|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | *  linux/fs/namespace.c | 
|  | * | 
|  | * (C) Copyright Al Viro 2000, 2001 | 
|  | * | 
|  | * Based on code from fs/super.c, copyright Linus Torvalds and others. | 
|  | * Heavily rewritten. | 
|  | */ | 
|  |  | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/mnt_namespace.h> | 
|  | #include <linux/user_namespace.h> | 
|  | #include <linux/namei.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/cred.h> | 
|  | #include <linux/idr.h> | 
|  | #include <linux/init.h>		/* init_rootfs */ | 
|  | #include <linux/fs_struct.h>	/* get_fs_root et.al. */ | 
|  | #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */ | 
|  | #include <linux/file.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/proc_ns.h> | 
|  | #include <linux/magic.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/task_work.h> | 
|  | #include <linux/sched/task.h> | 
|  | #include <uapi/linux/mount.h> | 
|  | #include <linux/fs_context.h> | 
|  | #include <linux/shmem_fs.h> | 
|  |  | 
|  | #include "pnode.h" | 
|  | #include "internal.h" | 
|  |  | 
|  | /* Maximum number of mounts in a mount namespace */ | 
|  | unsigned int sysctl_mount_max __read_mostly = 100000; | 
|  |  | 
|  | static unsigned int m_hash_mask __read_mostly; | 
|  | static unsigned int m_hash_shift __read_mostly; | 
|  | static unsigned int mp_hash_mask __read_mostly; | 
|  | static unsigned int mp_hash_shift __read_mostly; | 
|  |  | 
|  | static __initdata unsigned long mhash_entries; | 
|  | static int __init set_mhash_entries(char *str) | 
|  | { | 
|  | if (!str) | 
|  | return 0; | 
|  | mhash_entries = simple_strtoul(str, &str, 0); | 
|  | return 1; | 
|  | } | 
|  | __setup("mhash_entries=", set_mhash_entries); | 
|  |  | 
|  | static __initdata unsigned long mphash_entries; | 
|  | static int __init set_mphash_entries(char *str) | 
|  | { | 
|  | if (!str) | 
|  | return 0; | 
|  | mphash_entries = simple_strtoul(str, &str, 0); | 
|  | return 1; | 
|  | } | 
|  | __setup("mphash_entries=", set_mphash_entries); | 
|  |  | 
|  | static u64 event; | 
|  | static DEFINE_IDA(mnt_id_ida); | 
|  | static DEFINE_IDA(mnt_group_ida); | 
|  |  | 
|  | static struct hlist_head *mount_hashtable __read_mostly; | 
|  | static struct hlist_head *mountpoint_hashtable __read_mostly; | 
|  | static struct kmem_cache *mnt_cache __read_mostly; | 
|  | static DECLARE_RWSEM(namespace_sem); | 
|  | static HLIST_HEAD(unmounted);	/* protected by namespace_sem */ | 
|  | static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ | 
|  |  | 
|  | /* /sys/fs */ | 
|  | struct kobject *fs_kobj; | 
|  | EXPORT_SYMBOL_GPL(fs_kobj); | 
|  |  | 
|  | /* | 
|  | * vfsmount lock may be taken for read to prevent changes to the | 
|  | * vfsmount hash, ie. during mountpoint lookups or walking back | 
|  | * up the tree. | 
|  | * | 
|  | * It should be taken for write in all cases where the vfsmount | 
|  | * tree or hash is modified or when a vfsmount structure is modified. | 
|  | */ | 
|  | __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); | 
|  |  | 
|  | static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) | 
|  | { | 
|  | unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); | 
|  | tmp += ((unsigned long)dentry / L1_CACHE_BYTES); | 
|  | tmp = tmp + (tmp >> m_hash_shift); | 
|  | return &mount_hashtable[tmp & m_hash_mask]; | 
|  | } | 
|  |  | 
|  | static inline struct hlist_head *mp_hash(struct dentry *dentry) | 
|  | { | 
|  | unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); | 
|  | tmp = tmp + (tmp >> mp_hash_shift); | 
|  | return &mountpoint_hashtable[tmp & mp_hash_mask]; | 
|  | } | 
|  |  | 
|  | static int mnt_alloc_id(struct mount *mnt) | 
|  | { | 
|  | int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); | 
|  |  | 
|  | if (res < 0) | 
|  | return res; | 
|  | mnt->mnt_id = res; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void mnt_free_id(struct mount *mnt) | 
|  | { | 
|  | ida_free(&mnt_id_ida, mnt->mnt_id); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a new peer group ID | 
|  | */ | 
|  | static int mnt_alloc_group_id(struct mount *mnt) | 
|  | { | 
|  | int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); | 
|  |  | 
|  | if (res < 0) | 
|  | return res; | 
|  | mnt->mnt_group_id = res; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release a peer group ID | 
|  | */ | 
|  | void mnt_release_group_id(struct mount *mnt) | 
|  | { | 
|  | ida_free(&mnt_group_ida, mnt->mnt_group_id); | 
|  | mnt->mnt_group_id = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vfsmount lock must be held for read | 
|  | */ | 
|  | static inline void mnt_add_count(struct mount *mnt, int n) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | this_cpu_add(mnt->mnt_pcp->mnt_count, n); | 
|  | #else | 
|  | preempt_disable(); | 
|  | mnt->mnt_count += n; | 
|  | preempt_enable(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vfsmount lock must be held for write | 
|  | */ | 
|  | unsigned int mnt_get_count(struct mount *mnt) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | unsigned int count = 0; | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; | 
|  | } | 
|  |  | 
|  | return count; | 
|  | #else | 
|  | return mnt->mnt_count; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static struct mount *alloc_vfsmnt(const char *name) | 
|  | { | 
|  | struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); | 
|  | if (mnt) { | 
|  | int err; | 
|  |  | 
|  | err = mnt_alloc_id(mnt); | 
|  | if (err) | 
|  | goto out_free_cache; | 
|  |  | 
|  | if (name) { | 
|  | mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); | 
|  | if (!mnt->mnt_devname) | 
|  | goto out_free_id; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); | 
|  | if (!mnt->mnt_pcp) | 
|  | goto out_free_devname; | 
|  |  | 
|  | this_cpu_add(mnt->mnt_pcp->mnt_count, 1); | 
|  | #else | 
|  | mnt->mnt_count = 1; | 
|  | mnt->mnt_writers = 0; | 
|  | #endif | 
|  |  | 
|  | INIT_HLIST_NODE(&mnt->mnt_hash); | 
|  | INIT_LIST_HEAD(&mnt->mnt_child); | 
|  | INIT_LIST_HEAD(&mnt->mnt_mounts); | 
|  | INIT_LIST_HEAD(&mnt->mnt_list); | 
|  | INIT_LIST_HEAD(&mnt->mnt_expire); | 
|  | INIT_LIST_HEAD(&mnt->mnt_share); | 
|  | INIT_LIST_HEAD(&mnt->mnt_slave_list); | 
|  | INIT_LIST_HEAD(&mnt->mnt_slave); | 
|  | INIT_HLIST_NODE(&mnt->mnt_mp_list); | 
|  | INIT_LIST_HEAD(&mnt->mnt_umounting); | 
|  | INIT_HLIST_HEAD(&mnt->mnt_stuck_children); | 
|  | } | 
|  | return mnt; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | out_free_devname: | 
|  | kfree_const(mnt->mnt_devname); | 
|  | #endif | 
|  | out_free_id: | 
|  | mnt_free_id(mnt); | 
|  | out_free_cache: | 
|  | kmem_cache_free(mnt_cache, mnt); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Most r/o checks on a fs are for operations that take | 
|  | * discrete amounts of time, like a write() or unlink(). | 
|  | * We must keep track of when those operations start | 
|  | * (for permission checks) and when they end, so that | 
|  | * we can determine when writes are able to occur to | 
|  | * a filesystem. | 
|  | */ | 
|  | /* | 
|  | * __mnt_is_readonly: check whether a mount is read-only | 
|  | * @mnt: the mount to check for its write status | 
|  | * | 
|  | * This shouldn't be used directly ouside of the VFS. | 
|  | * It does not guarantee that the filesystem will stay | 
|  | * r/w, just that it is right *now*.  This can not and | 
|  | * should not be used in place of IS_RDONLY(inode). | 
|  | * mnt_want/drop_write() will _keep_ the filesystem | 
|  | * r/w. | 
|  | */ | 
|  | bool __mnt_is_readonly(struct vfsmount *mnt) | 
|  | { | 
|  | return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__mnt_is_readonly); | 
|  |  | 
|  | static inline void mnt_inc_writers(struct mount *mnt) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | this_cpu_inc(mnt->mnt_pcp->mnt_writers); | 
|  | #else | 
|  | mnt->mnt_writers++; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void mnt_dec_writers(struct mount *mnt) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | this_cpu_dec(mnt->mnt_pcp->mnt_writers); | 
|  | #else | 
|  | mnt->mnt_writers--; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static unsigned int mnt_get_writers(struct mount *mnt) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | unsigned int count = 0; | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; | 
|  | } | 
|  |  | 
|  | return count; | 
|  | #else | 
|  | return mnt->mnt_writers; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int mnt_is_readonly(struct vfsmount *mnt) | 
|  | { | 
|  | if (mnt->mnt_sb->s_readonly_remount) | 
|  | return 1; | 
|  | /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ | 
|  | smp_rmb(); | 
|  | return __mnt_is_readonly(mnt); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Most r/o & frozen checks on a fs are for operations that take discrete | 
|  | * amounts of time, like a write() or unlink().  We must keep track of when | 
|  | * those operations start (for permission checks) and when they end, so that we | 
|  | * can determine when writes are able to occur to a filesystem. | 
|  | */ | 
|  | /** | 
|  | * __mnt_want_write - get write access to a mount without freeze protection | 
|  | * @m: the mount on which to take a write | 
|  | * | 
|  | * This tells the low-level filesystem that a write is about to be performed to | 
|  | * it, and makes sure that writes are allowed (mnt it read-write) before | 
|  | * returning success. This operation does not protect against filesystem being | 
|  | * frozen. When the write operation is finished, __mnt_drop_write() must be | 
|  | * called. This is effectively a refcount. | 
|  | */ | 
|  | int __mnt_want_write(struct vfsmount *m) | 
|  | { | 
|  | struct mount *mnt = real_mount(m); | 
|  | int ret = 0; | 
|  |  | 
|  | preempt_disable(); | 
|  | mnt_inc_writers(mnt); | 
|  | /* | 
|  | * The store to mnt_inc_writers must be visible before we pass | 
|  | * MNT_WRITE_HOLD loop below, so that the slowpath can see our | 
|  | * incremented count after it has set MNT_WRITE_HOLD. | 
|  | */ | 
|  | smp_mb(); | 
|  | while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) | 
|  | cpu_relax(); | 
|  | /* | 
|  | * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will | 
|  | * be set to match its requirements. So we must not load that until | 
|  | * MNT_WRITE_HOLD is cleared. | 
|  | */ | 
|  | smp_rmb(); | 
|  | if (mnt_is_readonly(m)) { | 
|  | mnt_dec_writers(mnt); | 
|  | ret = -EROFS; | 
|  | } | 
|  | preempt_enable(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mnt_want_write - get write access to a mount | 
|  | * @m: the mount on which to take a write | 
|  | * | 
|  | * This tells the low-level filesystem that a write is about to be performed to | 
|  | * it, and makes sure that writes are allowed (mount is read-write, filesystem | 
|  | * is not frozen) before returning success.  When the write operation is | 
|  | * finished, mnt_drop_write() must be called.  This is effectively a refcount. | 
|  | */ | 
|  | int mnt_want_write(struct vfsmount *m) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | sb_start_write(m->mnt_sb); | 
|  | ret = __mnt_want_write(m); | 
|  | if (ret) | 
|  | sb_end_write(m->mnt_sb); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mnt_want_write); | 
|  |  | 
|  | /** | 
|  | * mnt_clone_write - get write access to a mount | 
|  | * @mnt: the mount on which to take a write | 
|  | * | 
|  | * This is effectively like mnt_want_write, except | 
|  | * it must only be used to take an extra write reference | 
|  | * on a mountpoint that we already know has a write reference | 
|  | * on it. This allows some optimisation. | 
|  | * | 
|  | * After finished, mnt_drop_write must be called as usual to | 
|  | * drop the reference. | 
|  | */ | 
|  | int mnt_clone_write(struct vfsmount *mnt) | 
|  | { | 
|  | /* superblock may be r/o */ | 
|  | if (__mnt_is_readonly(mnt)) | 
|  | return -EROFS; | 
|  | preempt_disable(); | 
|  | mnt_inc_writers(real_mount(mnt)); | 
|  | preempt_enable(); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mnt_clone_write); | 
|  |  | 
|  | /** | 
|  | * __mnt_want_write_file - get write access to a file's mount | 
|  | * @file: the file who's mount on which to take a write | 
|  | * | 
|  | * This is like __mnt_want_write, but it takes a file and can | 
|  | * do some optimisations if the file is open for write already | 
|  | */ | 
|  | int __mnt_want_write_file(struct file *file) | 
|  | { | 
|  | if (!(file->f_mode & FMODE_WRITER)) | 
|  | return __mnt_want_write(file->f_path.mnt); | 
|  | else | 
|  | return mnt_clone_write(file->f_path.mnt); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mnt_want_write_file - get write access to a file's mount | 
|  | * @file: the file who's mount on which to take a write | 
|  | * | 
|  | * This is like mnt_want_write, but it takes a file and can | 
|  | * do some optimisations if the file is open for write already | 
|  | */ | 
|  | int mnt_want_write_file(struct file *file) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | sb_start_write(file_inode(file)->i_sb); | 
|  | ret = __mnt_want_write_file(file); | 
|  | if (ret) | 
|  | sb_end_write(file_inode(file)->i_sb); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mnt_want_write_file); | 
|  |  | 
|  | /** | 
|  | * __mnt_drop_write - give up write access to a mount | 
|  | * @mnt: the mount on which to give up write access | 
|  | * | 
|  | * Tells the low-level filesystem that we are done | 
|  | * performing writes to it.  Must be matched with | 
|  | * __mnt_want_write() call above. | 
|  | */ | 
|  | void __mnt_drop_write(struct vfsmount *mnt) | 
|  | { | 
|  | preempt_disable(); | 
|  | mnt_dec_writers(real_mount(mnt)); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mnt_drop_write - give up write access to a mount | 
|  | * @mnt: the mount on which to give up write access | 
|  | * | 
|  | * Tells the low-level filesystem that we are done performing writes to it and | 
|  | * also allows filesystem to be frozen again.  Must be matched with | 
|  | * mnt_want_write() call above. | 
|  | */ | 
|  | void mnt_drop_write(struct vfsmount *mnt) | 
|  | { | 
|  | __mnt_drop_write(mnt); | 
|  | sb_end_write(mnt->mnt_sb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mnt_drop_write); | 
|  |  | 
|  | void __mnt_drop_write_file(struct file *file) | 
|  | { | 
|  | __mnt_drop_write(file->f_path.mnt); | 
|  | } | 
|  |  | 
|  | void mnt_drop_write_file(struct file *file) | 
|  | { | 
|  | __mnt_drop_write_file(file); | 
|  | sb_end_write(file_inode(file)->i_sb); | 
|  | } | 
|  | EXPORT_SYMBOL(mnt_drop_write_file); | 
|  |  | 
|  | static int mnt_make_readonly(struct mount *mnt) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | lock_mount_hash(); | 
|  | mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; | 
|  | /* | 
|  | * After storing MNT_WRITE_HOLD, we'll read the counters. This store | 
|  | * should be visible before we do. | 
|  | */ | 
|  | smp_mb(); | 
|  |  | 
|  | /* | 
|  | * With writers on hold, if this value is zero, then there are | 
|  | * definitely no active writers (although held writers may subsequently | 
|  | * increment the count, they'll have to wait, and decrement it after | 
|  | * seeing MNT_READONLY). | 
|  | * | 
|  | * It is OK to have counter incremented on one CPU and decremented on | 
|  | * another: the sum will add up correctly. The danger would be when we | 
|  | * sum up each counter, if we read a counter before it is incremented, | 
|  | * but then read another CPU's count which it has been subsequently | 
|  | * decremented from -- we would see more decrements than we should. | 
|  | * MNT_WRITE_HOLD protects against this scenario, because | 
|  | * mnt_want_write first increments count, then smp_mb, then spins on | 
|  | * MNT_WRITE_HOLD, so it can't be decremented by another CPU while | 
|  | * we're counting up here. | 
|  | */ | 
|  | if (mnt_get_writers(mnt) > 0) | 
|  | ret = -EBUSY; | 
|  | else | 
|  | mnt->mnt.mnt_flags |= MNT_READONLY; | 
|  | /* | 
|  | * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers | 
|  | * that become unheld will see MNT_READONLY. | 
|  | */ | 
|  | smp_wmb(); | 
|  | mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; | 
|  | unlock_mount_hash(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __mnt_unmake_readonly(struct mount *mnt) | 
|  | { | 
|  | lock_mount_hash(); | 
|  | mnt->mnt.mnt_flags &= ~MNT_READONLY; | 
|  | unlock_mount_hash(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int sb_prepare_remount_readonly(struct super_block *sb) | 
|  | { | 
|  | struct mount *mnt; | 
|  | int err = 0; | 
|  |  | 
|  | /* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */ | 
|  | if (atomic_long_read(&sb->s_remove_count)) | 
|  | return -EBUSY; | 
|  |  | 
|  | lock_mount_hash(); | 
|  | list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { | 
|  | if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { | 
|  | mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; | 
|  | smp_mb(); | 
|  | if (mnt_get_writers(mnt) > 0) { | 
|  | err = -EBUSY; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!err && atomic_long_read(&sb->s_remove_count)) | 
|  | err = -EBUSY; | 
|  |  | 
|  | if (!err) { | 
|  | sb->s_readonly_remount = 1; | 
|  | smp_wmb(); | 
|  | } | 
|  | list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { | 
|  | if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) | 
|  | mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; | 
|  | } | 
|  | unlock_mount_hash(); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void free_vfsmnt(struct mount *mnt) | 
|  | { | 
|  | kfree_const(mnt->mnt_devname); | 
|  | #ifdef CONFIG_SMP | 
|  | free_percpu(mnt->mnt_pcp); | 
|  | #endif | 
|  | kmem_cache_free(mnt_cache, mnt); | 
|  | } | 
|  |  | 
|  | static void delayed_free_vfsmnt(struct rcu_head *head) | 
|  | { | 
|  | free_vfsmnt(container_of(head, struct mount, mnt_rcu)); | 
|  | } | 
|  |  | 
|  | /* call under rcu_read_lock */ | 
|  | int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) | 
|  | { | 
|  | struct mount *mnt; | 
|  | if (read_seqretry(&mount_lock, seq)) | 
|  | return 1; | 
|  | if (bastard == NULL) | 
|  | return 0; | 
|  | mnt = real_mount(bastard); | 
|  | mnt_add_count(mnt, 1); | 
|  | smp_mb();			// see mntput_no_expire() | 
|  | if (likely(!read_seqretry(&mount_lock, seq))) | 
|  | return 0; | 
|  | if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { | 
|  | mnt_add_count(mnt, -1); | 
|  | return 1; | 
|  | } | 
|  | lock_mount_hash(); | 
|  | if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { | 
|  | mnt_add_count(mnt, -1); | 
|  | unlock_mount_hash(); | 
|  | return 1; | 
|  | } | 
|  | unlock_mount_hash(); | 
|  | /* caller will mntput() */ | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* call under rcu_read_lock */ | 
|  | bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) | 
|  | { | 
|  | int res = __legitimize_mnt(bastard, seq); | 
|  | if (likely(!res)) | 
|  | return true; | 
|  | if (unlikely(res < 0)) { | 
|  | rcu_read_unlock(); | 
|  | mntput(bastard); | 
|  | rcu_read_lock(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find the first mount at @dentry on vfsmount @mnt. | 
|  | * call under rcu_read_lock() | 
|  | */ | 
|  | struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) | 
|  | { | 
|  | struct hlist_head *head = m_hash(mnt, dentry); | 
|  | struct mount *p; | 
|  |  | 
|  | hlist_for_each_entry_rcu(p, head, mnt_hash) | 
|  | if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) | 
|  | return p; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * lookup_mnt - Return the first child mount mounted at path | 
|  | * | 
|  | * "First" means first mounted chronologically.  If you create the | 
|  | * following mounts: | 
|  | * | 
|  | * mount /dev/sda1 /mnt | 
|  | * mount /dev/sda2 /mnt | 
|  | * mount /dev/sda3 /mnt | 
|  | * | 
|  | * Then lookup_mnt() on the base /mnt dentry in the root mount will | 
|  | * return successively the root dentry and vfsmount of /dev/sda1, then | 
|  | * /dev/sda2, then /dev/sda3, then NULL. | 
|  | * | 
|  | * lookup_mnt takes a reference to the found vfsmount. | 
|  | */ | 
|  | struct vfsmount *lookup_mnt(const struct path *path) | 
|  | { | 
|  | struct mount *child_mnt; | 
|  | struct vfsmount *m; | 
|  | unsigned seq; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | do { | 
|  | seq = read_seqbegin(&mount_lock); | 
|  | child_mnt = __lookup_mnt(path->mnt, path->dentry); | 
|  | m = child_mnt ? &child_mnt->mnt : NULL; | 
|  | } while (!legitimize_mnt(m, seq)); | 
|  | rcu_read_unlock(); | 
|  | return m; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __is_local_mountpoint - Test to see if dentry is a mountpoint in the | 
|  | *                         current mount namespace. | 
|  | * | 
|  | * The common case is dentries are not mountpoints at all and that | 
|  | * test is handled inline.  For the slow case when we are actually | 
|  | * dealing with a mountpoint of some kind, walk through all of the | 
|  | * mounts in the current mount namespace and test to see if the dentry | 
|  | * is a mountpoint. | 
|  | * | 
|  | * The mount_hashtable is not usable in the context because we | 
|  | * need to identify all mounts that may be in the current mount | 
|  | * namespace not just a mount that happens to have some specified | 
|  | * parent mount. | 
|  | */ | 
|  | bool __is_local_mountpoint(struct dentry *dentry) | 
|  | { | 
|  | struct mnt_namespace *ns = current->nsproxy->mnt_ns; | 
|  | struct mount *mnt; | 
|  | bool is_covered = false; | 
|  |  | 
|  | if (!d_mountpoint(dentry)) | 
|  | goto out; | 
|  |  | 
|  | down_read(&namespace_sem); | 
|  | list_for_each_entry(mnt, &ns->list, mnt_list) { | 
|  | is_covered = (mnt->mnt_mountpoint == dentry); | 
|  | if (is_covered) | 
|  | break; | 
|  | } | 
|  | up_read(&namespace_sem); | 
|  | out: | 
|  | return is_covered; | 
|  | } | 
|  |  | 
|  | static struct mountpoint *lookup_mountpoint(struct dentry *dentry) | 
|  | { | 
|  | struct hlist_head *chain = mp_hash(dentry); | 
|  | struct mountpoint *mp; | 
|  |  | 
|  | hlist_for_each_entry(mp, chain, m_hash) { | 
|  | if (mp->m_dentry == dentry) { | 
|  | mp->m_count++; | 
|  | return mp; | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct mountpoint *get_mountpoint(struct dentry *dentry) | 
|  | { | 
|  | struct mountpoint *mp, *new = NULL; | 
|  | int ret; | 
|  |  | 
|  | if (d_mountpoint(dentry)) { | 
|  | /* might be worth a WARN_ON() */ | 
|  | if (d_unlinked(dentry)) | 
|  | return ERR_PTR(-ENOENT); | 
|  | mountpoint: | 
|  | read_seqlock_excl(&mount_lock); | 
|  | mp = lookup_mountpoint(dentry); | 
|  | read_sequnlock_excl(&mount_lock); | 
|  | if (mp) | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (!new) | 
|  | new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); | 
|  | if (!new) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  |  | 
|  | /* Exactly one processes may set d_mounted */ | 
|  | ret = d_set_mounted(dentry); | 
|  |  | 
|  | /* Someone else set d_mounted? */ | 
|  | if (ret == -EBUSY) | 
|  | goto mountpoint; | 
|  |  | 
|  | /* The dentry is not available as a mountpoint? */ | 
|  | mp = ERR_PTR(ret); | 
|  | if (ret) | 
|  | goto done; | 
|  |  | 
|  | /* Add the new mountpoint to the hash table */ | 
|  | read_seqlock_excl(&mount_lock); | 
|  | new->m_dentry = dget(dentry); | 
|  | new->m_count = 1; | 
|  | hlist_add_head(&new->m_hash, mp_hash(dentry)); | 
|  | INIT_HLIST_HEAD(&new->m_list); | 
|  | read_sequnlock_excl(&mount_lock); | 
|  |  | 
|  | mp = new; | 
|  | new = NULL; | 
|  | done: | 
|  | kfree(new); | 
|  | return mp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vfsmount lock must be held.  Additionally, the caller is responsible | 
|  | * for serializing calls for given disposal list. | 
|  | */ | 
|  | static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) | 
|  | { | 
|  | if (!--mp->m_count) { | 
|  | struct dentry *dentry = mp->m_dentry; | 
|  | BUG_ON(!hlist_empty(&mp->m_list)); | 
|  | spin_lock(&dentry->d_lock); | 
|  | dentry->d_flags &= ~DCACHE_MOUNTED; | 
|  | spin_unlock(&dentry->d_lock); | 
|  | dput_to_list(dentry, list); | 
|  | hlist_del(&mp->m_hash); | 
|  | kfree(mp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* called with namespace_lock and vfsmount lock */ | 
|  | static void put_mountpoint(struct mountpoint *mp) | 
|  | { | 
|  | __put_mountpoint(mp, &ex_mountpoints); | 
|  | } | 
|  |  | 
|  | static inline int check_mnt(struct mount *mnt) | 
|  | { | 
|  | return mnt->mnt_ns == current->nsproxy->mnt_ns; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vfsmount lock must be held for write | 
|  | */ | 
|  | static void touch_mnt_namespace(struct mnt_namespace *ns) | 
|  | { | 
|  | if (ns) { | 
|  | ns->event = ++event; | 
|  | wake_up_interruptible(&ns->poll); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vfsmount lock must be held for write | 
|  | */ | 
|  | static void __touch_mnt_namespace(struct mnt_namespace *ns) | 
|  | { | 
|  | if (ns && ns->event != event) { | 
|  | ns->event = event; | 
|  | wake_up_interruptible(&ns->poll); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vfsmount lock must be held for write | 
|  | */ | 
|  | static struct mountpoint *unhash_mnt(struct mount *mnt) | 
|  | { | 
|  | struct mountpoint *mp; | 
|  | mnt->mnt_parent = mnt; | 
|  | mnt->mnt_mountpoint = mnt->mnt.mnt_root; | 
|  | list_del_init(&mnt->mnt_child); | 
|  | hlist_del_init_rcu(&mnt->mnt_hash); | 
|  | hlist_del_init(&mnt->mnt_mp_list); | 
|  | mp = mnt->mnt_mp; | 
|  | mnt->mnt_mp = NULL; | 
|  | return mp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vfsmount lock must be held for write | 
|  | */ | 
|  | static void umount_mnt(struct mount *mnt) | 
|  | { | 
|  | put_mountpoint(unhash_mnt(mnt)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vfsmount lock must be held for write | 
|  | */ | 
|  | void mnt_set_mountpoint(struct mount *mnt, | 
|  | struct mountpoint *mp, | 
|  | struct mount *child_mnt) | 
|  | { | 
|  | mp->m_count++; | 
|  | mnt_add_count(mnt, 1);	/* essentially, that's mntget */ | 
|  | child_mnt->mnt_mountpoint = mp->m_dentry; | 
|  | child_mnt->mnt_parent = mnt; | 
|  | child_mnt->mnt_mp = mp; | 
|  | hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); | 
|  | } | 
|  |  | 
|  | static void __attach_mnt(struct mount *mnt, struct mount *parent) | 
|  | { | 
|  | hlist_add_head_rcu(&mnt->mnt_hash, | 
|  | m_hash(&parent->mnt, mnt->mnt_mountpoint)); | 
|  | list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vfsmount lock must be held for write | 
|  | */ | 
|  | static void attach_mnt(struct mount *mnt, | 
|  | struct mount *parent, | 
|  | struct mountpoint *mp) | 
|  | { | 
|  | mnt_set_mountpoint(parent, mp, mnt); | 
|  | __attach_mnt(mnt, parent); | 
|  | } | 
|  |  | 
|  | void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) | 
|  | { | 
|  | struct mountpoint *old_mp = mnt->mnt_mp; | 
|  | struct mount *old_parent = mnt->mnt_parent; | 
|  |  | 
|  | list_del_init(&mnt->mnt_child); | 
|  | hlist_del_init(&mnt->mnt_mp_list); | 
|  | hlist_del_init_rcu(&mnt->mnt_hash); | 
|  |  | 
|  | attach_mnt(mnt, parent, mp); | 
|  |  | 
|  | put_mountpoint(old_mp); | 
|  | mnt_add_count(old_parent, -1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vfsmount lock must be held for write | 
|  | */ | 
|  | static void commit_tree(struct mount *mnt) | 
|  | { | 
|  | struct mount *parent = mnt->mnt_parent; | 
|  | struct mount *m; | 
|  | LIST_HEAD(head); | 
|  | struct mnt_namespace *n = parent->mnt_ns; | 
|  |  | 
|  | BUG_ON(parent == mnt); | 
|  |  | 
|  | list_add_tail(&head, &mnt->mnt_list); | 
|  | list_for_each_entry(m, &head, mnt_list) | 
|  | m->mnt_ns = n; | 
|  |  | 
|  | list_splice(&head, n->list.prev); | 
|  |  | 
|  | n->mounts += n->pending_mounts; | 
|  | n->pending_mounts = 0; | 
|  |  | 
|  | __attach_mnt(mnt, parent); | 
|  | touch_mnt_namespace(n); | 
|  | } | 
|  |  | 
|  | static struct mount *next_mnt(struct mount *p, struct mount *root) | 
|  | { | 
|  | struct list_head *next = p->mnt_mounts.next; | 
|  | if (next == &p->mnt_mounts) { | 
|  | while (1) { | 
|  | if (p == root) | 
|  | return NULL; | 
|  | next = p->mnt_child.next; | 
|  | if (next != &p->mnt_parent->mnt_mounts) | 
|  | break; | 
|  | p = p->mnt_parent; | 
|  | } | 
|  | } | 
|  | return list_entry(next, struct mount, mnt_child); | 
|  | } | 
|  |  | 
|  | static struct mount *skip_mnt_tree(struct mount *p) | 
|  | { | 
|  | struct list_head *prev = p->mnt_mounts.prev; | 
|  | while (prev != &p->mnt_mounts) { | 
|  | p = list_entry(prev, struct mount, mnt_child); | 
|  | prev = p->mnt_mounts.prev; | 
|  | } | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vfs_create_mount - Create a mount for a configured superblock | 
|  | * @fc: The configuration context with the superblock attached | 
|  | * | 
|  | * Create a mount to an already configured superblock.  If necessary, the | 
|  | * caller should invoke vfs_get_tree() before calling this. | 
|  | * | 
|  | * Note that this does not attach the mount to anything. | 
|  | */ | 
|  | struct vfsmount *vfs_create_mount(struct fs_context *fc) | 
|  | { | 
|  | struct mount *mnt; | 
|  |  | 
|  | if (!fc->root) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | mnt = alloc_vfsmnt(fc->source ?: "none"); | 
|  | if (!mnt) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | if (fc->sb_flags & SB_KERNMOUNT) | 
|  | mnt->mnt.mnt_flags = MNT_INTERNAL; | 
|  |  | 
|  | atomic_inc(&fc->root->d_sb->s_active); | 
|  | mnt->mnt.mnt_sb		= fc->root->d_sb; | 
|  | mnt->mnt.mnt_root	= dget(fc->root); | 
|  | mnt->mnt_mountpoint	= mnt->mnt.mnt_root; | 
|  | mnt->mnt_parent		= mnt; | 
|  |  | 
|  | lock_mount_hash(); | 
|  | list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); | 
|  | unlock_mount_hash(); | 
|  | return &mnt->mnt; | 
|  | } | 
|  | EXPORT_SYMBOL(vfs_create_mount); | 
|  |  | 
|  | struct vfsmount *fc_mount(struct fs_context *fc) | 
|  | { | 
|  | int err = vfs_get_tree(fc); | 
|  | if (!err) { | 
|  | up_write(&fc->root->d_sb->s_umount); | 
|  | return vfs_create_mount(fc); | 
|  | } | 
|  | return ERR_PTR(err); | 
|  | } | 
|  | EXPORT_SYMBOL(fc_mount); | 
|  |  | 
|  | struct vfsmount *vfs_kern_mount(struct file_system_type *type, | 
|  | int flags, const char *name, | 
|  | void *data) | 
|  | { | 
|  | struct fs_context *fc; | 
|  | struct vfsmount *mnt; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!type) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | fc = fs_context_for_mount(type, flags); | 
|  | if (IS_ERR(fc)) | 
|  | return ERR_CAST(fc); | 
|  |  | 
|  | if (name) | 
|  | ret = vfs_parse_fs_string(fc, "source", | 
|  | name, strlen(name)); | 
|  | if (!ret) | 
|  | ret = parse_monolithic_mount_data(fc, data); | 
|  | if (!ret) | 
|  | mnt = fc_mount(fc); | 
|  | else | 
|  | mnt = ERR_PTR(ret); | 
|  |  | 
|  | put_fs_context(fc); | 
|  | return mnt; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vfs_kern_mount); | 
|  |  | 
|  | struct vfsmount * | 
|  | vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, | 
|  | const char *name, void *data) | 
|  | { | 
|  | /* Until it is worked out how to pass the user namespace | 
|  | * through from the parent mount to the submount don't support | 
|  | * unprivileged mounts with submounts. | 
|  | */ | 
|  | if (mountpoint->d_sb->s_user_ns != &init_user_ns) | 
|  | return ERR_PTR(-EPERM); | 
|  |  | 
|  | return vfs_kern_mount(type, SB_SUBMOUNT, name, data); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vfs_submount); | 
|  |  | 
|  | static struct mount *clone_mnt(struct mount *old, struct dentry *root, | 
|  | int flag) | 
|  | { | 
|  | struct super_block *sb = old->mnt.mnt_sb; | 
|  | struct mount *mnt; | 
|  | int err; | 
|  |  | 
|  | mnt = alloc_vfsmnt(old->mnt_devname); | 
|  | if (!mnt) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) | 
|  | mnt->mnt_group_id = 0; /* not a peer of original */ | 
|  | else | 
|  | mnt->mnt_group_id = old->mnt_group_id; | 
|  |  | 
|  | if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { | 
|  | err = mnt_alloc_group_id(mnt); | 
|  | if (err) | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | mnt->mnt.mnt_flags = old->mnt.mnt_flags; | 
|  | mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); | 
|  |  | 
|  | atomic_inc(&sb->s_active); | 
|  | mnt->mnt.mnt_sb = sb; | 
|  | mnt->mnt.mnt_root = dget(root); | 
|  | mnt->mnt_mountpoint = mnt->mnt.mnt_root; | 
|  | mnt->mnt_parent = mnt; | 
|  | lock_mount_hash(); | 
|  | list_add_tail(&mnt->mnt_instance, &sb->s_mounts); | 
|  | unlock_mount_hash(); | 
|  |  | 
|  | if ((flag & CL_SLAVE) || | 
|  | ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { | 
|  | list_add(&mnt->mnt_slave, &old->mnt_slave_list); | 
|  | mnt->mnt_master = old; | 
|  | CLEAR_MNT_SHARED(mnt); | 
|  | } else if (!(flag & CL_PRIVATE)) { | 
|  | if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) | 
|  | list_add(&mnt->mnt_share, &old->mnt_share); | 
|  | if (IS_MNT_SLAVE(old)) | 
|  | list_add(&mnt->mnt_slave, &old->mnt_slave); | 
|  | mnt->mnt_master = old->mnt_master; | 
|  | } else { | 
|  | CLEAR_MNT_SHARED(mnt); | 
|  | } | 
|  | if (flag & CL_MAKE_SHARED) | 
|  | set_mnt_shared(mnt); | 
|  |  | 
|  | /* stick the duplicate mount on the same expiry list | 
|  | * as the original if that was on one */ | 
|  | if (flag & CL_EXPIRE) { | 
|  | if (!list_empty(&old->mnt_expire)) | 
|  | list_add(&mnt->mnt_expire, &old->mnt_expire); | 
|  | } | 
|  |  | 
|  | return mnt; | 
|  |  | 
|  | out_free: | 
|  | mnt_free_id(mnt); | 
|  | free_vfsmnt(mnt); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | static void cleanup_mnt(struct mount *mnt) | 
|  | { | 
|  | struct hlist_node *p; | 
|  | struct mount *m; | 
|  | /* | 
|  | * The warning here probably indicates that somebody messed | 
|  | * up a mnt_want/drop_write() pair.  If this happens, the | 
|  | * filesystem was probably unable to make r/w->r/o transitions. | 
|  | * The locking used to deal with mnt_count decrement provides barriers, | 
|  | * so mnt_get_writers() below is safe. | 
|  | */ | 
|  | WARN_ON(mnt_get_writers(mnt)); | 
|  | if (unlikely(mnt->mnt_pins.first)) | 
|  | mnt_pin_kill(mnt); | 
|  | hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { | 
|  | hlist_del(&m->mnt_umount); | 
|  | mntput(&m->mnt); | 
|  | } | 
|  | fsnotify_vfsmount_delete(&mnt->mnt); | 
|  | dput(mnt->mnt.mnt_root); | 
|  | deactivate_super(mnt->mnt.mnt_sb); | 
|  | mnt_free_id(mnt); | 
|  | call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); | 
|  | } | 
|  |  | 
|  | static void __cleanup_mnt(struct rcu_head *head) | 
|  | { | 
|  | cleanup_mnt(container_of(head, struct mount, mnt_rcu)); | 
|  | } | 
|  |  | 
|  | static LLIST_HEAD(delayed_mntput_list); | 
|  | static void delayed_mntput(struct work_struct *unused) | 
|  | { | 
|  | struct llist_node *node = llist_del_all(&delayed_mntput_list); | 
|  | struct mount *m, *t; | 
|  |  | 
|  | llist_for_each_entry_safe(m, t, node, mnt_llist) | 
|  | cleanup_mnt(m); | 
|  | } | 
|  | static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); | 
|  |  | 
|  | static void mntput_no_expire(struct mount *mnt) | 
|  | { | 
|  | LIST_HEAD(list); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | if (likely(READ_ONCE(mnt->mnt_ns))) { | 
|  | /* | 
|  | * Since we don't do lock_mount_hash() here, | 
|  | * ->mnt_ns can change under us.  However, if it's | 
|  | * non-NULL, then there's a reference that won't | 
|  | * be dropped until after an RCU delay done after | 
|  | * turning ->mnt_ns NULL.  So if we observe it | 
|  | * non-NULL under rcu_read_lock(), the reference | 
|  | * we are dropping is not the final one. | 
|  | */ | 
|  | mnt_add_count(mnt, -1); | 
|  | rcu_read_unlock(); | 
|  | return; | 
|  | } | 
|  | lock_mount_hash(); | 
|  | /* | 
|  | * make sure that if __legitimize_mnt() has not seen us grab | 
|  | * mount_lock, we'll see their refcount increment here. | 
|  | */ | 
|  | smp_mb(); | 
|  | mnt_add_count(mnt, -1); | 
|  | if (mnt_get_count(mnt)) { | 
|  | rcu_read_unlock(); | 
|  | unlock_mount_hash(); | 
|  | return; | 
|  | } | 
|  | if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { | 
|  | rcu_read_unlock(); | 
|  | unlock_mount_hash(); | 
|  | return; | 
|  | } | 
|  | mnt->mnt.mnt_flags |= MNT_DOOMED; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | list_del(&mnt->mnt_instance); | 
|  |  | 
|  | if (unlikely(!list_empty(&mnt->mnt_mounts))) { | 
|  | struct mount *p, *tmp; | 
|  | list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) { | 
|  | __put_mountpoint(unhash_mnt(p), &list); | 
|  | hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); | 
|  | } | 
|  | } | 
|  | unlock_mount_hash(); | 
|  | shrink_dentry_list(&list); | 
|  |  | 
|  | if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { | 
|  | struct task_struct *task = current; | 
|  | if (likely(!(task->flags & PF_KTHREAD))) { | 
|  | init_task_work(&mnt->mnt_rcu, __cleanup_mnt); | 
|  | if (!task_work_add(task, &mnt->mnt_rcu, true)) | 
|  | return; | 
|  | } | 
|  | if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) | 
|  | schedule_delayed_work(&delayed_mntput_work, 1); | 
|  | return; | 
|  | } | 
|  | cleanup_mnt(mnt); | 
|  | } | 
|  |  | 
|  | void mntput(struct vfsmount *mnt) | 
|  | { | 
|  | if (mnt) { | 
|  | struct mount *m = real_mount(mnt); | 
|  | /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ | 
|  | if (unlikely(m->mnt_expiry_mark)) | 
|  | m->mnt_expiry_mark = 0; | 
|  | mntput_no_expire(m); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(mntput); | 
|  |  | 
|  | struct vfsmount *mntget(struct vfsmount *mnt) | 
|  | { | 
|  | if (mnt) | 
|  | mnt_add_count(real_mount(mnt), 1); | 
|  | return mnt; | 
|  | } | 
|  | EXPORT_SYMBOL(mntget); | 
|  |  | 
|  | /* path_is_mountpoint() - Check if path is a mount in the current | 
|  | *                          namespace. | 
|  | * | 
|  | *  d_mountpoint() can only be used reliably to establish if a dentry is | 
|  | *  not mounted in any namespace and that common case is handled inline. | 
|  | *  d_mountpoint() isn't aware of the possibility there may be multiple | 
|  | *  mounts using a given dentry in a different namespace. This function | 
|  | *  checks if the passed in path is a mountpoint rather than the dentry | 
|  | *  alone. | 
|  | */ | 
|  | bool path_is_mountpoint(const struct path *path) | 
|  | { | 
|  | unsigned seq; | 
|  | bool res; | 
|  |  | 
|  | if (!d_mountpoint(path->dentry)) | 
|  | return false; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | do { | 
|  | seq = read_seqbegin(&mount_lock); | 
|  | res = __path_is_mountpoint(path); | 
|  | } while (read_seqretry(&mount_lock, seq)); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return res; | 
|  | } | 
|  | EXPORT_SYMBOL(path_is_mountpoint); | 
|  |  | 
|  | struct vfsmount *mnt_clone_internal(const struct path *path) | 
|  | { | 
|  | struct mount *p; | 
|  | p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); | 
|  | if (IS_ERR(p)) | 
|  | return ERR_CAST(p); | 
|  | p->mnt.mnt_flags |= MNT_INTERNAL; | 
|  | return &p->mnt; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PROC_FS | 
|  | /* iterator; we want it to have access to namespace_sem, thus here... */ | 
|  | static void *m_start(struct seq_file *m, loff_t *pos) | 
|  | { | 
|  | struct proc_mounts *p = m->private; | 
|  |  | 
|  | down_read(&namespace_sem); | 
|  | if (p->cached_event == p->ns->event) { | 
|  | void *v = p->cached_mount; | 
|  | if (*pos == p->cached_index) | 
|  | return v; | 
|  | if (*pos == p->cached_index + 1) { | 
|  | v = seq_list_next(v, &p->ns->list, &p->cached_index); | 
|  | return p->cached_mount = v; | 
|  | } | 
|  | } | 
|  |  | 
|  | p->cached_event = p->ns->event; | 
|  | p->cached_mount = seq_list_start(&p->ns->list, *pos); | 
|  | p->cached_index = *pos; | 
|  | return p->cached_mount; | 
|  | } | 
|  |  | 
|  | static void *m_next(struct seq_file *m, void *v, loff_t *pos) | 
|  | { | 
|  | struct proc_mounts *p = m->private; | 
|  |  | 
|  | p->cached_mount = seq_list_next(v, &p->ns->list, pos); | 
|  | p->cached_index = *pos; | 
|  | return p->cached_mount; | 
|  | } | 
|  |  | 
|  | static void m_stop(struct seq_file *m, void *v) | 
|  | { | 
|  | up_read(&namespace_sem); | 
|  | } | 
|  |  | 
|  | static int m_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct proc_mounts *p = m->private; | 
|  | struct mount *r = list_entry(v, struct mount, mnt_list); | 
|  | return p->show(m, &r->mnt); | 
|  | } | 
|  |  | 
|  | const struct seq_operations mounts_op = { | 
|  | .start	= m_start, | 
|  | .next	= m_next, | 
|  | .stop	= m_stop, | 
|  | .show	= m_show, | 
|  | }; | 
|  | #endif  /* CONFIG_PROC_FS */ | 
|  |  | 
|  | /** | 
|  | * may_umount_tree - check if a mount tree is busy | 
|  | * @mnt: root of mount tree | 
|  | * | 
|  | * This is called to check if a tree of mounts has any | 
|  | * open files, pwds, chroots or sub mounts that are | 
|  | * busy. | 
|  | */ | 
|  | int may_umount_tree(struct vfsmount *m) | 
|  | { | 
|  | struct mount *mnt = real_mount(m); | 
|  | int actual_refs = 0; | 
|  | int minimum_refs = 0; | 
|  | struct mount *p; | 
|  | BUG_ON(!m); | 
|  |  | 
|  | /* write lock needed for mnt_get_count */ | 
|  | lock_mount_hash(); | 
|  | for (p = mnt; p; p = next_mnt(p, mnt)) { | 
|  | actual_refs += mnt_get_count(p); | 
|  | minimum_refs += 2; | 
|  | } | 
|  | unlock_mount_hash(); | 
|  |  | 
|  | if (actual_refs > minimum_refs) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(may_umount_tree); | 
|  |  | 
|  | /** | 
|  | * may_umount - check if a mount point is busy | 
|  | * @mnt: root of mount | 
|  | * | 
|  | * This is called to check if a mount point has any | 
|  | * open files, pwds, chroots or sub mounts. If the | 
|  | * mount has sub mounts this will return busy | 
|  | * regardless of whether the sub mounts are busy. | 
|  | * | 
|  | * Doesn't take quota and stuff into account. IOW, in some cases it will | 
|  | * give false negatives. The main reason why it's here is that we need | 
|  | * a non-destructive way to look for easily umountable filesystems. | 
|  | */ | 
|  | int may_umount(struct vfsmount *mnt) | 
|  | { | 
|  | int ret = 1; | 
|  | down_read(&namespace_sem); | 
|  | lock_mount_hash(); | 
|  | if (propagate_mount_busy(real_mount(mnt), 2)) | 
|  | ret = 0; | 
|  | unlock_mount_hash(); | 
|  | up_read(&namespace_sem); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(may_umount); | 
|  |  | 
|  | static void namespace_unlock(void) | 
|  | { | 
|  | struct hlist_head head; | 
|  | struct hlist_node *p; | 
|  | struct mount *m; | 
|  | LIST_HEAD(list); | 
|  |  | 
|  | hlist_move_list(&unmounted, &head); | 
|  | list_splice_init(&ex_mountpoints, &list); | 
|  |  | 
|  | up_write(&namespace_sem); | 
|  |  | 
|  | shrink_dentry_list(&list); | 
|  |  | 
|  | if (likely(hlist_empty(&head))) | 
|  | return; | 
|  |  | 
|  | synchronize_rcu_expedited(); | 
|  |  | 
|  | hlist_for_each_entry_safe(m, p, &head, mnt_umount) { | 
|  | hlist_del(&m->mnt_umount); | 
|  | mntput(&m->mnt); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void namespace_lock(void) | 
|  | { | 
|  | down_write(&namespace_sem); | 
|  | } | 
|  |  | 
|  | enum umount_tree_flags { | 
|  | UMOUNT_SYNC = 1, | 
|  | UMOUNT_PROPAGATE = 2, | 
|  | UMOUNT_CONNECTED = 4, | 
|  | }; | 
|  |  | 
|  | static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) | 
|  | { | 
|  | /* Leaving mounts connected is only valid for lazy umounts */ | 
|  | if (how & UMOUNT_SYNC) | 
|  | return true; | 
|  |  | 
|  | /* A mount without a parent has nothing to be connected to */ | 
|  | if (!mnt_has_parent(mnt)) | 
|  | return true; | 
|  |  | 
|  | /* Because the reference counting rules change when mounts are | 
|  | * unmounted and connected, umounted mounts may not be | 
|  | * connected to mounted mounts. | 
|  | */ | 
|  | if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) | 
|  | return true; | 
|  |  | 
|  | /* Has it been requested that the mount remain connected? */ | 
|  | if (how & UMOUNT_CONNECTED) | 
|  | return false; | 
|  |  | 
|  | /* Is the mount locked such that it needs to remain connected? */ | 
|  | if (IS_MNT_LOCKED(mnt)) | 
|  | return false; | 
|  |  | 
|  | /* By default disconnect the mount */ | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mount_lock must be held | 
|  | * namespace_sem must be held for write | 
|  | */ | 
|  | static void umount_tree(struct mount *mnt, enum umount_tree_flags how) | 
|  | { | 
|  | LIST_HEAD(tmp_list); | 
|  | struct mount *p; | 
|  |  | 
|  | if (how & UMOUNT_PROPAGATE) | 
|  | propagate_mount_unlock(mnt); | 
|  |  | 
|  | /* Gather the mounts to umount */ | 
|  | for (p = mnt; p; p = next_mnt(p, mnt)) { | 
|  | p->mnt.mnt_flags |= MNT_UMOUNT; | 
|  | list_move(&p->mnt_list, &tmp_list); | 
|  | } | 
|  |  | 
|  | /* Hide the mounts from mnt_mounts */ | 
|  | list_for_each_entry(p, &tmp_list, mnt_list) { | 
|  | list_del_init(&p->mnt_child); | 
|  | } | 
|  |  | 
|  | /* Add propogated mounts to the tmp_list */ | 
|  | if (how & UMOUNT_PROPAGATE) | 
|  | propagate_umount(&tmp_list); | 
|  |  | 
|  | while (!list_empty(&tmp_list)) { | 
|  | struct mnt_namespace *ns; | 
|  | bool disconnect; | 
|  | p = list_first_entry(&tmp_list, struct mount, mnt_list); | 
|  | list_del_init(&p->mnt_expire); | 
|  | list_del_init(&p->mnt_list); | 
|  | ns = p->mnt_ns; | 
|  | if (ns) { | 
|  | ns->mounts--; | 
|  | __touch_mnt_namespace(ns); | 
|  | } | 
|  | p->mnt_ns = NULL; | 
|  | if (how & UMOUNT_SYNC) | 
|  | p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; | 
|  |  | 
|  | disconnect = disconnect_mount(p, how); | 
|  | if (mnt_has_parent(p)) { | 
|  | mnt_add_count(p->mnt_parent, -1); | 
|  | if (!disconnect) { | 
|  | /* Don't forget about p */ | 
|  | list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); | 
|  | } else { | 
|  | umount_mnt(p); | 
|  | } | 
|  | } | 
|  | change_mnt_propagation(p, MS_PRIVATE); | 
|  | if (disconnect) | 
|  | hlist_add_head(&p->mnt_umount, &unmounted); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void shrink_submounts(struct mount *mnt); | 
|  |  | 
|  | static int do_umount_root(struct super_block *sb) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | down_write(&sb->s_umount); | 
|  | if (!sb_rdonly(sb)) { | 
|  | struct fs_context *fc; | 
|  |  | 
|  | fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, | 
|  | SB_RDONLY); | 
|  | if (IS_ERR(fc)) { | 
|  | ret = PTR_ERR(fc); | 
|  | } else { | 
|  | ret = parse_monolithic_mount_data(fc, NULL); | 
|  | if (!ret) | 
|  | ret = reconfigure_super(fc); | 
|  | put_fs_context(fc); | 
|  | } | 
|  | } | 
|  | up_write(&sb->s_umount); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int do_umount(struct mount *mnt, int flags) | 
|  | { | 
|  | struct super_block *sb = mnt->mnt.mnt_sb; | 
|  | int retval; | 
|  |  | 
|  | retval = security_sb_umount(&mnt->mnt, flags); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | /* | 
|  | * Allow userspace to request a mountpoint be expired rather than | 
|  | * unmounting unconditionally. Unmount only happens if: | 
|  | *  (1) the mark is already set (the mark is cleared by mntput()) | 
|  | *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] | 
|  | */ | 
|  | if (flags & MNT_EXPIRE) { | 
|  | if (&mnt->mnt == current->fs->root.mnt || | 
|  | flags & (MNT_FORCE | MNT_DETACH)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * probably don't strictly need the lock here if we examined | 
|  | * all race cases, but it's a slowpath. | 
|  | */ | 
|  | lock_mount_hash(); | 
|  | if (mnt_get_count(mnt) != 2) { | 
|  | unlock_mount_hash(); | 
|  | return -EBUSY; | 
|  | } | 
|  | unlock_mount_hash(); | 
|  |  | 
|  | if (!xchg(&mnt->mnt_expiry_mark, 1)) | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we may have to abort operations to get out of this | 
|  | * mount, and they will themselves hold resources we must | 
|  | * allow the fs to do things. In the Unix tradition of | 
|  | * 'Gee thats tricky lets do it in userspace' the umount_begin | 
|  | * might fail to complete on the first run through as other tasks | 
|  | * must return, and the like. Thats for the mount program to worry | 
|  | * about for the moment. | 
|  | */ | 
|  |  | 
|  | if (flags & MNT_FORCE && sb->s_op->umount_begin) { | 
|  | sb->s_op->umount_begin(sb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No sense to grab the lock for this test, but test itself looks | 
|  | * somewhat bogus. Suggestions for better replacement? | 
|  | * Ho-hum... In principle, we might treat that as umount + switch | 
|  | * to rootfs. GC would eventually take care of the old vfsmount. | 
|  | * Actually it makes sense, especially if rootfs would contain a | 
|  | * /reboot - static binary that would close all descriptors and | 
|  | * call reboot(9). Then init(8) could umount root and exec /reboot. | 
|  | */ | 
|  | if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { | 
|  | /* | 
|  | * Special case for "unmounting" root ... | 
|  | * we just try to remount it readonly. | 
|  | */ | 
|  | if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  | return do_umount_root(sb); | 
|  | } | 
|  |  | 
|  | namespace_lock(); | 
|  | lock_mount_hash(); | 
|  |  | 
|  | /* Recheck MNT_LOCKED with the locks held */ | 
|  | retval = -EINVAL; | 
|  | if (mnt->mnt.mnt_flags & MNT_LOCKED) | 
|  | goto out; | 
|  |  | 
|  | event++; | 
|  | if (flags & MNT_DETACH) { | 
|  | if (!list_empty(&mnt->mnt_list)) | 
|  | umount_tree(mnt, UMOUNT_PROPAGATE); | 
|  | retval = 0; | 
|  | } else { | 
|  | shrink_submounts(mnt); | 
|  | retval = -EBUSY; | 
|  | if (!propagate_mount_busy(mnt, 2)) { | 
|  | if (!list_empty(&mnt->mnt_list)) | 
|  | umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); | 
|  | retval = 0; | 
|  | } | 
|  | } | 
|  | out: | 
|  | unlock_mount_hash(); | 
|  | namespace_unlock(); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __detach_mounts - lazily unmount all mounts on the specified dentry | 
|  | * | 
|  | * During unlink, rmdir, and d_drop it is possible to loose the path | 
|  | * to an existing mountpoint, and wind up leaking the mount. | 
|  | * detach_mounts allows lazily unmounting those mounts instead of | 
|  | * leaking them. | 
|  | * | 
|  | * The caller may hold dentry->d_inode->i_mutex. | 
|  | */ | 
|  | void __detach_mounts(struct dentry *dentry) | 
|  | { | 
|  | struct mountpoint *mp; | 
|  | struct mount *mnt; | 
|  |  | 
|  | namespace_lock(); | 
|  | lock_mount_hash(); | 
|  | mp = lookup_mountpoint(dentry); | 
|  | if (!mp) | 
|  | goto out_unlock; | 
|  |  | 
|  | event++; | 
|  | while (!hlist_empty(&mp->m_list)) { | 
|  | mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); | 
|  | if (mnt->mnt.mnt_flags & MNT_UMOUNT) { | 
|  | umount_mnt(mnt); | 
|  | hlist_add_head(&mnt->mnt_umount, &unmounted); | 
|  | } | 
|  | else umount_tree(mnt, UMOUNT_CONNECTED); | 
|  | } | 
|  | put_mountpoint(mp); | 
|  | out_unlock: | 
|  | unlock_mount_hash(); | 
|  | namespace_unlock(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Is the caller allowed to modify his namespace? | 
|  | */ | 
|  | static inline bool may_mount(void) | 
|  | { | 
|  | return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); | 
|  | } | 
|  |  | 
|  | #ifdef	CONFIG_MANDATORY_FILE_LOCKING | 
|  | static inline bool may_mandlock(void) | 
|  | { | 
|  | return capable(CAP_SYS_ADMIN); | 
|  | } | 
|  | #else | 
|  | static inline bool may_mandlock(void) | 
|  | { | 
|  | pr_warn("VFS: \"mand\" mount option not supported"); | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Now umount can handle mount points as well as block devices. | 
|  | * This is important for filesystems which use unnamed block devices. | 
|  | * | 
|  | * We now support a flag for forced unmount like the other 'big iron' | 
|  | * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD | 
|  | */ | 
|  |  | 
|  | int ksys_umount(char __user *name, int flags) | 
|  | { | 
|  | struct path path; | 
|  | struct mount *mnt; | 
|  | int retval; | 
|  | int lookup_flags = 0; | 
|  |  | 
|  | if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!may_mount()) | 
|  | return -EPERM; | 
|  |  | 
|  | if (!(flags & UMOUNT_NOFOLLOW)) | 
|  | lookup_flags |= LOOKUP_FOLLOW; | 
|  |  | 
|  | retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); | 
|  | if (retval) | 
|  | goto out; | 
|  | mnt = real_mount(path.mnt); | 
|  | retval = -EINVAL; | 
|  | if (path.dentry != path.mnt->mnt_root) | 
|  | goto dput_and_out; | 
|  | if (!check_mnt(mnt)) | 
|  | goto dput_and_out; | 
|  | if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ | 
|  | goto dput_and_out; | 
|  | retval = -EPERM; | 
|  | if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) | 
|  | goto dput_and_out; | 
|  |  | 
|  | retval = do_umount(mnt, flags); | 
|  | dput_and_out: | 
|  | /* we mustn't call path_put() as that would clear mnt_expiry_mark */ | 
|  | dput(path.dentry); | 
|  | mntput_no_expire(mnt); | 
|  | out: | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE2(umount, char __user *, name, int, flags) | 
|  | { | 
|  | return ksys_umount(name, flags); | 
|  | } | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_OLDUMOUNT | 
|  |  | 
|  | /* | 
|  | *	The 2.0 compatible umount. No flags. | 
|  | */ | 
|  | SYSCALL_DEFINE1(oldumount, char __user *, name) | 
|  | { | 
|  | return ksys_umount(name, 0); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static bool is_mnt_ns_file(struct dentry *dentry) | 
|  | { | 
|  | /* Is this a proxy for a mount namespace? */ | 
|  | return dentry->d_op == &ns_dentry_operations && | 
|  | dentry->d_fsdata == &mntns_operations; | 
|  | } | 
|  |  | 
|  | struct mnt_namespace *to_mnt_ns(struct ns_common *ns) | 
|  | { | 
|  | return container_of(ns, struct mnt_namespace, ns); | 
|  | } | 
|  |  | 
|  | static bool mnt_ns_loop(struct dentry *dentry) | 
|  | { | 
|  | /* Could bind mounting the mount namespace inode cause a | 
|  | * mount namespace loop? | 
|  | */ | 
|  | struct mnt_namespace *mnt_ns; | 
|  | if (!is_mnt_ns_file(dentry)) | 
|  | return false; | 
|  |  | 
|  | mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); | 
|  | return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; | 
|  | } | 
|  |  | 
|  | struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, | 
|  | int flag) | 
|  | { | 
|  | struct mount *res, *p, *q, *r, *parent; | 
|  |  | 
|  | if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | res = q = clone_mnt(mnt, dentry, flag); | 
|  | if (IS_ERR(q)) | 
|  | return q; | 
|  |  | 
|  | q->mnt_mountpoint = mnt->mnt_mountpoint; | 
|  |  | 
|  | p = mnt; | 
|  | list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { | 
|  | struct mount *s; | 
|  | if (!is_subdir(r->mnt_mountpoint, dentry)) | 
|  | continue; | 
|  |  | 
|  | for (s = r; s; s = next_mnt(s, r)) { | 
|  | if (!(flag & CL_COPY_UNBINDABLE) && | 
|  | IS_MNT_UNBINDABLE(s)) { | 
|  | if (s->mnt.mnt_flags & MNT_LOCKED) { | 
|  | /* Both unbindable and locked. */ | 
|  | q = ERR_PTR(-EPERM); | 
|  | goto out; | 
|  | } else { | 
|  | s = skip_mnt_tree(s); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | if (!(flag & CL_COPY_MNT_NS_FILE) && | 
|  | is_mnt_ns_file(s->mnt.mnt_root)) { | 
|  | s = skip_mnt_tree(s); | 
|  | continue; | 
|  | } | 
|  | while (p != s->mnt_parent) { | 
|  | p = p->mnt_parent; | 
|  | q = q->mnt_parent; | 
|  | } | 
|  | p = s; | 
|  | parent = q; | 
|  | q = clone_mnt(p, p->mnt.mnt_root, flag); | 
|  | if (IS_ERR(q)) | 
|  | goto out; | 
|  | lock_mount_hash(); | 
|  | list_add_tail(&q->mnt_list, &res->mnt_list); | 
|  | attach_mnt(q, parent, p->mnt_mp); | 
|  | unlock_mount_hash(); | 
|  | } | 
|  | } | 
|  | return res; | 
|  | out: | 
|  | if (res) { | 
|  | lock_mount_hash(); | 
|  | umount_tree(res, UMOUNT_SYNC); | 
|  | unlock_mount_hash(); | 
|  | } | 
|  | return q; | 
|  | } | 
|  |  | 
|  | /* Caller should check returned pointer for errors */ | 
|  |  | 
|  | struct vfsmount *collect_mounts(const struct path *path) | 
|  | { | 
|  | struct mount *tree; | 
|  | namespace_lock(); | 
|  | if (!check_mnt(real_mount(path->mnt))) | 
|  | tree = ERR_PTR(-EINVAL); | 
|  | else | 
|  | tree = copy_tree(real_mount(path->mnt), path->dentry, | 
|  | CL_COPY_ALL | CL_PRIVATE); | 
|  | namespace_unlock(); | 
|  | if (IS_ERR(tree)) | 
|  | return ERR_CAST(tree); | 
|  | return &tree->mnt; | 
|  | } | 
|  |  | 
|  | static void free_mnt_ns(struct mnt_namespace *); | 
|  | static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); | 
|  |  | 
|  | void dissolve_on_fput(struct vfsmount *mnt) | 
|  | { | 
|  | struct mnt_namespace *ns; | 
|  | namespace_lock(); | 
|  | lock_mount_hash(); | 
|  | ns = real_mount(mnt)->mnt_ns; | 
|  | if (ns) { | 
|  | if (is_anon_ns(ns)) | 
|  | umount_tree(real_mount(mnt), UMOUNT_CONNECTED); | 
|  | else | 
|  | ns = NULL; | 
|  | } | 
|  | unlock_mount_hash(); | 
|  | namespace_unlock(); | 
|  | if (ns) | 
|  | free_mnt_ns(ns); | 
|  | } | 
|  |  | 
|  | void drop_collected_mounts(struct vfsmount *mnt) | 
|  | { | 
|  | namespace_lock(); | 
|  | lock_mount_hash(); | 
|  | umount_tree(real_mount(mnt), 0); | 
|  | unlock_mount_hash(); | 
|  | namespace_unlock(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * clone_private_mount - create a private clone of a path | 
|  | * | 
|  | * This creates a new vfsmount, which will be the clone of @path.  The new will | 
|  | * not be attached anywhere in the namespace and will be private (i.e. changes | 
|  | * to the originating mount won't be propagated into this). | 
|  | * | 
|  | * Release with mntput(). | 
|  | */ | 
|  | struct vfsmount *clone_private_mount(const struct path *path) | 
|  | { | 
|  | struct mount *old_mnt = real_mount(path->mnt); | 
|  | struct mount *new_mnt; | 
|  |  | 
|  | if (IS_MNT_UNBINDABLE(old_mnt)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); | 
|  | if (IS_ERR(new_mnt)) | 
|  | return ERR_CAST(new_mnt); | 
|  |  | 
|  | return &new_mnt->mnt; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(clone_private_mount); | 
|  |  | 
|  | int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, | 
|  | struct vfsmount *root) | 
|  | { | 
|  | struct mount *mnt; | 
|  | int res = f(root, arg); | 
|  | if (res) | 
|  | return res; | 
|  | list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { | 
|  | res = f(&mnt->mnt, arg); | 
|  | if (res) | 
|  | return res; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void lock_mnt_tree(struct mount *mnt) | 
|  | { | 
|  | struct mount *p; | 
|  |  | 
|  | for (p = mnt; p; p = next_mnt(p, mnt)) { | 
|  | int flags = p->mnt.mnt_flags; | 
|  | /* Don't allow unprivileged users to change mount flags */ | 
|  | flags |= MNT_LOCK_ATIME; | 
|  |  | 
|  | if (flags & MNT_READONLY) | 
|  | flags |= MNT_LOCK_READONLY; | 
|  |  | 
|  | if (flags & MNT_NODEV) | 
|  | flags |= MNT_LOCK_NODEV; | 
|  |  | 
|  | if (flags & MNT_NOSUID) | 
|  | flags |= MNT_LOCK_NOSUID; | 
|  |  | 
|  | if (flags & MNT_NOEXEC) | 
|  | flags |= MNT_LOCK_NOEXEC; | 
|  | /* Don't allow unprivileged users to reveal what is under a mount */ | 
|  | if (list_empty(&p->mnt_expire)) | 
|  | flags |= MNT_LOCKED; | 
|  | p->mnt.mnt_flags = flags; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cleanup_group_ids(struct mount *mnt, struct mount *end) | 
|  | { | 
|  | struct mount *p; | 
|  |  | 
|  | for (p = mnt; p != end; p = next_mnt(p, mnt)) { | 
|  | if (p->mnt_group_id && !IS_MNT_SHARED(p)) | 
|  | mnt_release_group_id(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int invent_group_ids(struct mount *mnt, bool recurse) | 
|  | { | 
|  | struct mount *p; | 
|  |  | 
|  | for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { | 
|  | if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { | 
|  | int err = mnt_alloc_group_id(p); | 
|  | if (err) { | 
|  | cleanup_group_ids(mnt, p); | 
|  | return err; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int count_mounts(struct mnt_namespace *ns, struct mount *mnt) | 
|  | { | 
|  | unsigned int max = READ_ONCE(sysctl_mount_max); | 
|  | unsigned int mounts = 0, old, pending, sum; | 
|  | struct mount *p; | 
|  |  | 
|  | for (p = mnt; p; p = next_mnt(p, mnt)) | 
|  | mounts++; | 
|  |  | 
|  | old = ns->mounts; | 
|  | pending = ns->pending_mounts; | 
|  | sum = old + pending; | 
|  | if ((old > sum) || | 
|  | (pending > sum) || | 
|  | (max < sum) || | 
|  | (mounts > (max - sum))) | 
|  | return -ENOSPC; | 
|  |  | 
|  | ns->pending_mounts = pending + mounts; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  @source_mnt : mount tree to be attached | 
|  | *  @nd         : place the mount tree @source_mnt is attached | 
|  | *  @parent_nd  : if non-null, detach the source_mnt from its parent and | 
|  | *  		   store the parent mount and mountpoint dentry. | 
|  | *  		   (done when source_mnt is moved) | 
|  | * | 
|  | *  NOTE: in the table below explains the semantics when a source mount | 
|  | *  of a given type is attached to a destination mount of a given type. | 
|  | * --------------------------------------------------------------------------- | 
|  | * |         BIND MOUNT OPERATION                                            | | 
|  | * |************************************************************************** | 
|  | * | source-->| shared        |       private  |       slave    | unbindable | | 
|  | * | dest     |               |                |                |            | | 
|  | * |   |      |               |                |                |            | | 
|  | * |   v      |               |                |                |            | | 
|  | * |************************************************************************** | 
|  | * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   | | 
|  | * |          |               |                |                |            | | 
|  | * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   | | 
|  | * *************************************************************************** | 
|  | * A bind operation clones the source mount and mounts the clone on the | 
|  | * destination mount. | 
|  | * | 
|  | * (++)  the cloned mount is propagated to all the mounts in the propagation | 
|  | * 	 tree of the destination mount and the cloned mount is added to | 
|  | * 	 the peer group of the source mount. | 
|  | * (+)   the cloned mount is created under the destination mount and is marked | 
|  | *       as shared. The cloned mount is added to the peer group of the source | 
|  | *       mount. | 
|  | * (+++) the mount is propagated to all the mounts in the propagation tree | 
|  | *       of the destination mount and the cloned mount is made slave | 
|  | *       of the same master as that of the source mount. The cloned mount | 
|  | *       is marked as 'shared and slave'. | 
|  | * (*)   the cloned mount is made a slave of the same master as that of the | 
|  | * 	 source mount. | 
|  | * | 
|  | * --------------------------------------------------------------------------- | 
|  | * |         		MOVE MOUNT OPERATION                                 | | 
|  | * |************************************************************************** | 
|  | * | source-->| shared        |       private  |       slave    | unbindable | | 
|  | * | dest     |               |                |                |            | | 
|  | * |   |      |               |                |                |            | | 
|  | * |   v      |               |                |                |            | | 
|  | * |************************************************************************** | 
|  | * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   | | 
|  | * |          |               |                |                |            | | 
|  | * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable | | 
|  | * *************************************************************************** | 
|  | * | 
|  | * (+)  the mount is moved to the destination. And is then propagated to | 
|  | * 	all the mounts in the propagation tree of the destination mount. | 
|  | * (+*)  the mount is moved to the destination. | 
|  | * (+++)  the mount is moved to the destination and is then propagated to | 
|  | * 	all the mounts belonging to the destination mount's propagation tree. | 
|  | * 	the mount is marked as 'shared and slave'. | 
|  | * (*)	the mount continues to be a slave at the new location. | 
|  | * | 
|  | * if the source mount is a tree, the operations explained above is | 
|  | * applied to each mount in the tree. | 
|  | * Must be called without spinlocks held, since this function can sleep | 
|  | * in allocations. | 
|  | */ | 
|  | static int attach_recursive_mnt(struct mount *source_mnt, | 
|  | struct mount *dest_mnt, | 
|  | struct mountpoint *dest_mp, | 
|  | bool moving) | 
|  | { | 
|  | struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; | 
|  | HLIST_HEAD(tree_list); | 
|  | struct mnt_namespace *ns = dest_mnt->mnt_ns; | 
|  | struct mountpoint *smp; | 
|  | struct mount *child, *p; | 
|  | struct hlist_node *n; | 
|  | int err; | 
|  |  | 
|  | /* Preallocate a mountpoint in case the new mounts need | 
|  | * to be tucked under other mounts. | 
|  | */ | 
|  | smp = get_mountpoint(source_mnt->mnt.mnt_root); | 
|  | if (IS_ERR(smp)) | 
|  | return PTR_ERR(smp); | 
|  |  | 
|  | /* Is there space to add these mounts to the mount namespace? */ | 
|  | if (!moving) { | 
|  | err = count_mounts(ns, source_mnt); | 
|  | if (err) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (IS_MNT_SHARED(dest_mnt)) { | 
|  | err = invent_group_ids(source_mnt, true); | 
|  | if (err) | 
|  | goto out; | 
|  | err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); | 
|  | lock_mount_hash(); | 
|  | if (err) | 
|  | goto out_cleanup_ids; | 
|  | for (p = source_mnt; p; p = next_mnt(p, source_mnt)) | 
|  | set_mnt_shared(p); | 
|  | } else { | 
|  | lock_mount_hash(); | 
|  | } | 
|  | if (moving) { | 
|  | unhash_mnt(source_mnt); | 
|  | attach_mnt(source_mnt, dest_mnt, dest_mp); | 
|  | touch_mnt_namespace(source_mnt->mnt_ns); | 
|  | } else { | 
|  | if (source_mnt->mnt_ns) { | 
|  | /* move from anon - the caller will destroy */ | 
|  | list_del_init(&source_mnt->mnt_ns->list); | 
|  | } | 
|  | mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); | 
|  | commit_tree(source_mnt); | 
|  | } | 
|  |  | 
|  | hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { | 
|  | struct mount *q; | 
|  | hlist_del_init(&child->mnt_hash); | 
|  | q = __lookup_mnt(&child->mnt_parent->mnt, | 
|  | child->mnt_mountpoint); | 
|  | if (q) | 
|  | mnt_change_mountpoint(child, smp, q); | 
|  | /* Notice when we are propagating across user namespaces */ | 
|  | if (child->mnt_parent->mnt_ns->user_ns != user_ns) | 
|  | lock_mnt_tree(child); | 
|  | child->mnt.mnt_flags &= ~MNT_LOCKED; | 
|  | commit_tree(child); | 
|  | } | 
|  | put_mountpoint(smp); | 
|  | unlock_mount_hash(); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_cleanup_ids: | 
|  | while (!hlist_empty(&tree_list)) { | 
|  | child = hlist_entry(tree_list.first, struct mount, mnt_hash); | 
|  | child->mnt_parent->mnt_ns->pending_mounts = 0; | 
|  | umount_tree(child, UMOUNT_SYNC); | 
|  | } | 
|  | unlock_mount_hash(); | 
|  | cleanup_group_ids(source_mnt, NULL); | 
|  | out: | 
|  | ns->pending_mounts = 0; | 
|  |  | 
|  | read_seqlock_excl(&mount_lock); | 
|  | put_mountpoint(smp); | 
|  | read_sequnlock_excl(&mount_lock); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static struct mountpoint *lock_mount(struct path *path) | 
|  | { | 
|  | struct vfsmount *mnt; | 
|  | struct dentry *dentry = path->dentry; | 
|  | retry: | 
|  | inode_lock(dentry->d_inode); | 
|  | if (unlikely(cant_mount(dentry))) { | 
|  | inode_unlock(dentry->d_inode); | 
|  | return ERR_PTR(-ENOENT); | 
|  | } | 
|  | namespace_lock(); | 
|  | mnt = lookup_mnt(path); | 
|  | if (likely(!mnt)) { | 
|  | struct mountpoint *mp = get_mountpoint(dentry); | 
|  | if (IS_ERR(mp)) { | 
|  | namespace_unlock(); | 
|  | inode_unlock(dentry->d_inode); | 
|  | return mp; | 
|  | } | 
|  | return mp; | 
|  | } | 
|  | namespace_unlock(); | 
|  | inode_unlock(path->dentry->d_inode); | 
|  | path_put(path); | 
|  | path->mnt = mnt; | 
|  | dentry = path->dentry = dget(mnt->mnt_root); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | static void unlock_mount(struct mountpoint *where) | 
|  | { | 
|  | struct dentry *dentry = where->m_dentry; | 
|  |  | 
|  | read_seqlock_excl(&mount_lock); | 
|  | put_mountpoint(where); | 
|  | read_sequnlock_excl(&mount_lock); | 
|  |  | 
|  | namespace_unlock(); | 
|  | inode_unlock(dentry->d_inode); | 
|  | } | 
|  |  | 
|  | static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) | 
|  | { | 
|  | if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (d_is_dir(mp->m_dentry) != | 
|  | d_is_dir(mnt->mnt.mnt_root)) | 
|  | return -ENOTDIR; | 
|  |  | 
|  | return attach_recursive_mnt(mnt, p, mp, false); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sanity check the flags to change_mnt_propagation. | 
|  | */ | 
|  |  | 
|  | static int flags_to_propagation_type(int ms_flags) | 
|  | { | 
|  | int type = ms_flags & ~(MS_REC | MS_SILENT); | 
|  |  | 
|  | /* Fail if any non-propagation flags are set */ | 
|  | if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) | 
|  | return 0; | 
|  | /* Only one propagation flag should be set */ | 
|  | if (!is_power_of_2(type)) | 
|  | return 0; | 
|  | return type; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * recursively change the type of the mountpoint. | 
|  | */ | 
|  | static int do_change_type(struct path *path, int ms_flags) | 
|  | { | 
|  | struct mount *m; | 
|  | struct mount *mnt = real_mount(path->mnt); | 
|  | int recurse = ms_flags & MS_REC; | 
|  | int type; | 
|  | int err = 0; | 
|  |  | 
|  | if (path->dentry != path->mnt->mnt_root) | 
|  | return -EINVAL; | 
|  |  | 
|  | type = flags_to_propagation_type(ms_flags); | 
|  | if (!type) | 
|  | return -EINVAL; | 
|  |  | 
|  | namespace_lock(); | 
|  | if (type == MS_SHARED) { | 
|  | err = invent_group_ids(mnt, recurse); | 
|  | if (err) | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | lock_mount_hash(); | 
|  | for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) | 
|  | change_mnt_propagation(m, type); | 
|  | unlock_mount_hash(); | 
|  |  | 
|  | out_unlock: | 
|  | namespace_unlock(); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static bool has_locked_children(struct mount *mnt, struct dentry *dentry) | 
|  | { | 
|  | struct mount *child; | 
|  | list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { | 
|  | if (!is_subdir(child->mnt_mountpoint, dentry)) | 
|  | continue; | 
|  |  | 
|  | if (child->mnt.mnt_flags & MNT_LOCKED) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static struct mount *__do_loopback(struct path *old_path, int recurse) | 
|  | { | 
|  | struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); | 
|  |  | 
|  | if (IS_MNT_UNBINDABLE(old)) | 
|  | return mnt; | 
|  |  | 
|  | if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) | 
|  | return mnt; | 
|  |  | 
|  | if (!recurse && has_locked_children(old, old_path->dentry)) | 
|  | return mnt; | 
|  |  | 
|  | if (recurse) | 
|  | mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); | 
|  | else | 
|  | mnt = clone_mnt(old, old_path->dentry, 0); | 
|  |  | 
|  | if (!IS_ERR(mnt)) | 
|  | mnt->mnt.mnt_flags &= ~MNT_LOCKED; | 
|  |  | 
|  | return mnt; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * do loopback mount. | 
|  | */ | 
|  | static int do_loopback(struct path *path, const char *old_name, | 
|  | int recurse) | 
|  | { | 
|  | struct path old_path; | 
|  | struct mount *mnt = NULL, *parent; | 
|  | struct mountpoint *mp; | 
|  | int err; | 
|  | if (!old_name || !*old_name) | 
|  | return -EINVAL; | 
|  | err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = -EINVAL; | 
|  | if (mnt_ns_loop(old_path.dentry)) | 
|  | goto out; | 
|  |  | 
|  | mp = lock_mount(path); | 
|  | if (IS_ERR(mp)) { | 
|  | err = PTR_ERR(mp); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | parent = real_mount(path->mnt); | 
|  | if (!check_mnt(parent)) | 
|  | goto out2; | 
|  |  | 
|  | mnt = __do_loopback(&old_path, recurse); | 
|  | if (IS_ERR(mnt)) { | 
|  | err = PTR_ERR(mnt); | 
|  | goto out2; | 
|  | } | 
|  |  | 
|  | err = graft_tree(mnt, parent, mp); | 
|  | if (err) { | 
|  | lock_mount_hash(); | 
|  | umount_tree(mnt, UMOUNT_SYNC); | 
|  | unlock_mount_hash(); | 
|  | } | 
|  | out2: | 
|  | unlock_mount(mp); | 
|  | out: | 
|  | path_put(&old_path); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static struct file *open_detached_copy(struct path *path, bool recursive) | 
|  | { | 
|  | struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; | 
|  | struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); | 
|  | struct mount *mnt, *p; | 
|  | struct file *file; | 
|  |  | 
|  | if (IS_ERR(ns)) | 
|  | return ERR_CAST(ns); | 
|  |  | 
|  | namespace_lock(); | 
|  | mnt = __do_loopback(path, recursive); | 
|  | if (IS_ERR(mnt)) { | 
|  | namespace_unlock(); | 
|  | free_mnt_ns(ns); | 
|  | return ERR_CAST(mnt); | 
|  | } | 
|  |  | 
|  | lock_mount_hash(); | 
|  | for (p = mnt; p; p = next_mnt(p, mnt)) { | 
|  | p->mnt_ns = ns; | 
|  | ns->mounts++; | 
|  | } | 
|  | ns->root = mnt; | 
|  | list_add_tail(&ns->list, &mnt->mnt_list); | 
|  | mntget(&mnt->mnt); | 
|  | unlock_mount_hash(); | 
|  | namespace_unlock(); | 
|  |  | 
|  | mntput(path->mnt); | 
|  | path->mnt = &mnt->mnt; | 
|  | file = dentry_open(path, O_PATH, current_cred()); | 
|  | if (IS_ERR(file)) | 
|  | dissolve_on_fput(path->mnt); | 
|  | else | 
|  | file->f_mode |= FMODE_NEED_UNMOUNT; | 
|  | return file; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE3(open_tree, int, dfd, const char *, filename, unsigned, flags) | 
|  | { | 
|  | struct file *file; | 
|  | struct path path; | 
|  | int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; | 
|  | bool detached = flags & OPEN_TREE_CLONE; | 
|  | int error; | 
|  | int fd; | 
|  |  | 
|  | BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); | 
|  |  | 
|  | if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | | 
|  | AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | | 
|  | OPEN_TREE_CLOEXEC)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (flags & AT_NO_AUTOMOUNT) | 
|  | lookup_flags &= ~LOOKUP_AUTOMOUNT; | 
|  | if (flags & AT_SYMLINK_NOFOLLOW) | 
|  | lookup_flags &= ~LOOKUP_FOLLOW; | 
|  | if (flags & AT_EMPTY_PATH) | 
|  | lookup_flags |= LOOKUP_EMPTY; | 
|  |  | 
|  | if (detached && !may_mount()) | 
|  | return -EPERM; | 
|  |  | 
|  | fd = get_unused_fd_flags(flags & O_CLOEXEC); | 
|  | if (fd < 0) | 
|  | return fd; | 
|  |  | 
|  | error = user_path_at(dfd, filename, lookup_flags, &path); | 
|  | if (unlikely(error)) { | 
|  | file = ERR_PTR(error); | 
|  | } else { | 
|  | if (detached) | 
|  | file = open_detached_copy(&path, flags & AT_RECURSIVE); | 
|  | else | 
|  | file = dentry_open(&path, O_PATH, current_cred()); | 
|  | path_put(&path); | 
|  | } | 
|  | if (IS_ERR(file)) { | 
|  | put_unused_fd(fd); | 
|  | return PTR_ERR(file); | 
|  | } | 
|  | fd_install(fd, file); | 
|  | return fd; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Don't allow locked mount flags to be cleared. | 
|  | * | 
|  | * No locks need to be held here while testing the various MNT_LOCK | 
|  | * flags because those flags can never be cleared once they are set. | 
|  | */ | 
|  | static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) | 
|  | { | 
|  | unsigned int fl = mnt->mnt.mnt_flags; | 
|  |  | 
|  | if ((fl & MNT_LOCK_READONLY) && | 
|  | !(mnt_flags & MNT_READONLY)) | 
|  | return false; | 
|  |  | 
|  | if ((fl & MNT_LOCK_NODEV) && | 
|  | !(mnt_flags & MNT_NODEV)) | 
|  | return false; | 
|  |  | 
|  | if ((fl & MNT_LOCK_NOSUID) && | 
|  | !(mnt_flags & MNT_NOSUID)) | 
|  | return false; | 
|  |  | 
|  | if ((fl & MNT_LOCK_NOEXEC) && | 
|  | !(mnt_flags & MNT_NOEXEC)) | 
|  | return false; | 
|  |  | 
|  | if ((fl & MNT_LOCK_ATIME) && | 
|  | ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) | 
|  | { | 
|  | bool readonly_request = (mnt_flags & MNT_READONLY); | 
|  |  | 
|  | if (readonly_request == __mnt_is_readonly(&mnt->mnt)) | 
|  | return 0; | 
|  |  | 
|  | if (readonly_request) | 
|  | return mnt_make_readonly(mnt); | 
|  |  | 
|  | return __mnt_unmake_readonly(mnt); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the user-settable attributes on a mount.  The caller must hold | 
|  | * sb->s_umount for writing. | 
|  | */ | 
|  | static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) | 
|  | { | 
|  | lock_mount_hash(); | 
|  | mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; | 
|  | mnt->mnt.mnt_flags = mnt_flags; | 
|  | touch_mnt_namespace(mnt->mnt_ns); | 
|  | unlock_mount_hash(); | 
|  | } | 
|  |  | 
|  | static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) | 
|  | { | 
|  | struct super_block *sb = mnt->mnt_sb; | 
|  |  | 
|  | if (!__mnt_is_readonly(mnt) && | 
|  | (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { | 
|  | char *buf = (char *)__get_free_page(GFP_KERNEL); | 
|  | char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM); | 
|  | struct tm tm; | 
|  |  | 
|  | time64_to_tm(sb->s_time_max, 0, &tm); | 
|  |  | 
|  | pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n", | 
|  | sb->s_type->name, | 
|  | is_mounted(mnt) ? "remounted" : "mounted", | 
|  | mntpath, | 
|  | tm.tm_year+1900, (unsigned long long)sb->s_time_max); | 
|  |  | 
|  | free_page((unsigned long)buf); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle reconfiguration of the mountpoint only without alteration of the | 
|  | * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND | 
|  | * to mount(2). | 
|  | */ | 
|  | static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) | 
|  | { | 
|  | struct super_block *sb = path->mnt->mnt_sb; | 
|  | struct mount *mnt = real_mount(path->mnt); | 
|  | int ret; | 
|  |  | 
|  | if (!check_mnt(mnt)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (path->dentry != mnt->mnt.mnt_root) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!can_change_locked_flags(mnt, mnt_flags)) | 
|  | return -EPERM; | 
|  |  | 
|  | down_write(&sb->s_umount); | 
|  | ret = change_mount_ro_state(mnt, mnt_flags); | 
|  | if (ret == 0) | 
|  | set_mount_attributes(mnt, mnt_flags); | 
|  | up_write(&sb->s_umount); | 
|  |  | 
|  | mnt_warn_timestamp_expiry(path, &mnt->mnt); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * change filesystem flags. dir should be a physical root of filesystem. | 
|  | * If you've mounted a non-root directory somewhere and want to do remount | 
|  | * on it - tough luck. | 
|  | */ | 
|  | static int do_remount(struct path *path, int ms_flags, int sb_flags, | 
|  | int mnt_flags, void *data) | 
|  | { | 
|  | int err; | 
|  | struct super_block *sb = path->mnt->mnt_sb; | 
|  | struct mount *mnt = real_mount(path->mnt); | 
|  | struct fs_context *fc; | 
|  |  | 
|  | if (!check_mnt(mnt)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (path->dentry != path->mnt->mnt_root) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!can_change_locked_flags(mnt, mnt_flags)) | 
|  | return -EPERM; | 
|  |  | 
|  | fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); | 
|  | if (IS_ERR(fc)) | 
|  | return PTR_ERR(fc); | 
|  |  | 
|  | err = parse_monolithic_mount_data(fc, data); | 
|  | if (!err) { | 
|  | down_write(&sb->s_umount); | 
|  | err = -EPERM; | 
|  | if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { | 
|  | err = reconfigure_super(fc); | 
|  | if (!err) | 
|  | set_mount_attributes(mnt, mnt_flags); | 
|  | } | 
|  | up_write(&sb->s_umount); | 
|  | } | 
|  |  | 
|  | mnt_warn_timestamp_expiry(path, &mnt->mnt); | 
|  |  | 
|  | put_fs_context(fc); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static inline int tree_contains_unbindable(struct mount *mnt) | 
|  | { | 
|  | struct mount *p; | 
|  | for (p = mnt; p; p = next_mnt(p, mnt)) { | 
|  | if (IS_MNT_UNBINDABLE(p)) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check that there aren't references to earlier/same mount namespaces in the | 
|  | * specified subtree.  Such references can act as pins for mount namespaces | 
|  | * that aren't checked by the mount-cycle checking code, thereby allowing | 
|  | * cycles to be made. | 
|  | */ | 
|  | static bool check_for_nsfs_mounts(struct mount *subtree) | 
|  | { | 
|  | struct mount *p; | 
|  | bool ret = false; | 
|  |  | 
|  | lock_mount_hash(); | 
|  | for (p = subtree; p; p = next_mnt(p, subtree)) | 
|  | if (mnt_ns_loop(p->mnt.mnt_root)) | 
|  | goto out; | 
|  |  | 
|  | ret = true; | 
|  | out: | 
|  | unlock_mount_hash(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int do_move_mount(struct path *old_path, struct path *new_path) | 
|  | { | 
|  | struct mnt_namespace *ns; | 
|  | struct mount *p; | 
|  | struct mount *old; | 
|  | struct mount *parent; | 
|  | struct mountpoint *mp, *old_mp; | 
|  | int err; | 
|  | bool attached; | 
|  |  | 
|  | mp = lock_mount(new_path); | 
|  | if (IS_ERR(mp)) | 
|  | return PTR_ERR(mp); | 
|  |  | 
|  | old = real_mount(old_path->mnt); | 
|  | p = real_mount(new_path->mnt); | 
|  | parent = old->mnt_parent; | 
|  | attached = mnt_has_parent(old); | 
|  | old_mp = old->mnt_mp; | 
|  | ns = old->mnt_ns; | 
|  |  | 
|  | err = -EINVAL; | 
|  | /* The mountpoint must be in our namespace. */ | 
|  | if (!check_mnt(p)) | 
|  | goto out; | 
|  |  | 
|  | /* The thing moved must be mounted... */ | 
|  | if (!is_mounted(&old->mnt)) | 
|  | goto out; | 
|  |  | 
|  | /* ... and either ours or the root of anon namespace */ | 
|  | if (!(attached ? check_mnt(old) : is_anon_ns(ns))) | 
|  | goto out; | 
|  |  | 
|  | if (old->mnt.mnt_flags & MNT_LOCKED) | 
|  | goto out; | 
|  |  | 
|  | if (old_path->dentry != old_path->mnt->mnt_root) | 
|  | goto out; | 
|  |  | 
|  | if (d_is_dir(new_path->dentry) != | 
|  | d_is_dir(old_path->dentry)) | 
|  | goto out; | 
|  | /* | 
|  | * Don't move a mount residing in a shared parent. | 
|  | */ | 
|  | if (attached && IS_MNT_SHARED(parent)) | 
|  | goto out; | 
|  | /* | 
|  | * Don't move a mount tree containing unbindable mounts to a destination | 
|  | * mount which is shared. | 
|  | */ | 
|  | if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) | 
|  | goto out; | 
|  | err = -ELOOP; | 
|  | if (!check_for_nsfs_mounts(old)) | 
|  | goto out; | 
|  | for (; mnt_has_parent(p); p = p->mnt_parent) | 
|  | if (p == old) | 
|  | goto out; | 
|  |  | 
|  | err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, | 
|  | attached); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | /* if the mount is moved, it should no longer be expire | 
|  | * automatically */ | 
|  | list_del_init(&old->mnt_expire); | 
|  | if (attached) | 
|  | put_mountpoint(old_mp); | 
|  | out: | 
|  | unlock_mount(mp); | 
|  | if (!err) { | 
|  | if (attached) | 
|  | mntput_no_expire(parent); | 
|  | else | 
|  | free_mnt_ns(ns); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int do_move_mount_old(struct path *path, const char *old_name) | 
|  | { | 
|  | struct path old_path; | 
|  | int err; | 
|  |  | 
|  | if (!old_name || !*old_name) | 
|  | return -EINVAL; | 
|  |  | 
|  | err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = do_move_mount(&old_path, path); | 
|  | path_put(&old_path); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * add a mount into a namespace's mount tree | 
|  | */ | 
|  | static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) | 
|  | { | 
|  | struct mountpoint *mp; | 
|  | struct mount *parent; | 
|  | int err; | 
|  |  | 
|  | mnt_flags &= ~MNT_INTERNAL_FLAGS; | 
|  |  | 
|  | mp = lock_mount(path); | 
|  | if (IS_ERR(mp)) | 
|  | return PTR_ERR(mp); | 
|  |  | 
|  | parent = real_mount(path->mnt); | 
|  | err = -EINVAL; | 
|  | if (unlikely(!check_mnt(parent))) { | 
|  | /* that's acceptable only for automounts done in private ns */ | 
|  | if (!(mnt_flags & MNT_SHRINKABLE)) | 
|  | goto unlock; | 
|  | /* ... and for those we'd better have mountpoint still alive */ | 
|  | if (!parent->mnt_ns) | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | /* Refuse the same filesystem on the same mount point */ | 
|  | err = -EBUSY; | 
|  | if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && | 
|  | path->mnt->mnt_root == path->dentry) | 
|  | goto unlock; | 
|  |  | 
|  | err = -EINVAL; | 
|  | if (d_is_symlink(newmnt->mnt.mnt_root)) | 
|  | goto unlock; | 
|  |  | 
|  | newmnt->mnt.mnt_flags = mnt_flags; | 
|  | err = graft_tree(newmnt, parent, mp); | 
|  |  | 
|  | unlock: | 
|  | unlock_mount(mp); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); | 
|  |  | 
|  | /* | 
|  | * Create a new mount using a superblock configuration and request it | 
|  | * be added to the namespace tree. | 
|  | */ | 
|  | static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, | 
|  | unsigned int mnt_flags) | 
|  | { | 
|  | struct vfsmount *mnt; | 
|  | struct super_block *sb = fc->root->d_sb; | 
|  | int error; | 
|  |  | 
|  | error = security_sb_kern_mount(sb); | 
|  | if (!error && mount_too_revealing(sb, &mnt_flags)) | 
|  | error = -EPERM; | 
|  |  | 
|  | if (unlikely(error)) { | 
|  | fc_drop_locked(fc); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | up_write(&sb->s_umount); | 
|  |  | 
|  | mnt = vfs_create_mount(fc); | 
|  | if (IS_ERR(mnt)) | 
|  | return PTR_ERR(mnt); | 
|  |  | 
|  | mnt_warn_timestamp_expiry(mountpoint, mnt); | 
|  |  | 
|  | error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags); | 
|  | if (error < 0) | 
|  | mntput(mnt); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * create a new mount for userspace and request it to be added into the | 
|  | * namespace's tree | 
|  | */ | 
|  | static int do_new_mount(struct path *path, const char *fstype, int sb_flags, | 
|  | int mnt_flags, const char *name, void *data) | 
|  | { | 
|  | struct file_system_type *type; | 
|  | struct fs_context *fc; | 
|  | const char *subtype = NULL; | 
|  | int err = 0; | 
|  |  | 
|  | if (!fstype) | 
|  | return -EINVAL; | 
|  |  | 
|  | type = get_fs_type(fstype); | 
|  | if (!type) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (type->fs_flags & FS_HAS_SUBTYPE) { | 
|  | subtype = strchr(fstype, '.'); | 
|  | if (subtype) { | 
|  | subtype++; | 
|  | if (!*subtype) { | 
|  | put_filesystem(type); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | fc = fs_context_for_mount(type, sb_flags); | 
|  | put_filesystem(type); | 
|  | if (IS_ERR(fc)) | 
|  | return PTR_ERR(fc); | 
|  |  | 
|  | if (subtype) | 
|  | err = vfs_parse_fs_string(fc, "subtype", | 
|  | subtype, strlen(subtype)); | 
|  | if (!err && name) | 
|  | err = vfs_parse_fs_string(fc, "source", name, strlen(name)); | 
|  | if (!err) | 
|  | err = parse_monolithic_mount_data(fc, data); | 
|  | if (!err && !mount_capable(fc)) | 
|  | err = -EPERM; | 
|  | if (!err) | 
|  | err = vfs_get_tree(fc); | 
|  | if (!err) | 
|  | err = do_new_mount_fc(fc, path, mnt_flags); | 
|  |  | 
|  | put_fs_context(fc); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int finish_automount(struct vfsmount *m, struct path *path) | 
|  | { | 
|  | struct mount *mnt = real_mount(m); | 
|  | int err; | 
|  | /* The new mount record should have at least 2 refs to prevent it being | 
|  | * expired before we get a chance to add it | 
|  | */ | 
|  | BUG_ON(mnt_get_count(mnt) < 2); | 
|  |  | 
|  | if (m->mnt_sb == path->mnt->mnt_sb && | 
|  | m->mnt_root == path->dentry) { | 
|  | err = -ELOOP; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); | 
|  | if (!err) | 
|  | return 0; | 
|  | fail: | 
|  | /* remove m from any expiration list it may be on */ | 
|  | if (!list_empty(&mnt->mnt_expire)) { | 
|  | namespace_lock(); | 
|  | list_del_init(&mnt->mnt_expire); | 
|  | namespace_unlock(); | 
|  | } | 
|  | mntput(m); | 
|  | mntput(m); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mnt_set_expiry - Put a mount on an expiration list | 
|  | * @mnt: The mount to list. | 
|  | * @expiry_list: The list to add the mount to. | 
|  | */ | 
|  | void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) | 
|  | { | 
|  | namespace_lock(); | 
|  |  | 
|  | list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); | 
|  |  | 
|  | namespace_unlock(); | 
|  | } | 
|  | EXPORT_SYMBOL(mnt_set_expiry); | 
|  |  | 
|  | /* | 
|  | * process a list of expirable mountpoints with the intent of discarding any | 
|  | * mountpoints that aren't in use and haven't been touched since last we came | 
|  | * here | 
|  | */ | 
|  | void mark_mounts_for_expiry(struct list_head *mounts) | 
|  | { | 
|  | struct mount *mnt, *next; | 
|  | LIST_HEAD(graveyard); | 
|  |  | 
|  | if (list_empty(mounts)) | 
|  | return; | 
|  |  | 
|  | namespace_lock(); | 
|  | lock_mount_hash(); | 
|  |  | 
|  | /* extract from the expiration list every vfsmount that matches the | 
|  | * following criteria: | 
|  | * - only referenced by its parent vfsmount | 
|  | * - still marked for expiry (marked on the last call here; marks are | 
|  | *   cleared by mntput()) | 
|  | */ | 
|  | list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { | 
|  | if (!xchg(&mnt->mnt_expiry_mark, 1) || | 
|  | propagate_mount_busy(mnt, 1)) | 
|  | continue; | 
|  | list_move(&mnt->mnt_expire, &graveyard); | 
|  | } | 
|  | while (!list_empty(&graveyard)) { | 
|  | mnt = list_first_entry(&graveyard, struct mount, mnt_expire); | 
|  | touch_mnt_namespace(mnt->mnt_ns); | 
|  | umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); | 
|  | } | 
|  | unlock_mount_hash(); | 
|  | namespace_unlock(); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); | 
|  |  | 
|  | /* | 
|  | * Ripoff of 'select_parent()' | 
|  | * | 
|  | * search the list of submounts for a given mountpoint, and move any | 
|  | * shrinkable submounts to the 'graveyard' list. | 
|  | */ | 
|  | static int select_submounts(struct mount *parent, struct list_head *graveyard) | 
|  | { | 
|  | struct mount *this_parent = parent; | 
|  | struct list_head *next; | 
|  | int found = 0; | 
|  |  | 
|  | repeat: | 
|  | next = this_parent->mnt_mounts.next; | 
|  | resume: | 
|  | while (next != &this_parent->mnt_mounts) { | 
|  | struct list_head *tmp = next; | 
|  | struct mount *mnt = list_entry(tmp, struct mount, mnt_child); | 
|  |  | 
|  | next = tmp->next; | 
|  | if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) | 
|  | continue; | 
|  | /* | 
|  | * Descend a level if the d_mounts list is non-empty. | 
|  | */ | 
|  | if (!list_empty(&mnt->mnt_mounts)) { | 
|  | this_parent = mnt; | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | if (!propagate_mount_busy(mnt, 1)) { | 
|  | list_move_tail(&mnt->mnt_expire, graveyard); | 
|  | found++; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * All done at this level ... ascend and resume the search | 
|  | */ | 
|  | if (this_parent != parent) { | 
|  | next = this_parent->mnt_child.next; | 
|  | this_parent = this_parent->mnt_parent; | 
|  | goto resume; | 
|  | } | 
|  | return found; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * process a list of expirable mountpoints with the intent of discarding any | 
|  | * submounts of a specific parent mountpoint | 
|  | * | 
|  | * mount_lock must be held for write | 
|  | */ | 
|  | static void shrink_submounts(struct mount *mnt) | 
|  | { | 
|  | LIST_HEAD(graveyard); | 
|  | struct mount *m; | 
|  |  | 
|  | /* extract submounts of 'mountpoint' from the expiration list */ | 
|  | while (select_submounts(mnt, &graveyard)) { | 
|  | while (!list_empty(&graveyard)) { | 
|  | m = list_first_entry(&graveyard, struct mount, | 
|  | mnt_expire); | 
|  | touch_mnt_namespace(m->mnt_ns); | 
|  | umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some copy_from_user() implementations do not return the exact number of | 
|  | * bytes remaining to copy on a fault.  But copy_mount_options() requires that. | 
|  | * Note that this function differs from copy_from_user() in that it will oops | 
|  | * on bad values of `to', rather than returning a short copy. | 
|  | */ | 
|  | static long exact_copy_from_user(void *to, const void __user * from, | 
|  | unsigned long n) | 
|  | { | 
|  | char *t = to; | 
|  | const char __user *f = from; | 
|  | char c; | 
|  |  | 
|  | if (!access_ok(from, n)) | 
|  | return n; | 
|  |  | 
|  | while (n) { | 
|  | if (__get_user(c, f)) { | 
|  | memset(t, 0, n); | 
|  | break; | 
|  | } | 
|  | *t++ = c; | 
|  | f++; | 
|  | n--; | 
|  | } | 
|  | return n; | 
|  | } | 
|  |  | 
|  | void *copy_mount_options(const void __user * data) | 
|  | { | 
|  | int i; | 
|  | unsigned long size; | 
|  | char *copy; | 
|  |  | 
|  | if (!data) | 
|  | return NULL; | 
|  |  | 
|  | copy = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
|  | if (!copy) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | /* We only care that *some* data at the address the user | 
|  | * gave us is valid.  Just in case, we'll zero | 
|  | * the remainder of the page. | 
|  | */ | 
|  | /* copy_from_user cannot cross TASK_SIZE ! */ | 
|  | size = TASK_SIZE - (unsigned long)untagged_addr(data); | 
|  | if (size > PAGE_SIZE) | 
|  | size = PAGE_SIZE; | 
|  |  | 
|  | i = size - exact_copy_from_user(copy, data, size); | 
|  | if (!i) { | 
|  | kfree(copy); | 
|  | return ERR_PTR(-EFAULT); | 
|  | } | 
|  | if (i != PAGE_SIZE) | 
|  | memset(copy + i, 0, PAGE_SIZE - i); | 
|  | return copy; | 
|  | } | 
|  |  | 
|  | char *copy_mount_string(const void __user *data) | 
|  | { | 
|  | return data ? strndup_user(data, PATH_MAX) : NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to | 
|  | * be given to the mount() call (ie: read-only, no-dev, no-suid etc). | 
|  | * | 
|  | * data is a (void *) that can point to any structure up to | 
|  | * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent | 
|  | * information (or be NULL). | 
|  | * | 
|  | * Pre-0.97 versions of mount() didn't have a flags word. | 
|  | * When the flags word was introduced its top half was required | 
|  | * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. | 
|  | * Therefore, if this magic number is present, it carries no information | 
|  | * and must be discarded. | 
|  | */ | 
|  | long do_mount(const char *dev_name, const char __user *dir_name, | 
|  | const char *type_page, unsigned long flags, void *data_page) | 
|  | { | 
|  | struct path path; | 
|  | unsigned int mnt_flags = 0, sb_flags; | 
|  | int retval = 0; | 
|  |  | 
|  | /* Discard magic */ | 
|  | if ((flags & MS_MGC_MSK) == MS_MGC_VAL) | 
|  | flags &= ~MS_MGC_MSK; | 
|  |  | 
|  | /* Basic sanity checks */ | 
|  | if (data_page) | 
|  | ((char *)data_page)[PAGE_SIZE - 1] = 0; | 
|  |  | 
|  | if (flags & MS_NOUSER) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* ... and get the mountpoint */ | 
|  | retval = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | retval = security_sb_mount(dev_name, &path, | 
|  | type_page, flags, data_page); | 
|  | if (!retval && !may_mount()) | 
|  | retval = -EPERM; | 
|  | if (!retval && (flags & SB_MANDLOCK) && !may_mandlock()) | 
|  | retval = -EPERM; | 
|  | if (retval) | 
|  | goto dput_out; | 
|  |  | 
|  | /* Default to relatime unless overriden */ | 
|  | if (!(flags & MS_NOATIME)) | 
|  | mnt_flags |= MNT_RELATIME; | 
|  |  | 
|  | /* Separate the per-mountpoint flags */ | 
|  | if (flags & MS_NOSUID) | 
|  | mnt_flags |= MNT_NOSUID; | 
|  | if (flags & MS_NODEV) | 
|  | mnt_flags |= MNT_NODEV; | 
|  | if (flags & MS_NOEXEC) | 
|  | mnt_flags |= MNT_NOEXEC; | 
|  | if (flags & MS_NOATIME) | 
|  | mnt_flags |= MNT_NOATIME; | 
|  | if (flags & MS_NODIRATIME) | 
|  | mnt_flags |= MNT_NODIRATIME; | 
|  | if (flags & MS_STRICTATIME) | 
|  | mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); | 
|  | if (flags & MS_RDONLY) | 
|  | mnt_flags |= MNT_READONLY; | 
|  |  | 
|  | /* The default atime for remount is preservation */ | 
|  | if ((flags & MS_REMOUNT) && | 
|  | ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | | 
|  | MS_STRICTATIME)) == 0)) { | 
|  | mnt_flags &= ~MNT_ATIME_MASK; | 
|  | mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; | 
|  | } | 
|  |  | 
|  | sb_flags = flags & (SB_RDONLY | | 
|  | SB_SYNCHRONOUS | | 
|  | SB_MANDLOCK | | 
|  | SB_DIRSYNC | | 
|  | SB_SILENT | | 
|  | SB_POSIXACL | | 
|  | SB_LAZYTIME | | 
|  | SB_I_VERSION); | 
|  |  | 
|  | if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) | 
|  | retval = do_reconfigure_mnt(&path, mnt_flags); | 
|  | else if (flags & MS_REMOUNT) | 
|  | retval = do_remount(&path, flags, sb_flags, mnt_flags, | 
|  | data_page); | 
|  | else if (flags & MS_BIND) | 
|  | retval = do_loopback(&path, dev_name, flags & MS_REC); | 
|  | else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) | 
|  | retval = do_change_type(&path, flags); | 
|  | else if (flags & MS_MOVE) | 
|  | retval = do_move_mount_old(&path, dev_name); | 
|  | else | 
|  | retval = do_new_mount(&path, type_page, sb_flags, mnt_flags, | 
|  | dev_name, data_page); | 
|  | dput_out: | 
|  | path_put(&path); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) | 
|  | { | 
|  | return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); | 
|  | } | 
|  |  | 
|  | static void dec_mnt_namespaces(struct ucounts *ucounts) | 
|  | { | 
|  | dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); | 
|  | } | 
|  |  | 
|  | static void free_mnt_ns(struct mnt_namespace *ns) | 
|  | { | 
|  | if (!is_anon_ns(ns)) | 
|  | ns_free_inum(&ns->ns); | 
|  | dec_mnt_namespaces(ns->ucounts); | 
|  | put_user_ns(ns->user_ns); | 
|  | kfree(ns); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Assign a sequence number so we can detect when we attempt to bind | 
|  | * mount a reference to an older mount namespace into the current | 
|  | * mount namespace, preventing reference counting loops.  A 64bit | 
|  | * number incrementing at 10Ghz will take 12,427 years to wrap which | 
|  | * is effectively never, so we can ignore the possibility. | 
|  | */ | 
|  | static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); | 
|  |  | 
|  | static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) | 
|  | { | 
|  | struct mnt_namespace *new_ns; | 
|  | struct ucounts *ucounts; | 
|  | int ret; | 
|  |  | 
|  | ucounts = inc_mnt_namespaces(user_ns); | 
|  | if (!ucounts) | 
|  | return ERR_PTR(-ENOSPC); | 
|  |  | 
|  | new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL); | 
|  | if (!new_ns) { | 
|  | dec_mnt_namespaces(ucounts); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  | if (!anon) { | 
|  | ret = ns_alloc_inum(&new_ns->ns); | 
|  | if (ret) { | 
|  | kfree(new_ns); | 
|  | dec_mnt_namespaces(ucounts); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  | } | 
|  | new_ns->ns.ops = &mntns_operations; | 
|  | if (!anon) | 
|  | new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); | 
|  | atomic_set(&new_ns->count, 1); | 
|  | INIT_LIST_HEAD(&new_ns->list); | 
|  | init_waitqueue_head(&new_ns->poll); | 
|  | new_ns->user_ns = get_user_ns(user_ns); | 
|  | new_ns->ucounts = ucounts; | 
|  | return new_ns; | 
|  | } | 
|  |  | 
|  | __latent_entropy | 
|  | struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, | 
|  | struct user_namespace *user_ns, struct fs_struct *new_fs) | 
|  | { | 
|  | struct mnt_namespace *new_ns; | 
|  | struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; | 
|  | struct mount *p, *q; | 
|  | struct mount *old; | 
|  | struct mount *new; | 
|  | int copy_flags; | 
|  |  | 
|  | BUG_ON(!ns); | 
|  |  | 
|  | if (likely(!(flags & CLONE_NEWNS))) { | 
|  | get_mnt_ns(ns); | 
|  | return ns; | 
|  | } | 
|  |  | 
|  | old = ns->root; | 
|  |  | 
|  | new_ns = alloc_mnt_ns(user_ns, false); | 
|  | if (IS_ERR(new_ns)) | 
|  | return new_ns; | 
|  |  | 
|  | namespace_lock(); | 
|  | /* First pass: copy the tree topology */ | 
|  | copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; | 
|  | if (user_ns != ns->user_ns) | 
|  | copy_flags |= CL_SHARED_TO_SLAVE; | 
|  | new = copy_tree(old, old->mnt.mnt_root, copy_flags); | 
|  | if (IS_ERR(new)) { | 
|  | namespace_unlock(); | 
|  | free_mnt_ns(new_ns); | 
|  | return ERR_CAST(new); | 
|  | } | 
|  | if (user_ns != ns->user_ns) { | 
|  | lock_mount_hash(); | 
|  | lock_mnt_tree(new); | 
|  | unlock_mount_hash(); | 
|  | } | 
|  | new_ns->root = new; | 
|  | list_add_tail(&new_ns->list, &new->mnt_list); | 
|  |  | 
|  | /* | 
|  | * Second pass: switch the tsk->fs->* elements and mark new vfsmounts | 
|  | * as belonging to new namespace.  We have already acquired a private | 
|  | * fs_struct, so tsk->fs->lock is not needed. | 
|  | */ | 
|  | p = old; | 
|  | q = new; | 
|  | while (p) { | 
|  | q->mnt_ns = new_ns; | 
|  | new_ns->mounts++; | 
|  | if (new_fs) { | 
|  | if (&p->mnt == new_fs->root.mnt) { | 
|  | new_fs->root.mnt = mntget(&q->mnt); | 
|  | rootmnt = &p->mnt; | 
|  | } | 
|  | if (&p->mnt == new_fs->pwd.mnt) { | 
|  | new_fs->pwd.mnt = mntget(&q->mnt); | 
|  | pwdmnt = &p->mnt; | 
|  | } | 
|  | } | 
|  | p = next_mnt(p, old); | 
|  | q = next_mnt(q, new); | 
|  | if (!q) | 
|  | break; | 
|  | while (p->mnt.mnt_root != q->mnt.mnt_root) | 
|  | p = next_mnt(p, old); | 
|  | } | 
|  | namespace_unlock(); | 
|  |  | 
|  | if (rootmnt) | 
|  | mntput(rootmnt); | 
|  | if (pwdmnt) | 
|  | mntput(pwdmnt); | 
|  |  | 
|  | return new_ns; | 
|  | } | 
|  |  | 
|  | struct dentry *mount_subtree(struct vfsmount *m, const char *name) | 
|  | { | 
|  | struct mount *mnt = real_mount(m); | 
|  | struct mnt_namespace *ns; | 
|  | struct super_block *s; | 
|  | struct path path; | 
|  | int err; | 
|  |  | 
|  | ns = alloc_mnt_ns(&init_user_ns, true); | 
|  | if (IS_ERR(ns)) { | 
|  | mntput(m); | 
|  | return ERR_CAST(ns); | 
|  | } | 
|  | mnt->mnt_ns = ns; | 
|  | ns->root = mnt; | 
|  | ns->mounts++; | 
|  | list_add(&mnt->mnt_list, &ns->list); | 
|  |  | 
|  | err = vfs_path_lookup(m->mnt_root, m, | 
|  | name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); | 
|  |  | 
|  | put_mnt_ns(ns); | 
|  |  | 
|  | if (err) | 
|  | return ERR_PTR(err); | 
|  |  | 
|  | /* trade a vfsmount reference for active sb one */ | 
|  | s = path.mnt->mnt_sb; | 
|  | atomic_inc(&s->s_active); | 
|  | mntput(path.mnt); | 
|  | /* lock the sucker */ | 
|  | down_write(&s->s_umount); | 
|  | /* ... and return the root of (sub)tree on it */ | 
|  | return path.dentry; | 
|  | } | 
|  | EXPORT_SYMBOL(mount_subtree); | 
|  |  | 
|  | int ksys_mount(const char __user *dev_name, const char __user *dir_name, | 
|  | const char __user *type, unsigned long flags, void __user *data) | 
|  | { | 
|  | int ret; | 
|  | char *kernel_type; | 
|  | char *kernel_dev; | 
|  | void *options; | 
|  |  | 
|  | kernel_type = copy_mount_string(type); | 
|  | ret = PTR_ERR(kernel_type); | 
|  | if (IS_ERR(kernel_type)) | 
|  | goto out_type; | 
|  |  | 
|  | kernel_dev = copy_mount_string(dev_name); | 
|  | ret = PTR_ERR(kernel_dev); | 
|  | if (IS_ERR(kernel_dev)) | 
|  | goto out_dev; | 
|  |  | 
|  | options = copy_mount_options(data); | 
|  | ret = PTR_ERR(options); | 
|  | if (IS_ERR(options)) | 
|  | goto out_data; | 
|  |  | 
|  | ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); | 
|  |  | 
|  | kfree(options); | 
|  | out_data: | 
|  | kfree(kernel_dev); | 
|  | out_dev: | 
|  | kfree(kernel_type); | 
|  | out_type: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, | 
|  | char __user *, type, unsigned long, flags, void __user *, data) | 
|  | { | 
|  | return ksys_mount(dev_name, dir_name, type, flags, data); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create a kernel mount representation for a new, prepared superblock | 
|  | * (specified by fs_fd) and attach to an open_tree-like file descriptor. | 
|  | */ | 
|  | SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, | 
|  | unsigned int, attr_flags) | 
|  | { | 
|  | struct mnt_namespace *ns; | 
|  | struct fs_context *fc; | 
|  | struct file *file; | 
|  | struct path newmount; | 
|  | struct mount *mnt; | 
|  | struct fd f; | 
|  | unsigned int mnt_flags = 0; | 
|  | long ret; | 
|  |  | 
|  | if (!may_mount()) | 
|  | return -EPERM; | 
|  |  | 
|  | if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (attr_flags & ~(MOUNT_ATTR_RDONLY | | 
|  | MOUNT_ATTR_NOSUID | | 
|  | MOUNT_ATTR_NODEV | | 
|  | MOUNT_ATTR_NOEXEC | | 
|  | MOUNT_ATTR__ATIME | | 
|  | MOUNT_ATTR_NODIRATIME)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (attr_flags & MOUNT_ATTR_RDONLY) | 
|  | mnt_flags |= MNT_READONLY; | 
|  | if (attr_flags & MOUNT_ATTR_NOSUID) | 
|  | mnt_flags |= MNT_NOSUID; | 
|  | if (attr_flags & MOUNT_ATTR_NODEV) | 
|  | mnt_flags |= MNT_NODEV; | 
|  | if (attr_flags & MOUNT_ATTR_NOEXEC) | 
|  | mnt_flags |= MNT_NOEXEC; | 
|  | if (attr_flags & MOUNT_ATTR_NODIRATIME) | 
|  | mnt_flags |= MNT_NODIRATIME; | 
|  |  | 
|  | switch (attr_flags & MOUNT_ATTR__ATIME) { | 
|  | case MOUNT_ATTR_STRICTATIME: | 
|  | break; | 
|  | case MOUNT_ATTR_NOATIME: | 
|  | mnt_flags |= MNT_NOATIME; | 
|  | break; | 
|  | case MOUNT_ATTR_RELATIME: | 
|  | mnt_flags |= MNT_RELATIME; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | f = fdget(fs_fd); | 
|  | if (!f.file) | 
|  | return -EBADF; | 
|  |  | 
|  | ret = -EINVAL; | 
|  | if (f.file->f_op != &fscontext_fops) | 
|  | goto err_fsfd; | 
|  |  | 
|  | fc = f.file->private_data; | 
|  |  | 
|  | ret = mutex_lock_interruptible(&fc->uapi_mutex); | 
|  | if (ret < 0) | 
|  | goto err_fsfd; | 
|  |  | 
|  | /* There must be a valid superblock or we can't mount it */ | 
|  | ret = -EINVAL; | 
|  | if (!fc->root) | 
|  | goto err_unlock; | 
|  |  | 
|  | ret = -EPERM; | 
|  | if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { | 
|  | pr_warn("VFS: Mount too revealing\n"); | 
|  | goto err_unlock; | 
|  | } | 
|  |  | 
|  | ret = -EBUSY; | 
|  | if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) | 
|  | goto err_unlock; | 
|  |  | 
|  | ret = -EPERM; | 
|  | if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock()) | 
|  | goto err_unlock; | 
|  |  | 
|  | newmount.mnt = vfs_create_mount(fc); | 
|  | if (IS_ERR(newmount.mnt)) { | 
|  | ret = PTR_ERR(newmount.mnt); | 
|  | goto err_unlock; | 
|  | } | 
|  | newmount.dentry = dget(fc->root); | 
|  | newmount.mnt->mnt_flags = mnt_flags; | 
|  |  | 
|  | /* We've done the mount bit - now move the file context into more or | 
|  | * less the same state as if we'd done an fspick().  We don't want to | 
|  | * do any memory allocation or anything like that at this point as we | 
|  | * don't want to have to handle any errors incurred. | 
|  | */ | 
|  | vfs_clean_context(fc); | 
|  |  | 
|  | ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); | 
|  | if (IS_ERR(ns)) { | 
|  | ret = PTR_ERR(ns); | 
|  | goto err_path; | 
|  | } | 
|  | mnt = real_mount(newmount.mnt); | 
|  | mnt->mnt_ns = ns; | 
|  | ns->root = mnt; | 
|  | ns->mounts = 1; | 
|  | list_add(&mnt->mnt_list, &ns->list); | 
|  | mntget(newmount.mnt); | 
|  |  | 
|  | /* Attach to an apparent O_PATH fd with a note that we need to unmount | 
|  | * it, not just simply put it. | 
|  | */ | 
|  | file = dentry_open(&newmount, O_PATH, fc->cred); | 
|  | if (IS_ERR(file)) { | 
|  | dissolve_on_fput(newmount.mnt); | 
|  | ret = PTR_ERR(file); | 
|  | goto err_path; | 
|  | } | 
|  | file->f_mode |= FMODE_NEED_UNMOUNT; | 
|  |  | 
|  | ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); | 
|  | if (ret >= 0) | 
|  | fd_install(ret, file); | 
|  | else | 
|  | fput(file); | 
|  |  | 
|  | err_path: | 
|  | path_put(&newmount); | 
|  | err_unlock: | 
|  | mutex_unlock(&fc->uapi_mutex); | 
|  | err_fsfd: | 
|  | fdput(f); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move a mount from one place to another.  In combination with | 
|  | * fsopen()/fsmount() this is used to install a new mount and in combination | 
|  | * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy | 
|  | * a mount subtree. | 
|  | * | 
|  | * Note the flags value is a combination of MOVE_MOUNT_* flags. | 
|  | */ | 
|  | SYSCALL_DEFINE5(move_mount, | 
|  | int, from_dfd, const char *, from_pathname, | 
|  | int, to_dfd, const char *, to_pathname, | 
|  | unsigned int, flags) | 
|  | { | 
|  | struct path from_path, to_path; | 
|  | unsigned int lflags; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!may_mount()) | 
|  | return -EPERM; | 
|  |  | 
|  | if (flags & ~MOVE_MOUNT__MASK) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* If someone gives a pathname, they aren't permitted to move | 
|  | * from an fd that requires unmount as we can't get at the flag | 
|  | * to clear it afterwards. | 
|  | */ | 
|  | lflags = 0; | 
|  | if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW; | 
|  | if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT; | 
|  | if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY; | 
|  |  | 
|  | ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | lflags = 0; | 
|  | if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW; | 
|  | if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT; | 
|  | if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY; | 
|  |  | 
|  | ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); | 
|  | if (ret < 0) | 
|  | goto out_from; | 
|  |  | 
|  | ret = security_move_mount(&from_path, &to_path); | 
|  | if (ret < 0) | 
|  | goto out_to; | 
|  |  | 
|  | ret = do_move_mount(&from_path, &to_path); | 
|  |  | 
|  | out_to: | 
|  | path_put(&to_path); | 
|  | out_from: | 
|  | path_put(&from_path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if path is reachable from root | 
|  | * | 
|  | * namespace_sem or mount_lock is held | 
|  | */ | 
|  | bool is_path_reachable(struct mount *mnt, struct dentry *dentry, | 
|  | const struct path *root) | 
|  | { | 
|  | while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { | 
|  | dentry = mnt->mnt_mountpoint; | 
|  | mnt = mnt->mnt_parent; | 
|  | } | 
|  | return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); | 
|  | } | 
|  |  | 
|  | bool path_is_under(const struct path *path1, const struct path *path2) | 
|  | { | 
|  | bool res; | 
|  | read_seqlock_excl(&mount_lock); | 
|  | res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); | 
|  | read_sequnlock_excl(&mount_lock); | 
|  | return res; | 
|  | } | 
|  | EXPORT_SYMBOL(path_is_under); | 
|  |  | 
|  | /* | 
|  | * pivot_root Semantics: | 
|  | * Moves the root file system of the current process to the directory put_old, | 
|  | * makes new_root as the new root file system of the current process, and sets | 
|  | * root/cwd of all processes which had them on the current root to new_root. | 
|  | * | 
|  | * Restrictions: | 
|  | * The new_root and put_old must be directories, and  must not be on the | 
|  | * same file  system as the current process root. The put_old  must  be | 
|  | * underneath new_root,  i.e. adding a non-zero number of /.. to the string | 
|  | * pointed to by put_old must yield the same directory as new_root. No other | 
|  | * file system may be mounted on put_old. After all, new_root is a mountpoint. | 
|  | * | 
|  | * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. | 
|  | * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives | 
|  | * in this situation. | 
|  | * | 
|  | * Notes: | 
|  | *  - we don't move root/cwd if they are not at the root (reason: if something | 
|  | *    cared enough to change them, it's probably wrong to force them elsewhere) | 
|  | *  - it's okay to pick a root that isn't the root of a file system, e.g. | 
|  | *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint, | 
|  | *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root | 
|  | *    first. | 
|  | */ | 
|  | SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, | 
|  | const char __user *, put_old) | 
|  | { | 
|  | struct path new, old, root; | 
|  | struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; | 
|  | struct mountpoint *old_mp, *root_mp; | 
|  | int error; | 
|  |  | 
|  | if (!may_mount()) | 
|  | return -EPERM; | 
|  |  | 
|  | error = user_path_at(AT_FDCWD, new_root, | 
|  | LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); | 
|  | if (error) | 
|  | goto out0; | 
|  |  | 
|  | error = user_path_at(AT_FDCWD, put_old, | 
|  | LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); | 
|  | if (error) | 
|  | goto out1; | 
|  |  | 
|  | error = security_sb_pivotroot(&old, &new); | 
|  | if (error) | 
|  | goto out2; | 
|  |  | 
|  | get_fs_root(current->fs, &root); | 
|  | old_mp = lock_mount(&old); | 
|  | error = PTR_ERR(old_mp); | 
|  | if (IS_ERR(old_mp)) | 
|  | goto out3; | 
|  |  | 
|  | error = -EINVAL; | 
|  | new_mnt = real_mount(new.mnt); | 
|  | root_mnt = real_mount(root.mnt); | 
|  | old_mnt = real_mount(old.mnt); | 
|  | ex_parent = new_mnt->mnt_parent; | 
|  | root_parent = root_mnt->mnt_parent; | 
|  | if (IS_MNT_SHARED(old_mnt) || | 
|  | IS_MNT_SHARED(ex_parent) || | 
|  | IS_MNT_SHARED(root_parent)) | 
|  | goto out4; | 
|  | if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) | 
|  | goto out4; | 
|  | if (new_mnt->mnt.mnt_flags & MNT_LOCKED) | 
|  | goto out4; | 
|  | error = -ENOENT; | 
|  | if (d_unlinked(new.dentry)) | 
|  | goto out4; | 
|  | error = -EBUSY; | 
|  | if (new_mnt == root_mnt || old_mnt == root_mnt) | 
|  | goto out4; /* loop, on the same file system  */ | 
|  | error = -EINVAL; | 
|  | if (root.mnt->mnt_root != root.dentry) | 
|  | goto out4; /* not a mountpoint */ | 
|  | if (!mnt_has_parent(root_mnt)) | 
|  | goto out4; /* not attached */ | 
|  | if (new.mnt->mnt_root != new.dentry) | 
|  | goto out4; /* not a mountpoint */ | 
|  | if (!mnt_has_parent(new_mnt)) | 
|  | goto out4; /* not attached */ | 
|  | /* make sure we can reach put_old from new_root */ | 
|  | if (!is_path_reachable(old_mnt, old.dentry, &new)) | 
|  | goto out4; | 
|  | /* make certain new is below the root */ | 
|  | if (!is_path_reachable(new_mnt, new.dentry, &root)) | 
|  | goto out4; | 
|  | lock_mount_hash(); | 
|  | umount_mnt(new_mnt); | 
|  | root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */ | 
|  | if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { | 
|  | new_mnt->mnt.mnt_flags |= MNT_LOCKED; | 
|  | root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; | 
|  | } | 
|  | /* mount old root on put_old */ | 
|  | attach_mnt(root_mnt, old_mnt, old_mp); | 
|  | /* mount new_root on / */ | 
|  | attach_mnt(new_mnt, root_parent, root_mp); | 
|  | mnt_add_count(root_parent, -1); | 
|  | touch_mnt_namespace(current->nsproxy->mnt_ns); | 
|  | /* A moved mount should not expire automatically */ | 
|  | list_del_init(&new_mnt->mnt_expire); | 
|  | put_mountpoint(root_mp); | 
|  | unlock_mount_hash(); | 
|  | chroot_fs_refs(&root, &new); | 
|  | error = 0; | 
|  | out4: | 
|  | unlock_mount(old_mp); | 
|  | if (!error) | 
|  | mntput_no_expire(ex_parent); | 
|  | out3: | 
|  | path_put(&root); | 
|  | out2: | 
|  | path_put(&old); | 
|  | out1: | 
|  | path_put(&new); | 
|  | out0: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static void __init init_mount_tree(void) | 
|  | { | 
|  | struct vfsmount *mnt; | 
|  | struct mount *m; | 
|  | struct mnt_namespace *ns; | 
|  | struct path root; | 
|  |  | 
|  | mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); | 
|  | if (IS_ERR(mnt)) | 
|  | panic("Can't create rootfs"); | 
|  |  | 
|  | ns = alloc_mnt_ns(&init_user_ns, false); | 
|  | if (IS_ERR(ns)) | 
|  | panic("Can't allocate initial namespace"); | 
|  | m = real_mount(mnt); | 
|  | m->mnt_ns = ns; | 
|  | ns->root = m; | 
|  | ns->mounts = 1; | 
|  | list_add(&m->mnt_list, &ns->list); | 
|  | init_task.nsproxy->mnt_ns = ns; | 
|  | get_mnt_ns(ns); | 
|  |  | 
|  | root.mnt = mnt; | 
|  | root.dentry = mnt->mnt_root; | 
|  | mnt->mnt_flags |= MNT_LOCKED; | 
|  |  | 
|  | set_fs_pwd(current->fs, &root); | 
|  | set_fs_root(current->fs, &root); | 
|  | } | 
|  |  | 
|  | void __init mnt_init(void) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), | 
|  | 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); | 
|  |  | 
|  | mount_hashtable = alloc_large_system_hash("Mount-cache", | 
|  | sizeof(struct hlist_head), | 
|  | mhash_entries, 19, | 
|  | HASH_ZERO, | 
|  | &m_hash_shift, &m_hash_mask, 0, 0); | 
|  | mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", | 
|  | sizeof(struct hlist_head), | 
|  | mphash_entries, 19, | 
|  | HASH_ZERO, | 
|  | &mp_hash_shift, &mp_hash_mask, 0, 0); | 
|  |  | 
|  | if (!mount_hashtable || !mountpoint_hashtable) | 
|  | panic("Failed to allocate mount hash table\n"); | 
|  |  | 
|  | kernfs_init(); | 
|  |  | 
|  | err = sysfs_init(); | 
|  | if (err) | 
|  | printk(KERN_WARNING "%s: sysfs_init error: %d\n", | 
|  | __func__, err); | 
|  | fs_kobj = kobject_create_and_add("fs", NULL); | 
|  | if (!fs_kobj) | 
|  | printk(KERN_WARNING "%s: kobj create error\n", __func__); | 
|  | shmem_init(); | 
|  | init_rootfs(); | 
|  | init_mount_tree(); | 
|  | } | 
|  |  | 
|  | void put_mnt_ns(struct mnt_namespace *ns) | 
|  | { | 
|  | if (!atomic_dec_and_test(&ns->count)) | 
|  | return; | 
|  | drop_collected_mounts(&ns->root->mnt); | 
|  | free_mnt_ns(ns); | 
|  | } | 
|  |  | 
|  | struct vfsmount *kern_mount(struct file_system_type *type) | 
|  | { | 
|  | struct vfsmount *mnt; | 
|  | mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); | 
|  | if (!IS_ERR(mnt)) { | 
|  | /* | 
|  | * it is a longterm mount, don't release mnt until | 
|  | * we unmount before file sys is unregistered | 
|  | */ | 
|  | real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; | 
|  | } | 
|  | return mnt; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kern_mount); | 
|  |  | 
|  | void kern_unmount(struct vfsmount *mnt) | 
|  | { | 
|  | /* release long term mount so mount point can be released */ | 
|  | if (!IS_ERR_OR_NULL(mnt)) { | 
|  | real_mount(mnt)->mnt_ns = NULL; | 
|  | synchronize_rcu();	/* yecchhh... */ | 
|  | mntput(mnt); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(kern_unmount); | 
|  |  | 
|  | bool our_mnt(struct vfsmount *mnt) | 
|  | { | 
|  | return check_mnt(real_mount(mnt)); | 
|  | } | 
|  |  | 
|  | bool current_chrooted(void) | 
|  | { | 
|  | /* Does the current process have a non-standard root */ | 
|  | struct path ns_root; | 
|  | struct path fs_root; | 
|  | bool chrooted; | 
|  |  | 
|  | /* Find the namespace root */ | 
|  | ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; | 
|  | ns_root.dentry = ns_root.mnt->mnt_root; | 
|  | path_get(&ns_root); | 
|  | while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) | 
|  | ; | 
|  |  | 
|  | get_fs_root(current->fs, &fs_root); | 
|  |  | 
|  | chrooted = !path_equal(&fs_root, &ns_root); | 
|  |  | 
|  | path_put(&fs_root); | 
|  | path_put(&ns_root); | 
|  |  | 
|  | return chrooted; | 
|  | } | 
|  |  | 
|  | static bool mnt_already_visible(struct mnt_namespace *ns, | 
|  | const struct super_block *sb, | 
|  | int *new_mnt_flags) | 
|  | { | 
|  | int new_flags = *new_mnt_flags; | 
|  | struct mount *mnt; | 
|  | bool visible = false; | 
|  |  | 
|  | down_read(&namespace_sem); | 
|  | list_for_each_entry(mnt, &ns->list, mnt_list) { | 
|  | struct mount *child; | 
|  | int mnt_flags; | 
|  |  | 
|  | if (mnt->mnt.mnt_sb->s_type != sb->s_type) | 
|  | continue; | 
|  |  | 
|  | /* This mount is not fully visible if it's root directory | 
|  | * is not the root directory of the filesystem. | 
|  | */ | 
|  | if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) | 
|  | continue; | 
|  |  | 
|  | /* A local view of the mount flags */ | 
|  | mnt_flags = mnt->mnt.mnt_flags; | 
|  |  | 
|  | /* Don't miss readonly hidden in the superblock flags */ | 
|  | if (sb_rdonly(mnt->mnt.mnt_sb)) | 
|  | mnt_flags |= MNT_LOCK_READONLY; | 
|  |  | 
|  | /* Verify the mount flags are equal to or more permissive | 
|  | * than the proposed new mount. | 
|  | */ | 
|  | if ((mnt_flags & MNT_LOCK_READONLY) && | 
|  | !(new_flags & MNT_READONLY)) | 
|  | continue; | 
|  | if ((mnt_flags & MNT_LOCK_ATIME) && | 
|  | ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) | 
|  | continue; | 
|  |  | 
|  | /* This mount is not fully visible if there are any | 
|  | * locked child mounts that cover anything except for | 
|  | * empty directories. | 
|  | */ | 
|  | list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { | 
|  | struct inode *inode = child->mnt_mountpoint->d_inode; | 
|  | /* Only worry about locked mounts */ | 
|  | if (!(child->mnt.mnt_flags & MNT_LOCKED)) | 
|  | continue; | 
|  | /* Is the directory permanetly empty? */ | 
|  | if (!is_empty_dir_inode(inode)) | 
|  | goto next; | 
|  | } | 
|  | /* Preserve the locked attributes */ | 
|  | *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ | 
|  | MNT_LOCK_ATIME); | 
|  | visible = true; | 
|  | goto found; | 
|  | next:	; | 
|  | } | 
|  | found: | 
|  | up_read(&namespace_sem); | 
|  | return visible; | 
|  | } | 
|  |  | 
|  | static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) | 
|  | { | 
|  | const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; | 
|  | struct mnt_namespace *ns = current->nsproxy->mnt_ns; | 
|  | unsigned long s_iflags; | 
|  |  | 
|  | if (ns->user_ns == &init_user_ns) | 
|  | return false; | 
|  |  | 
|  | /* Can this filesystem be too revealing? */ | 
|  | s_iflags = sb->s_iflags; | 
|  | if (!(s_iflags & SB_I_USERNS_VISIBLE)) | 
|  | return false; | 
|  |  | 
|  | if ((s_iflags & required_iflags) != required_iflags) { | 
|  | WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", | 
|  | required_iflags); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return !mnt_already_visible(ns, sb, new_mnt_flags); | 
|  | } | 
|  |  | 
|  | bool mnt_may_suid(struct vfsmount *mnt) | 
|  | { | 
|  | /* | 
|  | * Foreign mounts (accessed via fchdir or through /proc | 
|  | * symlinks) are always treated as if they are nosuid.  This | 
|  | * prevents namespaces from trusting potentially unsafe | 
|  | * suid/sgid bits, file caps, or security labels that originate | 
|  | * in other namespaces. | 
|  | */ | 
|  | return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && | 
|  | current_in_userns(mnt->mnt_sb->s_user_ns); | 
|  | } | 
|  |  | 
|  | static struct ns_common *mntns_get(struct task_struct *task) | 
|  | { | 
|  | struct ns_common *ns = NULL; | 
|  | struct nsproxy *nsproxy; | 
|  |  | 
|  | task_lock(task); | 
|  | nsproxy = task->nsproxy; | 
|  | if (nsproxy) { | 
|  | ns = &nsproxy->mnt_ns->ns; | 
|  | get_mnt_ns(to_mnt_ns(ns)); | 
|  | } | 
|  | task_unlock(task); | 
|  |  | 
|  | return ns; | 
|  | } | 
|  |  | 
|  | static void mntns_put(struct ns_common *ns) | 
|  | { | 
|  | put_mnt_ns(to_mnt_ns(ns)); | 
|  | } | 
|  |  | 
|  | static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns) | 
|  | { | 
|  | struct fs_struct *fs = current->fs; | 
|  | struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; | 
|  | struct path root; | 
|  | int err; | 
|  |  | 
|  | if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || | 
|  | !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || | 
|  | !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  |  | 
|  | if (is_anon_ns(mnt_ns)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (fs->users != 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | get_mnt_ns(mnt_ns); | 
|  | old_mnt_ns = nsproxy->mnt_ns; | 
|  | nsproxy->mnt_ns = mnt_ns; | 
|  |  | 
|  | /* Find the root */ | 
|  | err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, | 
|  | "/", LOOKUP_DOWN, &root); | 
|  | if (err) { | 
|  | /* revert to old namespace */ | 
|  | nsproxy->mnt_ns = old_mnt_ns; | 
|  | put_mnt_ns(mnt_ns); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | put_mnt_ns(old_mnt_ns); | 
|  |  | 
|  | /* Update the pwd and root */ | 
|  | set_fs_pwd(fs, &root); | 
|  | set_fs_root(fs, &root); | 
|  |  | 
|  | path_put(&root); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct user_namespace *mntns_owner(struct ns_common *ns) | 
|  | { | 
|  | return to_mnt_ns(ns)->user_ns; | 
|  | } | 
|  |  | 
|  | const struct proc_ns_operations mntns_operations = { | 
|  | .name		= "mnt", | 
|  | .type		= CLONE_NEWNS, | 
|  | .get		= mntns_get, | 
|  | .put		= mntns_put, | 
|  | .install	= mntns_install, | 
|  | .owner		= mntns_owner, | 
|  | }; |