | { | 
|  | struct sk_buff *skb = READ_ONCE(list_->prev); | 
|  |  | 
|  | if (skb == (struct sk_buff *)list_) | 
|  | skb = NULL; | 
|  | return skb; | 
|  |  | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_queue_len	- get queue length | 
|  | *	@list_: list to measure | 
|  | * | 
|  | *	Return the length of an &sk_buff queue. | 
|  | */ | 
|  | static inline __u32 skb_queue_len(const struct sk_buff_head *list_) | 
|  | { | 
|  | return list_->qlen; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_queue_len_lockless	- get queue length | 
|  | *	@list_: list to measure | 
|  | * | 
|  | *	Return the length of an &sk_buff queue. | 
|  | *	This variant can be used in lockless contexts. | 
|  | */ | 
|  | static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) | 
|  | { | 
|  | return READ_ONCE(list_->qlen); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head | 
|  | *	@list: queue to initialize | 
|  | * | 
|  | *	This initializes only the list and queue length aspects of | 
|  | *	an sk_buff_head object.  This allows to initialize the list | 
|  | *	aspects of an sk_buff_head without reinitializing things like | 
|  | *	the spinlock.  It can also be used for on-stack sk_buff_head | 
|  | *	objects where the spinlock is known to not be used. | 
|  | */ | 
|  | static inline void __skb_queue_head_init(struct sk_buff_head *list) | 
|  | { | 
|  | list->prev = list->next = (struct sk_buff *)list; | 
|  | list->qlen = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function creates a split out lock class for each invocation; | 
|  | * this is needed for now since a whole lot of users of the skb-queue | 
|  | * infrastructure in drivers have different locking usage (in hardirq) | 
|  | * than the networking core (in softirq only). In the long run either the | 
|  | * network layer or drivers should need annotation to consolidate the | 
|  | * main types of usage into 3 classes. | 
|  | */ | 
|  | static inline void skb_queue_head_init(struct sk_buff_head *list) | 
|  | { | 
|  | spin_lock_init(&list->lock); | 
|  | __skb_queue_head_init(list); | 
|  | } | 
|  |  | 
|  | static inline void skb_queue_head_init_class(struct sk_buff_head *list, | 
|  | struct lock_class_key *class) | 
|  | { | 
|  | skb_queue_head_init(list); | 
|  | lockdep_set_class(&list->lock, class); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Insert an sk_buff on a list. | 
|  | * | 
|  | *	The "__skb_xxxx()" functions are the non-atomic ones that | 
|  | *	can only be called with interrupts disabled. | 
|  | */ | 
|  | static inline void __skb_insert(struct sk_buff *newsk, | 
|  | struct sk_buff *prev, struct sk_buff *next, | 
|  | struct sk_buff_head *list) | 
|  | { | 
|  | /* See skb_queue_empty_lockless() and skb_peek_tail() | 
|  | * for the opposite READ_ONCE() | 
|  | */ | 
|  | WRITE_ONCE(newsk->next, next); | 
|  | WRITE_ONCE(newsk->prev, prev); | 
|  | WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); | 
|  | WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); | 
|  | WRITE_ONCE(list->qlen, list->qlen + 1); | 
|  | } | 
|  |  | 
|  | static inline void __skb_queue_splice(const struct sk_buff_head *list, | 
|  | struct sk_buff *prev, | 
|  | struct sk_buff *next) | 
|  | { | 
|  | struct sk_buff *first = list->next; | 
|  | struct sk_buff *last = list->prev; | 
|  |  | 
|  | WRITE_ONCE(first->prev, prev); | 
|  | WRITE_ONCE(prev->next, first); | 
|  |  | 
|  | WRITE_ONCE(last->next, next); | 
|  | WRITE_ONCE(next->prev, last); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_queue_splice - join two skb lists, this is designed for stacks | 
|  | *	@list: the new list to add | 
|  | *	@head: the place to add it in the first list | 
|  | */ | 
|  | static inline void skb_queue_splice(const struct sk_buff_head *list, | 
|  | struct sk_buff_head *head) | 
|  | { | 
|  | if (!skb_queue_empty(list)) { | 
|  | __skb_queue_splice(list, (struct sk_buff *) head, head->next); | 
|  | head->qlen += list->qlen; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list | 
|  | *	@list: the new list to add | 
|  | *	@head: the place to add it in the first list | 
|  | * | 
|  | *	The list at @list is reinitialised | 
|  | */ | 
|  | static inline void skb_queue_splice_init(struct sk_buff_head *list, | 
|  | struct sk_buff_head *head) | 
|  | { | 
|  | if (!skb_queue_empty(list)) { | 
|  | __skb_queue_splice(list, (struct sk_buff *) head, head->next); | 
|  | head->qlen += list->qlen; | 
|  | __skb_queue_head_init(list); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_queue_splice_tail - join two skb lists, each list being a queue | 
|  | *	@list: the new list to add | 
|  | *	@head: the place to add it in the first list | 
|  | */ | 
|  | static inline void skb_queue_splice_tail(const struct sk_buff_head *list, | 
|  | struct sk_buff_head *head) | 
|  | { | 
|  | if (!skb_queue_empty(list)) { | 
|  | __skb_queue_splice(list, head->prev, (struct sk_buff *) head); | 
|  | head->qlen += list->qlen; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list | 
|  | *	@list: the new list to add | 
|  | *	@head: the place to add it in the first list | 
|  | * | 
|  | *	Each of the lists is a queue. | 
|  | *	The list at @list is reinitialised | 
|  | */ | 
|  | static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, | 
|  | struct sk_buff_head *head) | 
|  | { | 
|  | if (!skb_queue_empty(list)) { | 
|  | __skb_queue_splice(list, head->prev, (struct sk_buff *) head); | 
|  | head->qlen += list->qlen; | 
|  | __skb_queue_head_init(list); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__skb_queue_after - queue a buffer at the list head | 
|  | *	@list: list to use | 
|  | *	@prev: place after this buffer | 
|  | *	@newsk: buffer to queue | 
|  | * | 
|  | *	Queue a buffer int the middle of a list. This function takes no locks | 
|  | *	and you must therefore hold required locks before calling it. | 
|  | * | 
|  | *	A buffer cannot be placed on two lists at the same time. | 
|  | */ | 
|  | static inline void __skb_queue_after(struct sk_buff_head *list, | 
|  | struct sk_buff *prev, | 
|  | struct sk_buff *newsk) | 
|  | { | 
|  | __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); | 
|  | } | 
|  |  | 
|  | void skb_append(struct sk_buff *old, struct sk_buff *newsk, | 
|  | struct sk_buff_head *list); | 
|  |  | 
|  | static inline void __skb_queue_before(struct sk_buff_head *list, | 
|  | struct sk_buff *next, | 
|  | struct sk_buff *newsk) | 
|  | { | 
|  | __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__skb_queue_head - queue a buffer at the list head | 
|  | *	@list: list to use | 
|  | *	@newsk: buffer to queue | 
|  | * | 
|  | *	Queue a buffer at the start of a list. This function takes no locks | 
|  | *	and you must therefore hold required locks before calling it. | 
|  | * | 
|  | *	A buffer cannot be placed on two lists at the same time. | 
|  | */ | 
|  | static inline void __skb_queue_head(struct sk_buff_head *list, | 
|  | struct sk_buff *newsk) | 
|  | { | 
|  | __skb_queue_after(list, (struct sk_buff *)list, newsk); | 
|  | } | 
|  | void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); | 
|  |  | 
|  | /** | 
|  | *	__skb_queue_tail - queue a buffer at the list tail | 
|  | *	@list: list to use | 
|  | *	@newsk: buffer to queue | 
|  | * | 
|  | *	Queue a buffer at the end of a list. This function takes no locks | 
|  | *	and you must therefore hold required locks before calling it. | 
|  | * | 
|  | *	A buffer cannot be placed on two lists at the same time. | 
|  | */ | 
|  | static inline void __skb_queue_tail(struct sk_buff_head *list, | 
|  | struct sk_buff *newsk) | 
|  | { | 
|  | __skb_queue_before(list, (struct sk_buff *)list, newsk); | 
|  | } | 
|  | void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); | 
|  |  | 
|  | /* | 
|  | * remove sk_buff from list. _Must_ be called atomically, and with | 
|  | * the list known.. | 
|  | */ | 
|  | void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); | 
|  | static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) | 
|  | { | 
|  | struct sk_buff *next, *prev; | 
|  |  | 
|  | WRITE_ONCE(list->qlen, list->qlen - 1); | 
|  | next	   = skb->next; | 
|  | prev	   = skb->prev; | 
|  | skb->next  = skb->prev = NULL; | 
|  | WRITE_ONCE(next->prev, prev); | 
|  | WRITE_ONCE(prev->next, next); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__skb_dequeue - remove from the head of the queue | 
|  | *	@list: list to dequeue from | 
|  | * | 
|  | *	Remove the head of the list. This function does not take any locks | 
|  | *	so must be used with appropriate locks held only. The head item is | 
|  | *	returned or %NULL if the list is empty. | 
|  | */ | 
|  | static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) | 
|  | { | 
|  | struct sk_buff *skb = skb_peek(list); | 
|  | if (skb) | 
|  | __skb_unlink(skb, list); | 
|  | return skb; | 
|  | } | 
|  | struct sk_buff *skb_dequeue(struct sk_buff_head *list); | 
|  |  | 
|  | /** | 
|  | *	__skb_dequeue_tail - remove from the tail of the queue | 
|  | *	@list: list to dequeue from | 
|  | * | 
|  | *	Remove the tail of the list. This function does not take any locks | 
|  | *	so must be used with appropriate locks held only. The tail item is | 
|  | *	returned or %NULL if the list is empty. | 
|  | */ | 
|  | static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) | 
|  | { | 
|  | struct sk_buff *skb = skb_peek_tail(list); | 
|  | if (skb) | 
|  | __skb_unlink(skb, list); | 
|  | return skb; | 
|  | } | 
|  | struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); | 
|  |  | 
|  |  | 
|  | static inline bool skb_is_nonlinear(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->data_len; | 
|  | } | 
|  |  | 
|  | static inline unsigned int skb_headlen(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->len - skb->data_len; | 
|  | } | 
|  |  | 
|  | static inline unsigned int __skb_pagelen(const struct sk_buff *skb) | 
|  | { | 
|  | unsigned int i, len = 0; | 
|  |  | 
|  | for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) | 
|  | len += skb_frag_size(&skb_shinfo(skb)->frags[i]); | 
|  | return len; | 
|  | } | 
|  |  | 
|  | static inline unsigned int skb_pagelen(const struct sk_buff *skb) | 
|  | { | 
|  | return skb_headlen(skb) + __skb_pagelen(skb); | 
|  | } | 
|  |  | 
|  | static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo, | 
|  | int i, struct page *page, | 
|  | int off, int size) | 
|  | { | 
|  | skb_frag_t *frag = &shinfo->frags[i]; | 
|  |  | 
|  | /* | 
|  | * Propagate page pfmemalloc to the skb if we can. The problem is | 
|  | * that not all callers have unique ownership of the page but rely | 
|  | * on page_is_pfmemalloc doing the right thing(tm). | 
|  | */ | 
|  | frag->bv_page		  = page; | 
|  | frag->bv_offset		  = off; | 
|  | skb_frag_size_set(frag, size); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_len_add - adds a number to len fields of skb | 
|  | * @skb: buffer to add len to | 
|  | * @delta: number of bytes to add | 
|  | */ | 
|  | static inline void skb_len_add(struct sk_buff *skb, int delta) | 
|  | { | 
|  | skb->len += delta; | 
|  | skb->data_len += delta; | 
|  | skb->truesize += delta; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __skb_fill_page_desc - initialise a paged fragment in an skb | 
|  | * @skb: buffer containing fragment to be initialised | 
|  | * @i: paged fragment index to initialise | 
|  | * @page: the page to use for this fragment | 
|  | * @off: the offset to the data with @page | 
|  | * @size: the length of the data | 
|  | * | 
|  | * Initialises the @i'th fragment of @skb to point to &size bytes at | 
|  | * offset @off within @page. | 
|  | * | 
|  | * Does not take any additional reference on the fragment. | 
|  | */ | 
|  | static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, | 
|  | struct page *page, int off, int size) | 
|  | { | 
|  | __skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size); | 
|  | page = compound_head(page); | 
|  | if (page_is_pfmemalloc(page)) | 
|  | skb->pfmemalloc	= true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_fill_page_desc - initialise a paged fragment in an skb | 
|  | * @skb: buffer containing fragment to be initialised | 
|  | * @i: paged fragment index to initialise | 
|  | * @page: the page to use for this fragment | 
|  | * @off: the offset to the data with @page | 
|  | * @size: the length of the data | 
|  | * | 
|  | * As per __skb_fill_page_desc() -- initialises the @i'th fragment of | 
|  | * @skb to point to @size bytes at offset @off within @page. In | 
|  | * addition updates @skb such that @i is the last fragment. | 
|  | * | 
|  | * Does not take any additional reference on the fragment. | 
|  | */ | 
|  | static inline void skb_fill_page_desc(struct sk_buff *skb, int i, | 
|  | struct page *page, int off, int size) | 
|  | { | 
|  | __skb_fill_page_desc(skb, i, page, off, size); | 
|  | skb_shinfo(skb)->nr_frags = i + 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_fill_page_desc_noacc - initialise a paged fragment in an skb | 
|  | * @skb: buffer containing fragment to be initialised | 
|  | * @i: paged fragment index to initialise | 
|  | * @page: the page to use for this fragment | 
|  | * @off: the offset to the data with @page | 
|  | * @size: the length of the data | 
|  | * | 
|  | * Variant of skb_fill_page_desc() which does not deal with | 
|  | * pfmemalloc, if page is not owned by us. | 
|  | */ | 
|  | static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i, | 
|  | struct page *page, int off, | 
|  | int size) | 
|  | { | 
|  | struct skb_shared_info *shinfo = skb_shinfo(skb); | 
|  |  | 
|  | __skb_fill_page_desc_noacc(shinfo, i, page, off, size); | 
|  | shinfo->nr_frags = i + 1; | 
|  | } | 
|  |  | 
|  | void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, | 
|  | int size, unsigned int truesize); | 
|  |  | 
|  | void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, | 
|  | unsigned int truesize); | 
|  |  | 
|  | #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb)) | 
|  |  | 
|  | #ifdef NET_SKBUFF_DATA_USES_OFFSET | 
|  | static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->head + skb->tail; | 
|  | } | 
|  |  | 
|  | static inline void skb_reset_tail_pointer(struct sk_buff *skb) | 
|  | { | 
|  | skb->tail = skb->data - skb->head; | 
|  | } | 
|  |  | 
|  | static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) | 
|  | { | 
|  | skb_reset_tail_pointer(skb); | 
|  | skb->tail += offset; | 
|  | } | 
|  |  | 
|  | #else /* NET_SKBUFF_DATA_USES_OFFSET */ | 
|  | static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->tail; | 
|  | } | 
|  |  | 
|  | static inline void skb_reset_tail_pointer(struct sk_buff *skb) | 
|  | { | 
|  | skb->tail = skb->data; | 
|  | } | 
|  |  | 
|  | static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) | 
|  | { | 
|  | skb->tail = skb->data + offset; | 
|  | } | 
|  |  | 
|  | #endif /* NET_SKBUFF_DATA_USES_OFFSET */ | 
|  |  | 
|  | static inline void skb_assert_len(struct sk_buff *skb) | 
|  | { | 
|  | #ifdef CONFIG_DEBUG_NET | 
|  | if (WARN_ONCE(!skb->len, "%s\n", __func__)) | 
|  | DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); | 
|  | #endif /* CONFIG_DEBUG_NET */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Add data to an sk_buff | 
|  | */ | 
|  | void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); | 
|  | void *skb_put(struct sk_buff *skb, unsigned int len); | 
|  | static inline void *__skb_put(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | void *tmp = skb_tail_pointer(skb); | 
|  | SKB_LINEAR_ASSERT(skb); | 
|  | skb->tail += len; | 
|  | skb->len  += len; | 
|  | return tmp; | 
|  | } | 
|  |  | 
|  | static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | void *tmp = __skb_put(skb, len); | 
|  |  | 
|  | memset(tmp, 0, len); | 
|  | return tmp; | 
|  | } | 
|  |  | 
|  | static inline void *__skb_put_data(struct sk_buff *skb, const void *data, | 
|  | unsigned int len) | 
|  | { | 
|  | void *tmp = __skb_put(skb, len); | 
|  |  | 
|  | memcpy(tmp, data, len); | 
|  | return tmp; | 
|  | } | 
|  |  | 
|  | static inline void __skb_put_u8(struct sk_buff *skb, u8 val) | 
|  | { | 
|  | *(u8 *)__skb_put(skb, 1) = val; | 
|  | } | 
|  |  | 
|  | static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | void *tmp = skb_put(skb, len); | 
|  |  | 
|  | memset(tmp, 0, len); | 
|  |  | 
|  | return tmp; | 
|  | } | 
|  |  | 
|  | static inline void *skb_put_data(struct sk_buff *skb, const void *data, | 
|  | unsigned int len) | 
|  | { | 
|  | void *tmp = skb_put(skb, len); | 
|  |  | 
|  | memcpy(tmp, data, len); | 
|  |  | 
|  | return tmp; | 
|  | } | 
|  |  | 
|  | static inline void skb_put_u8(struct sk_buff *skb, u8 val) | 
|  | { | 
|  | *(u8 *)skb_put(skb, 1) = val; | 
|  | } | 
|  |  | 
|  | void *skb_push(struct sk_buff *skb, unsigned int len); | 
|  | static inline void *__skb_push(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | skb->data -= len; | 
|  | skb->len  += len; | 
|  | return skb->data; | 
|  | } | 
|  |  | 
|  | void *skb_pull(struct sk_buff *skb, unsigned int len); | 
|  | static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | skb->len -= len; | 
|  | if (unlikely(skb->len < skb->data_len)) { | 
|  | #if defined(CONFIG_DEBUG_NET) | 
|  | skb->len += len; | 
|  | pr_err("__skb_pull(len=%u)\n", len); | 
|  | skb_dump(KERN_ERR, skb, false); | 
|  | #endif | 
|  | BUG(); | 
|  | } | 
|  | return skb->data += len; | 
|  | } | 
|  |  | 
|  | static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); | 
|  | } | 
|  |  | 
|  | void *skb_pull_data(struct sk_buff *skb, size_t len); | 
|  |  | 
|  | void *__pskb_pull_tail(struct sk_buff *skb, int delta); | 
|  |  | 
|  | static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | if (likely(len <= skb_headlen(skb))) | 
|  | return true; | 
|  | if (unlikely(len > skb->len)) | 
|  | return false; | 
|  | return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; | 
|  | } | 
|  |  | 
|  | static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | if (!pskb_may_pull(skb, len)) | 
|  | return NULL; | 
|  |  | 
|  | skb->len -= len; | 
|  | return skb->data += len; | 
|  | } | 
|  |  | 
|  | void skb_condense(struct sk_buff *skb); | 
|  |  | 
|  | /** | 
|  | *	skb_headroom - bytes at buffer head | 
|  | *	@skb: buffer to check | 
|  | * | 
|  | *	Return the number of bytes of free space at the head of an &sk_buff. | 
|  | */ | 
|  | static inline unsigned int skb_headroom(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->data - skb->head; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_tailroom - bytes at buffer end | 
|  | *	@skb: buffer to check | 
|  | * | 
|  | *	Return the number of bytes of free space at the tail of an sk_buff | 
|  | */ | 
|  | static inline int skb_tailroom(const struct sk_buff *skb) | 
|  | { | 
|  | return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_availroom - bytes at buffer end | 
|  | *	@skb: buffer to check | 
|  | * | 
|  | *	Return the number of bytes of free space at the tail of an sk_buff | 
|  | *	allocated by sk_stream_alloc() | 
|  | */ | 
|  | static inline int skb_availroom(const struct sk_buff *skb) | 
|  | { | 
|  | if (skb_is_nonlinear(skb)) | 
|  | return 0; | 
|  |  | 
|  | return skb->end - skb->tail - skb->reserved_tailroom; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_reserve - adjust headroom | 
|  | *	@skb: buffer to alter | 
|  | *	@len: bytes to move | 
|  | * | 
|  | *	Increase the headroom of an empty &sk_buff by reducing the tail | 
|  | *	room. This is only allowed for an empty buffer. | 
|  | */ | 
|  | static inline void skb_reserve(struct sk_buff *skb, int len) | 
|  | { | 
|  | skb->data += len; | 
|  | skb->tail += len; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_tailroom_reserve - adjust reserved_tailroom | 
|  | *	@skb: buffer to alter | 
|  | *	@mtu: maximum amount of headlen permitted | 
|  | *	@needed_tailroom: minimum amount of reserved_tailroom | 
|  | * | 
|  | *	Set reserved_tailroom so that headlen can be as large as possible but | 
|  | *	not larger than mtu and tailroom cannot be smaller than | 
|  | *	needed_tailroom. | 
|  | *	The required headroom should already have been reserved before using | 
|  | *	this function. | 
|  | */ | 
|  | static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, | 
|  | unsigned int needed_tailroom) | 
|  | { | 
|  | SKB_LINEAR_ASSERT(skb); | 
|  | if (mtu < skb_tailroom(skb) - needed_tailroom) | 
|  | /* use at most mtu */ | 
|  | skb->reserved_tailroom = skb_tailroom(skb) - mtu; | 
|  | else | 
|  | /* use up to all available space */ | 
|  | skb->reserved_tailroom = needed_tailroom; | 
|  | } | 
|  |  | 
|  | #define ENCAP_TYPE_ETHER	0 | 
|  | #define ENCAP_TYPE_IPPROTO	1 | 
|  |  | 
|  | static inline void skb_set_inner_protocol(struct sk_buff *skb, | 
|  | __be16 protocol) | 
|  | { | 
|  | skb->inner_protocol = protocol; | 
|  | skb->inner_protocol_type = ENCAP_TYPE_ETHER; | 
|  | } | 
|  |  | 
|  | static inline void skb_set_inner_ipproto(struct sk_buff *skb, | 
|  | __u8 ipproto) | 
|  | { | 
|  | skb->inner_ipproto = ipproto; | 
|  | skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; | 
|  | } | 
|  |  | 
|  | static inline void skb_reset_inner_headers(struct sk_buff *skb) | 
|  | { | 
|  | skb->inner_mac_header = skb->mac_header; | 
|  | skb->inner_network_header = skb->network_header; | 
|  | skb->inner_transport_header = skb->transport_header; | 
|  | } | 
|  |  | 
|  | static inline void skb_reset_mac_len(struct sk_buff *skb) | 
|  | { | 
|  | skb->mac_len = skb->network_header - skb->mac_header; | 
|  | } | 
|  |  | 
|  | static inline unsigned char *skb_inner_transport_header(const struct sk_buff | 
|  | *skb) | 
|  | { | 
|  | return skb->head + skb->inner_transport_header; | 
|  | } | 
|  |  | 
|  | static inline int skb_inner_transport_offset(const struct sk_buff *skb) | 
|  | { | 
|  | return skb_inner_transport_header(skb) - skb->data; | 
|  | } | 
|  |  | 
|  | static inline void skb_reset_inner_transport_header(struct sk_buff *skb) | 
|  | { | 
|  | skb->inner_transport_header = skb->data - skb->head; | 
|  | } | 
|  |  | 
|  | static inline void skb_set_inner_transport_header(struct sk_buff *skb, | 
|  | const int offset) | 
|  | { | 
|  | skb_reset_inner_transport_header(skb); | 
|  | skb->inner_transport_header += offset; | 
|  | } | 
|  |  | 
|  | static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->head + skb->inner_network_header; | 
|  | } | 
|  |  | 
|  | static inline void skb_reset_inner_network_header(struct sk_buff *skb) | 
|  | { | 
|  | skb->inner_network_header = skb->data - skb->head; | 
|  | } | 
|  |  | 
|  | static inline void skb_set_inner_network_header(struct sk_buff *skb, | 
|  | const int offset) | 
|  | { | 
|  | skb_reset_inner_network_header(skb); | 
|  | skb->inner_network_header += offset; | 
|  | } | 
|  |  | 
|  | static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->head + skb->inner_mac_header; | 
|  | } | 
|  |  | 
|  | static inline void skb_reset_inner_mac_header(struct sk_buff *skb) | 
|  | { | 
|  | skb->inner_mac_header = skb->data - skb->head; | 
|  | } | 
|  |  | 
|  | static inline void skb_set_inner_mac_header(struct sk_buff *skb, | 
|  | const int offset) | 
|  | { | 
|  | skb_reset_inner_mac_header(skb); | 
|  | skb->inner_mac_header += offset; | 
|  | } | 
|  | static inline bool skb_transport_header_was_set(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->transport_header != (typeof(skb->transport_header))~0U; | 
|  | } | 
|  |  | 
|  | static inline unsigned char *skb_transport_header(const struct sk_buff *skb) | 
|  | { | 
|  | DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); | 
|  | return skb->head + skb->transport_header; | 
|  | } | 
|  |  | 
|  | static inline void skb_reset_transport_header(struct sk_buff *skb) | 
|  | { | 
|  | skb->transport_header = skb->data - skb->head; | 
|  | } | 
|  |  | 
|  | static inline void skb_set_transport_header(struct sk_buff *skb, | 
|  | const int offset) | 
|  | { | 
|  | skb_reset_transport_header(skb); | 
|  | skb->transport_header += offset; | 
|  | } | 
|  |  | 
|  | static inline unsigned char *skb_network_header(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->head + skb->network_header; | 
|  | } | 
|  |  | 
|  | static inline void skb_reset_network_header(struct sk_buff *skb) | 
|  | { | 
|  | skb->network_header = skb->data - skb->head; | 
|  | } | 
|  |  | 
|  | static inline void skb_set_network_header(struct sk_buff *skb, const int offset) | 
|  | { | 
|  | skb_reset_network_header(skb); | 
|  | skb->network_header += offset; | 
|  | } | 
|  |  | 
|  | static inline int skb_mac_header_was_set(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->mac_header != (typeof(skb->mac_header))~0U; | 
|  | } | 
|  |  | 
|  | static inline unsigned char *skb_mac_header(const struct sk_buff *skb) | 
|  | { | 
|  | DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); | 
|  | return skb->head + skb->mac_header; | 
|  | } | 
|  |  | 
|  | static inline int skb_mac_offset(const struct sk_buff *skb) | 
|  | { | 
|  | return skb_mac_header(skb) - skb->data; | 
|  | } | 
|  |  | 
|  | static inline u32 skb_mac_header_len(const struct sk_buff *skb) | 
|  | { | 
|  | DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); | 
|  | return skb->network_header - skb->mac_header; | 
|  | } | 
|  |  | 
|  | static inline void skb_unset_mac_header(struct sk_buff *skb) | 
|  | { | 
|  | skb->mac_header = (typeof(skb->mac_header))~0U; | 
|  | } | 
|  |  | 
|  | static inline void skb_reset_mac_header(struct sk_buff *skb) | 
|  | { | 
|  | skb->mac_header = skb->data - skb->head; | 
|  | } | 
|  |  | 
|  | static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) | 
|  | { | 
|  | skb_reset_mac_header(skb); | 
|  | skb->mac_header += offset; | 
|  | } | 
|  |  | 
|  | static inline void skb_pop_mac_header(struct sk_buff *skb) | 
|  | { | 
|  | skb->mac_header = skb->network_header; | 
|  | } | 
|  |  | 
|  | static inline void skb_probe_transport_header(struct sk_buff *skb) | 
|  | { | 
|  | struct flow_keys_basic keys; | 
|  |  | 
|  | if (skb_transport_header_was_set(skb)) | 
|  | return; | 
|  |  | 
|  | if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, | 
|  | NULL, 0, 0, 0, 0)) | 
|  | skb_set_transport_header(skb, keys.control.thoff); | 
|  | } | 
|  |  | 
|  | static inline void skb_mac_header_rebuild(struct sk_buff *skb) | 
|  | { | 
|  | if (skb_mac_header_was_set(skb)) { | 
|  | const unsigned char *old_mac = skb_mac_header(skb); | 
|  |  | 
|  | skb_set_mac_header(skb, -skb->mac_len); | 
|  | memmove(skb_mac_header(skb), old_mac, skb->mac_len); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int skb_checksum_start_offset(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->csum_start - skb_headroom(skb); | 
|  | } | 
|  |  | 
|  | static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->head + skb->csum_start; | 
|  | } | 
|  |  | 
|  | static inline int skb_transport_offset(const struct sk_buff *skb) | 
|  | { | 
|  | return skb_transport_header(skb) - skb->data; | 
|  | } | 
|  |  | 
|  | static inline u32 skb_network_header_len(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->transport_header - skb->network_header; | 
|  | } | 
|  |  | 
|  | static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->inner_transport_header - skb->inner_network_header; | 
|  | } | 
|  |  | 
|  | static inline int skb_network_offset(const struct sk_buff *skb) | 
|  | { | 
|  | return skb_network_header(skb) - skb->data; | 
|  | } | 
|  |  | 
|  | static inline int skb_inner_network_offset(const struct sk_buff *skb) | 
|  | { | 
|  | return skb_inner_network_header(skb) - skb->data; | 
|  | } | 
|  |  | 
|  | static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | return pskb_may_pull(skb, skb_network_offset(skb) + len); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * CPUs often take a performance hit when accessing unaligned memory | 
|  | * locations. The actual performance hit varies, it can be small if the | 
|  | * hardware handles it or large if we have to take an exception and fix it | 
|  | * in software. | 
|  | * | 
|  | * Since an ethernet header is 14 bytes network drivers often end up with | 
|  | * the IP header at an unaligned offset. The IP header can be aligned by | 
|  | * shifting the start of the packet by 2 bytes. Drivers should do this | 
|  | * with: | 
|  | * | 
|  | * skb_reserve(skb, NET_IP_ALIGN); | 
|  | * | 
|  | * The downside to this alignment of the IP header is that the DMA is now | 
|  | * unaligned. On some architectures the cost of an unaligned DMA is high | 
|  | * and this cost outweighs the gains made by aligning the IP header. | 
|  | * | 
|  | * Since this trade off varies between architectures, we allow NET_IP_ALIGN | 
|  | * to be overridden. | 
|  | */ | 
|  | #ifndef NET_IP_ALIGN | 
|  | #define NET_IP_ALIGN	2 | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * The networking layer reserves some headroom in skb data (via | 
|  | * dev_alloc_skb). This is used to avoid having to reallocate skb data when | 
|  | * the header has to grow. In the default case, if the header has to grow | 
|  | * 32 bytes or less we avoid the reallocation. | 
|  | * | 
|  | * Unfortunately this headroom changes the DMA alignment of the resulting | 
|  | * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive | 
|  | * on some architectures. An architecture can override this value, | 
|  | * perhaps setting it to a cacheline in size (since that will maintain | 
|  | * cacheline alignment of the DMA). It must be a power of 2. | 
|  | * | 
|  | * Various parts of the networking layer expect at least 32 bytes of | 
|  | * headroom, you should not reduce this. | 
|  | * | 
|  | * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) | 
|  | * to reduce average number of cache lines per packet. | 
|  | * get_rps_cpu() for example only access one 64 bytes aligned block : | 
|  | * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) | 
|  | */ | 
|  | #ifndef NET_SKB_PAD | 
|  | #define NET_SKB_PAD	max(32, L1_CACHE_BYTES) | 
|  | #endif | 
|  |  | 
|  | int ___pskb_trim(struct sk_buff *skb, unsigned int len); | 
|  |  | 
|  | static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | if (WARN_ON(skb_is_nonlinear(skb))) | 
|  | return; | 
|  | skb->len = len; | 
|  | skb_set_tail_pointer(skb, len); | 
|  | } | 
|  |  | 
|  | static inline void __skb_trim(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | __skb_set_length(skb, len); | 
|  | } | 
|  |  | 
|  | void skb_trim(struct sk_buff *skb, unsigned int len); | 
|  |  | 
|  | static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | if (skb->data_len) | 
|  | return ___pskb_trim(skb, len); | 
|  | __skb_trim(skb, len); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int pskb_trim(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | return (len < skb->len) ? __pskb_trim(skb, len) : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer | 
|  | *	@skb: buffer to alter | 
|  | *	@len: new length | 
|  | * | 
|  | *	This is identical to pskb_trim except that the caller knows that | 
|  | *	the skb is not cloned so we should never get an error due to out- | 
|  | *	of-memory. | 
|  | */ | 
|  | static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | int err = pskb_trim(skb, len); | 
|  | BUG_ON(err); | 
|  | } | 
|  |  | 
|  | static inline int __skb_grow(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | unsigned int diff = len - skb->len; | 
|  |  | 
|  | if (skb_tailroom(skb) < diff) { | 
|  | int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), | 
|  | GFP_ATOMIC); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | __skb_set_length(skb, len); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_orphan - orphan a buffer | 
|  | *	@skb: buffer to orphan | 
|  | * | 
|  | *	If a buffer currently has an owner then we call the owner's | 
|  | *	destructor function and make the @skb unowned. The buffer continues | 
|  | *	to exist but is no longer charged to its former owner. | 
|  | */ | 
|  | static inline void skb_orphan(struct sk_buff *skb) | 
|  | { | 
|  | if (skb->destructor) { | 
|  | skb->destructor(skb); | 
|  | skb->destructor = NULL; | 
|  | skb->sk		= NULL; | 
|  | } else { | 
|  | BUG_ON(skb->sk); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_orphan_frags - orphan the frags contained in a buffer | 
|  | *	@skb: buffer to orphan frags from | 
|  | *	@gfp_mask: allocation mask for replacement pages | 
|  | * | 
|  | *	For each frag in the SKB which needs a destructor (i.e. has an | 
|  | *	owner) create a copy of that frag and release the original | 
|  | *	page by calling the destructor. | 
|  | */ | 
|  | static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) | 
|  | { | 
|  | if (likely(!skb_zcopy(skb))) | 
|  | return 0; | 
|  | if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN) | 
|  | return 0; | 
|  | return skb_copy_ubufs(skb, gfp_mask); | 
|  | } | 
|  |  | 
|  | /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ | 
|  | static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) | 
|  | { | 
|  | if (likely(!skb_zcopy(skb))) | 
|  | return 0; | 
|  | return skb_copy_ubufs(skb, gfp_mask); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__skb_queue_purge - empty a list | 
|  | *	@list: list to empty | 
|  | * | 
|  | *	Delete all buffers on an &sk_buff list. Each buffer is removed from | 
|  | *	the list and one reference dropped. This function does not take the | 
|  | *	list lock and the caller must hold the relevant locks to use it. | 
|  | */ | 
|  | static inline void __skb_queue_purge(struct sk_buff_head *list) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  | while ((skb = __skb_dequeue(list)) != NULL) | 
|  | kfree_skb(skb); | 
|  | } | 
|  | void skb_queue_purge(struct sk_buff_head *list); | 
|  |  | 
|  | unsigned int skb_rbtree_purge(struct rb_root *root); | 
|  |  | 
|  | void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); | 
|  |  | 
|  | /** | 
|  | * netdev_alloc_frag - allocate a page fragment | 
|  | * @fragsz: fragment size | 
|  | * | 
|  | * Allocates a frag from a page for receive buffer. | 
|  | * Uses GFP_ATOMIC allocations. | 
|  | */ | 
|  | static inline void *netdev_alloc_frag(unsigned int fragsz) | 
|  | { | 
|  | return __netdev_alloc_frag_align(fragsz, ~0u); | 
|  | } | 
|  |  | 
|  | static inline void *netdev_alloc_frag_align(unsigned int fragsz, | 
|  | unsigned int align) | 
|  | { | 
|  | WARN_ON_ONCE(!is_power_of_2(align)); | 
|  | return __netdev_alloc_frag_align(fragsz, -align); | 
|  | } | 
|  |  | 
|  | struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, | 
|  | gfp_t gfp_mask); | 
|  |  | 
|  | /** | 
|  | *	netdev_alloc_skb - allocate an skbuff for rx on a specific device | 
|  | *	@dev: network device to receive on | 
|  | *	@length: length to allocate | 
|  | * | 
|  | *	Allocate a new &sk_buff and assign it a usage count of one. The | 
|  | *	buffer has unspecified headroom built in. Users should allocate | 
|  | *	the headroom they think they need without accounting for the | 
|  | *	built in space. The built in space is used for optimisations. | 
|  | * | 
|  | *	%NULL is returned if there is no free memory. Although this function | 
|  | *	allocates memory it can be called from an interrupt. | 
|  | */ | 
|  | static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, | 
|  | unsigned int length) | 
|  | { | 
|  | return __netdev_alloc_skb(dev, length, GFP_ATOMIC); | 
|  | } | 
|  |  | 
|  | /* legacy helper around __netdev_alloc_skb() */ | 
|  | static inline struct sk_buff *__dev_alloc_skb(unsigned int length, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | return __netdev_alloc_skb(NULL, length, gfp_mask); | 
|  | } | 
|  |  | 
|  | /* legacy helper around netdev_alloc_skb() */ | 
|  | static inline struct sk_buff *dev_alloc_skb(unsigned int length) | 
|  | { | 
|  | return netdev_alloc_skb(NULL, length); | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, | 
|  | unsigned int length, gfp_t gfp) | 
|  | { | 
|  | struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); | 
|  |  | 
|  | if (NET_IP_ALIGN && skb) | 
|  | skb_reserve(skb, NET_IP_ALIGN); | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, | 
|  | unsigned int length) | 
|  | { | 
|  | return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); | 
|  | } | 
|  |  | 
|  | static inline void skb_free_frag(void *addr) | 
|  | { | 
|  | page_frag_free(addr); | 
|  | } | 
|  |  | 
|  | void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); | 
|  |  | 
|  | static inline void *napi_alloc_frag(unsigned int fragsz) | 
|  | { | 
|  | return __napi_alloc_frag_align(fragsz, ~0u); | 
|  | } | 
|  |  | 
|  | static inline void *napi_alloc_frag_align(unsigned int fragsz, | 
|  | unsigned int align) | 
|  | { | 
|  | WARN_ON_ONCE(!is_power_of_2(align)); | 
|  | return __napi_alloc_frag_align(fragsz, -align); | 
|  | } | 
|  |  | 
|  | struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, | 
|  | unsigned int length, gfp_t gfp_mask); | 
|  | static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, | 
|  | unsigned int length) | 
|  | { | 
|  | return __napi_alloc_skb(napi, length, GFP_ATOMIC); | 
|  | } | 
|  | void napi_consume_skb(struct sk_buff *skb, int budget); | 
|  |  | 
|  | void napi_skb_free_stolen_head(struct sk_buff *skb); | 
|  | void __kfree_skb_defer(struct sk_buff *skb); | 
|  |  | 
|  | /** | 
|  | * __dev_alloc_pages - allocate page for network Rx | 
|  | * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx | 
|  | * @order: size of the allocation | 
|  | * | 
|  | * Allocate a new page. | 
|  | * | 
|  | * %NULL is returned if there is no free memory. | 
|  | */ | 
|  | static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, | 
|  | unsigned int order) | 
|  | { | 
|  | /* This piece of code contains several assumptions. | 
|  | * 1.  This is for device Rx, therefor a cold page is preferred. | 
|  | * 2.  The expectation is the user wants a compound page. | 
|  | * 3.  If requesting a order 0 page it will not be compound | 
|  | *     due to the check to see if order has a value in prep_new_page | 
|  | * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to | 
|  | *     code in gfp_to_alloc_flags that should be enforcing this. | 
|  | */ | 
|  | gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; | 
|  |  | 
|  | return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); | 
|  | } | 
|  |  | 
|  | static inline struct page *dev_alloc_pages(unsigned int order) | 
|  | { | 
|  | return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __dev_alloc_page - allocate a page for network Rx | 
|  | * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx | 
|  | * | 
|  | * Allocate a new page. | 
|  | * | 
|  | * %NULL is returned if there is no free memory. | 
|  | */ | 
|  | static inline struct page *__dev_alloc_page(gfp_t gfp_mask) | 
|  | { | 
|  | return __dev_alloc_pages(gfp_mask, 0); | 
|  | } | 
|  |  | 
|  | static inline struct page *dev_alloc_page(void) | 
|  | { | 
|  | return dev_alloc_pages(0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dev_page_is_reusable - check whether a page can be reused for network Rx | 
|  | * @page: the page to test | 
|  | * | 
|  | * A page shouldn't be considered for reusing/recycling if it was allocated | 
|  | * under memory pressure or at a distant memory node. | 
|  | * | 
|  | * Returns false if this page should be returned to page allocator, true | 
|  | * otherwise. | 
|  | */ | 
|  | static inline bool dev_page_is_reusable(const struct page *page) | 
|  | { | 
|  | return likely(page_to_nid(page) == numa_mem_id() && | 
|  | !page_is_pfmemalloc(page)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page | 
|  | *	@page: The page that was allocated from skb_alloc_page | 
|  | *	@skb: The skb that may need pfmemalloc set | 
|  | */ | 
|  | static inline void skb_propagate_pfmemalloc(const struct page *page, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | if (page_is_pfmemalloc(page)) | 
|  | skb->pfmemalloc = true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_frag_off() - Returns the offset of a skb fragment | 
|  | * @frag: the paged fragment | 
|  | */ | 
|  | static inline unsigned int skb_frag_off(const skb_frag_t *frag) | 
|  | { | 
|  | return frag->bv_offset; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_frag_off_add() - Increments the offset of a skb fragment by @delta | 
|  | * @frag: skb fragment | 
|  | * @delta: value to add | 
|  | */ | 
|  | static inline void skb_frag_off_add(skb_frag_t *frag, int delta) | 
|  | { | 
|  | frag->bv_offset += delta; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_frag_off_set() - Sets the offset of a skb fragment | 
|  | * @frag: skb fragment | 
|  | * @offset: offset of fragment | 
|  | */ | 
|  | static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) | 
|  | { | 
|  | frag->bv_offset = offset; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment | 
|  | * @fragto: skb fragment where offset is set | 
|  | * @fragfrom: skb fragment offset is copied from | 
|  | */ | 
|  | static inline void skb_frag_off_copy(skb_frag_t *fragto, | 
|  | const skb_frag_t *fragfrom) | 
|  | { | 
|  | fragto->bv_offset = fragfrom->bv_offset; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_frag_page - retrieve the page referred to by a paged fragment | 
|  | * @frag: the paged fragment | 
|  | * | 
|  | * Returns the &struct page associated with @frag. | 
|  | */ | 
|  | static inline struct page *skb_frag_page(const skb_frag_t *frag) | 
|  | { | 
|  | return frag->bv_page; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __skb_frag_ref - take an addition reference on a paged fragment. | 
|  | * @frag: the paged fragment | 
|  | * | 
|  | * Takes an additional reference on the paged fragment @frag. | 
|  | */ | 
|  | static inline void __skb_frag_ref(skb_frag_t *frag) | 
|  | { | 
|  | get_page(skb_frag_page(frag)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_frag_ref - take an addition reference on a paged fragment of an skb. | 
|  | * @skb: the buffer | 
|  | * @f: the fragment offset. | 
|  | * | 
|  | * Takes an additional reference on the @f'th paged fragment of @skb. | 
|  | */ | 
|  | static inline void skb_frag_ref(struct sk_buff *skb, int f) | 
|  | { | 
|  | __skb_frag_ref(&skb_shinfo(skb)->frags[f]); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __skb_frag_unref - release a reference on a paged fragment. | 
|  | * @frag: the paged fragment | 
|  | * @recycle: recycle the page if allocated via page_pool | 
|  | * | 
|  | * Releases a reference on the paged fragment @frag | 
|  | * or recycles the page via the page_pool API. | 
|  | */ | 
|  | static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle) | 
|  | { | 
|  | struct page *page = skb_frag_page(frag); | 
|  |  | 
|  | #ifdef CONFIG_PAGE_POOL | 
|  | if (recycle && page_pool_return_skb_page(page)) | 
|  | return; | 
|  | #endif | 
|  | put_page(page); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_frag_unref - release a reference on a paged fragment of an skb. | 
|  | * @skb: the buffer | 
|  | * @f: the fragment offset | 
|  | * | 
|  | * Releases a reference on the @f'th paged fragment of @skb. | 
|  | */ | 
|  | static inline void skb_frag_unref(struct sk_buff *skb, int f) | 
|  | { | 
|  | struct skb_shared_info *shinfo = skb_shinfo(skb); | 
|  |  | 
|  | if (!skb_zcopy_managed(skb)) | 
|  | __skb_frag_unref(&shinfo->frags[f], skb->pp_recycle); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_frag_address - gets the address of the data contained in a paged fragment | 
|  | * @frag: the paged fragment buffer | 
|  | * | 
|  | * Returns the address of the data within @frag. The page must already | 
|  | * be mapped. | 
|  | */ | 
|  | static inline void *skb_frag_address(const skb_frag_t *frag) | 
|  | { | 
|  | return page_address(skb_frag_page(frag)) + skb_frag_off(frag); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_frag_address_safe - gets the address of the data contained in a paged fragment | 
|  | * @frag: the paged fragment buffer | 
|  | * | 
|  | * Returns the address of the data within @frag. Checks that the page | 
|  | * is mapped and returns %NULL otherwise. | 
|  | */ | 
|  | static inline void *skb_frag_address_safe(const skb_frag_t *frag) | 
|  | { | 
|  | void *ptr = page_address(skb_frag_page(frag)); | 
|  | if (unlikely(!ptr)) | 
|  | return NULL; | 
|  |  | 
|  | return ptr + skb_frag_off(frag); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_frag_page_copy() - sets the page in a fragment from another fragment | 
|  | * @fragto: skb fragment where page is set | 
|  | * @fragfrom: skb fragment page is copied from | 
|  | */ | 
|  | static inline void skb_frag_page_copy(skb_frag_t *fragto, | 
|  | const skb_frag_t *fragfrom) | 
|  | { | 
|  | fragto->bv_page = fragfrom->bv_page; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __skb_frag_set_page - sets the page contained in a paged fragment | 
|  | * @frag: the paged fragment | 
|  | * @page: the page to set | 
|  | * | 
|  | * Sets the fragment @frag to contain @page. | 
|  | */ | 
|  | static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) | 
|  | { | 
|  | frag->bv_page = page; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_frag_set_page - sets the page contained in a paged fragment of an skb | 
|  | * @skb: the buffer | 
|  | * @f: the fragment offset | 
|  | * @page: the page to set | 
|  | * | 
|  | * Sets the @f'th fragment of @skb to contain @page. | 
|  | */ | 
|  | static inline void skb_frag_set_page(struct sk_buff *skb, int f, | 
|  | struct page *page) | 
|  | { | 
|  | __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); | 
|  | } | 
|  |  | 
|  | bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); | 
|  |  | 
|  | /** | 
|  | * skb_frag_dma_map - maps a paged fragment via the DMA API | 
|  | * @dev: the device to map the fragment to | 
|  | * @frag: the paged fragment to map | 
|  | * @offset: the offset within the fragment (starting at the | 
|  | *          fragment's own offset) | 
|  | * @size: the number of bytes to map | 
|  | * @dir: the direction of the mapping (``PCI_DMA_*``) | 
|  | * | 
|  | * Maps the page associated with @frag to @device. | 
|  | */ | 
|  | static inline dma_addr_t skb_frag_dma_map(struct device *dev, | 
|  | const skb_frag_t *frag, | 
|  | size_t offset, size_t size, | 
|  | enum dma_data_direction dir) | 
|  | { | 
|  | return dma_map_page(dev, skb_frag_page(frag), | 
|  | skb_frag_off(frag) + offset, size, dir); | 
|  | } | 
|  |  | 
|  | /* Similar to skb_frag_dma_map, but handles devmem skbs correctly. */ | 
|  | static inline dma_addr_t skb_devmem_frag_dma_map(struct device *dev, | 
|  | const struct sk_buff *skb, | 
|  | const skb_frag_t *frag, | 
|  | size_t offset, size_t size, | 
|  | enum dma_data_direction dir) | 
|  | { | 
|  | if (unlikely(skb->devmem && is_dma_buf_page(skb_frag_page(frag)))) { | 
|  | struct page *page = skb_frag_page(frag); | 
|  | dma_addr_t dma_addr = (dma_addr_t)page->zone_device_data; | 
|  |  | 
|  | return dma_addr + skb_frag_off(frag) + offset; | 
|  | } | 
|  | return skb_frag_dma_map(dev, frag, offset, size, dir); | 
|  | } | 
|  |  | 
|  | static inline struct sk_buff *pskb_copy(struct sk_buff *skb, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | return __pskb_copy(skb, skb_headroom(skb), gfp_mask); | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | *	skb_clone_writable - is the header of a clone writable | 
|  | *	@skb: buffer to check | 
|  | *	@len: length up to which to write | 
|  | * | 
|  | *	Returns true if modifying the header part of the cloned buffer | 
|  | *	does not requires the data to be copied. | 
|  | */ | 
|  | static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | return !skb_header_cloned(skb) && | 
|  | skb_headroom(skb) + len <= skb->hdr_len; | 
|  | } | 
|  |  | 
|  | static inline int skb_try_make_writable(struct sk_buff *skb, | 
|  | unsigned int write_len) | 
|  | { | 
|  | return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && | 
|  | pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | 
|  | } | 
|  |  | 
|  | static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, | 
|  | int cloned) | 
|  | { | 
|  | int delta = 0; | 
|  |  | 
|  | if (headroom > skb_headroom(skb)) | 
|  | delta = headroom - skb_headroom(skb); | 
|  |  | 
|  | if (delta || cloned) | 
|  | return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, | 
|  | GFP_ATOMIC); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_cow - copy header of skb when it is required | 
|  | *	@skb: buffer to cow | 
|  | *	@headroom: needed headroom | 
|  | * | 
|  | *	If the skb passed lacks sufficient headroom or its data part | 
|  | *	is shared, data is reallocated. If reallocation fails, an error | 
|  | *	is returned and original skb is not changed. | 
|  | * | 
|  | *	The result is skb with writable area skb->head...skb->tail | 
|  | *	and at least @headroom of space at head. | 
|  | */ | 
|  | static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) | 
|  | { | 
|  | return __skb_cow(skb, headroom, skb_cloned(skb)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_cow_head - skb_cow but only making the head writable | 
|  | *	@skb: buffer to cow | 
|  | *	@headroom: needed headroom | 
|  | * | 
|  | *	This function is identical to skb_cow except that we replace the | 
|  | *	skb_cloned check by skb_header_cloned.  It should be used when | 
|  | *	you only need to push on some header and do not need to modify | 
|  | *	the data. | 
|  | */ | 
|  | static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) | 
|  | { | 
|  | return __skb_cow(skb, headroom, skb_header_cloned(skb)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_padto	- pad an skbuff up to a minimal size | 
|  | *	@skb: buffer to pad | 
|  | *	@len: minimal length | 
|  | * | 
|  | *	Pads up a buffer to ensure the trailing bytes exist and are | 
|  | *	blanked. If the buffer already contains sufficient data it | 
|  | *	is untouched. Otherwise it is extended. Returns zero on | 
|  | *	success. The skb is freed on error. | 
|  | */ | 
|  | static inline int skb_padto(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | unsigned int size = skb->len; | 
|  | if (likely(size >= len)) | 
|  | return 0; | 
|  | return skb_pad(skb, len - size); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__skb_put_padto - increase size and pad an skbuff up to a minimal size | 
|  | *	@skb: buffer to pad | 
|  | *	@len: minimal length | 
|  | *	@free_on_error: free buffer on error | 
|  | * | 
|  | *	Pads up a buffer to ensure the trailing bytes exist and are | 
|  | *	blanked. If the buffer already contains sufficient data it | 
|  | *	is untouched. Otherwise it is extended. Returns zero on | 
|  | *	success. The skb is freed on error if @free_on_error is true. | 
|  | */ | 
|  | static inline int __must_check __skb_put_padto(struct sk_buff *skb, | 
|  | unsigned int len, | 
|  | bool free_on_error) | 
|  | { | 
|  | unsigned int size = skb->len; | 
|  |  | 
|  | if (unlikely(size < len)) { | 
|  | len -= size; | 
|  | if (__skb_pad(skb, len, free_on_error)) | 
|  | return -ENOMEM; | 
|  | __skb_put(skb, len); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_put_padto - increase size and pad an skbuff up to a minimal size | 
|  | *	@skb: buffer to pad | 
|  | *	@len: minimal length | 
|  | * | 
|  | *	Pads up a buffer to ensure the trailing bytes exist and are | 
|  | *	blanked. If the buffer already contains sufficient data it | 
|  | *	is untouched. Otherwise it is extended. Returns zero on | 
|  | *	success. The skb is freed on error. | 
|  | */ | 
|  | static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | return __skb_put_padto(skb, len, true); | 
|  | } | 
|  |  | 
|  | static inline int skb_add_data(struct sk_buff *skb, | 
|  | struct iov_iter *from, int copy) | 
|  | { | 
|  | const int off = skb->len; | 
|  |  | 
|  | if (skb->ip_summed == CHECKSUM_NONE) { | 
|  | __wsum csum = 0; | 
|  | if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, | 
|  | &csum, from)) { | 
|  | skb->csum = csum_block_add(skb->csum, csum, off); | 
|  | return 0; | 
|  | } | 
|  | } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) | 
|  | return 0; | 
|  |  | 
|  | __skb_trim(skb, off); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | static inline bool skb_can_coalesce(struct sk_buff *skb, int i, | 
|  | const struct page *page, int off) | 
|  | { | 
|  | if (skb_zcopy(skb)) | 
|  | return false; | 
|  | if (i) { | 
|  | const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; | 
|  |  | 
|  | return page == skb_frag_page(frag) && | 
|  | off == skb_frag_off(frag) + skb_frag_size(frag); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline int __skb_linearize(struct sk_buff *skb) | 
|  | { | 
|  | return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_linearize - convert paged skb to linear one | 
|  | *	@skb: buffer to linarize | 
|  | * | 
|  | *	If there is no free memory -ENOMEM is returned, otherwise zero | 
|  | *	is returned and the old skb data released. | 
|  | */ | 
|  | static inline int skb_linearize(struct sk_buff *skb) | 
|  | { | 
|  | return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_has_shared_frag - can any frag be overwritten | 
|  | * @skb: buffer to test | 
|  | * | 
|  | * Return true if the skb has at least one frag that might be modified | 
|  | * by an external entity (as in vmsplice()/sendfile()) | 
|  | */ | 
|  | static inline bool skb_has_shared_frag(const struct sk_buff *skb) | 
|  | { | 
|  | return skb_is_nonlinear(skb) && | 
|  | skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_linearize_cow - make sure skb is linear and writable | 
|  | *	@skb: buffer to process | 
|  | * | 
|  | *	If there is no free memory -ENOMEM is returned, otherwise zero | 
|  | *	is returned and the old skb data released. | 
|  | */ | 
|  | static inline int skb_linearize_cow(struct sk_buff *skb) | 
|  | { | 
|  | return skb_is_nonlinear(skb) || skb_cloned(skb) ? | 
|  | __skb_linearize(skb) : 0; | 
|  | } | 
|  |  | 
|  | static __always_inline void | 
|  | __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, | 
|  | unsigned int off) | 
|  | { | 
|  | if (skb->ip_summed == CHECKSUM_COMPLETE) | 
|  | skb->csum = csum_block_sub(skb->csum, | 
|  | csum_partial(start, len, 0), off); | 
|  | else if (skb->ip_summed == CHECKSUM_PARTIAL && | 
|  | skb_checksum_start_offset(skb) < 0) | 
|  | skb->ip_summed = CHECKSUM_NONE; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_postpull_rcsum - update checksum for received skb after pull | 
|  | *	@skb: buffer to update | 
|  | *	@start: start of data before pull | 
|  | *	@len: length of data pulled | 
|  | * | 
|  | *	After doing a pull on a received packet, you need to call this to | 
|  | *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to | 
|  | *	CHECKSUM_NONE so that it can be recomputed from scratch. | 
|  | */ | 
|  | static inline void skb_postpull_rcsum(struct sk_buff *skb, | 
|  | const void *start, unsigned int len) | 
|  | { | 
|  | if (skb->ip_summed == CHECKSUM_COMPLETE) | 
|  | skb->csum = wsum_negate(csum_partial(start, len, | 
|  | wsum_negate(skb->csum))); | 
|  | else if (skb->ip_summed == CHECKSUM_PARTIAL && | 
|  | skb_checksum_start_offset(skb) < 0) | 
|  | skb->ip_summed = CHECKSUM_NONE; | 
|  | } | 
|  |  | 
|  | static __always_inline void | 
|  | __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, | 
|  | unsigned int off) | 
|  | { | 
|  | if (skb->ip_summed == CHECKSUM_COMPLETE) | 
|  | skb->csum = csum_block_add(skb->csum, | 
|  | csum_partial(start, len, 0), off); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_postpush_rcsum - update checksum for received skb after push | 
|  | *	@skb: buffer to update | 
|  | *	@start: start of data after push | 
|  | *	@len: length of data pushed | 
|  | * | 
|  | *	After doing a push on a received packet, you need to call this to | 
|  | *	update the CHECKSUM_COMPLETE checksum. | 
|  | */ | 
|  | static inline void skb_postpush_rcsum(struct sk_buff *skb, | 
|  | const void *start, unsigned int len) | 
|  | { | 
|  | __skb_postpush_rcsum(skb, start, len, 0); | 
|  | } | 
|  |  | 
|  | void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); | 
|  |  | 
|  | /** | 
|  | *	skb_push_rcsum - push skb and update receive checksum | 
|  | *	@skb: buffer to update | 
|  | *	@len: length of data pulled | 
|  | * | 
|  | *	This function performs an skb_push on the packet and updates | 
|  | *	the CHECKSUM_COMPLETE checksum.  It should be used on | 
|  | *	receive path processing instead of skb_push unless you know | 
|  | *	that the checksum difference is zero (e.g., a valid IP header) | 
|  | *	or you are setting ip_summed to CHECKSUM_NONE. | 
|  | */ | 
|  | static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | skb_push(skb, len); | 
|  | skb_postpush_rcsum(skb, skb->data, len); | 
|  | return skb->data; | 
|  | } | 
|  |  | 
|  | int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); | 
|  | /** | 
|  | *	pskb_trim_rcsum - trim received skb and update checksum | 
|  | *	@skb: buffer to trim | 
|  | *	@len: new length | 
|  | * | 
|  | *	This is exactly the same as pskb_trim except that it ensures the | 
|  | *	checksum of received packets are still valid after the operation. | 
|  | *	It can change skb pointers. | 
|  | */ | 
|  |  | 
|  | static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | if (likely(len >= skb->len)) | 
|  | return 0; | 
|  | return pskb_trim_rcsum_slow(skb, len); | 
|  | } | 
|  |  | 
|  | static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | if (skb->ip_summed == CHECKSUM_COMPLETE) | 
|  | skb->ip_summed = CHECKSUM_NONE; | 
|  | __skb_trim(skb, len); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) | 
|  | { | 
|  | if (skb->ip_summed == CHECKSUM_COMPLETE) | 
|  | skb->ip_summed = CHECKSUM_NONE; | 
|  | return __skb_grow(skb, len); | 
|  | } | 
|  |  | 
|  | #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) | 
|  | #define skb_rb_first(root) rb_to_skb(rb_first(root)) | 
|  | #define skb_rb_last(root)  rb_to_skb(rb_last(root)) | 
|  | #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode)) | 
|  | #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode)) | 
|  |  | 
|  | #define skb_queue_walk(queue, skb) \ | 
|  | for (skb = (queue)->next;					\ | 
|  | skb != (struct sk_buff *)(queue);				\ | 
|  | skb = skb->next) | 
|  |  | 
|  | #define skb_queue_walk_safe(queue, skb, tmp)					\ | 
|  | for (skb = (queue)->next, tmp = skb->next;			\ | 
|  | skb != (struct sk_buff *)(queue);				\ | 
|  | skb = tmp, tmp = skb->next) | 
|  |  | 
|  | #define skb_queue_walk_from(queue, skb)						\ | 
|  | for (; skb != (struct sk_buff *)(queue);			\ | 
|  | skb = skb->next) | 
|  |  | 
|  | #define skb_rbtree_walk(skb, root)						\ | 
|  | for (skb = skb_rb_first(root); skb != NULL;			\ | 
|  | skb = skb_rb_next(skb)) | 
|  |  | 
|  | #define skb_rbtree_walk_from(skb)						\ | 
|  | for (; skb != NULL;						\ | 
|  | skb = skb_rb_next(skb)) | 
|  |  | 
|  | #define skb_rbtree_walk_from_safe(skb, tmp)					\ | 
|  | for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\ | 
|  | skb = tmp) | 
|  |  | 
|  | #define skb_queue_walk_from_safe(queue, skb, tmp)				\ | 
|  | for (tmp = skb->next;						\ | 
|  | skb != (struct sk_buff *)(queue);				\ | 
|  | skb = tmp, tmp = skb->next) | 
|  |  | 
|  | #define skb_queue_reverse_walk(queue, skb) \ | 
|  | for (skb = (queue)->prev;					\ | 
|  | skb != (struct sk_buff *)(queue);				\ | 
|  | skb = skb->prev) | 
|  |  | 
|  | #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\ | 
|  | for (skb = (queue)->prev, tmp = skb->prev;			\ | 
|  | skb != (struct sk_buff *)(queue);				\ | 
|  | skb = tmp, tmp = skb->prev) | 
|  |  | 
|  | #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\ | 
|  | for (tmp = skb->prev;						\ | 
|  | skb != (struct sk_buff *)(queue);				\ | 
|  | skb = tmp, tmp = skb->prev) | 
|  |  | 
|  | static inline bool skb_has_frag_list(const struct sk_buff *skb) | 
|  | { | 
|  | return skb_shinfo(skb)->frag_list != NULL; | 
|  | } | 
|  |  | 
|  | static inline void skb_frag_list_init(struct sk_buff *skb) | 
|  | { | 
|  | skb_shinfo(skb)->frag_list = NULL; | 
|  | } | 
|  |  | 
|  | #define skb_walk_frags(skb, iter)	\ | 
|  | for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) | 
|  |  | 
|  |  | 
|  | int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, | 
|  | int *err, long *timeo_p, | 
|  | const struct sk_buff *skb); | 
|  | struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, | 
|  | struct sk_buff_head *queue, | 
|  | unsigned int flags, | 
|  | int *off, int *err, | 
|  | struct sk_buff **last); | 
|  | struct sk_buff *__skb_try_recv_datagram(struct sock *sk, | 
|  | struct sk_buff_head *queue, | 
|  | unsigned int flags, int *off, int *err, | 
|  | struct sk_buff **last); | 
|  | struct sk_buff *__skb_recv_datagram(struct sock *sk, | 
|  | struct sk_buff_head *sk_queue, | 
|  | unsigned int flags, int *off, int *err); | 
|  | struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err); | 
|  | __poll_t datagram_poll(struct file *file, struct socket *sock, | 
|  | struct poll_table_struct *wait); | 
|  | int skb_copy_datagram_iter(const struct sk_buff *from, int offset, | 
|  | struct iov_iter *to, int size); | 
|  | static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, | 
|  | struct msghdr *msg, int size) | 
|  | { | 
|  | return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); | 
|  | } | 
|  | int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, | 
|  | struct msghdr *msg); | 
|  | int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, | 
|  | struct iov_iter *to, int len, | 
|  | struct ahash_request *hash); | 
|  | int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, | 
|  | struct iov_iter *from, int len); | 
|  | int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); | 
|  | void skb_free_datagram(struct sock *sk, struct sk_buff *skb); | 
|  | void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); | 
|  | static inline void skb_free_datagram_locked(struct sock *sk, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | __skb_free_datagram_locked(sk, skb, 0); | 
|  | } | 
|  | int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); | 
|  | int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); | 
|  | int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); | 
|  | __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, | 
|  | int len); | 
|  | int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, | 
|  | struct pipe_inode_info *pipe, unsigned int len, | 
|  | unsigned int flags); | 
|  | int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, | 
|  | int len); | 
|  | int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); | 
|  | void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); | 
|  | unsigned int skb_zerocopy_headlen(const struct sk_buff *from); | 
|  | int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, | 
|  | int len, int hlen); | 
|  | void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); | 
|  | int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); | 
|  | void skb_scrub_packet(struct sk_buff *skb, bool xnet); | 
|  | bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); | 
|  | bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); | 
|  | struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); | 
|  | struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, | 
|  | unsigned int offset); | 
|  | struct sk_buff *skb_vlan_untag(struct sk_buff *skb); | 
|  | int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len); | 
|  | int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); | 
|  | int skb_vlan_pop(struct sk_buff *skb); | 
|  | int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); | 
|  | int skb_eth_pop(struct sk_buff *skb); | 
|  | int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, | 
|  | const unsigned char *src); | 
|  | int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, | 
|  | int mac_len, bool ethernet); | 
|  | int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, | 
|  | bool ethernet); | 
|  | int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); | 
|  | int skb_mpls_dec_ttl(struct sk_buff *skb); | 
|  | struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, | 
|  | gfp_t gfp); | 
|  |  | 
|  | static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) | 
|  | { | 
|  | return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; | 
|  | } | 
|  |  | 
|  | static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) | 
|  | { | 
|  | return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; | 
|  | } | 
|  |  | 
|  | struct skb_checksum_ops { | 
|  | __wsum (*update)(const void *mem, int len, __wsum wsum); | 
|  | __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); | 
|  | }; | 
|  |  | 
|  | extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; | 
|  |  | 
|  | __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, | 
|  | __wsum csum, const struct skb_checksum_ops *ops); | 
|  | __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, | 
|  | __wsum csum); | 
|  |  | 
|  | static inline void * __must_check | 
|  | __skb_header_pointer(const struct sk_buff *skb, int offset, int len, | 
|  | const void *data, int hlen, void *buffer) | 
|  | { | 
|  | if (likely(hlen - offset >= len)) | 
|  | return (void *)data + offset; | 
|  |  | 
|  | if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) | 
|  | return NULL; | 
|  |  | 
|  | return buffer; | 
|  | } | 
|  |  | 
|  | static inline void * __must_check | 
|  | skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) | 
|  | { | 
|  | return __skb_header_pointer(skb, offset, len, skb->data, | 
|  | skb_headlen(skb), buffer); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_needs_linearize - check if we need to linearize a given skb | 
|  | *			      depending on the given device features. | 
|  | *	@skb: socket buffer to check | 
|  | *	@features: net device features | 
|  | * | 
|  | *	Returns true if either: | 
|  | *	1. skb has frag_list and the device doesn't support FRAGLIST, or | 
|  | *	2. skb is fragmented and the device does not support SG. | 
|  | */ | 
|  | static inline bool skb_needs_linearize(struct sk_buff *skb, | 
|  | netdev_features_t features) | 
|  | { | 
|  | return skb_is_nonlinear(skb) && | 
|  | ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || | 
|  | (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); | 
|  | } | 
|  |  | 
|  | static inline void skb_copy_from_linear_data(const struct sk_buff *skb, | 
|  | void *to, | 
|  | const unsigned int len) | 
|  | { | 
|  | memcpy(to, skb->data, len); | 
|  | } | 
|  |  | 
|  | static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, | 
|  | const int offset, void *to, | 
|  | const unsigned int len) | 
|  | { | 
|  | memcpy(to, skb->data + offset, len); | 
|  | } | 
|  |  | 
|  | static inline void skb_copy_to_linear_data(struct sk_buff *skb, | 
|  | const void *from, | 
|  | const unsigned int len) | 
|  | { | 
|  | memcpy(skb->data, from, len); | 
|  | } | 
|  |  | 
|  | static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, | 
|  | const int offset, | 
|  | const void *from, | 
|  | const unsigned int len) | 
|  | { | 
|  | memcpy(skb->data + offset, from, len); | 
|  | } | 
|  |  | 
|  | void skb_init(void); | 
|  |  | 
|  | static inline ktime_t skb_get_ktime(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->tstamp; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_get_timestamp - get timestamp from a skb | 
|  | *	@skb: skb to get stamp from | 
|  | *	@stamp: pointer to struct __kernel_old_timeval to store stamp in | 
|  | * | 
|  | *	Timestamps are stored in the skb as offsets to a base timestamp. | 
|  | *	This function converts the offset back to a struct timeval and stores | 
|  | *	it in stamp. | 
|  | */ | 
|  | static inline void skb_get_timestamp(const struct sk_buff *skb, | 
|  | struct __kernel_old_timeval *stamp) | 
|  | { | 
|  | *stamp = ns_to_kernel_old_timeval(skb->tstamp); | 
|  | } | 
|  |  | 
|  | static inline void skb_get_new_timestamp(const struct sk_buff *skb, | 
|  | struct __kernel_sock_timeval *stamp) | 
|  | { | 
|  | struct timespec64 ts = ktime_to_timespec64(skb->tstamp); | 
|  |  | 
|  | stamp->tv_sec = ts.tv_sec; | 
|  | stamp->tv_usec = ts.tv_nsec / 1000; | 
|  | } | 
|  |  | 
|  | static inline void skb_get_timestampns(const struct sk_buff *skb, | 
|  | struct __kernel_old_timespec *stamp) | 
|  | { | 
|  | struct timespec64 ts = ktime_to_timespec64(skb->tstamp); | 
|  |  | 
|  | stamp->tv_sec = ts.tv_sec; | 
|  | stamp->tv_nsec = ts.tv_nsec; | 
|  | } | 
|  |  | 
|  | static inline void skb_get_new_timestampns(const struct sk_buff *skb, | 
|  | struct __kernel_timespec *stamp) | 
|  | { | 
|  | struct timespec64 ts = ktime_to_timespec64(skb->tstamp); | 
|  |  | 
|  | stamp->tv_sec = ts.tv_sec; | 
|  | stamp->tv_nsec = ts.tv_nsec; | 
|  | } | 
|  |  | 
|  | static inline void __net_timestamp(struct sk_buff *skb) | 
|  | { | 
|  | skb->tstamp = ktime_get_real(); | 
|  | skb->mono_delivery_time = 0; | 
|  | } | 
|  |  | 
|  | static inline ktime_t net_timedelta(ktime_t t) | 
|  | { | 
|  | return ktime_sub(ktime_get_real(), t); | 
|  | } | 
|  |  | 
|  | static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, | 
|  | bool mono) | 
|  | { | 
|  | skb->tstamp = kt; | 
|  | skb->mono_delivery_time = kt && mono; | 
|  | } | 
|  |  | 
|  | DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); | 
|  |  | 
|  | /* It is used in the ingress path to clear the delivery_time. | 
|  | * If needed, set the skb->tstamp to the (rcv) timestamp. | 
|  | */ | 
|  | static inline void skb_clear_delivery_time(struct sk_buff *skb) | 
|  | { | 
|  | if (skb->mono_delivery_time) { | 
|  | skb->mono_delivery_time = 0; | 
|  | if (static_branch_unlikely(&netstamp_needed_key)) | 
|  | skb->tstamp = ktime_get_real(); | 
|  | else | 
|  | skb->tstamp = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void skb_clear_tstamp(struct sk_buff *skb) | 
|  | { | 
|  | if (skb->mono_delivery_time) | 
|  | return; | 
|  |  | 
|  | skb->tstamp = 0; | 
|  | } | 
|  |  | 
|  | static inline ktime_t skb_tstamp(const struct sk_buff *skb) | 
|  | { | 
|  | if (skb->mono_delivery_time) | 
|  | return 0; | 
|  |  | 
|  | return skb->tstamp; | 
|  | } | 
|  |  | 
|  | static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) | 
|  | { | 
|  | if (!skb->mono_delivery_time && skb->tstamp) | 
|  | return skb->tstamp; | 
|  |  | 
|  | if (static_branch_unlikely(&netstamp_needed_key) || cond) | 
|  | return ktime_get_real(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline u8 skb_metadata_len(const struct sk_buff *skb) | 
|  | { | 
|  | return skb_shinfo(skb)->meta_len; | 
|  | } | 
|  |  | 
|  | static inline void *skb_metadata_end(const struct sk_buff *skb) | 
|  | { | 
|  | return skb_mac_header(skb); | 
|  | } | 
|  |  | 
|  | static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, | 
|  | const struct sk_buff *skb_b, | 
|  | u8 meta_len) | 
|  | { | 
|  | const void *a = skb_metadata_end(skb_a); | 
|  | const void *b = skb_metadata_end(skb_b); | 
|  | /* Using more efficient varaiant than plain call to memcmp(). */ | 
|  | #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 | 
|  | u64 diffs = 0; | 
|  |  | 
|  | switch (meta_len) { | 
|  | #define __it(x, op) (x -= sizeof(u##op)) | 
|  | #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) | 
|  | case 32: diffs |= __it_diff(a, b, 64); | 
|  | fallthrough; | 
|  | case 24: diffs |= __it_diff(a, b, 64); | 
|  | fallthrough; | 
|  | case 16: diffs |= __it_diff(a, b, 64); | 
|  | fallthrough; | 
|  | case  8: diffs |= __it_diff(a, b, 64); | 
|  | break; | 
|  | case 28: diffs |= __it_diff(a, b, 64); | 
|  | fallthrough; | 
|  | case 20: diffs |= __it_diff(a, b, 64); | 
|  | fallthrough; | 
|  | case 12: diffs |= __it_diff(a, b, 64); | 
|  | fallthrough; | 
|  | case  4: diffs |= __it_diff(a, b, 32); | 
|  | break; | 
|  | } | 
|  | return diffs; | 
|  | #else | 
|  | return memcmp(a - meta_len, b - meta_len, meta_len); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline bool skb_metadata_differs(const struct sk_buff *skb_a, | 
|  | const struct sk_buff *skb_b) | 
|  | { | 
|  | u8 len_a = skb_metadata_len(skb_a); | 
|  | u8 len_b = skb_metadata_len(skb_b); | 
|  |  | 
|  | if (!(len_a | len_b)) | 
|  | return false; | 
|  |  | 
|  | return len_a != len_b ? | 
|  | true : __skb_metadata_differs(skb_a, skb_b, len_a); | 
|  | } | 
|  |  | 
|  | static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) | 
|  | { | 
|  | skb_shinfo(skb)->meta_len = meta_len; | 
|  | } | 
|  |  | 
|  | static inline void skb_metadata_clear(struct sk_buff *skb) | 
|  | { | 
|  | skb_metadata_set(skb, 0); | 
|  | } | 
|  |  | 
|  | struct sk_buff *skb_clone_sk(struct sk_buff *skb); | 
|  |  | 
|  | #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING | 
|  |  | 
|  | void skb_clone_tx_timestamp(struct sk_buff *skb); | 
|  | bool skb_defer_rx_timestamp(struct sk_buff *skb); | 
|  |  | 
|  | #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ | 
|  |  | 
|  | static inline void skb_clone_tx_timestamp(struct sk_buff *skb) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ | 
|  |  | 
|  | /** | 
|  | * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps | 
|  | * | 
|  | * PHY drivers may accept clones of transmitted packets for | 
|  | * timestamping via their phy_driver.txtstamp method. These drivers | 
|  | * must call this function to return the skb back to the stack with a | 
|  | * timestamp. | 
|  | * | 
|  | * @skb: clone of the original outgoing packet | 
|  | * @hwtstamps: hardware time stamps | 
|  | * | 
|  | */ | 
|  | void skb_complete_tx_timestamp(struct sk_buff *skb, | 
|  | struct skb_shared_hwtstamps *hwtstamps); | 
|  |  | 
|  | void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, | 
|  | struct skb_shared_hwtstamps *hwtstamps, | 
|  | struct sock *sk, int tstype); | 
|  |  | 
|  | /** | 
|  | * skb_tstamp_tx - queue clone of skb with send time stamps | 
|  | * @orig_skb:	the original outgoing packet | 
|  | * @hwtstamps:	hardware time stamps, may be NULL if not available | 
|  | * | 
|  | * If the skb has a socket associated, then this function clones the | 
|  | * skb (thus sharing the actual data and optional structures), stores | 
|  | * the optional hardware time stamping information (if non NULL) or | 
|  | * generates a software time stamp (otherwise), then queues the clone | 
|  | * to the error queue of the socket.  Errors are silently ignored. | 
|  | */ | 
|  | void skb_tstamp_tx(struct sk_buff *orig_skb, | 
|  | struct skb_shared_hwtstamps *hwtstamps); | 
|  |  | 
|  | /** | 
|  | * skb_tx_timestamp() - Driver hook for transmit timestamping | 
|  | * | 
|  | * Ethernet MAC Drivers should call this function in their hard_xmit() | 
|  | * function immediately before giving the sk_buff to the MAC hardware. | 
|  | * | 
|  | * Specifically, one should make absolutely sure that this function is | 
|  | * called before TX completion of this packet can trigger.  Otherwise | 
|  | * the packet could potentially already be freed. | 
|  | * | 
|  | * @skb: A socket buffer. | 
|  | */ | 
|  | static inline void skb_tx_timestamp(struct sk_buff *skb) | 
|  | { | 
|  | skb_clone_tx_timestamp(skb); | 
|  | if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) | 
|  | skb_tstamp_tx(skb, NULL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_complete_wifi_ack - deliver skb with wifi status | 
|  | * | 
|  | * @skb: the original outgoing packet | 
|  | * @acked: ack status | 
|  | * | 
|  | */ | 
|  | void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); | 
|  |  | 
|  | __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); | 
|  | __sum16 __skb_checksum_complete(struct sk_buff *skb); | 
|  |  | 
|  | static inline int skb_csum_unnecessary(const struct sk_buff *skb) | 
|  | { | 
|  | return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || | 
|  | skb->csum_valid || | 
|  | (skb->ip_summed == CHECKSUM_PARTIAL && | 
|  | skb_checksum_start_offset(skb) >= 0)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_checksum_complete - Calculate checksum of an entire packet | 
|  | *	@skb: packet to process | 
|  | * | 
|  | *	This function calculates the checksum over the entire packet plus | 
|  | *	the value of skb->csum.  The latter can be used to supply the | 
|  | *	checksum of a pseudo header as used by TCP/UDP.  It returns the | 
|  | *	checksum. | 
|  | * | 
|  | *	For protocols that contain complete checksums such as ICMP/TCP/UDP, | 
|  | *	this function can be used to verify that checksum on received | 
|  | *	packets.  In that case the function should return zero if the | 
|  | *	checksum is correct.  In particular, this function will return zero | 
|  | *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the | 
|  | *	hardware has already verified the correctness of the checksum. | 
|  | */ | 
|  | static inline __sum16 skb_checksum_complete(struct sk_buff *skb) | 
|  | { | 
|  | return skb_csum_unnecessary(skb) ? | 
|  | 0 : __skb_checksum_complete(skb); | 
|  | } | 
|  |  | 
|  | static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) | 
|  | { | 
|  | if (skb->ip_summed == CHECKSUM_UNNECESSARY) { | 
|  | if (skb->csum_level == 0) | 
|  | skb->ip_summed = CHECKSUM_NONE; | 
|  | else | 
|  | skb->csum_level--; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) | 
|  | { | 
|  | if (skb->ip_summed == CHECKSUM_UNNECESSARY) { | 
|  | if (skb->csum_level < SKB_MAX_CSUM_LEVEL) | 
|  | skb->csum_level++; | 
|  | } else if (skb->ip_summed == CHECKSUM_NONE) { | 
|  | skb->ip_summed = CHECKSUM_UNNECESSARY; | 
|  | skb->csum_level = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) | 
|  | { | 
|  | if (skb->ip_summed == CHECKSUM_UNNECESSARY) { | 
|  | skb->ip_summed = CHECKSUM_NONE; | 
|  | skb->csum_level = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check if we need to perform checksum complete validation. | 
|  | * | 
|  | * Returns true if checksum complete is needed, false otherwise | 
|  | * (either checksum is unnecessary or zero checksum is allowed). | 
|  | */ | 
|  | static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, | 
|  | bool zero_okay, | 
|  | __sum16 check) | 
|  | { | 
|  | if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { | 
|  | skb->csum_valid = 1; | 
|  | __skb_decr_checksum_unnecessary(skb); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* For small packets <= CHECKSUM_BREAK perform checksum complete directly | 
|  | * in checksum_init. | 
|  | */ | 
|  | #define CHECKSUM_BREAK 76 | 
|  |  | 
|  | /* Unset checksum-complete | 
|  | * | 
|  | * Unset checksum complete can be done when packet is being modified | 
|  | * (uncompressed for instance) and checksum-complete value is | 
|  | * invalidated. | 
|  | */ | 
|  | static inline void skb_checksum_complete_unset(struct sk_buff *skb) | 
|  | { | 
|  | if (skb->ip_summed == CHECKSUM_COMPLETE) | 
|  | skb->ip_summed = CHECKSUM_NONE; | 
|  | } | 
|  |  | 
|  | /* Validate (init) checksum based on checksum complete. | 
|  | * | 
|  | * Return values: | 
|  | *   0: checksum is validated or try to in skb_checksum_complete. In the latter | 
|  | *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo | 
|  | *	checksum is stored in skb->csum for use in __skb_checksum_complete | 
|  | *   non-zero: value of invalid checksum | 
|  | * | 
|  | */ | 
|  | static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, | 
|  | bool complete, | 
|  | __wsum psum) | 
|  | { | 
|  | if (skb->ip_summed == CHECKSUM_COMPLETE) { | 
|  | if (!csum_fold(csum_add(psum, skb->csum))) { | 
|  | skb->csum_valid = 1; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | skb->csum = psum; | 
|  |  | 
|  | if (complete || skb->len <= CHECKSUM_BREAK) { | 
|  | __sum16 csum; | 
|  |  | 
|  | csum = __skb_checksum_complete(skb); | 
|  | skb->csum_valid = !csum; | 
|  | return csum; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Perform checksum validate (init). Note that this is a macro since we only | 
|  | * want to calculate the pseudo header which is an input function if necessary. | 
|  | * First we try to validate without any computation (checksum unnecessary) and | 
|  | * then calculate based on checksum complete calling the function to compute | 
|  | * pseudo header. | 
|  | * | 
|  | * Return values: | 
|  | *   0: checksum is validated or try to in skb_checksum_complete | 
|  | *   non-zero: value of invalid checksum | 
|  | */ | 
|  | #define __skb_checksum_validate(skb, proto, complete,			\ | 
|  | zero_okay, check, compute_pseudo)	\ | 
|  | ({									\ | 
|  | __sum16 __ret = 0;						\ | 
|  | skb->csum_valid = 0;						\ | 
|  | if (__skb_checksum_validate_needed(skb, zero_okay, check))	\ | 
|  | __ret = __skb_checksum_validate_complete(skb,		\ | 
|  | complete, compute_pseudo(skb, proto));	\ | 
|  | __ret;								\ | 
|  | }) | 
|  |  | 
|  | #define skb_checksum_init(skb, proto, compute_pseudo)			\ | 
|  | __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) | 
|  |  | 
|  | #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\ | 
|  | __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) | 
|  |  | 
|  | #define skb_checksum_validate(skb, proto, compute_pseudo)		\ | 
|  | __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) | 
|  |  | 
|  | #define skb_checksum_validate_zero_check(skb, proto, check,		\ | 
|  | compute_pseudo)		\ | 
|  | __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) | 
|  |  | 
|  | #define skb_checksum_simple_validate(skb)				\ | 
|  | __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) | 
|  |  | 
|  | static inline bool __skb_checksum_convert_check(struct sk_buff *skb) | 
|  | { | 
|  | return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); | 
|  | } | 
|  |  | 
|  | static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) | 
|  | { | 
|  | skb->csum = ~pseudo; | 
|  | skb->ip_summed = CHECKSUM_COMPLETE; | 
|  | } | 
|  |  | 
|  | #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\ | 
|  | do {									\ | 
|  | if (__skb_checksum_convert_check(skb))				\ | 
|  | __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ | 
|  | } while (0) | 
|  |  | 
|  | static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, | 
|  | u16 start, u16 offset) | 
|  | { | 
|  | skb->ip_summed = CHECKSUM_PARTIAL; | 
|  | skb->csum_start = ((unsigned char *)ptr + start) - skb->head; | 
|  | skb->csum_offset = offset - start; | 
|  | } | 
|  |  | 
|  | /* Update skbuf and packet to reflect the remote checksum offload operation. | 
|  | * When called, ptr indicates the starting point for skb->csum when | 
|  | * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete | 
|  | * here, skb_postpull_rcsum is done so skb->csum start is ptr. | 
|  | */ | 
|  | static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, | 
|  | int start, int offset, bool nopartial) | 
|  | { | 
|  | __wsum delta; | 
|  |  | 
|  | if (!nopartial) { | 
|  | skb_remcsum_adjust_partial(skb, ptr, start, offset); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { | 
|  | __skb_checksum_complete(skb); | 
|  | skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); | 
|  | } | 
|  |  | 
|  | delta = remcsum_adjust(ptr, skb->csum, start, offset); | 
|  |  | 
|  | /* Adjust skb->csum since we changed the packet */ | 
|  | skb->csum = csum_add(skb->csum, delta); | 
|  | } | 
|  |  | 
|  | static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) | 
|  | { | 
|  | #if IS_ENABLED(CONFIG_NF_CONNTRACK) | 
|  | return (void *)(skb->_nfct & NFCT_PTRMASK); | 
|  | #else | 
|  | return NULL; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline unsigned long skb_get_nfct(const struct sk_buff *skb) | 
|  | { | 
|  | #if IS_ENABLED(CONFIG_NF_CONNTRACK) | 
|  | return skb->_nfct; | 
|  | #else | 
|  | return 0UL; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) | 
|  | { | 
|  | #if IS_ENABLED(CONFIG_NF_CONNTRACK) | 
|  | skb->slow_gro |= !!nfct; | 
|  | skb->_nfct = nfct; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SKB_EXTENSIONS | 
|  | enum skb_ext_id { | 
|  | #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) | 
|  | SKB_EXT_BRIDGE_NF, | 
|  | #endif | 
|  | #ifdef CONFIG_XFRM | 
|  | SKB_EXT_SEC_PATH, | 
|  | #endif | 
|  | #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) | 
|  | TC_SKB_EXT, | 
|  | #endif | 
|  | #if IS_ENABLED(CONFIG_MPTCP) | 
|  | SKB_EXT_MPTCP, | 
|  | #endif | 
|  | #if IS_ENABLED(CONFIG_MCTP_FLOWS) | 
|  | SKB_EXT_MCTP, | 
|  | #endif | 
|  | SKB_EXT_NUM, /* must be last */ | 
|  | }; | 
|  |  | 
|  | /** | 
|  | *	struct skb_ext - sk_buff extensions | 
|  | *	@refcnt: 1 on allocation, deallocated on 0 | 
|  | *	@offset: offset to add to @data to obtain extension address | 
|  | *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units | 
|  | *	@data: start of extension data, variable sized | 
|  | * | 
|  | *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows | 
|  | *	to use 'u8' types while allowing up to 2kb worth of extension data. | 
|  | */ | 
|  | struct skb_ext { | 
|  | refcount_t refcnt; | 
|  | u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ | 
|  | u8 chunks;		/* same */ | 
|  | char data[] __aligned(8); | 
|  | }; | 
|  |  | 
|  | struct skb_ext *__skb_ext_alloc(gfp_t flags); | 
|  | void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, | 
|  | struct skb_ext *ext); | 
|  | void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); | 
|  | void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); | 
|  | void __skb_ext_put(struct skb_ext *ext); | 
|  |  | 
|  | static inline void skb_ext_put(struct sk_buff *skb) | 
|  | { | 
|  | if (skb->active_extensions) | 
|  | __skb_ext_put(skb->extensions); | 
|  | } | 
|  |  | 
|  | static inline void __skb_ext_copy(struct sk_buff *dst, | 
|  | const struct sk_buff *src) | 
|  | { | 
|  | dst->active_extensions = src->active_extensions; | 
|  |  | 
|  | if (src->active_extensions) { | 
|  | struct skb_ext *ext = src->extensions; | 
|  |  | 
|  | refcount_inc(&ext->refcnt); | 
|  | dst->extensions = ext; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) | 
|  | { | 
|  | skb_ext_put(dst); | 
|  | __skb_ext_copy(dst, src); | 
|  | } | 
|  |  | 
|  | static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) | 
|  | { | 
|  | return !!ext->offset[i]; | 
|  | } | 
|  |  | 
|  | static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) | 
|  | { | 
|  | return skb->active_extensions & (1 << id); | 
|  | } | 
|  |  | 
|  | static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) | 
|  | { | 
|  | if (skb_ext_exist(skb, id)) | 
|  | __skb_ext_del(skb, id); | 
|  | } | 
|  |  | 
|  | static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) | 
|  | { | 
|  | if (skb_ext_exist(skb, id)) { | 
|  | struct skb_ext *ext = skb->extensions; | 
|  |  | 
|  | return (void *)ext + (ext->offset[id] << 3); | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline void skb_ext_reset(struct sk_buff *skb) | 
|  | { | 
|  | if (unlikely(skb->active_extensions)) { | 
|  | __skb_ext_put(skb->extensions); | 
|  | skb->active_extensions = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline bool skb_has_extensions(struct sk_buff *skb) | 
|  | { | 
|  | return unlikely(skb->active_extensions); | 
|  | } | 
|  | #else | 
|  | static inline void skb_ext_put(struct sk_buff *skb) {} | 
|  | static inline void skb_ext_reset(struct sk_buff *skb) {} | 
|  | static inline void skb_ext_del(struct sk_buff *skb, int unused) {} | 
|  | static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} | 
|  | static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} | 
|  | static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } | 
|  | #endif /* CONFIG_SKB_EXTENSIONS */ | 
|  |  | 
|  | static inline void nf_reset_ct(struct sk_buff *skb) | 
|  | { | 
|  | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) | 
|  | nf_conntrack_put(skb_nfct(skb)); | 
|  | skb->_nfct = 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void nf_reset_trace(struct sk_buff *skb) | 
|  | { | 
|  | #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) | 
|  | skb->nf_trace = 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void ipvs_reset(struct sk_buff *skb) | 
|  | { | 
|  | #if IS_ENABLED(CONFIG_IP_VS) | 
|  | skb->ipvs_property = 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Note: This doesn't put any conntrack info in dst. */ | 
|  | static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, | 
|  | bool copy) | 
|  | { | 
|  | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) | 
|  | dst->_nfct = src->_nfct; | 
|  | nf_conntrack_get(skb_nfct(src)); | 
|  | #endif | 
|  | #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) | 
|  | if (copy) | 
|  | dst->nf_trace = src->nf_trace; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) | 
|  | { | 
|  | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) | 
|  | nf_conntrack_put(skb_nfct(dst)); | 
|  | #endif | 
|  | dst->slow_gro = src->slow_gro; | 
|  | __nf_copy(dst, src, true); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NETWORK_SECMARK | 
|  | static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) | 
|  | { | 
|  | to->secmark = from->secmark; | 
|  | } | 
|  |  | 
|  | static inline void skb_init_secmark(struct sk_buff *skb) | 
|  | { | 
|  | skb->secmark = 0; | 
|  | } | 
|  | #else | 
|  | static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) | 
|  | { } | 
|  |  | 
|  | static inline void skb_init_secmark(struct sk_buff *skb) | 
|  | { } | 
|  | #endif | 
|  |  | 
|  | static inline int secpath_exists(const struct sk_buff *skb) | 
|  | { | 
|  | #ifdef CONFIG_XFRM | 
|  | return skb_ext_exist(skb, SKB_EXT_SEC_PATH); | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline bool skb_irq_freeable(const struct sk_buff *skb) | 
|  | { | 
|  | return !skb->destructor && | 
|  | !secpath_exists(skb) && | 
|  | !skb_nfct(skb) && | 
|  | !skb->_skb_refdst && | 
|  | !skb_has_frag_list(skb); | 
|  | } | 
|  |  | 
|  | static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) | 
|  | { | 
|  | skb->queue_mapping = queue_mapping; | 
|  | } | 
|  |  | 
|  | static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->queue_mapping; | 
|  | } | 
|  |  | 
|  | static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) | 
|  | { | 
|  | to->queue_mapping = from->queue_mapping; | 
|  | } | 
|  |  | 
|  | static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) | 
|  | { | 
|  | skb->queue_mapping = rx_queue + 1; | 
|  | } | 
|  |  | 
|  | static inline u16 skb_get_rx_queue(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->queue_mapping - 1; | 
|  | } | 
|  |  | 
|  | static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->queue_mapping != 0; | 
|  | } | 
|  |  | 
|  | static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) | 
|  | { | 
|  | skb->dst_pending_confirm = val; | 
|  | } | 
|  |  | 
|  | static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->dst_pending_confirm != 0; | 
|  | } | 
|  |  | 
|  | static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) | 
|  | { | 
|  | #ifdef CONFIG_XFRM | 
|  | return skb_ext_find(skb, SKB_EXT_SEC_PATH); | 
|  | #else | 
|  | return NULL; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Keeps track of mac header offset relative to skb->head. | 
|  | * It is useful for TSO of Tunneling protocol. e.g. GRE. | 
|  | * For non-tunnel skb it points to skb_mac_header() and for | 
|  | * tunnel skb it points to outer mac header. | 
|  | * Keeps track of level of encapsulation of network headers. | 
|  | */ | 
|  | struct skb_gso_cb { | 
|  | union { | 
|  | int	mac_offset; | 
|  | int	data_offset; | 
|  | }; | 
|  | int	encap_level; | 
|  | __wsum	csum; | 
|  | __u16	csum_start; | 
|  | }; | 
|  | #define SKB_GSO_CB_OFFSET	32 | 
|  | #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET)) | 
|  |  | 
|  | static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) | 
|  | { | 
|  | return (skb_mac_header(inner_skb) - inner_skb->head) - | 
|  | SKB_GSO_CB(inner_skb)->mac_offset; | 
|  | } | 
|  |  | 
|  | static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) | 
|  | { | 
|  | int new_headroom, headroom; | 
|  | int ret; | 
|  |  | 
|  | headroom = skb_headroom(skb); | 
|  | ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | new_headroom = skb_headroom(skb); | 
|  | SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) | 
|  | { | 
|  | /* Do not update partial checksums if remote checksum is enabled. */ | 
|  | if (skb->remcsum_offload) | 
|  | return; | 
|  |  | 
|  | SKB_GSO_CB(skb)->csum = res; | 
|  | SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; | 
|  | } | 
|  |  | 
|  | /* Compute the checksum for a gso segment. First compute the checksum value | 
|  | * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and | 
|  | * then add in skb->csum (checksum from csum_start to end of packet). | 
|  | * skb->csum and csum_start are then updated to reflect the checksum of the | 
|  | * resultant packet starting from the transport header-- the resultant checksum | 
|  | * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo | 
|  | * header. | 
|  | */ | 
|  | static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) | 
|  | { | 
|  | unsigned char *csum_start = skb_transport_header(skb); | 
|  | int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; | 
|  | __wsum partial = SKB_GSO_CB(skb)->csum; | 
|  |  | 
|  | SKB_GSO_CB(skb)->csum = res; | 
|  | SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; | 
|  |  | 
|  | return csum_fold(csum_partial(csum_start, plen, partial)); | 
|  | } | 
|  |  | 
|  | static inline bool skb_is_gso(const struct sk_buff *skb) | 
|  | { | 
|  | return skb_shinfo(skb)->gso_size; | 
|  | } | 
|  |  | 
|  | /* Note: Should be called only if skb_is_gso(skb) is true */ | 
|  | static inline bool skb_is_gso_v6(const struct sk_buff *skb) | 
|  | { | 
|  | return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; | 
|  | } | 
|  |  | 
|  | /* Note: Should be called only if skb_is_gso(skb) is true */ | 
|  | static inline bool skb_is_gso_sctp(const struct sk_buff *skb) | 
|  | { | 
|  | return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; | 
|  | } | 
|  |  | 
|  | /* Note: Should be called only if skb_is_gso(skb) is true */ | 
|  | static inline bool skb_is_gso_tcp(const struct sk_buff *skb) | 
|  | { | 
|  | return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); | 
|  | } | 
|  |  | 
|  | static inline void skb_gso_reset(struct sk_buff *skb) | 
|  | { | 
|  | skb_shinfo(skb)->gso_size = 0; | 
|  | skb_shinfo(skb)->gso_segs = 0; | 
|  | skb_shinfo(skb)->gso_type = 0; | 
|  | } | 
|  |  | 
|  | static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, | 
|  | u16 increment) | 
|  | { | 
|  | if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) | 
|  | return; | 
|  | shinfo->gso_size += increment; | 
|  | } | 
|  |  | 
|  | static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, | 
|  | u16 decrement) | 
|  | { | 
|  | if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) | 
|  | return; | 
|  | shinfo->gso_size -= decrement; | 
|  | } | 
|  |  | 
|  | void __skb_warn_lro_forwarding(const struct sk_buff *skb); | 
|  |  | 
|  | static inline bool skb_warn_if_lro(const struct sk_buff *skb) | 
|  | { | 
|  | /* LRO sets gso_size but not gso_type, whereas if GSO is really | 
|  | * wanted then gso_type will be set. */ | 
|  | const struct skb_shared_info *shinfo = skb_shinfo(skb); | 
|  |  | 
|  | if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && | 
|  | unlikely(shinfo->gso_type == 0)) { | 
|  | __skb_warn_lro_forwarding(skb); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline void skb_forward_csum(struct sk_buff *skb) | 
|  | { | 
|  | /* Unfortunately we don't support this one.  Any brave souls? */ | 
|  | if (skb->ip_summed == CHECKSUM_COMPLETE) | 
|  | skb->ip_summed = CHECKSUM_NONE; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE | 
|  | * @skb: skb to check | 
|  | * | 
|  | * fresh skbs have their ip_summed set to CHECKSUM_NONE. | 
|  | * Instead of forcing ip_summed to CHECKSUM_NONE, we can | 
|  | * use this helper, to document places where we make this assertion. | 
|  | */ | 
|  | static inline void skb_checksum_none_assert(const struct sk_buff *skb) | 
|  | { | 
|  | DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE); | 
|  | } | 
|  |  | 
|  | bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); | 
|  |  | 
|  | int skb_checksum_setup(struct sk_buff *skb, bool recalculate); | 
|  | struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, | 
|  | unsigned int transport_len, | 
|  | __sum16(*skb_chkf)(struct sk_buff *skb)); | 
|  |  | 
|  | /** | 
|  | * skb_head_is_locked - Determine if the skb->head is locked down | 
|  | * @skb: skb to check | 
|  | * | 
|  | * The head on skbs build around a head frag can be removed if they are | 
|  | * not cloned.  This function returns true if the skb head is locked down | 
|  | * due to either being allocated via kmalloc, or by being a clone with | 
|  | * multiple references to the head. | 
|  | */ | 
|  | static inline bool skb_head_is_locked(const struct sk_buff *skb) | 
|  | { | 
|  | return !skb->head_frag || skb_cloned(skb); | 
|  | } | 
|  |  | 
|  | /* Local Checksum Offload. | 
|  | * Compute outer checksum based on the assumption that the | 
|  | * inner checksum will be offloaded later. | 
|  | * See Documentation/networking/checksum-offloads.rst for | 
|  | * explanation of how this works. | 
|  | * Fill in outer checksum adjustment (e.g. with sum of outer | 
|  | * pseudo-header) before calling. | 
|  | * Also ensure that inner checksum is in linear data area. | 
|  | */ | 
|  | static inline __wsum lco_csum(struct sk_buff *skb) | 
|  | { | 
|  | unsigned char *csum_start = skb_checksum_start(skb); | 
|  | unsigned char *l4_hdr = skb_transport_header(skb); | 
|  | __wsum partial; | 
|  |  | 
|  | /* Start with complement of inner checksum adjustment */ | 
|  | partial = ~csum_unfold(*(__force __sum16 *)(csum_start + | 
|  | skb->csum_offset)); | 
|  |  | 
|  | /* Add in checksum of our headers (incl. outer checksum | 
|  | * adjustment filled in by caller) and return result. | 
|  | */ | 
|  | return csum_partial(l4_hdr, csum_start - l4_hdr, partial); | 
|  | } | 
|  |  | 
|  | static inline bool skb_is_redirected(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->redirected; | 
|  | } | 
|  |  | 
|  | static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) | 
|  | { | 
|  | skb->redirected = 1; | 
|  | #ifdef CONFIG_NET_REDIRECT | 
|  | skb->from_ingress = from_ingress; | 
|  | if (skb->from_ingress) | 
|  | skb_clear_tstamp(skb); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void skb_reset_redirect(struct sk_buff *skb) | 
|  | { | 
|  | skb->redirected = 0; | 
|  | } | 
|  |  | 
|  | static inline bool skb_csum_is_sctp(struct sk_buff *skb) | 
|  | { | 
|  | return skb->csum_not_inet; | 
|  | } | 
|  |  | 
|  | static inline void skb_set_kcov_handle(struct sk_buff *skb, | 
|  | const u64 kcov_handle) | 
|  | { | 
|  | #ifdef CONFIG_KCOV | 
|  | skb->kcov_handle = kcov_handle; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline u64 skb_get_kcov_handle(struct sk_buff *skb) | 
|  | { | 
|  | #ifdef CONFIG_KCOV | 
|  | return skb->kcov_handle; | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PAGE_POOL | 
|  | static inline void skb_mark_for_recycle(struct sk_buff *skb) | 
|  | { | 
|  | skb->pp_recycle = 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline bool skb_pp_recycle(struct sk_buff *skb, void *data) | 
|  | { | 
|  | if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) | 
|  | return false; | 
|  | return page_pool_return_skb_page(virt_to_page(data)); | 
|  | } | 
|  |  | 
|  | #endif	/* __KERNEL__ */ | 
|  | #endif	/* _LINUX_SKBUFF_H */ |