| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (c) 2000-2006 Silicon Graphics, Inc. | 
 |  * All Rights Reserved. | 
 |  */ | 
 | #include "xfs.h" | 
 | #include "xfs_fs.h" | 
 | #include "xfs_shared.h" | 
 | #include "xfs_format.h" | 
 | #include "xfs_log_format.h" | 
 | #include "xfs_trans_resv.h" | 
 | #include "xfs_bit.h" | 
 | #include "xfs_mount.h" | 
 | #include "xfs_trans.h" | 
 | #include "xfs_buf_item.h" | 
 | #include "xfs_trans_priv.h" | 
 | #include "xfs_trace.h" | 
 | #include "xfs_log.h" | 
 | #include "xfs_log_priv.h" | 
 | #include "xfs_log_recover.h" | 
 | #include "xfs_error.h" | 
 | #include "xfs_inode.h" | 
 | #include "xfs_dir2.h" | 
 | #include "xfs_quota.h" | 
 |  | 
 | /* | 
 |  * This structure is used during recovery to record the buf log items which | 
 |  * have been canceled and should not be replayed. | 
 |  */ | 
 | struct xfs_buf_cancel { | 
 | 	xfs_daddr_t		bc_blkno; | 
 | 	uint			bc_len; | 
 | 	int			bc_refcount; | 
 | 	struct list_head	bc_list; | 
 | }; | 
 |  | 
 | static struct xfs_buf_cancel * | 
 | xlog_find_buffer_cancelled( | 
 | 	struct xlog		*log, | 
 | 	xfs_daddr_t		blkno, | 
 | 	uint			len) | 
 | { | 
 | 	struct list_head	*bucket; | 
 | 	struct xfs_buf_cancel	*bcp; | 
 |  | 
 | 	if (!log->l_buf_cancel_table) | 
 | 		return NULL; | 
 |  | 
 | 	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); | 
 | 	list_for_each_entry(bcp, bucket, bc_list) { | 
 | 		if (bcp->bc_blkno == blkno && bcp->bc_len == len) | 
 | 			return bcp; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static bool | 
 | xlog_add_buffer_cancelled( | 
 | 	struct xlog		*log, | 
 | 	xfs_daddr_t		blkno, | 
 | 	uint			len) | 
 | { | 
 | 	struct xfs_buf_cancel	*bcp; | 
 |  | 
 | 	/* | 
 | 	 * If we find an existing cancel record, this indicates that the buffer | 
 | 	 * was cancelled multiple times.  To ensure that during pass 2 we keep | 
 | 	 * the record in the table until we reach its last occurrence in the | 
 | 	 * log, a reference count is kept to tell how many times we expect to | 
 | 	 * see this record during the second pass. | 
 | 	 */ | 
 | 	bcp = xlog_find_buffer_cancelled(log, blkno, len); | 
 | 	if (bcp) { | 
 | 		bcp->bc_refcount++; | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), 0); | 
 | 	bcp->bc_blkno = blkno; | 
 | 	bcp->bc_len = len; | 
 | 	bcp->bc_refcount = 1; | 
 | 	list_add_tail(&bcp->bc_list, XLOG_BUF_CANCEL_BUCKET(log, blkno)); | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Check if there is and entry for blkno, len in the buffer cancel record table. | 
 |  */ | 
 | bool | 
 | xlog_is_buffer_cancelled( | 
 | 	struct xlog		*log, | 
 | 	xfs_daddr_t		blkno, | 
 | 	uint			len) | 
 | { | 
 | 	return xlog_find_buffer_cancelled(log, blkno, len) != NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Check if there is and entry for blkno, len in the buffer cancel record table, | 
 |  * and decremented the reference count on it if there is one. | 
 |  * | 
 |  * Remove the cancel record once the refcount hits zero, so that if the same | 
 |  * buffer is re-used again after its last cancellation we actually replay the | 
 |  * changes made at that point. | 
 |  */ | 
 | static bool | 
 | xlog_put_buffer_cancelled( | 
 | 	struct xlog		*log, | 
 | 	xfs_daddr_t		blkno, | 
 | 	uint			len) | 
 | { | 
 | 	struct xfs_buf_cancel	*bcp; | 
 |  | 
 | 	bcp = xlog_find_buffer_cancelled(log, blkno, len); | 
 | 	if (!bcp) { | 
 | 		ASSERT(0); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	if (--bcp->bc_refcount == 0) { | 
 | 		list_del(&bcp->bc_list); | 
 | 		kmem_free(bcp); | 
 | 	} | 
 | 	return true; | 
 | } | 
 |  | 
 | /* log buffer item recovery */ | 
 |  | 
 | /* | 
 |  * Sort buffer items for log recovery.  Most buffer items should end up on the | 
 |  * buffer list and are recovered first, with the following exceptions: | 
 |  * | 
 |  * 1. XFS_BLF_CANCEL buffers must be processed last because some log items | 
 |  *    might depend on the incor ecancellation record, and replaying a cancelled | 
 |  *    buffer item can remove the incore record. | 
 |  * | 
 |  * 2. XFS_BLF_INODE_BUF buffers are handled after most regular items so that | 
 |  *    we replay di_next_unlinked only after flushing the inode 'free' state | 
 |  *    to the inode buffer. | 
 |  * | 
 |  * See xlog_recover_reorder_trans for more details. | 
 |  */ | 
 | STATIC enum xlog_recover_reorder | 
 | xlog_recover_buf_reorder( | 
 | 	struct xlog_recover_item	*item) | 
 | { | 
 | 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr; | 
 |  | 
 | 	if (buf_f->blf_flags & XFS_BLF_CANCEL) | 
 | 		return XLOG_REORDER_CANCEL_LIST; | 
 | 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) | 
 | 		return XLOG_REORDER_INODE_BUFFER_LIST; | 
 | 	return XLOG_REORDER_BUFFER_LIST; | 
 | } | 
 |  | 
 | STATIC void | 
 | xlog_recover_buf_ra_pass2( | 
 | 	struct xlog                     *log, | 
 | 	struct xlog_recover_item        *item) | 
 | { | 
 | 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr; | 
 |  | 
 | 	xlog_buf_readahead(log, buf_f->blf_blkno, buf_f->blf_len, NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * Build up the table of buf cancel records so that we don't replay cancelled | 
 |  * data in the second pass. | 
 |  */ | 
 | static int | 
 | xlog_recover_buf_commit_pass1( | 
 | 	struct xlog			*log, | 
 | 	struct xlog_recover_item	*item) | 
 | { | 
 | 	struct xfs_buf_log_format	*bf = item->ri_buf[0].i_addr; | 
 |  | 
 | 	if (!xfs_buf_log_check_iovec(&item->ri_buf[0])) { | 
 | 		xfs_err(log->l_mp, "bad buffer log item size (%d)", | 
 | 				item->ri_buf[0].i_len); | 
 | 		return -EFSCORRUPTED; | 
 | 	} | 
 |  | 
 | 	if (!(bf->blf_flags & XFS_BLF_CANCEL)) | 
 | 		trace_xfs_log_recover_buf_not_cancel(log, bf); | 
 | 	else if (xlog_add_buffer_cancelled(log, bf->blf_blkno, bf->blf_len)) | 
 | 		trace_xfs_log_recover_buf_cancel_add(log, bf); | 
 | 	else | 
 | 		trace_xfs_log_recover_buf_cancel_ref_inc(log, bf); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Validate the recovered buffer is of the correct type and attach the | 
 |  * appropriate buffer operations to them for writeback. Magic numbers are in a | 
 |  * few places: | 
 |  *	the first 16 bits of the buffer (inode buffer, dquot buffer), | 
 |  *	the first 32 bits of the buffer (most blocks), | 
 |  *	inside a struct xfs_da_blkinfo at the start of the buffer. | 
 |  */ | 
 | static void | 
 | xlog_recover_validate_buf_type( | 
 | 	struct xfs_mount		*mp, | 
 | 	struct xfs_buf			*bp, | 
 | 	struct xfs_buf_log_format	*buf_f, | 
 | 	xfs_lsn_t			current_lsn) | 
 | { | 
 | 	struct xfs_da_blkinfo		*info = bp->b_addr; | 
 | 	uint32_t			magic32; | 
 | 	uint16_t			magic16; | 
 | 	uint16_t			magicda; | 
 | 	char				*warnmsg = NULL; | 
 |  | 
 | 	/* | 
 | 	 * We can only do post recovery validation on items on CRC enabled | 
 | 	 * fielsystems as we need to know when the buffer was written to be able | 
 | 	 * to determine if we should have replayed the item. If we replay old | 
 | 	 * metadata over a newer buffer, then it will enter a temporarily | 
 | 	 * inconsistent state resulting in verification failures. Hence for now | 
 | 	 * just avoid the verification stage for non-crc filesystems | 
 | 	 */ | 
 | 	if (!xfs_sb_version_hascrc(&mp->m_sb)) | 
 | 		return; | 
 |  | 
 | 	magic32 = be32_to_cpu(*(__be32 *)bp->b_addr); | 
 | 	magic16 = be16_to_cpu(*(__be16*)bp->b_addr); | 
 | 	magicda = be16_to_cpu(info->magic); | 
 | 	switch (xfs_blft_from_flags(buf_f)) { | 
 | 	case XFS_BLFT_BTREE_BUF: | 
 | 		switch (magic32) { | 
 | 		case XFS_ABTB_CRC_MAGIC: | 
 | 		case XFS_ABTB_MAGIC: | 
 | 			bp->b_ops = &xfs_bnobt_buf_ops; | 
 | 			break; | 
 | 		case XFS_ABTC_CRC_MAGIC: | 
 | 		case XFS_ABTC_MAGIC: | 
 | 			bp->b_ops = &xfs_cntbt_buf_ops; | 
 | 			break; | 
 | 		case XFS_IBT_CRC_MAGIC: | 
 | 		case XFS_IBT_MAGIC: | 
 | 			bp->b_ops = &xfs_inobt_buf_ops; | 
 | 			break; | 
 | 		case XFS_FIBT_CRC_MAGIC: | 
 | 		case XFS_FIBT_MAGIC: | 
 | 			bp->b_ops = &xfs_finobt_buf_ops; | 
 | 			break; | 
 | 		case XFS_BMAP_CRC_MAGIC: | 
 | 		case XFS_BMAP_MAGIC: | 
 | 			bp->b_ops = &xfs_bmbt_buf_ops; | 
 | 			break; | 
 | 		case XFS_RMAP_CRC_MAGIC: | 
 | 			bp->b_ops = &xfs_rmapbt_buf_ops; | 
 | 			break; | 
 | 		case XFS_REFC_CRC_MAGIC: | 
 | 			bp->b_ops = &xfs_refcountbt_buf_ops; | 
 | 			break; | 
 | 		default: | 
 | 			warnmsg = "Bad btree block magic!"; | 
 | 			break; | 
 | 		} | 
 | 		break; | 
 | 	case XFS_BLFT_AGF_BUF: | 
 | 		if (magic32 != XFS_AGF_MAGIC) { | 
 | 			warnmsg = "Bad AGF block magic!"; | 
 | 			break; | 
 | 		} | 
 | 		bp->b_ops = &xfs_agf_buf_ops; | 
 | 		break; | 
 | 	case XFS_BLFT_AGFL_BUF: | 
 | 		if (magic32 != XFS_AGFL_MAGIC) { | 
 | 			warnmsg = "Bad AGFL block magic!"; | 
 | 			break; | 
 | 		} | 
 | 		bp->b_ops = &xfs_agfl_buf_ops; | 
 | 		break; | 
 | 	case XFS_BLFT_AGI_BUF: | 
 | 		if (magic32 != XFS_AGI_MAGIC) { | 
 | 			warnmsg = "Bad AGI block magic!"; | 
 | 			break; | 
 | 		} | 
 | 		bp->b_ops = &xfs_agi_buf_ops; | 
 | 		break; | 
 | 	case XFS_BLFT_UDQUOT_BUF: | 
 | 	case XFS_BLFT_PDQUOT_BUF: | 
 | 	case XFS_BLFT_GDQUOT_BUF: | 
 | #ifdef CONFIG_XFS_QUOTA | 
 | 		if (magic16 != XFS_DQUOT_MAGIC) { | 
 | 			warnmsg = "Bad DQUOT block magic!"; | 
 | 			break; | 
 | 		} | 
 | 		bp->b_ops = &xfs_dquot_buf_ops; | 
 | #else | 
 | 		xfs_alert(mp, | 
 | 	"Trying to recover dquots without QUOTA support built in!"); | 
 | 		ASSERT(0); | 
 | #endif | 
 | 		break; | 
 | 	case XFS_BLFT_DINO_BUF: | 
 | 		if (magic16 != XFS_DINODE_MAGIC) { | 
 | 			warnmsg = "Bad INODE block magic!"; | 
 | 			break; | 
 | 		} | 
 | 		bp->b_ops = &xfs_inode_buf_ops; | 
 | 		break; | 
 | 	case XFS_BLFT_SYMLINK_BUF: | 
 | 		if (magic32 != XFS_SYMLINK_MAGIC) { | 
 | 			warnmsg = "Bad symlink block magic!"; | 
 | 			break; | 
 | 		} | 
 | 		bp->b_ops = &xfs_symlink_buf_ops; | 
 | 		break; | 
 | 	case XFS_BLFT_DIR_BLOCK_BUF: | 
 | 		if (magic32 != XFS_DIR2_BLOCK_MAGIC && | 
 | 		    magic32 != XFS_DIR3_BLOCK_MAGIC) { | 
 | 			warnmsg = "Bad dir block magic!"; | 
 | 			break; | 
 | 		} | 
 | 		bp->b_ops = &xfs_dir3_block_buf_ops; | 
 | 		break; | 
 | 	case XFS_BLFT_DIR_DATA_BUF: | 
 | 		if (magic32 != XFS_DIR2_DATA_MAGIC && | 
 | 		    magic32 != XFS_DIR3_DATA_MAGIC) { | 
 | 			warnmsg = "Bad dir data magic!"; | 
 | 			break; | 
 | 		} | 
 | 		bp->b_ops = &xfs_dir3_data_buf_ops; | 
 | 		break; | 
 | 	case XFS_BLFT_DIR_FREE_BUF: | 
 | 		if (magic32 != XFS_DIR2_FREE_MAGIC && | 
 | 		    magic32 != XFS_DIR3_FREE_MAGIC) { | 
 | 			warnmsg = "Bad dir3 free magic!"; | 
 | 			break; | 
 | 		} | 
 | 		bp->b_ops = &xfs_dir3_free_buf_ops; | 
 | 		break; | 
 | 	case XFS_BLFT_DIR_LEAF1_BUF: | 
 | 		if (magicda != XFS_DIR2_LEAF1_MAGIC && | 
 | 		    magicda != XFS_DIR3_LEAF1_MAGIC) { | 
 | 			warnmsg = "Bad dir leaf1 magic!"; | 
 | 			break; | 
 | 		} | 
 | 		bp->b_ops = &xfs_dir3_leaf1_buf_ops; | 
 | 		break; | 
 | 	case XFS_BLFT_DIR_LEAFN_BUF: | 
 | 		if (magicda != XFS_DIR2_LEAFN_MAGIC && | 
 | 		    magicda != XFS_DIR3_LEAFN_MAGIC) { | 
 | 			warnmsg = "Bad dir leafn magic!"; | 
 | 			break; | 
 | 		} | 
 | 		bp->b_ops = &xfs_dir3_leafn_buf_ops; | 
 | 		break; | 
 | 	case XFS_BLFT_DA_NODE_BUF: | 
 | 		if (magicda != XFS_DA_NODE_MAGIC && | 
 | 		    magicda != XFS_DA3_NODE_MAGIC) { | 
 | 			warnmsg = "Bad da node magic!"; | 
 | 			break; | 
 | 		} | 
 | 		bp->b_ops = &xfs_da3_node_buf_ops; | 
 | 		break; | 
 | 	case XFS_BLFT_ATTR_LEAF_BUF: | 
 | 		if (magicda != XFS_ATTR_LEAF_MAGIC && | 
 | 		    magicda != XFS_ATTR3_LEAF_MAGIC) { | 
 | 			warnmsg = "Bad attr leaf magic!"; | 
 | 			break; | 
 | 		} | 
 | 		bp->b_ops = &xfs_attr3_leaf_buf_ops; | 
 | 		break; | 
 | 	case XFS_BLFT_ATTR_RMT_BUF: | 
 | 		if (magic32 != XFS_ATTR3_RMT_MAGIC) { | 
 | 			warnmsg = "Bad attr remote magic!"; | 
 | 			break; | 
 | 		} | 
 | 		bp->b_ops = &xfs_attr3_rmt_buf_ops; | 
 | 		break; | 
 | 	case XFS_BLFT_SB_BUF: | 
 | 		if (magic32 != XFS_SB_MAGIC) { | 
 | 			warnmsg = "Bad SB block magic!"; | 
 | 			break; | 
 | 		} | 
 | 		bp->b_ops = &xfs_sb_buf_ops; | 
 | 		break; | 
 | #ifdef CONFIG_XFS_RT | 
 | 	case XFS_BLFT_RTBITMAP_BUF: | 
 | 	case XFS_BLFT_RTSUMMARY_BUF: | 
 | 		/* no magic numbers for verification of RT buffers */ | 
 | 		bp->b_ops = &xfs_rtbuf_ops; | 
 | 		break; | 
 | #endif /* CONFIG_XFS_RT */ | 
 | 	default: | 
 | 		xfs_warn(mp, "Unknown buffer type %d!", | 
 | 			 xfs_blft_from_flags(buf_f)); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Nothing else to do in the case of a NULL current LSN as this means | 
 | 	 * the buffer is more recent than the change in the log and will be | 
 | 	 * skipped. | 
 | 	 */ | 
 | 	if (current_lsn == NULLCOMMITLSN) | 
 | 		return; | 
 |  | 
 | 	if (warnmsg) { | 
 | 		xfs_warn(mp, warnmsg); | 
 | 		ASSERT(0); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We must update the metadata LSN of the buffer as it is written out to | 
 | 	 * ensure that older transactions never replay over this one and corrupt | 
 | 	 * the buffer. This can occur if log recovery is interrupted at some | 
 | 	 * point after the current transaction completes, at which point a | 
 | 	 * subsequent mount starts recovery from the beginning. | 
 | 	 * | 
 | 	 * Write verifiers update the metadata LSN from log items attached to | 
 | 	 * the buffer. Therefore, initialize a bli purely to carry the LSN to | 
 | 	 * the verifier. | 
 | 	 */ | 
 | 	if (bp->b_ops) { | 
 | 		struct xfs_buf_log_item	*bip; | 
 |  | 
 | 		bp->b_flags |= _XBF_LOGRECOVERY; | 
 | 		xfs_buf_item_init(bp, mp); | 
 | 		bip = bp->b_log_item; | 
 | 		bip->bli_item.li_lsn = current_lsn; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Perform a 'normal' buffer recovery.  Each logged region of the | 
 |  * buffer should be copied over the corresponding region in the | 
 |  * given buffer.  The bitmap in the buf log format structure indicates | 
 |  * where to place the logged data. | 
 |  */ | 
 | STATIC void | 
 | xlog_recover_do_reg_buffer( | 
 | 	struct xfs_mount		*mp, | 
 | 	struct xlog_recover_item	*item, | 
 | 	struct xfs_buf			*bp, | 
 | 	struct xfs_buf_log_format	*buf_f, | 
 | 	xfs_lsn_t			current_lsn) | 
 | { | 
 | 	int			i; | 
 | 	int			bit; | 
 | 	int			nbits; | 
 | 	xfs_failaddr_t		fa; | 
 | 	const size_t		size_disk_dquot = sizeof(struct xfs_disk_dquot); | 
 |  | 
 | 	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); | 
 |  | 
 | 	bit = 0; | 
 | 	i = 1;  /* 0 is the buf format structure */ | 
 | 	while (1) { | 
 | 		bit = xfs_next_bit(buf_f->blf_data_map, | 
 | 				   buf_f->blf_map_size, bit); | 
 | 		if (bit == -1) | 
 | 			break; | 
 | 		nbits = xfs_contig_bits(buf_f->blf_data_map, | 
 | 					buf_f->blf_map_size, bit); | 
 | 		ASSERT(nbits > 0); | 
 | 		ASSERT(item->ri_buf[i].i_addr != NULL); | 
 | 		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); | 
 | 		ASSERT(BBTOB(bp->b_length) >= | 
 | 		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); | 
 |  | 
 | 		/* | 
 | 		 * The dirty regions logged in the buffer, even though | 
 | 		 * contiguous, may span multiple chunks. This is because the | 
 | 		 * dirty region may span a physical page boundary in a buffer | 
 | 		 * and hence be split into two separate vectors for writing into | 
 | 		 * the log. Hence we need to trim nbits back to the length of | 
 | 		 * the current region being copied out of the log. | 
 | 		 */ | 
 | 		if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT)) | 
 | 			nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT; | 
 |  | 
 | 		/* | 
 | 		 * Do a sanity check if this is a dquot buffer. Just checking | 
 | 		 * the first dquot in the buffer should do. XXXThis is | 
 | 		 * probably a good thing to do for other buf types also. | 
 | 		 */ | 
 | 		fa = NULL; | 
 | 		if (buf_f->blf_flags & | 
 | 		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { | 
 | 			if (item->ri_buf[i].i_addr == NULL) { | 
 | 				xfs_alert(mp, | 
 | 					"XFS: NULL dquot in %s.", __func__); | 
 | 				goto next; | 
 | 			} | 
 | 			if (item->ri_buf[i].i_len < size_disk_dquot) { | 
 | 				xfs_alert(mp, | 
 | 					"XFS: dquot too small (%d) in %s.", | 
 | 					item->ri_buf[i].i_len, __func__); | 
 | 				goto next; | 
 | 			} | 
 | 			fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr, -1); | 
 | 			if (fa) { | 
 | 				xfs_alert(mp, | 
 | 	"dquot corrupt at %pS trying to replay into block 0x%llx", | 
 | 					fa, bp->b_bn); | 
 | 				goto next; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		memcpy(xfs_buf_offset(bp, | 
 | 			(uint)bit << XFS_BLF_SHIFT),	/* dest */ | 
 | 			item->ri_buf[i].i_addr,		/* source */ | 
 | 			nbits<<XFS_BLF_SHIFT);		/* length */ | 
 |  next: | 
 | 		i++; | 
 | 		bit += nbits; | 
 | 	} | 
 |  | 
 | 	/* Shouldn't be any more regions */ | 
 | 	ASSERT(i == item->ri_total); | 
 |  | 
 | 	xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn); | 
 | } | 
 |  | 
 | /* | 
 |  * Perform a dquot buffer recovery. | 
 |  * Simple algorithm: if we have found a QUOTAOFF log item of the same type | 
 |  * (ie. USR or GRP), then just toss this buffer away; don't recover it. | 
 |  * Else, treat it as a regular buffer and do recovery. | 
 |  * | 
 |  * Return false if the buffer was tossed and true if we recovered the buffer to | 
 |  * indicate to the caller if the buffer needs writing. | 
 |  */ | 
 | STATIC bool | 
 | xlog_recover_do_dquot_buffer( | 
 | 	struct xfs_mount		*mp, | 
 | 	struct xlog			*log, | 
 | 	struct xlog_recover_item	*item, | 
 | 	struct xfs_buf			*bp, | 
 | 	struct xfs_buf_log_format	*buf_f) | 
 | { | 
 | 	uint			type; | 
 |  | 
 | 	trace_xfs_log_recover_buf_dquot_buf(log, buf_f); | 
 |  | 
 | 	/* | 
 | 	 * Filesystems are required to send in quota flags at mount time. | 
 | 	 */ | 
 | 	if (!mp->m_qflags) | 
 | 		return false; | 
 |  | 
 | 	type = 0; | 
 | 	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) | 
 | 		type |= XFS_DQTYPE_USER; | 
 | 	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) | 
 | 		type |= XFS_DQTYPE_PROJ; | 
 | 	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) | 
 | 		type |= XFS_DQTYPE_GROUP; | 
 | 	/* | 
 | 	 * This type of quotas was turned off, so ignore this buffer | 
 | 	 */ | 
 | 	if (log->l_quotaoffs_flag & type) | 
 | 		return false; | 
 |  | 
 | 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN); | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Perform recovery for a buffer full of inodes.  In these buffers, the only | 
 |  * data which should be recovered is that which corresponds to the | 
 |  * di_next_unlinked pointers in the on disk inode structures.  The rest of the | 
 |  * data for the inodes is always logged through the inodes themselves rather | 
 |  * than the inode buffer and is recovered in xlog_recover_inode_pass2(). | 
 |  * | 
 |  * The only time when buffers full of inodes are fully recovered is when the | 
 |  * buffer is full of newly allocated inodes.  In this case the buffer will | 
 |  * not be marked as an inode buffer and so will be sent to | 
 |  * xlog_recover_do_reg_buffer() below during recovery. | 
 |  */ | 
 | STATIC int | 
 | xlog_recover_do_inode_buffer( | 
 | 	struct xfs_mount		*mp, | 
 | 	struct xlog_recover_item	*item, | 
 | 	struct xfs_buf			*bp, | 
 | 	struct xfs_buf_log_format	*buf_f) | 
 | { | 
 | 	int				i; | 
 | 	int				item_index = 0; | 
 | 	int				bit = 0; | 
 | 	int				nbits = 0; | 
 | 	int				reg_buf_offset = 0; | 
 | 	int				reg_buf_bytes = 0; | 
 | 	int				next_unlinked_offset; | 
 | 	int				inodes_per_buf; | 
 | 	xfs_agino_t			*logged_nextp; | 
 | 	xfs_agino_t			*buffer_nextp; | 
 |  | 
 | 	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); | 
 |  | 
 | 	/* | 
 | 	 * Post recovery validation only works properly on CRC enabled | 
 | 	 * filesystems. | 
 | 	 */ | 
 | 	if (xfs_sb_version_hascrc(&mp->m_sb)) | 
 | 		bp->b_ops = &xfs_inode_buf_ops; | 
 |  | 
 | 	inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog; | 
 | 	for (i = 0; i < inodes_per_buf; i++) { | 
 | 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + | 
 | 			offsetof(xfs_dinode_t, di_next_unlinked); | 
 |  | 
 | 		while (next_unlinked_offset >= | 
 | 		       (reg_buf_offset + reg_buf_bytes)) { | 
 | 			/* | 
 | 			 * The next di_next_unlinked field is beyond | 
 | 			 * the current logged region.  Find the next | 
 | 			 * logged region that contains or is beyond | 
 | 			 * the current di_next_unlinked field. | 
 | 			 */ | 
 | 			bit += nbits; | 
 | 			bit = xfs_next_bit(buf_f->blf_data_map, | 
 | 					   buf_f->blf_map_size, bit); | 
 |  | 
 | 			/* | 
 | 			 * If there are no more logged regions in the | 
 | 			 * buffer, then we're done. | 
 | 			 */ | 
 | 			if (bit == -1) | 
 | 				return 0; | 
 |  | 
 | 			nbits = xfs_contig_bits(buf_f->blf_data_map, | 
 | 						buf_f->blf_map_size, bit); | 
 | 			ASSERT(nbits > 0); | 
 | 			reg_buf_offset = bit << XFS_BLF_SHIFT; | 
 | 			reg_buf_bytes = nbits << XFS_BLF_SHIFT; | 
 | 			item_index++; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If the current logged region starts after the current | 
 | 		 * di_next_unlinked field, then move on to the next | 
 | 		 * di_next_unlinked field. | 
 | 		 */ | 
 | 		if (next_unlinked_offset < reg_buf_offset) | 
 | 			continue; | 
 |  | 
 | 		ASSERT(item->ri_buf[item_index].i_addr != NULL); | 
 | 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); | 
 | 		ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length)); | 
 |  | 
 | 		/* | 
 | 		 * The current logged region contains a copy of the | 
 | 		 * current di_next_unlinked field.  Extract its value | 
 | 		 * and copy it to the buffer copy. | 
 | 		 */ | 
 | 		logged_nextp = item->ri_buf[item_index].i_addr + | 
 | 				next_unlinked_offset - reg_buf_offset; | 
 | 		if (XFS_IS_CORRUPT(mp, *logged_nextp == 0)) { | 
 | 			xfs_alert(mp, | 
 | 		"Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). " | 
 | 		"Trying to replay bad (0) inode di_next_unlinked field.", | 
 | 				item, bp); | 
 | 			return -EFSCORRUPTED; | 
 | 		} | 
 |  | 
 | 		buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset); | 
 | 		*buffer_nextp = *logged_nextp; | 
 |  | 
 | 		/* | 
 | 		 * If necessary, recalculate the CRC in the on-disk inode. We | 
 | 		 * have to leave the inode in a consistent state for whoever | 
 | 		 * reads it next.... | 
 | 		 */ | 
 | 		xfs_dinode_calc_crc(mp, | 
 | 				xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); | 
 |  | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * V5 filesystems know the age of the buffer on disk being recovered. We can | 
 |  * have newer objects on disk than we are replaying, and so for these cases we | 
 |  * don't want to replay the current change as that will make the buffer contents | 
 |  * temporarily invalid on disk. | 
 |  * | 
 |  * The magic number might not match the buffer type we are going to recover | 
 |  * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence | 
 |  * extract the LSN of the existing object in the buffer based on it's current | 
 |  * magic number.  If we don't recognise the magic number in the buffer, then | 
 |  * return a LSN of -1 so that the caller knows it was an unrecognised block and | 
 |  * so can recover the buffer. | 
 |  * | 
 |  * Note: we cannot rely solely on magic number matches to determine that the | 
 |  * buffer has a valid LSN - we also need to verify that it belongs to this | 
 |  * filesystem, so we need to extract the object's LSN and compare it to that | 
 |  * which we read from the superblock. If the UUIDs don't match, then we've got a | 
 |  * stale metadata block from an old filesystem instance that we need to recover | 
 |  * over the top of. | 
 |  */ | 
 | static xfs_lsn_t | 
 | xlog_recover_get_buf_lsn( | 
 | 	struct xfs_mount	*mp, | 
 | 	struct xfs_buf		*bp) | 
 | { | 
 | 	uint32_t		magic32; | 
 | 	uint16_t		magic16; | 
 | 	uint16_t		magicda; | 
 | 	void			*blk = bp->b_addr; | 
 | 	uuid_t			*uuid; | 
 | 	xfs_lsn_t		lsn = -1; | 
 |  | 
 | 	/* v4 filesystems always recover immediately */ | 
 | 	if (!xfs_sb_version_hascrc(&mp->m_sb)) | 
 | 		goto recover_immediately; | 
 |  | 
 | 	magic32 = be32_to_cpu(*(__be32 *)blk); | 
 | 	switch (magic32) { | 
 | 	case XFS_ABTB_CRC_MAGIC: | 
 | 	case XFS_ABTC_CRC_MAGIC: | 
 | 	case XFS_ABTB_MAGIC: | 
 | 	case XFS_ABTC_MAGIC: | 
 | 	case XFS_RMAP_CRC_MAGIC: | 
 | 	case XFS_REFC_CRC_MAGIC: | 
 | 	case XFS_FIBT_CRC_MAGIC: | 
 | 	case XFS_FIBT_MAGIC: | 
 | 	case XFS_IBT_CRC_MAGIC: | 
 | 	case XFS_IBT_MAGIC: { | 
 | 		struct xfs_btree_block *btb = blk; | 
 |  | 
 | 		lsn = be64_to_cpu(btb->bb_u.s.bb_lsn); | 
 | 		uuid = &btb->bb_u.s.bb_uuid; | 
 | 		break; | 
 | 	} | 
 | 	case XFS_BMAP_CRC_MAGIC: | 
 | 	case XFS_BMAP_MAGIC: { | 
 | 		struct xfs_btree_block *btb = blk; | 
 |  | 
 | 		lsn = be64_to_cpu(btb->bb_u.l.bb_lsn); | 
 | 		uuid = &btb->bb_u.l.bb_uuid; | 
 | 		break; | 
 | 	} | 
 | 	case XFS_AGF_MAGIC: | 
 | 		lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn); | 
 | 		uuid = &((struct xfs_agf *)blk)->agf_uuid; | 
 | 		break; | 
 | 	case XFS_AGFL_MAGIC: | 
 | 		lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn); | 
 | 		uuid = &((struct xfs_agfl *)blk)->agfl_uuid; | 
 | 		break; | 
 | 	case XFS_AGI_MAGIC: | 
 | 		lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn); | 
 | 		uuid = &((struct xfs_agi *)blk)->agi_uuid; | 
 | 		break; | 
 | 	case XFS_SYMLINK_MAGIC: | 
 | 		lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn); | 
 | 		uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid; | 
 | 		break; | 
 | 	case XFS_DIR3_BLOCK_MAGIC: | 
 | 	case XFS_DIR3_DATA_MAGIC: | 
 | 	case XFS_DIR3_FREE_MAGIC: | 
 | 		lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn); | 
 | 		uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid; | 
 | 		break; | 
 | 	case XFS_ATTR3_RMT_MAGIC: | 
 | 		/* | 
 | 		 * Remote attr blocks are written synchronously, rather than | 
 | 		 * being logged. That means they do not contain a valid LSN | 
 | 		 * (i.e. transactionally ordered) in them, and hence any time we | 
 | 		 * see a buffer to replay over the top of a remote attribute | 
 | 		 * block we should simply do so. | 
 | 		 */ | 
 | 		goto recover_immediately; | 
 | 	case XFS_SB_MAGIC: | 
 | 		/* | 
 | 		 * superblock uuids are magic. We may or may not have a | 
 | 		 * sb_meta_uuid on disk, but it will be set in the in-core | 
 | 		 * superblock. We set the uuid pointer for verification | 
 | 		 * according to the superblock feature mask to ensure we check | 
 | 		 * the relevant UUID in the superblock. | 
 | 		 */ | 
 | 		lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn); | 
 | 		if (xfs_sb_version_hasmetauuid(&mp->m_sb)) | 
 | 			uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid; | 
 | 		else | 
 | 			uuid = &((struct xfs_dsb *)blk)->sb_uuid; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (lsn != (xfs_lsn_t)-1) { | 
 | 		if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid)) | 
 | 			goto recover_immediately; | 
 | 		return lsn; | 
 | 	} | 
 |  | 
 | 	magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic); | 
 | 	switch (magicda) { | 
 | 	case XFS_DIR3_LEAF1_MAGIC: | 
 | 	case XFS_DIR3_LEAFN_MAGIC: | 
 | 	case XFS_DA3_NODE_MAGIC: | 
 | 		lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn); | 
 | 		uuid = &((struct xfs_da3_blkinfo *)blk)->uuid; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (lsn != (xfs_lsn_t)-1) { | 
 | 		if (!uuid_equal(&mp->m_sb.sb_uuid, uuid)) | 
 | 			goto recover_immediately; | 
 | 		return lsn; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We do individual object checks on dquot and inode buffers as they | 
 | 	 * have their own individual LSN records. Also, we could have a stale | 
 | 	 * buffer here, so we have to at least recognise these buffer types. | 
 | 	 * | 
 | 	 * A notd complexity here is inode unlinked list processing - it logs | 
 | 	 * the inode directly in the buffer, but we don't know which inodes have | 
 | 	 * been modified, and there is no global buffer LSN. Hence we need to | 
 | 	 * recover all inode buffer types immediately. This problem will be | 
 | 	 * fixed by logical logging of the unlinked list modifications. | 
 | 	 */ | 
 | 	magic16 = be16_to_cpu(*(__be16 *)blk); | 
 | 	switch (magic16) { | 
 | 	case XFS_DQUOT_MAGIC: | 
 | 	case XFS_DINODE_MAGIC: | 
 | 		goto recover_immediately; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* unknown buffer contents, recover immediately */ | 
 |  | 
 | recover_immediately: | 
 | 	return (xfs_lsn_t)-1; | 
 |  | 
 | } | 
 |  | 
 | /* | 
 |  * This routine replays a modification made to a buffer at runtime. | 
 |  * There are actually two types of buffer, regular and inode, which | 
 |  * are handled differently.  Inode buffers are handled differently | 
 |  * in that we only recover a specific set of data from them, namely | 
 |  * the inode di_next_unlinked fields.  This is because all other inode | 
 |  * data is actually logged via inode records and any data we replay | 
 |  * here which overlaps that may be stale. | 
 |  * | 
 |  * When meta-data buffers are freed at run time we log a buffer item | 
 |  * with the XFS_BLF_CANCEL bit set to indicate that previous copies | 
 |  * of the buffer in the log should not be replayed at recovery time. | 
 |  * This is so that if the blocks covered by the buffer are reused for | 
 |  * file data before we crash we don't end up replaying old, freed | 
 |  * meta-data into a user's file. | 
 |  * | 
 |  * To handle the cancellation of buffer log items, we make two passes | 
 |  * over the log during recovery.  During the first we build a table of | 
 |  * those buffers which have been cancelled, and during the second we | 
 |  * only replay those buffers which do not have corresponding cancel | 
 |  * records in the table.  See xlog_recover_buf_pass[1,2] above | 
 |  * for more details on the implementation of the table of cancel records. | 
 |  */ | 
 | STATIC int | 
 | xlog_recover_buf_commit_pass2( | 
 | 	struct xlog			*log, | 
 | 	struct list_head		*buffer_list, | 
 | 	struct xlog_recover_item	*item, | 
 | 	xfs_lsn_t			current_lsn) | 
 | { | 
 | 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr; | 
 | 	struct xfs_mount		*mp = log->l_mp; | 
 | 	struct xfs_buf			*bp; | 
 | 	int				error; | 
 | 	uint				buf_flags; | 
 | 	xfs_lsn_t			lsn; | 
 |  | 
 | 	/* | 
 | 	 * In this pass we only want to recover all the buffers which have | 
 | 	 * not been cancelled and are not cancellation buffers themselves. | 
 | 	 */ | 
 | 	if (buf_f->blf_flags & XFS_BLF_CANCEL) { | 
 | 		if (xlog_put_buffer_cancelled(log, buf_f->blf_blkno, | 
 | 				buf_f->blf_len)) | 
 | 			goto cancelled; | 
 | 	} else { | 
 |  | 
 | 		if (xlog_is_buffer_cancelled(log, buf_f->blf_blkno, | 
 | 				buf_f->blf_len)) | 
 | 			goto cancelled; | 
 | 	} | 
 |  | 
 | 	trace_xfs_log_recover_buf_recover(log, buf_f); | 
 |  | 
 | 	buf_flags = 0; | 
 | 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) | 
 | 		buf_flags |= XBF_UNMAPPED; | 
 |  | 
 | 	error = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, | 
 | 			  buf_flags, &bp, NULL); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	/* | 
 | 	 * Recover the buffer only if we get an LSN from it and it's less than | 
 | 	 * the lsn of the transaction we are replaying. | 
 | 	 * | 
 | 	 * Note that we have to be extremely careful of readahead here. | 
 | 	 * Readahead does not attach verfiers to the buffers so if we don't | 
 | 	 * actually do any replay after readahead because of the LSN we found | 
 | 	 * in the buffer if more recent than that current transaction then we | 
 | 	 * need to attach the verifier directly. Failure to do so can lead to | 
 | 	 * future recovery actions (e.g. EFI and unlinked list recovery) can | 
 | 	 * operate on the buffers and they won't get the verifier attached. This | 
 | 	 * can lead to blocks on disk having the correct content but a stale | 
 | 	 * CRC. | 
 | 	 * | 
 | 	 * It is safe to assume these clean buffers are currently up to date. | 
 | 	 * If the buffer is dirtied by a later transaction being replayed, then | 
 | 	 * the verifier will be reset to match whatever recover turns that | 
 | 	 * buffer into. | 
 | 	 */ | 
 | 	lsn = xlog_recover_get_buf_lsn(mp, bp); | 
 | 	if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { | 
 | 		trace_xfs_log_recover_buf_skip(log, buf_f); | 
 | 		xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN); | 
 | 		goto out_release; | 
 | 	} | 
 |  | 
 | 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { | 
 | 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); | 
 | 		if (error) | 
 | 			goto out_release; | 
 | 	} else if (buf_f->blf_flags & | 
 | 		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { | 
 | 		bool	dirty; | 
 |  | 
 | 		dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); | 
 | 		if (!dirty) | 
 | 			goto out_release; | 
 | 	} else { | 
 | 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Perform delayed write on the buffer.  Asynchronous writes will be | 
 | 	 * slower when taking into account all the buffers to be flushed. | 
 | 	 * | 
 | 	 * Also make sure that only inode buffers with good sizes stay in | 
 | 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block | 
 | 	 * or inode_cluster_size bytes, whichever is bigger.  The inode | 
 | 	 * buffers in the log can be a different size if the log was generated | 
 | 	 * by an older kernel using unclustered inode buffers or a newer kernel | 
 | 	 * running with a different inode cluster size.  Regardless, if | 
 | 	 * the inode buffer size isn't max(blocksize, inode_cluster_size) | 
 | 	 * for *our* value of inode_cluster_size, then we need to keep | 
 | 	 * the buffer out of the buffer cache so that the buffer won't | 
 | 	 * overlap with future reads of those inodes. | 
 | 	 */ | 
 | 	if (XFS_DINODE_MAGIC == | 
 | 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && | 
 | 	    (BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) { | 
 | 		xfs_buf_stale(bp); | 
 | 		error = xfs_bwrite(bp); | 
 | 	} else { | 
 | 		ASSERT(bp->b_mount == mp); | 
 | 		bp->b_flags |= _XBF_LOGRECOVERY; | 
 | 		xfs_buf_delwri_queue(bp, buffer_list); | 
 | 	} | 
 |  | 
 | out_release: | 
 | 	xfs_buf_relse(bp); | 
 | 	return error; | 
 | cancelled: | 
 | 	trace_xfs_log_recover_buf_cancel(log, buf_f); | 
 | 	return 0; | 
 | } | 
 |  | 
 | const struct xlog_recover_item_ops xlog_buf_item_ops = { | 
 | 	.item_type		= XFS_LI_BUF, | 
 | 	.reorder		= xlog_recover_buf_reorder, | 
 | 	.ra_pass2		= xlog_recover_buf_ra_pass2, | 
 | 	.commit_pass1		= xlog_recover_buf_commit_pass1, | 
 | 	.commit_pass2		= xlog_recover_buf_commit_pass2, | 
 | }; |