|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * Performance event support - powerpc architecture code | 
|  | * | 
|  | * Copyright 2008-2009 Paul Mackerras, IBM Corporation. | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/clock.h> | 
|  | #include <linux/perf_event.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <asm/reg.h> | 
|  | #include <asm/pmc.h> | 
|  | #include <asm/machdep.h> | 
|  | #include <asm/firmware.h> | 
|  | #include <asm/ptrace.h> | 
|  | #include <asm/code-patching.h> | 
|  |  | 
|  | #ifdef CONFIG_PPC64 | 
|  | #include "internal.h" | 
|  | #endif | 
|  |  | 
|  | #define BHRB_MAX_ENTRIES	32 | 
|  | #define BHRB_TARGET		0x0000000000000002 | 
|  | #define BHRB_PREDICTION		0x0000000000000001 | 
|  | #define BHRB_EA			0xFFFFFFFFFFFFFFFCUL | 
|  |  | 
|  | struct cpu_hw_events { | 
|  | int n_events; | 
|  | int n_percpu; | 
|  | int disabled; | 
|  | int n_added; | 
|  | int n_limited; | 
|  | u8  pmcs_enabled; | 
|  | struct perf_event *event[MAX_HWEVENTS]; | 
|  | u64 events[MAX_HWEVENTS]; | 
|  | unsigned int flags[MAX_HWEVENTS]; | 
|  | struct mmcr_regs mmcr; | 
|  | struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS]; | 
|  | u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS]; | 
|  | u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; | 
|  | unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; | 
|  | unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; | 
|  |  | 
|  | unsigned int txn_flags; | 
|  | int n_txn_start; | 
|  |  | 
|  | /* BHRB bits */ | 
|  | u64				bhrb_filter;	/* BHRB HW branch filter */ | 
|  | unsigned int			bhrb_users; | 
|  | void				*bhrb_context; | 
|  | struct	perf_branch_stack	bhrb_stack; | 
|  | struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES]; | 
|  | u64				ic_init; | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); | 
|  |  | 
|  | static struct power_pmu *ppmu; | 
|  |  | 
|  | /* | 
|  | * Normally, to ignore kernel events we set the FCS (freeze counters | 
|  | * in supervisor mode) bit in MMCR0, but if the kernel runs with the | 
|  | * hypervisor bit set in the MSR, or if we are running on a processor | 
|  | * where the hypervisor bit is forced to 1 (as on Apple G5 processors), | 
|  | * then we need to use the FCHV bit to ignore kernel events. | 
|  | */ | 
|  | static unsigned int freeze_events_kernel = MMCR0_FCS; | 
|  |  | 
|  | /* | 
|  | * 32-bit doesn't have MMCRA but does have an MMCR2, | 
|  | * and a few other names are different. | 
|  | * Also 32-bit doesn't have MMCR3, SIER2 and SIER3. | 
|  | * Define them as zero knowing that any code path accessing | 
|  | * these registers (via mtspr/mfspr) are done under ppmu flag | 
|  | * check for PPMU_ARCH_31 and we will not enter that code path | 
|  | * for 32-bit. | 
|  | */ | 
|  | #ifdef CONFIG_PPC32 | 
|  |  | 
|  | #define MMCR0_FCHV		0 | 
|  | #define MMCR0_PMCjCE		MMCR0_PMCnCE | 
|  | #define MMCR0_FC56		0 | 
|  | #define MMCR0_PMAO		0 | 
|  | #define MMCR0_EBE		0 | 
|  | #define MMCR0_BHRBA		0 | 
|  | #define MMCR0_PMCC		0 | 
|  | #define MMCR0_PMCC_U6		0 | 
|  |  | 
|  | #define SPRN_MMCRA		SPRN_MMCR2 | 
|  | #define SPRN_MMCR3		0 | 
|  | #define SPRN_SIER2		0 | 
|  | #define SPRN_SIER3		0 | 
|  | #define MMCRA_SAMPLE_ENABLE	0 | 
|  | #define MMCRA_BHRB_DISABLE     0 | 
|  | #define MMCR0_PMCCEXT		0 | 
|  |  | 
|  | static inline unsigned long perf_ip_adjust(struct pt_regs *regs) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { } | 
|  | static inline u32 perf_get_misc_flags(struct pt_regs *regs) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | static inline void perf_read_regs(struct pt_regs *regs) | 
|  | { | 
|  | regs->result = 0; | 
|  | } | 
|  |  | 
|  | static inline int siar_valid(struct pt_regs *regs) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static bool is_ebb_event(struct perf_event *event) { return false; } | 
|  | static int ebb_event_check(struct perf_event *event) { return 0; } | 
|  | static void ebb_event_add(struct perf_event *event) { } | 
|  | static void ebb_switch_out(unsigned long mmcr0) { } | 
|  | static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) | 
|  | { | 
|  | return cpuhw->mmcr.mmcr0; | 
|  | } | 
|  |  | 
|  | static inline void power_pmu_bhrb_enable(struct perf_event *event) {} | 
|  | static inline void power_pmu_bhrb_disable(struct perf_event *event) {} | 
|  | static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {} | 
|  | static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {} | 
|  | static void pmao_restore_workaround(bool ebb) { } | 
|  | #endif /* CONFIG_PPC32 */ | 
|  |  | 
|  | bool is_sier_available(void) | 
|  | { | 
|  | if (!ppmu) | 
|  | return false; | 
|  |  | 
|  | if (ppmu->flags & PPMU_HAS_SIER) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool regs_use_siar(struct pt_regs *regs) | 
|  | { | 
|  | /* | 
|  | * When we take a performance monitor exception the regs are setup | 
|  | * using perf_read_regs() which overloads some fields, in particular | 
|  | * regs->result to tell us whether to use SIAR. | 
|  | * | 
|  | * However if the regs are from another exception, eg. a syscall, then | 
|  | * they have not been setup using perf_read_regs() and so regs->result | 
|  | * is something random. | 
|  | */ | 
|  | return ((TRAP(regs) == 0xf00) && regs->result); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Things that are specific to 64-bit implementations. | 
|  | */ | 
|  | #ifdef CONFIG_PPC64 | 
|  |  | 
|  | static inline unsigned long perf_ip_adjust(struct pt_regs *regs) | 
|  | { | 
|  | unsigned long mmcra = regs->dsisr; | 
|  |  | 
|  | if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) { | 
|  | unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT; | 
|  | if (slot > 1) | 
|  | return 4 * (slot - 1); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The user wants a data address recorded. | 
|  | * If we're not doing instruction sampling, give them the SDAR | 
|  | * (sampled data address).  If we are doing instruction sampling, then | 
|  | * only give them the SDAR if it corresponds to the instruction | 
|  | * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the | 
|  | * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER. | 
|  | */ | 
|  | static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) | 
|  | { | 
|  | unsigned long mmcra = regs->dsisr; | 
|  | bool sdar_valid; | 
|  |  | 
|  | if (ppmu->flags & PPMU_HAS_SIER) | 
|  | sdar_valid = regs->dar & SIER_SDAR_VALID; | 
|  | else { | 
|  | unsigned long sdsync; | 
|  |  | 
|  | if (ppmu->flags & PPMU_SIAR_VALID) | 
|  | sdsync = POWER7P_MMCRA_SDAR_VALID; | 
|  | else if (ppmu->flags & PPMU_ALT_SIPR) | 
|  | sdsync = POWER6_MMCRA_SDSYNC; | 
|  | else if (ppmu->flags & PPMU_NO_SIAR) | 
|  | sdsync = MMCRA_SAMPLE_ENABLE; | 
|  | else | 
|  | sdsync = MMCRA_SDSYNC; | 
|  |  | 
|  | sdar_valid = mmcra & sdsync; | 
|  | } | 
|  |  | 
|  | if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid) | 
|  | *addrp = mfspr(SPRN_SDAR); | 
|  |  | 
|  | if (is_kernel_addr(mfspr(SPRN_SDAR)) && event->attr.exclude_kernel) | 
|  | *addrp = 0; | 
|  | } | 
|  |  | 
|  | static bool regs_sihv(struct pt_regs *regs) | 
|  | { | 
|  | unsigned long sihv = MMCRA_SIHV; | 
|  |  | 
|  | if (ppmu->flags & PPMU_HAS_SIER) | 
|  | return !!(regs->dar & SIER_SIHV); | 
|  |  | 
|  | if (ppmu->flags & PPMU_ALT_SIPR) | 
|  | sihv = POWER6_MMCRA_SIHV; | 
|  |  | 
|  | return !!(regs->dsisr & sihv); | 
|  | } | 
|  |  | 
|  | static bool regs_sipr(struct pt_regs *regs) | 
|  | { | 
|  | unsigned long sipr = MMCRA_SIPR; | 
|  |  | 
|  | if (ppmu->flags & PPMU_HAS_SIER) | 
|  | return !!(regs->dar & SIER_SIPR); | 
|  |  | 
|  | if (ppmu->flags & PPMU_ALT_SIPR) | 
|  | sipr = POWER6_MMCRA_SIPR; | 
|  |  | 
|  | return !!(regs->dsisr & sipr); | 
|  | } | 
|  |  | 
|  | static inline u32 perf_flags_from_msr(struct pt_regs *regs) | 
|  | { | 
|  | if (regs->msr & MSR_PR) | 
|  | return PERF_RECORD_MISC_USER; | 
|  | if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV) | 
|  | return PERF_RECORD_MISC_HYPERVISOR; | 
|  | return PERF_RECORD_MISC_KERNEL; | 
|  | } | 
|  |  | 
|  | static inline u32 perf_get_misc_flags(struct pt_regs *regs) | 
|  | { | 
|  | bool use_siar = regs_use_siar(regs); | 
|  |  | 
|  | if (!use_siar) | 
|  | return perf_flags_from_msr(regs); | 
|  |  | 
|  | /* | 
|  | * If we don't have flags in MMCRA, rather than using | 
|  | * the MSR, we intuit the flags from the address in | 
|  | * SIAR which should give slightly more reliable | 
|  | * results | 
|  | */ | 
|  | if (ppmu->flags & PPMU_NO_SIPR) { | 
|  | unsigned long siar = mfspr(SPRN_SIAR); | 
|  | if (is_kernel_addr(siar)) | 
|  | return PERF_RECORD_MISC_KERNEL; | 
|  | return PERF_RECORD_MISC_USER; | 
|  | } | 
|  |  | 
|  | /* PR has priority over HV, so order below is important */ | 
|  | if (regs_sipr(regs)) | 
|  | return PERF_RECORD_MISC_USER; | 
|  |  | 
|  | if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV)) | 
|  | return PERF_RECORD_MISC_HYPERVISOR; | 
|  |  | 
|  | return PERF_RECORD_MISC_KERNEL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Overload regs->dsisr to store MMCRA so we only need to read it once | 
|  | * on each interrupt. | 
|  | * Overload regs->dar to store SIER if we have it. | 
|  | * Overload regs->result to specify whether we should use the MSR (result | 
|  | * is zero) or the SIAR (result is non zero). | 
|  | */ | 
|  | static inline void perf_read_regs(struct pt_regs *regs) | 
|  | { | 
|  | unsigned long mmcra = mfspr(SPRN_MMCRA); | 
|  | int marked = mmcra & MMCRA_SAMPLE_ENABLE; | 
|  | int use_siar; | 
|  |  | 
|  | regs->dsisr = mmcra; | 
|  |  | 
|  | if (ppmu->flags & PPMU_HAS_SIER) | 
|  | regs->dar = mfspr(SPRN_SIER); | 
|  |  | 
|  | /* | 
|  | * If this isn't a PMU exception (eg a software event) the SIAR is | 
|  | * not valid. Use pt_regs. | 
|  | * | 
|  | * If it is a marked event use the SIAR. | 
|  | * | 
|  | * If the PMU doesn't update the SIAR for non marked events use | 
|  | * pt_regs. | 
|  | * | 
|  | * If the PMU has HV/PR flags then check to see if they | 
|  | * place the exception in userspace. If so, use pt_regs. In | 
|  | * continuous sampling mode the SIAR and the PMU exception are | 
|  | * not synchronised, so they may be many instructions apart. | 
|  | * This can result in confusing backtraces. We still want | 
|  | * hypervisor samples as well as samples in the kernel with | 
|  | * interrupts off hence the userspace check. | 
|  | */ | 
|  | if (TRAP(regs) != 0xf00) | 
|  | use_siar = 0; | 
|  | else if ((ppmu->flags & PPMU_NO_SIAR)) | 
|  | use_siar = 0; | 
|  | else if (marked) | 
|  | use_siar = 1; | 
|  | else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING)) | 
|  | use_siar = 0; | 
|  | else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs)) | 
|  | use_siar = 0; | 
|  | else | 
|  | use_siar = 1; | 
|  |  | 
|  | regs->result = use_siar; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On processors like P7+ that have the SIAR-Valid bit, marked instructions | 
|  | * must be sampled only if the SIAR-valid bit is set. | 
|  | * | 
|  | * For unmarked instructions and for processors that don't have the SIAR-Valid | 
|  | * bit, assume that SIAR is valid. | 
|  | */ | 
|  | static inline int siar_valid(struct pt_regs *regs) | 
|  | { | 
|  | unsigned long mmcra = regs->dsisr; | 
|  | int marked = mmcra & MMCRA_SAMPLE_ENABLE; | 
|  |  | 
|  | if (marked) { | 
|  | if (ppmu->flags & PPMU_HAS_SIER) | 
|  | return regs->dar & SIER_SIAR_VALID; | 
|  |  | 
|  | if (ppmu->flags & PPMU_SIAR_VALID) | 
|  | return mmcra & POWER7P_MMCRA_SIAR_VALID; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Reset all possible BHRB entries */ | 
|  | static void power_pmu_bhrb_reset(void) | 
|  | { | 
|  | asm volatile(PPC_CLRBHRB); | 
|  | } | 
|  |  | 
|  | static void power_pmu_bhrb_enable(struct perf_event *event) | 
|  | { | 
|  | struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); | 
|  |  | 
|  | if (!ppmu->bhrb_nr) | 
|  | return; | 
|  |  | 
|  | /* Clear BHRB if we changed task context to avoid data leaks */ | 
|  | if (event->ctx->task && cpuhw->bhrb_context != event->ctx) { | 
|  | power_pmu_bhrb_reset(); | 
|  | cpuhw->bhrb_context = event->ctx; | 
|  | } | 
|  | cpuhw->bhrb_users++; | 
|  | perf_sched_cb_inc(event->ctx->pmu); | 
|  | } | 
|  |  | 
|  | static void power_pmu_bhrb_disable(struct perf_event *event) | 
|  | { | 
|  | struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); | 
|  |  | 
|  | if (!ppmu->bhrb_nr) | 
|  | return; | 
|  |  | 
|  | WARN_ON_ONCE(!cpuhw->bhrb_users); | 
|  | cpuhw->bhrb_users--; | 
|  | perf_sched_cb_dec(event->ctx->pmu); | 
|  |  | 
|  | if (!cpuhw->disabled && !cpuhw->bhrb_users) { | 
|  | /* BHRB cannot be turned off when other | 
|  | * events are active on the PMU. | 
|  | */ | 
|  |  | 
|  | /* avoid stale pointer */ | 
|  | cpuhw->bhrb_context = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Called from ctxsw to prevent one process's branch entries to | 
|  | * mingle with the other process's entries during context switch. | 
|  | */ | 
|  | static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) | 
|  | { | 
|  | if (!ppmu->bhrb_nr) | 
|  | return; | 
|  |  | 
|  | if (sched_in) | 
|  | power_pmu_bhrb_reset(); | 
|  | } | 
|  | /* Calculate the to address for a branch */ | 
|  | static __u64 power_pmu_bhrb_to(u64 addr) | 
|  | { | 
|  | unsigned int instr; | 
|  | __u64 target; | 
|  |  | 
|  | if (is_kernel_addr(addr)) { | 
|  | if (copy_from_kernel_nofault(&instr, (void *)addr, | 
|  | sizeof(instr))) | 
|  | return 0; | 
|  |  | 
|  | return branch_target((struct ppc_inst *)&instr); | 
|  | } | 
|  |  | 
|  | /* Userspace: need copy instruction here then translate it */ | 
|  | if (copy_from_user_nofault(&instr, (unsigned int __user *)addr, | 
|  | sizeof(instr))) | 
|  | return 0; | 
|  |  | 
|  | target = branch_target((struct ppc_inst *)&instr); | 
|  | if ((!target) || (instr & BRANCH_ABSOLUTE)) | 
|  | return target; | 
|  |  | 
|  | /* Translate relative branch target from kernel to user address */ | 
|  | return target - (unsigned long)&instr + addr; | 
|  | } | 
|  |  | 
|  | /* Processing BHRB entries */ | 
|  | static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) | 
|  | { | 
|  | u64 val; | 
|  | u64 addr; | 
|  | int r_index, u_index, pred; | 
|  |  | 
|  | r_index = 0; | 
|  | u_index = 0; | 
|  | while (r_index < ppmu->bhrb_nr) { | 
|  | /* Assembly read function */ | 
|  | val = read_bhrb(r_index++); | 
|  | if (!val) | 
|  | /* Terminal marker: End of valid BHRB entries */ | 
|  | break; | 
|  | else { | 
|  | addr = val & BHRB_EA; | 
|  | pred = val & BHRB_PREDICTION; | 
|  |  | 
|  | if (!addr) | 
|  | /* invalid entry */ | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * BHRB rolling buffer could very much contain the kernel | 
|  | * addresses at this point. Check the privileges before | 
|  | * exporting it to userspace (avoid exposure of regions | 
|  | * where we could have speculative execution) | 
|  | * Incase of ISA v3.1, BHRB will capture only user-space | 
|  | * addresses, hence include a check before filtering code | 
|  | */ | 
|  | if (!(ppmu->flags & PPMU_ARCH_31) && | 
|  | is_kernel_addr(addr) && event->attr.exclude_kernel) | 
|  | continue; | 
|  |  | 
|  | /* Branches are read most recent first (ie. mfbhrb 0 is | 
|  | * the most recent branch). | 
|  | * There are two types of valid entries: | 
|  | * 1) a target entry which is the to address of a | 
|  | *    computed goto like a blr,bctr,btar.  The next | 
|  | *    entry read from the bhrb will be branch | 
|  | *    corresponding to this target (ie. the actual | 
|  | *    blr/bctr/btar instruction). | 
|  | * 2) a from address which is an actual branch.  If a | 
|  | *    target entry proceeds this, then this is the | 
|  | *    matching branch for that target.  If this is not | 
|  | *    following a target entry, then this is a branch | 
|  | *    where the target is given as an immediate field | 
|  | *    in the instruction (ie. an i or b form branch). | 
|  | *    In this case we need to read the instruction from | 
|  | *    memory to determine the target/to address. | 
|  | */ | 
|  |  | 
|  | if (val & BHRB_TARGET) { | 
|  | /* Target branches use two entries | 
|  | * (ie. computed gotos/XL form) | 
|  | */ | 
|  | cpuhw->bhrb_entries[u_index].to = addr; | 
|  | cpuhw->bhrb_entries[u_index].mispred = pred; | 
|  | cpuhw->bhrb_entries[u_index].predicted = ~pred; | 
|  |  | 
|  | /* Get from address in next entry */ | 
|  | val = read_bhrb(r_index++); | 
|  | addr = val & BHRB_EA; | 
|  | if (val & BHRB_TARGET) { | 
|  | /* Shouldn't have two targets in a | 
|  | row.. Reset index and try again */ | 
|  | r_index--; | 
|  | addr = 0; | 
|  | } | 
|  | cpuhw->bhrb_entries[u_index].from = addr; | 
|  | } else { | 
|  | /* Branches to immediate field | 
|  | (ie I or B form) */ | 
|  | cpuhw->bhrb_entries[u_index].from = addr; | 
|  | cpuhw->bhrb_entries[u_index].to = | 
|  | power_pmu_bhrb_to(addr); | 
|  | cpuhw->bhrb_entries[u_index].mispred = pred; | 
|  | cpuhw->bhrb_entries[u_index].predicted = ~pred; | 
|  | } | 
|  | u_index++; | 
|  |  | 
|  | } | 
|  | } | 
|  | cpuhw->bhrb_stack.nr = u_index; | 
|  | cpuhw->bhrb_stack.hw_idx = -1ULL; | 
|  | return; | 
|  | } | 
|  |  | 
|  | static bool is_ebb_event(struct perf_event *event) | 
|  | { | 
|  | /* | 
|  | * This could be a per-PMU callback, but we'd rather avoid the cost. We | 
|  | * check that the PMU supports EBB, meaning those that don't can still | 
|  | * use bit 63 of the event code for something else if they wish. | 
|  | */ | 
|  | return (ppmu->flags & PPMU_ARCH_207S) && | 
|  | ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1); | 
|  | } | 
|  |  | 
|  | static int ebb_event_check(struct perf_event *event) | 
|  | { | 
|  | struct perf_event *leader = event->group_leader; | 
|  |  | 
|  | /* Event and group leader must agree on EBB */ | 
|  | if (is_ebb_event(leader) != is_ebb_event(event)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (is_ebb_event(event)) { | 
|  | if (!(event->attach_state & PERF_ATTACH_TASK)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!leader->attr.pinned || !leader->attr.exclusive) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (event->attr.freq || | 
|  | event->attr.inherit || | 
|  | event->attr.sample_type || | 
|  | event->attr.sample_period || | 
|  | event->attr.enable_on_exec) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void ebb_event_add(struct perf_event *event) | 
|  | { | 
|  | if (!is_ebb_event(event) || current->thread.used_ebb) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * IFF this is the first time we've added an EBB event, set | 
|  | * PMXE in the user MMCR0 so we can detect when it's cleared by | 
|  | * userspace. We need this so that we can context switch while | 
|  | * userspace is in the EBB handler (where PMXE is 0). | 
|  | */ | 
|  | current->thread.used_ebb = 1; | 
|  | current->thread.mmcr0 |= MMCR0_PMXE; | 
|  | } | 
|  |  | 
|  | static void ebb_switch_out(unsigned long mmcr0) | 
|  | { | 
|  | if (!(mmcr0 & MMCR0_EBE)) | 
|  | return; | 
|  |  | 
|  | current->thread.siar  = mfspr(SPRN_SIAR); | 
|  | current->thread.sier  = mfspr(SPRN_SIER); | 
|  | current->thread.sdar  = mfspr(SPRN_SDAR); | 
|  | current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK; | 
|  | current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK; | 
|  | if (ppmu->flags & PPMU_ARCH_31) { | 
|  | current->thread.mmcr3 = mfspr(SPRN_MMCR3); | 
|  | current->thread.sier2 = mfspr(SPRN_SIER2); | 
|  | current->thread.sier3 = mfspr(SPRN_SIER3); | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) | 
|  | { | 
|  | unsigned long mmcr0 = cpuhw->mmcr.mmcr0; | 
|  |  | 
|  | if (!ebb) | 
|  | goto out; | 
|  |  | 
|  | /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */ | 
|  | mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6; | 
|  |  | 
|  | /* | 
|  | * Add any bits from the user MMCR0, FC or PMAO. This is compatible | 
|  | * with pmao_restore_workaround() because we may add PMAO but we never | 
|  | * clear it here. | 
|  | */ | 
|  | mmcr0 |= current->thread.mmcr0; | 
|  |  | 
|  | /* | 
|  | * Be careful not to set PMXE if userspace had it cleared. This is also | 
|  | * compatible with pmao_restore_workaround() because it has already | 
|  | * cleared PMXE and we leave PMAO alone. | 
|  | */ | 
|  | if (!(current->thread.mmcr0 & MMCR0_PMXE)) | 
|  | mmcr0 &= ~MMCR0_PMXE; | 
|  |  | 
|  | mtspr(SPRN_SIAR, current->thread.siar); | 
|  | mtspr(SPRN_SIER, current->thread.sier); | 
|  | mtspr(SPRN_SDAR, current->thread.sdar); | 
|  |  | 
|  | /* | 
|  | * Merge the kernel & user values of MMCR2. The semantics we implement | 
|  | * are that the user MMCR2 can set bits, ie. cause counters to freeze, | 
|  | * but not clear bits. If a task wants to be able to clear bits, ie. | 
|  | * unfreeze counters, it should not set exclude_xxx in its events and | 
|  | * instead manage the MMCR2 entirely by itself. | 
|  | */ | 
|  | mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2 | current->thread.mmcr2); | 
|  |  | 
|  | if (ppmu->flags & PPMU_ARCH_31) { | 
|  | mtspr(SPRN_MMCR3, current->thread.mmcr3); | 
|  | mtspr(SPRN_SIER2, current->thread.sier2); | 
|  | mtspr(SPRN_SIER3, current->thread.sier3); | 
|  | } | 
|  | out: | 
|  | return mmcr0; | 
|  | } | 
|  |  | 
|  | static void pmao_restore_workaround(bool ebb) | 
|  | { | 
|  | unsigned pmcs[6]; | 
|  |  | 
|  | if (!cpu_has_feature(CPU_FTR_PMAO_BUG)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * On POWER8E there is a hardware defect which affects the PMU context | 
|  | * switch logic, ie. power_pmu_disable/enable(). | 
|  | * | 
|  | * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0 | 
|  | * by the hardware. Sometime later the actual PMU exception is | 
|  | * delivered. | 
|  | * | 
|  | * If we context switch, or simply disable/enable, the PMU prior to the | 
|  | * exception arriving, the exception will be lost when we clear PMAO. | 
|  | * | 
|  | * When we reenable the PMU, we will write the saved MMCR0 with PMAO | 
|  | * set, and this _should_ generate an exception. However because of the | 
|  | * defect no exception is generated when we write PMAO, and we get | 
|  | * stuck with no counters counting but no exception delivered. | 
|  | * | 
|  | * The workaround is to detect this case and tweak the hardware to | 
|  | * create another pending PMU exception. | 
|  | * | 
|  | * We do that by setting up PMC6 (cycles) for an imminent overflow and | 
|  | * enabling the PMU. That causes a new exception to be generated in the | 
|  | * chip, but we don't take it yet because we have interrupts hard | 
|  | * disabled. We then write back the PMU state as we want it to be seen | 
|  | * by the exception handler. When we reenable interrupts the exception | 
|  | * handler will be called and see the correct state. | 
|  | * | 
|  | * The logic is the same for EBB, except that the exception is gated by | 
|  | * us having interrupts hard disabled as well as the fact that we are | 
|  | * not in userspace. The exception is finally delivered when we return | 
|  | * to userspace. | 
|  | */ | 
|  |  | 
|  | /* Only if PMAO is set and PMAO_SYNC is clear */ | 
|  | if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO) | 
|  | return; | 
|  |  | 
|  | /* If we're doing EBB, only if BESCR[GE] is set */ | 
|  | if (ebb && !(current->thread.bescr & BESCR_GE)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * We are already soft-disabled in power_pmu_enable(). We need to hard | 
|  | * disable to actually prevent the PMU exception from firing. | 
|  | */ | 
|  | hard_irq_disable(); | 
|  |  | 
|  | /* | 
|  | * This is a bit gross, but we know we're on POWER8E and have 6 PMCs. | 
|  | * Using read/write_pmc() in a for loop adds 12 function calls and | 
|  | * almost doubles our code size. | 
|  | */ | 
|  | pmcs[0] = mfspr(SPRN_PMC1); | 
|  | pmcs[1] = mfspr(SPRN_PMC2); | 
|  | pmcs[2] = mfspr(SPRN_PMC3); | 
|  | pmcs[3] = mfspr(SPRN_PMC4); | 
|  | pmcs[4] = mfspr(SPRN_PMC5); | 
|  | pmcs[5] = mfspr(SPRN_PMC6); | 
|  |  | 
|  | /* Ensure all freeze bits are unset */ | 
|  | mtspr(SPRN_MMCR2, 0); | 
|  |  | 
|  | /* Set up PMC6 to overflow in one cycle */ | 
|  | mtspr(SPRN_PMC6, 0x7FFFFFFE); | 
|  |  | 
|  | /* Enable exceptions and unfreeze PMC6 */ | 
|  | mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO); | 
|  |  | 
|  | /* Now we need to refreeze and restore the PMCs */ | 
|  | mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO); | 
|  |  | 
|  | mtspr(SPRN_PMC1, pmcs[0]); | 
|  | mtspr(SPRN_PMC2, pmcs[1]); | 
|  | mtspr(SPRN_PMC3, pmcs[2]); | 
|  | mtspr(SPRN_PMC4, pmcs[3]); | 
|  | mtspr(SPRN_PMC5, pmcs[4]); | 
|  | mtspr(SPRN_PMC6, pmcs[5]); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_PPC64 */ | 
|  |  | 
|  | static void perf_event_interrupt(struct pt_regs *regs); | 
|  |  | 
|  | /* | 
|  | * Read one performance monitor counter (PMC). | 
|  | */ | 
|  | static unsigned long read_pmc(int idx) | 
|  | { | 
|  | unsigned long val; | 
|  |  | 
|  | switch (idx) { | 
|  | case 1: | 
|  | val = mfspr(SPRN_PMC1); | 
|  | break; | 
|  | case 2: | 
|  | val = mfspr(SPRN_PMC2); | 
|  | break; | 
|  | case 3: | 
|  | val = mfspr(SPRN_PMC3); | 
|  | break; | 
|  | case 4: | 
|  | val = mfspr(SPRN_PMC4); | 
|  | break; | 
|  | case 5: | 
|  | val = mfspr(SPRN_PMC5); | 
|  | break; | 
|  | case 6: | 
|  | val = mfspr(SPRN_PMC6); | 
|  | break; | 
|  | #ifdef CONFIG_PPC64 | 
|  | case 7: | 
|  | val = mfspr(SPRN_PMC7); | 
|  | break; | 
|  | case 8: | 
|  | val = mfspr(SPRN_PMC8); | 
|  | break; | 
|  | #endif /* CONFIG_PPC64 */ | 
|  | default: | 
|  | printk(KERN_ERR "oops trying to read PMC%d\n", idx); | 
|  | val = 0; | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write one PMC. | 
|  | */ | 
|  | static void write_pmc(int idx, unsigned long val) | 
|  | { | 
|  | switch (idx) { | 
|  | case 1: | 
|  | mtspr(SPRN_PMC1, val); | 
|  | break; | 
|  | case 2: | 
|  | mtspr(SPRN_PMC2, val); | 
|  | break; | 
|  | case 3: | 
|  | mtspr(SPRN_PMC3, val); | 
|  | break; | 
|  | case 4: | 
|  | mtspr(SPRN_PMC4, val); | 
|  | break; | 
|  | case 5: | 
|  | mtspr(SPRN_PMC5, val); | 
|  | break; | 
|  | case 6: | 
|  | mtspr(SPRN_PMC6, val); | 
|  | break; | 
|  | #ifdef CONFIG_PPC64 | 
|  | case 7: | 
|  | mtspr(SPRN_PMC7, val); | 
|  | break; | 
|  | case 8: | 
|  | mtspr(SPRN_PMC8, val); | 
|  | break; | 
|  | #endif /* CONFIG_PPC64 */ | 
|  | default: | 
|  | printk(KERN_ERR "oops trying to write PMC%d\n", idx); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int any_pmc_overflown(struct cpu_hw_events *cpuhw) | 
|  | { | 
|  | int i, idx; | 
|  |  | 
|  | for (i = 0; i < cpuhw->n_events; i++) { | 
|  | idx = cpuhw->event[i]->hw.idx; | 
|  | if ((idx) && ((int)read_pmc(idx) < 0)) | 
|  | return idx; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Called from sysrq_handle_showregs() */ | 
|  | void perf_event_print_debug(void) | 
|  | { | 
|  | unsigned long sdar, sier, flags; | 
|  | u32 pmcs[MAX_HWEVENTS]; | 
|  | int i; | 
|  |  | 
|  | if (!ppmu) { | 
|  | pr_info("Performance monitor hardware not registered.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!ppmu->n_counter) | 
|  | return; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d", | 
|  | smp_processor_id(), ppmu->name, ppmu->n_counter); | 
|  |  | 
|  | for (i = 0; i < ppmu->n_counter; i++) | 
|  | pmcs[i] = read_pmc(i + 1); | 
|  |  | 
|  | for (; i < MAX_HWEVENTS; i++) | 
|  | pmcs[i] = 0xdeadbeef; | 
|  |  | 
|  | pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n", | 
|  | pmcs[0], pmcs[1], pmcs[2], pmcs[3]); | 
|  |  | 
|  | if (ppmu->n_counter > 4) | 
|  | pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n", | 
|  | pmcs[4], pmcs[5], pmcs[6], pmcs[7]); | 
|  |  | 
|  | pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n", | 
|  | mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA)); | 
|  |  | 
|  | sdar = sier = 0; | 
|  | #ifdef CONFIG_PPC64 | 
|  | sdar = mfspr(SPRN_SDAR); | 
|  |  | 
|  | if (ppmu->flags & PPMU_HAS_SIER) | 
|  | sier = mfspr(SPRN_SIER); | 
|  |  | 
|  | if (ppmu->flags & PPMU_ARCH_207S) { | 
|  | pr_info("MMCR2: %016lx EBBHR: %016lx\n", | 
|  | mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR)); | 
|  | pr_info("EBBRR: %016lx BESCR: %016lx\n", | 
|  | mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR)); | 
|  | } | 
|  |  | 
|  | if (ppmu->flags & PPMU_ARCH_31) { | 
|  | pr_info("MMCR3: %016lx SIER2: %016lx SIER3: %016lx\n", | 
|  | mfspr(SPRN_MMCR3), mfspr(SPRN_SIER2), mfspr(SPRN_SIER3)); | 
|  | } | 
|  | #endif | 
|  | pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n", | 
|  | mfspr(SPRN_SIAR), sdar, sier); | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if a set of events can all go on the PMU at once. | 
|  | * If they can't, this will look at alternative codes for the events | 
|  | * and see if any combination of alternative codes is feasible. | 
|  | * The feasible set is returned in event_id[]. | 
|  | */ | 
|  | static int power_check_constraints(struct cpu_hw_events *cpuhw, | 
|  | u64 event_id[], unsigned int cflags[], | 
|  | int n_ev) | 
|  | { | 
|  | unsigned long mask, value, nv; | 
|  | unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS]; | 
|  | int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS]; | 
|  | int i, j; | 
|  | unsigned long addf = ppmu->add_fields; | 
|  | unsigned long tadd = ppmu->test_adder; | 
|  | unsigned long grp_mask = ppmu->group_constraint_mask; | 
|  | unsigned long grp_val = ppmu->group_constraint_val; | 
|  |  | 
|  | if (n_ev > ppmu->n_counter) | 
|  | return -1; | 
|  |  | 
|  | /* First see if the events will go on as-is */ | 
|  | for (i = 0; i < n_ev; ++i) { | 
|  | if ((cflags[i] & PPMU_LIMITED_PMC_REQD) | 
|  | && !ppmu->limited_pmc_event(event_id[i])) { | 
|  | ppmu->get_alternatives(event_id[i], cflags[i], | 
|  | cpuhw->alternatives[i]); | 
|  | event_id[i] = cpuhw->alternatives[i][0]; | 
|  | } | 
|  | if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0], | 
|  | &cpuhw->avalues[i][0])) | 
|  | return -1; | 
|  | } | 
|  | value = mask = 0; | 
|  | for (i = 0; i < n_ev; ++i) { | 
|  | nv = (value | cpuhw->avalues[i][0]) + | 
|  | (value & cpuhw->avalues[i][0] & addf); | 
|  |  | 
|  | if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0) | 
|  | break; | 
|  |  | 
|  | if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0]) | 
|  | & (~grp_mask)) != 0) | 
|  | break; | 
|  |  | 
|  | value = nv; | 
|  | mask |= cpuhw->amasks[i][0]; | 
|  | } | 
|  | if (i == n_ev) { | 
|  | if ((value & mask & grp_mask) != (mask & grp_val)) | 
|  | return -1; | 
|  | else | 
|  | return 0;	/* all OK */ | 
|  | } | 
|  |  | 
|  | /* doesn't work, gather alternatives... */ | 
|  | if (!ppmu->get_alternatives) | 
|  | return -1; | 
|  | for (i = 0; i < n_ev; ++i) { | 
|  | choice[i] = 0; | 
|  | n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i], | 
|  | cpuhw->alternatives[i]); | 
|  | for (j = 1; j < n_alt[i]; ++j) | 
|  | ppmu->get_constraint(cpuhw->alternatives[i][j], | 
|  | &cpuhw->amasks[i][j], | 
|  | &cpuhw->avalues[i][j]); | 
|  | } | 
|  |  | 
|  | /* enumerate all possibilities and see if any will work */ | 
|  | i = 0; | 
|  | j = -1; | 
|  | value = mask = nv = 0; | 
|  | while (i < n_ev) { | 
|  | if (j >= 0) { | 
|  | /* we're backtracking, restore context */ | 
|  | value = svalues[i]; | 
|  | mask = smasks[i]; | 
|  | j = choice[i]; | 
|  | } | 
|  | /* | 
|  | * See if any alternative k for event_id i, | 
|  | * where k > j, will satisfy the constraints. | 
|  | */ | 
|  | while (++j < n_alt[i]) { | 
|  | nv = (value | cpuhw->avalues[i][j]) + | 
|  | (value & cpuhw->avalues[i][j] & addf); | 
|  | if ((((nv + tadd) ^ value) & mask) == 0 && | 
|  | (((nv + tadd) ^ cpuhw->avalues[i][j]) | 
|  | & cpuhw->amasks[i][j]) == 0) | 
|  | break; | 
|  | } | 
|  | if (j >= n_alt[i]) { | 
|  | /* | 
|  | * No feasible alternative, backtrack | 
|  | * to event_id i-1 and continue enumerating its | 
|  | * alternatives from where we got up to. | 
|  | */ | 
|  | if (--i < 0) | 
|  | return -1; | 
|  | } else { | 
|  | /* | 
|  | * Found a feasible alternative for event_id i, | 
|  | * remember where we got up to with this event_id, | 
|  | * go on to the next event_id, and start with | 
|  | * the first alternative for it. | 
|  | */ | 
|  | choice[i] = j; | 
|  | svalues[i] = value; | 
|  | smasks[i] = mask; | 
|  | value = nv; | 
|  | mask |= cpuhw->amasks[i][j]; | 
|  | ++i; | 
|  | j = -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* OK, we have a feasible combination, tell the caller the solution */ | 
|  | for (i = 0; i < n_ev; ++i) | 
|  | event_id[i] = cpuhw->alternatives[i][choice[i]]; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if newly-added events have consistent settings for | 
|  | * exclude_{user,kernel,hv} with each other and any previously | 
|  | * added events. | 
|  | */ | 
|  | static int check_excludes(struct perf_event **ctrs, unsigned int cflags[], | 
|  | int n_prev, int n_new) | 
|  | { | 
|  | int eu = 0, ek = 0, eh = 0; | 
|  | int i, n, first; | 
|  | struct perf_event *event; | 
|  |  | 
|  | /* | 
|  | * If the PMU we're on supports per event exclude settings then we | 
|  | * don't need to do any of this logic. NB. This assumes no PMU has both | 
|  | * per event exclude and limited PMCs. | 
|  | */ | 
|  | if (ppmu->flags & PPMU_ARCH_207S) | 
|  | return 0; | 
|  |  | 
|  | n = n_prev + n_new; | 
|  | if (n <= 1) | 
|  | return 0; | 
|  |  | 
|  | first = 1; | 
|  | for (i = 0; i < n; ++i) { | 
|  | if (cflags[i] & PPMU_LIMITED_PMC_OK) { | 
|  | cflags[i] &= ~PPMU_LIMITED_PMC_REQD; | 
|  | continue; | 
|  | } | 
|  | event = ctrs[i]; | 
|  | if (first) { | 
|  | eu = event->attr.exclude_user; | 
|  | ek = event->attr.exclude_kernel; | 
|  | eh = event->attr.exclude_hv; | 
|  | first = 0; | 
|  | } else if (event->attr.exclude_user != eu || | 
|  | event->attr.exclude_kernel != ek || | 
|  | event->attr.exclude_hv != eh) { | 
|  | return -EAGAIN; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (eu || ek || eh) | 
|  | for (i = 0; i < n; ++i) | 
|  | if (cflags[i] & PPMU_LIMITED_PMC_OK) | 
|  | cflags[i] |= PPMU_LIMITED_PMC_REQD; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 check_and_compute_delta(u64 prev, u64 val) | 
|  | { | 
|  | u64 delta = (val - prev) & 0xfffffffful; | 
|  |  | 
|  | /* | 
|  | * POWER7 can roll back counter values, if the new value is smaller | 
|  | * than the previous value it will cause the delta and the counter to | 
|  | * have bogus values unless we rolled a counter over.  If a coutner is | 
|  | * rolled back, it will be smaller, but within 256, which is the maximum | 
|  | * number of events to rollback at once.  If we detect a rollback | 
|  | * return 0.  This can lead to a small lack of precision in the | 
|  | * counters. | 
|  | */ | 
|  | if (prev > val && (prev - val) < 256) | 
|  | delta = 0; | 
|  |  | 
|  | return delta; | 
|  | } | 
|  |  | 
|  | static void power_pmu_read(struct perf_event *event) | 
|  | { | 
|  | s64 val, delta, prev; | 
|  |  | 
|  | if (event->hw.state & PERF_HES_STOPPED) | 
|  | return; | 
|  |  | 
|  | if (!event->hw.idx) | 
|  | return; | 
|  |  | 
|  | if (is_ebb_event(event)) { | 
|  | val = read_pmc(event->hw.idx); | 
|  | local64_set(&event->hw.prev_count, val); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Performance monitor interrupts come even when interrupts | 
|  | * are soft-disabled, as long as interrupts are hard-enabled. | 
|  | * Therefore we treat them like NMIs. | 
|  | */ | 
|  | do { | 
|  | prev = local64_read(&event->hw.prev_count); | 
|  | barrier(); | 
|  | val = read_pmc(event->hw.idx); | 
|  | delta = check_and_compute_delta(prev, val); | 
|  | if (!delta) | 
|  | return; | 
|  | } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev); | 
|  |  | 
|  | local64_add(delta, &event->count); | 
|  |  | 
|  | /* | 
|  | * A number of places program the PMC with (0x80000000 - period_left). | 
|  | * We never want period_left to be less than 1 because we will program | 
|  | * the PMC with a value >= 0x800000000 and an edge detected PMC will | 
|  | * roll around to 0 before taking an exception. We have seen this | 
|  | * on POWER8. | 
|  | * | 
|  | * To fix this, clamp the minimum value of period_left to 1. | 
|  | */ | 
|  | do { | 
|  | prev = local64_read(&event->hw.period_left); | 
|  | val = prev - delta; | 
|  | if (val < 1) | 
|  | val = 1; | 
|  | } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On some machines, PMC5 and PMC6 can't be written, don't respect | 
|  | * the freeze conditions, and don't generate interrupts.  This tells | 
|  | * us if `event' is using such a PMC. | 
|  | */ | 
|  | static int is_limited_pmc(int pmcnum) | 
|  | { | 
|  | return (ppmu->flags & PPMU_LIMITED_PMC5_6) | 
|  | && (pmcnum == 5 || pmcnum == 6); | 
|  | } | 
|  |  | 
|  | static void freeze_limited_counters(struct cpu_hw_events *cpuhw, | 
|  | unsigned long pmc5, unsigned long pmc6) | 
|  | { | 
|  | struct perf_event *event; | 
|  | u64 val, prev, delta; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < cpuhw->n_limited; ++i) { | 
|  | event = cpuhw->limited_counter[i]; | 
|  | if (!event->hw.idx) | 
|  | continue; | 
|  | val = (event->hw.idx == 5) ? pmc5 : pmc6; | 
|  | prev = local64_read(&event->hw.prev_count); | 
|  | event->hw.idx = 0; | 
|  | delta = check_and_compute_delta(prev, val); | 
|  | if (delta) | 
|  | local64_add(delta, &event->count); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void thaw_limited_counters(struct cpu_hw_events *cpuhw, | 
|  | unsigned long pmc5, unsigned long pmc6) | 
|  | { | 
|  | struct perf_event *event; | 
|  | u64 val, prev; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < cpuhw->n_limited; ++i) { | 
|  | event = cpuhw->limited_counter[i]; | 
|  | event->hw.idx = cpuhw->limited_hwidx[i]; | 
|  | val = (event->hw.idx == 5) ? pmc5 : pmc6; | 
|  | prev = local64_read(&event->hw.prev_count); | 
|  | if (check_and_compute_delta(prev, val)) | 
|  | local64_set(&event->hw.prev_count, val); | 
|  | perf_event_update_userpage(event); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Since limited events don't respect the freeze conditions, we | 
|  | * have to read them immediately after freezing or unfreezing the | 
|  | * other events.  We try to keep the values from the limited | 
|  | * events as consistent as possible by keeping the delay (in | 
|  | * cycles and instructions) between freezing/unfreezing and reading | 
|  | * the limited events as small and consistent as possible. | 
|  | * Therefore, if any limited events are in use, we read them | 
|  | * both, and always in the same order, to minimize variability, | 
|  | * and do it inside the same asm that writes MMCR0. | 
|  | */ | 
|  | static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0) | 
|  | { | 
|  | unsigned long pmc5, pmc6; | 
|  |  | 
|  | if (!cpuhw->n_limited) { | 
|  | mtspr(SPRN_MMCR0, mmcr0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write MMCR0, then read PMC5 and PMC6 immediately. | 
|  | * To ensure we don't get a performance monitor interrupt | 
|  | * between writing MMCR0 and freezing/thawing the limited | 
|  | * events, we first write MMCR0 with the event overflow | 
|  | * interrupt enable bits turned off. | 
|  | */ | 
|  | asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5" | 
|  | : "=&r" (pmc5), "=&r" (pmc6) | 
|  | : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)), | 
|  | "i" (SPRN_MMCR0), | 
|  | "i" (SPRN_PMC5), "i" (SPRN_PMC6)); | 
|  |  | 
|  | if (mmcr0 & MMCR0_FC) | 
|  | freeze_limited_counters(cpuhw, pmc5, pmc6); | 
|  | else | 
|  | thaw_limited_counters(cpuhw, pmc5, pmc6); | 
|  |  | 
|  | /* | 
|  | * Write the full MMCR0 including the event overflow interrupt | 
|  | * enable bits, if necessary. | 
|  | */ | 
|  | if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE)) | 
|  | mtspr(SPRN_MMCR0, mmcr0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Disable all events to prevent PMU interrupts and to allow | 
|  | * events to be added or removed. | 
|  | */ | 
|  | static void power_pmu_disable(struct pmu *pmu) | 
|  | { | 
|  | struct cpu_hw_events *cpuhw; | 
|  | unsigned long flags, mmcr0, val, mmcra; | 
|  |  | 
|  | if (!ppmu) | 
|  | return; | 
|  | local_irq_save(flags); | 
|  | cpuhw = this_cpu_ptr(&cpu_hw_events); | 
|  |  | 
|  | if (!cpuhw->disabled) { | 
|  | /* | 
|  | * Check if we ever enabled the PMU on this cpu. | 
|  | */ | 
|  | if (!cpuhw->pmcs_enabled) { | 
|  | ppc_enable_pmcs(); | 
|  | cpuhw->pmcs_enabled = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56 | 
|  | * Also clear PMXE to disable PMI's getting triggered in some | 
|  | * corner cases during PMU disable. | 
|  | */ | 
|  | val  = mmcr0 = mfspr(SPRN_MMCR0); | 
|  | val |= MMCR0_FC; | 
|  | val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO | | 
|  | MMCR0_PMXE | MMCR0_FC56); | 
|  | /* Set mmcr0 PMCCEXT for p10 */ | 
|  | if (ppmu->flags & PPMU_ARCH_31) | 
|  | val |= MMCR0_PMCCEXT; | 
|  |  | 
|  | /* | 
|  | * The barrier is to make sure the mtspr has been | 
|  | * executed and the PMU has frozen the events etc. | 
|  | * before we return. | 
|  | */ | 
|  | write_mmcr0(cpuhw, val); | 
|  | mb(); | 
|  | isync(); | 
|  |  | 
|  | /* | 
|  | * Some corner cases could clear the PMU counter overflow | 
|  | * while a masked PMI is pending. One such case is when | 
|  | * a PMI happens during interrupt replay and perf counter | 
|  | * values are cleared by PMU callbacks before replay. | 
|  | * | 
|  | * If any PMC corresponding to the active PMU events are | 
|  | * overflown, disable the interrupt by clearing the paca | 
|  | * bit for PMI since we are disabling the PMU now. | 
|  | * Otherwise provide a warning if there is PMI pending, but | 
|  | * no counter is found overflown. | 
|  | */ | 
|  | if (any_pmc_overflown(cpuhw)) { | 
|  | /* | 
|  | * Since power_pmu_disable runs under local_irq_save, it | 
|  | * could happen that code hits a PMC overflow without PMI | 
|  | * pending in paca. Hence only clear PMI pending if it was | 
|  | * set. | 
|  | * | 
|  | * If a PMI is pending, then MSR[EE] must be disabled (because | 
|  | * the masked PMI handler disabling EE). So it is safe to | 
|  | * call clear_pmi_irq_pending(). | 
|  | */ | 
|  | if (pmi_irq_pending()) | 
|  | clear_pmi_irq_pending(); | 
|  | } else | 
|  | WARN_ON(pmi_irq_pending()); | 
|  |  | 
|  | val = mmcra = cpuhw->mmcr.mmcra; | 
|  |  | 
|  | /* | 
|  | * Disable instruction sampling if it was enabled | 
|  | */ | 
|  | if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) | 
|  | val &= ~MMCRA_SAMPLE_ENABLE; | 
|  |  | 
|  | /* Disable BHRB via mmcra (BHRBRD) for p10 */ | 
|  | if (ppmu->flags & PPMU_ARCH_31) | 
|  | val |= MMCRA_BHRB_DISABLE; | 
|  |  | 
|  | /* | 
|  | * Write SPRN_MMCRA if mmcra has either disabled | 
|  | * instruction sampling or BHRB. | 
|  | */ | 
|  | if (val != mmcra) { | 
|  | mtspr(SPRN_MMCRA, mmcra); | 
|  | mb(); | 
|  | isync(); | 
|  | } | 
|  |  | 
|  | cpuhw->disabled = 1; | 
|  | cpuhw->n_added = 0; | 
|  |  | 
|  | ebb_switch_out(mmcr0); | 
|  |  | 
|  | #ifdef CONFIG_PPC64 | 
|  | /* | 
|  | * These are readable by userspace, may contain kernel | 
|  | * addresses and are not switched by context switch, so clear | 
|  | * them now to avoid leaking anything to userspace in general | 
|  | * including to another process. | 
|  | */ | 
|  | if (ppmu->flags & PPMU_ARCH_207S) { | 
|  | mtspr(SPRN_SDAR, 0); | 
|  | mtspr(SPRN_SIAR, 0); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Re-enable all events if disable == 0. | 
|  | * If we were previously disabled and events were added, then | 
|  | * put the new config on the PMU. | 
|  | */ | 
|  | static void power_pmu_enable(struct pmu *pmu) | 
|  | { | 
|  | struct perf_event *event; | 
|  | struct cpu_hw_events *cpuhw; | 
|  | unsigned long flags; | 
|  | long i; | 
|  | unsigned long val, mmcr0; | 
|  | s64 left; | 
|  | unsigned int hwc_index[MAX_HWEVENTS]; | 
|  | int n_lim; | 
|  | int idx; | 
|  | bool ebb; | 
|  |  | 
|  | if (!ppmu) | 
|  | return; | 
|  | local_irq_save(flags); | 
|  |  | 
|  | cpuhw = this_cpu_ptr(&cpu_hw_events); | 
|  | if (!cpuhw->disabled) | 
|  | goto out; | 
|  |  | 
|  | if (cpuhw->n_events == 0) { | 
|  | ppc_set_pmu_inuse(0); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | cpuhw->disabled = 0; | 
|  |  | 
|  | /* | 
|  | * EBB requires an exclusive group and all events must have the EBB | 
|  | * flag set, or not set, so we can just check a single event. Also we | 
|  | * know we have at least one event. | 
|  | */ | 
|  | ebb = is_ebb_event(cpuhw->event[0]); | 
|  |  | 
|  | /* | 
|  | * If we didn't change anything, or only removed events, | 
|  | * no need to recalculate MMCR* settings and reset the PMCs. | 
|  | * Just reenable the PMU with the current MMCR* settings | 
|  | * (possibly updated for removal of events). | 
|  | */ | 
|  | if (!cpuhw->n_added) { | 
|  | /* | 
|  | * If there is any active event with an overflown PMC | 
|  | * value, set back PACA_IRQ_PMI which would have been | 
|  | * cleared in power_pmu_disable(). | 
|  | */ | 
|  | hard_irq_disable(); | 
|  | if (any_pmc_overflown(cpuhw)) | 
|  | set_pmi_irq_pending(); | 
|  |  | 
|  | mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE); | 
|  | mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1); | 
|  | if (ppmu->flags & PPMU_ARCH_31) | 
|  | mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3); | 
|  | goto out_enable; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear all MMCR settings and recompute them for the new set of events. | 
|  | */ | 
|  | memset(&cpuhw->mmcr, 0, sizeof(cpuhw->mmcr)); | 
|  |  | 
|  | if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index, | 
|  | &cpuhw->mmcr, cpuhw->event)) { | 
|  | /* shouldn't ever get here */ | 
|  | printk(KERN_ERR "oops compute_mmcr failed\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!(ppmu->flags & PPMU_ARCH_207S)) { | 
|  | /* | 
|  | * Add in MMCR0 freeze bits corresponding to the attr.exclude_* | 
|  | * bits for the first event. We have already checked that all | 
|  | * events have the same value for these bits as the first event. | 
|  | */ | 
|  | event = cpuhw->event[0]; | 
|  | if (event->attr.exclude_user) | 
|  | cpuhw->mmcr.mmcr0 |= MMCR0_FCP; | 
|  | if (event->attr.exclude_kernel) | 
|  | cpuhw->mmcr.mmcr0 |= freeze_events_kernel; | 
|  | if (event->attr.exclude_hv) | 
|  | cpuhw->mmcr.mmcr0 |= MMCR0_FCHV; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write the new configuration to MMCR* with the freeze | 
|  | * bit set and set the hardware events to their initial values. | 
|  | * Then unfreeze the events. | 
|  | */ | 
|  | ppc_set_pmu_inuse(1); | 
|  | mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE); | 
|  | mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1); | 
|  | mtspr(SPRN_MMCR0, (cpuhw->mmcr.mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) | 
|  | | MMCR0_FC); | 
|  | if (ppmu->flags & PPMU_ARCH_207S) | 
|  | mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2); | 
|  |  | 
|  | if (ppmu->flags & PPMU_ARCH_31) | 
|  | mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3); | 
|  |  | 
|  | /* | 
|  | * Read off any pre-existing events that need to move | 
|  | * to another PMC. | 
|  | */ | 
|  | for (i = 0; i < cpuhw->n_events; ++i) { | 
|  | event = cpuhw->event[i]; | 
|  | if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) { | 
|  | power_pmu_read(event); | 
|  | write_pmc(event->hw.idx, 0); | 
|  | event->hw.idx = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the PMCs for all the new and moved events. | 
|  | */ | 
|  | cpuhw->n_limited = n_lim = 0; | 
|  | for (i = 0; i < cpuhw->n_events; ++i) { | 
|  | event = cpuhw->event[i]; | 
|  | if (event->hw.idx) | 
|  | continue; | 
|  | idx = hwc_index[i] + 1; | 
|  | if (is_limited_pmc(idx)) { | 
|  | cpuhw->limited_counter[n_lim] = event; | 
|  | cpuhw->limited_hwidx[n_lim] = idx; | 
|  | ++n_lim; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (ebb) | 
|  | val = local64_read(&event->hw.prev_count); | 
|  | else { | 
|  | val = 0; | 
|  | if (event->hw.sample_period) { | 
|  | left = local64_read(&event->hw.period_left); | 
|  | if (left < 0x80000000L) | 
|  | val = 0x80000000L - left; | 
|  | } | 
|  | local64_set(&event->hw.prev_count, val); | 
|  | } | 
|  |  | 
|  | event->hw.idx = idx; | 
|  | if (event->hw.state & PERF_HES_STOPPED) | 
|  | val = 0; | 
|  | write_pmc(idx, val); | 
|  |  | 
|  | perf_event_update_userpage(event); | 
|  | } | 
|  | cpuhw->n_limited = n_lim; | 
|  | cpuhw->mmcr.mmcr0 |= MMCR0_PMXE | MMCR0_FCECE; | 
|  |  | 
|  | out_enable: | 
|  | pmao_restore_workaround(ebb); | 
|  |  | 
|  | mmcr0 = ebb_switch_in(ebb, cpuhw); | 
|  |  | 
|  | mb(); | 
|  | if (cpuhw->bhrb_users) | 
|  | ppmu->config_bhrb(cpuhw->bhrb_filter); | 
|  |  | 
|  | write_mmcr0(cpuhw, mmcr0); | 
|  |  | 
|  | /* | 
|  | * Enable instruction sampling if necessary | 
|  | */ | 
|  | if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) { | 
|  | mb(); | 
|  | mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra); | 
|  | } | 
|  |  | 
|  | out: | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | static int collect_events(struct perf_event *group, int max_count, | 
|  | struct perf_event *ctrs[], u64 *events, | 
|  | unsigned int *flags) | 
|  | { | 
|  | int n = 0; | 
|  | struct perf_event *event; | 
|  |  | 
|  | if (group->pmu->task_ctx_nr == perf_hw_context) { | 
|  | if (n >= max_count) | 
|  | return -1; | 
|  | ctrs[n] = group; | 
|  | flags[n] = group->hw.event_base; | 
|  | events[n++] = group->hw.config; | 
|  | } | 
|  | for_each_sibling_event(event, group) { | 
|  | if (event->pmu->task_ctx_nr == perf_hw_context && | 
|  | event->state != PERF_EVENT_STATE_OFF) { | 
|  | if (n >= max_count) | 
|  | return -1; | 
|  | ctrs[n] = event; | 
|  | flags[n] = event->hw.event_base; | 
|  | events[n++] = event->hw.config; | 
|  | } | 
|  | } | 
|  | return n; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add an event to the PMU. | 
|  | * If all events are not already frozen, then we disable and | 
|  | * re-enable the PMU in order to get hw_perf_enable to do the | 
|  | * actual work of reconfiguring the PMU. | 
|  | */ | 
|  | static int power_pmu_add(struct perf_event *event, int ef_flags) | 
|  | { | 
|  | struct cpu_hw_events *cpuhw; | 
|  | unsigned long flags; | 
|  | int n0; | 
|  | int ret = -EAGAIN; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | perf_pmu_disable(event->pmu); | 
|  |  | 
|  | /* | 
|  | * Add the event to the list (if there is room) | 
|  | * and check whether the total set is still feasible. | 
|  | */ | 
|  | cpuhw = this_cpu_ptr(&cpu_hw_events); | 
|  | n0 = cpuhw->n_events; | 
|  | if (n0 >= ppmu->n_counter) | 
|  | goto out; | 
|  | cpuhw->event[n0] = event; | 
|  | cpuhw->events[n0] = event->hw.config; | 
|  | cpuhw->flags[n0] = event->hw.event_base; | 
|  |  | 
|  | /* | 
|  | * This event may have been disabled/stopped in record_and_restart() | 
|  | * because we exceeded the ->event_limit. If re-starting the event, | 
|  | * clear the ->hw.state (STOPPED and UPTODATE flags), so the user | 
|  | * notification is re-enabled. | 
|  | */ | 
|  | if (!(ef_flags & PERF_EF_START)) | 
|  | event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE; | 
|  | else | 
|  | event->hw.state = 0; | 
|  |  | 
|  | /* | 
|  | * If group events scheduling transaction was started, | 
|  | * skip the schedulability test here, it will be performed | 
|  | * at commit time(->commit_txn) as a whole | 
|  | */ | 
|  | if (cpuhw->txn_flags & PERF_PMU_TXN_ADD) | 
|  | goto nocheck; | 
|  |  | 
|  | if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1)) | 
|  | goto out; | 
|  | if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1)) | 
|  | goto out; | 
|  | event->hw.config = cpuhw->events[n0]; | 
|  |  | 
|  | nocheck: | 
|  | ebb_event_add(event); | 
|  |  | 
|  | ++cpuhw->n_events; | 
|  | ++cpuhw->n_added; | 
|  |  | 
|  | ret = 0; | 
|  | out: | 
|  | if (has_branch_stack(event)) { | 
|  | u64 bhrb_filter = -1; | 
|  |  | 
|  | if (ppmu->bhrb_filter_map) | 
|  | bhrb_filter = ppmu->bhrb_filter_map( | 
|  | event->attr.branch_sample_type); | 
|  |  | 
|  | if (bhrb_filter != -1) { | 
|  | cpuhw->bhrb_filter = bhrb_filter; | 
|  | power_pmu_bhrb_enable(event); | 
|  | } | 
|  | } | 
|  |  | 
|  | perf_pmu_enable(event->pmu); | 
|  | local_irq_restore(flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove an event from the PMU. | 
|  | */ | 
|  | static void power_pmu_del(struct perf_event *event, int ef_flags) | 
|  | { | 
|  | struct cpu_hw_events *cpuhw; | 
|  | long i; | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | perf_pmu_disable(event->pmu); | 
|  |  | 
|  | power_pmu_read(event); | 
|  |  | 
|  | cpuhw = this_cpu_ptr(&cpu_hw_events); | 
|  | for (i = 0; i < cpuhw->n_events; ++i) { | 
|  | if (event == cpuhw->event[i]) { | 
|  | while (++i < cpuhw->n_events) { | 
|  | cpuhw->event[i-1] = cpuhw->event[i]; | 
|  | cpuhw->events[i-1] = cpuhw->events[i]; | 
|  | cpuhw->flags[i-1] = cpuhw->flags[i]; | 
|  | } | 
|  | --cpuhw->n_events; | 
|  | ppmu->disable_pmc(event->hw.idx - 1, &cpuhw->mmcr); | 
|  | if (event->hw.idx) { | 
|  | write_pmc(event->hw.idx, 0); | 
|  | event->hw.idx = 0; | 
|  | } | 
|  | perf_event_update_userpage(event); | 
|  | break; | 
|  | } | 
|  | } | 
|  | for (i = 0; i < cpuhw->n_limited; ++i) | 
|  | if (event == cpuhw->limited_counter[i]) | 
|  | break; | 
|  | if (i < cpuhw->n_limited) { | 
|  | while (++i < cpuhw->n_limited) { | 
|  | cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i]; | 
|  | cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i]; | 
|  | } | 
|  | --cpuhw->n_limited; | 
|  | } | 
|  | if (cpuhw->n_events == 0) { | 
|  | /* disable exceptions if no events are running */ | 
|  | cpuhw->mmcr.mmcr0 &= ~(MMCR0_PMXE | MMCR0_FCECE); | 
|  | } | 
|  |  | 
|  | if (has_branch_stack(event)) | 
|  | power_pmu_bhrb_disable(event); | 
|  |  | 
|  | perf_pmu_enable(event->pmu); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * POWER-PMU does not support disabling individual counters, hence | 
|  | * program their cycle counter to their max value and ignore the interrupts. | 
|  | */ | 
|  |  | 
|  | static void power_pmu_start(struct perf_event *event, int ef_flags) | 
|  | { | 
|  | unsigned long flags; | 
|  | s64 left; | 
|  | unsigned long val; | 
|  |  | 
|  | if (!event->hw.idx || !event->hw.sample_period) | 
|  | return; | 
|  |  | 
|  | if (!(event->hw.state & PERF_HES_STOPPED)) | 
|  | return; | 
|  |  | 
|  | if (ef_flags & PERF_EF_RELOAD) | 
|  | WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); | 
|  |  | 
|  | local_irq_save(flags); | 
|  | perf_pmu_disable(event->pmu); | 
|  |  | 
|  | event->hw.state = 0; | 
|  | left = local64_read(&event->hw.period_left); | 
|  |  | 
|  | val = 0; | 
|  | if (left < 0x80000000L) | 
|  | val = 0x80000000L - left; | 
|  |  | 
|  | write_pmc(event->hw.idx, val); | 
|  |  | 
|  | perf_event_update_userpage(event); | 
|  | perf_pmu_enable(event->pmu); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | static void power_pmu_stop(struct perf_event *event, int ef_flags) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!event->hw.idx || !event->hw.sample_period) | 
|  | return; | 
|  |  | 
|  | if (event->hw.state & PERF_HES_STOPPED) | 
|  | return; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | perf_pmu_disable(event->pmu); | 
|  |  | 
|  | power_pmu_read(event); | 
|  | event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; | 
|  | write_pmc(event->hw.idx, 0); | 
|  |  | 
|  | perf_event_update_userpage(event); | 
|  | perf_pmu_enable(event->pmu); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Start group events scheduling transaction | 
|  | * Set the flag to make pmu::enable() not perform the | 
|  | * schedulability test, it will be performed at commit time | 
|  | * | 
|  | * We only support PERF_PMU_TXN_ADD transactions. Save the | 
|  | * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD | 
|  | * transactions. | 
|  | */ | 
|  | static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) | 
|  | { | 
|  | struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); | 
|  |  | 
|  | WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */ | 
|  |  | 
|  | cpuhw->txn_flags = txn_flags; | 
|  | if (txn_flags & ~PERF_PMU_TXN_ADD) | 
|  | return; | 
|  |  | 
|  | perf_pmu_disable(pmu); | 
|  | cpuhw->n_txn_start = cpuhw->n_events; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Stop group events scheduling transaction | 
|  | * Clear the flag and pmu::enable() will perform the | 
|  | * schedulability test. | 
|  | */ | 
|  | static void power_pmu_cancel_txn(struct pmu *pmu) | 
|  | { | 
|  | struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); | 
|  | unsigned int txn_flags; | 
|  |  | 
|  | WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */ | 
|  |  | 
|  | txn_flags = cpuhw->txn_flags; | 
|  | cpuhw->txn_flags = 0; | 
|  | if (txn_flags & ~PERF_PMU_TXN_ADD) | 
|  | return; | 
|  |  | 
|  | perf_pmu_enable(pmu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Commit group events scheduling transaction | 
|  | * Perform the group schedulability test as a whole | 
|  | * Return 0 if success | 
|  | */ | 
|  | static int power_pmu_commit_txn(struct pmu *pmu) | 
|  | { | 
|  | struct cpu_hw_events *cpuhw; | 
|  | long i, n; | 
|  |  | 
|  | if (!ppmu) | 
|  | return -EAGAIN; | 
|  |  | 
|  | cpuhw = this_cpu_ptr(&cpu_hw_events); | 
|  | WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */ | 
|  |  | 
|  | if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) { | 
|  | cpuhw->txn_flags = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | n = cpuhw->n_events; | 
|  | if (check_excludes(cpuhw->event, cpuhw->flags, 0, n)) | 
|  | return -EAGAIN; | 
|  | i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n); | 
|  | if (i < 0) | 
|  | return -EAGAIN; | 
|  |  | 
|  | for (i = cpuhw->n_txn_start; i < n; ++i) | 
|  | cpuhw->event[i]->hw.config = cpuhw->events[i]; | 
|  |  | 
|  | cpuhw->txn_flags = 0; | 
|  | perf_pmu_enable(pmu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return 1 if we might be able to put event on a limited PMC, | 
|  | * or 0 if not. | 
|  | * An event can only go on a limited PMC if it counts something | 
|  | * that a limited PMC can count, doesn't require interrupts, and | 
|  | * doesn't exclude any processor mode. | 
|  | */ | 
|  | static int can_go_on_limited_pmc(struct perf_event *event, u64 ev, | 
|  | unsigned int flags) | 
|  | { | 
|  | int n; | 
|  | u64 alt[MAX_EVENT_ALTERNATIVES]; | 
|  |  | 
|  | if (event->attr.exclude_user | 
|  | || event->attr.exclude_kernel | 
|  | || event->attr.exclude_hv | 
|  | || event->attr.sample_period) | 
|  | return 0; | 
|  |  | 
|  | if (ppmu->limited_pmc_event(ev)) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * The requested event_id isn't on a limited PMC already; | 
|  | * see if any alternative code goes on a limited PMC. | 
|  | */ | 
|  | if (!ppmu->get_alternatives) | 
|  | return 0; | 
|  |  | 
|  | flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD; | 
|  | n = ppmu->get_alternatives(ev, flags, alt); | 
|  |  | 
|  | return n > 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find an alternative event_id that goes on a normal PMC, if possible, | 
|  | * and return the event_id code, or 0 if there is no such alternative. | 
|  | * (Note: event_id code 0 is "don't count" on all machines.) | 
|  | */ | 
|  | static u64 normal_pmc_alternative(u64 ev, unsigned long flags) | 
|  | { | 
|  | u64 alt[MAX_EVENT_ALTERNATIVES]; | 
|  | int n; | 
|  |  | 
|  | flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD); | 
|  | n = ppmu->get_alternatives(ev, flags, alt); | 
|  | if (!n) | 
|  | return 0; | 
|  | return alt[0]; | 
|  | } | 
|  |  | 
|  | /* Number of perf_events counting hardware events */ | 
|  | static atomic_t num_events; | 
|  | /* Used to avoid races in calling reserve/release_pmc_hardware */ | 
|  | static DEFINE_MUTEX(pmc_reserve_mutex); | 
|  |  | 
|  | /* | 
|  | * Release the PMU if this is the last perf_event. | 
|  | */ | 
|  | static void hw_perf_event_destroy(struct perf_event *event) | 
|  | { | 
|  | if (!atomic_add_unless(&num_events, -1, 1)) { | 
|  | mutex_lock(&pmc_reserve_mutex); | 
|  | if (atomic_dec_return(&num_events) == 0) | 
|  | release_pmc_hardware(); | 
|  | mutex_unlock(&pmc_reserve_mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Translate a generic cache event_id config to a raw event_id code. | 
|  | */ | 
|  | static int hw_perf_cache_event(u64 config, u64 *eventp) | 
|  | { | 
|  | unsigned long type, op, result; | 
|  | u64 ev; | 
|  |  | 
|  | if (!ppmu->cache_events) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* unpack config */ | 
|  | type = config & 0xff; | 
|  | op = (config >> 8) & 0xff; | 
|  | result = (config >> 16) & 0xff; | 
|  |  | 
|  | if (type >= PERF_COUNT_HW_CACHE_MAX || | 
|  | op >= PERF_COUNT_HW_CACHE_OP_MAX || | 
|  | result >= PERF_COUNT_HW_CACHE_RESULT_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | ev = (*ppmu->cache_events)[type][op][result]; | 
|  | if (ev == 0) | 
|  | return -EOPNOTSUPP; | 
|  | if (ev == -1) | 
|  | return -EINVAL; | 
|  | *eventp = ev; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool is_event_blacklisted(u64 ev) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i=0; i < ppmu->n_blacklist_ev; i++) { | 
|  | if (ppmu->blacklist_ev[i] == ev) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int power_pmu_event_init(struct perf_event *event) | 
|  | { | 
|  | u64 ev; | 
|  | unsigned long flags, irq_flags; | 
|  | struct perf_event *ctrs[MAX_HWEVENTS]; | 
|  | u64 events[MAX_HWEVENTS]; | 
|  | unsigned int cflags[MAX_HWEVENTS]; | 
|  | int n; | 
|  | int err; | 
|  | struct cpu_hw_events *cpuhw; | 
|  |  | 
|  | if (!ppmu) | 
|  | return -ENOENT; | 
|  |  | 
|  | if (has_branch_stack(event)) { | 
|  | /* PMU has BHRB enabled */ | 
|  | if (!(ppmu->flags & PPMU_ARCH_207S)) | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | switch (event->attr.type) { | 
|  | case PERF_TYPE_HARDWARE: | 
|  | ev = event->attr.config; | 
|  | if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (ppmu->blacklist_ev && is_event_blacklisted(ev)) | 
|  | return -EINVAL; | 
|  | ev = ppmu->generic_events[ev]; | 
|  | break; | 
|  | case PERF_TYPE_HW_CACHE: | 
|  | err = hw_perf_cache_event(event->attr.config, &ev); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (ppmu->blacklist_ev && is_event_blacklisted(ev)) | 
|  | return -EINVAL; | 
|  | break; | 
|  | case PERF_TYPE_RAW: | 
|  | ev = event->attr.config; | 
|  |  | 
|  | if (ppmu->blacklist_ev && is_event_blacklisted(ev)) | 
|  | return -EINVAL; | 
|  | break; | 
|  | default: | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | event->hw.config_base = ev; | 
|  | event->hw.idx = 0; | 
|  |  | 
|  | /* | 
|  | * If we are not running on a hypervisor, force the | 
|  | * exclude_hv bit to 0 so that we don't care what | 
|  | * the user set it to. | 
|  | */ | 
|  | if (!firmware_has_feature(FW_FEATURE_LPAR)) | 
|  | event->attr.exclude_hv = 0; | 
|  |  | 
|  | /* | 
|  | * If this is a per-task event, then we can use | 
|  | * PM_RUN_* events interchangeably with their non RUN_* | 
|  | * equivalents, e.g. PM_RUN_CYC instead of PM_CYC. | 
|  | * XXX we should check if the task is an idle task. | 
|  | */ | 
|  | flags = 0; | 
|  | if (event->attach_state & PERF_ATTACH_TASK) | 
|  | flags |= PPMU_ONLY_COUNT_RUN; | 
|  |  | 
|  | /* | 
|  | * If this machine has limited events, check whether this | 
|  | * event_id could go on a limited event. | 
|  | */ | 
|  | if (ppmu->flags & PPMU_LIMITED_PMC5_6) { | 
|  | if (can_go_on_limited_pmc(event, ev, flags)) { | 
|  | flags |= PPMU_LIMITED_PMC_OK; | 
|  | } else if (ppmu->limited_pmc_event(ev)) { | 
|  | /* | 
|  | * The requested event_id is on a limited PMC, | 
|  | * but we can't use a limited PMC; see if any | 
|  | * alternative goes on a normal PMC. | 
|  | */ | 
|  | ev = normal_pmc_alternative(ev, flags); | 
|  | if (!ev) | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Extra checks for EBB */ | 
|  | err = ebb_event_check(event); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* | 
|  | * If this is in a group, check if it can go on with all the | 
|  | * other hardware events in the group.  We assume the event | 
|  | * hasn't been linked into its leader's sibling list at this point. | 
|  | */ | 
|  | n = 0; | 
|  | if (event->group_leader != event) { | 
|  | n = collect_events(event->group_leader, ppmu->n_counter - 1, | 
|  | ctrs, events, cflags); | 
|  | if (n < 0) | 
|  | return -EINVAL; | 
|  | } | 
|  | events[n] = ev; | 
|  | ctrs[n] = event; | 
|  | cflags[n] = flags; | 
|  | if (check_excludes(ctrs, cflags, n, 1)) | 
|  | return -EINVAL; | 
|  |  | 
|  | local_irq_save(irq_flags); | 
|  | cpuhw = this_cpu_ptr(&cpu_hw_events); | 
|  |  | 
|  | err = power_check_constraints(cpuhw, events, cflags, n + 1); | 
|  |  | 
|  | if (has_branch_stack(event)) { | 
|  | u64 bhrb_filter = -1; | 
|  |  | 
|  | if (ppmu->bhrb_filter_map) | 
|  | bhrb_filter = ppmu->bhrb_filter_map( | 
|  | event->attr.branch_sample_type); | 
|  |  | 
|  | if (bhrb_filter == -1) { | 
|  | local_irq_restore(irq_flags); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | cpuhw->bhrb_filter = bhrb_filter; | 
|  | } | 
|  |  | 
|  | local_irq_restore(irq_flags); | 
|  | if (err) | 
|  | return -EINVAL; | 
|  |  | 
|  | event->hw.config = events[n]; | 
|  | event->hw.event_base = cflags[n]; | 
|  | event->hw.last_period = event->hw.sample_period; | 
|  | local64_set(&event->hw.period_left, event->hw.last_period); | 
|  |  | 
|  | /* | 
|  | * For EBB events we just context switch the PMC value, we don't do any | 
|  | * of the sample_period logic. We use hw.prev_count for this. | 
|  | */ | 
|  | if (is_ebb_event(event)) | 
|  | local64_set(&event->hw.prev_count, 0); | 
|  |  | 
|  | /* | 
|  | * See if we need to reserve the PMU. | 
|  | * If no events are currently in use, then we have to take a | 
|  | * mutex to ensure that we don't race with another task doing | 
|  | * reserve_pmc_hardware or release_pmc_hardware. | 
|  | */ | 
|  | err = 0; | 
|  | if (!atomic_inc_not_zero(&num_events)) { | 
|  | mutex_lock(&pmc_reserve_mutex); | 
|  | if (atomic_read(&num_events) == 0 && | 
|  | reserve_pmc_hardware(perf_event_interrupt)) | 
|  | err = -EBUSY; | 
|  | else | 
|  | atomic_inc(&num_events); | 
|  | mutex_unlock(&pmc_reserve_mutex); | 
|  | } | 
|  | event->destroy = hw_perf_event_destroy; | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int power_pmu_event_idx(struct perf_event *event) | 
|  | { | 
|  | return event->hw.idx; | 
|  | } | 
|  |  | 
|  | ssize_t power_events_sysfs_show(struct device *dev, | 
|  | struct device_attribute *attr, char *page) | 
|  | { | 
|  | struct perf_pmu_events_attr *pmu_attr; | 
|  |  | 
|  | pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); | 
|  |  | 
|  | return sprintf(page, "event=0x%02llx\n", pmu_attr->id); | 
|  | } | 
|  |  | 
|  | static struct pmu power_pmu = { | 
|  | .pmu_enable	= power_pmu_enable, | 
|  | .pmu_disable	= power_pmu_disable, | 
|  | .event_init	= power_pmu_event_init, | 
|  | .add		= power_pmu_add, | 
|  | .del		= power_pmu_del, | 
|  | .start		= power_pmu_start, | 
|  | .stop		= power_pmu_stop, | 
|  | .read		= power_pmu_read, | 
|  | .start_txn	= power_pmu_start_txn, | 
|  | .cancel_txn	= power_pmu_cancel_txn, | 
|  | .commit_txn	= power_pmu_commit_txn, | 
|  | .event_idx	= power_pmu_event_idx, | 
|  | .sched_task	= power_pmu_sched_task, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * A counter has overflowed; update its count and record | 
|  | * things if requested.  Note that interrupts are hard-disabled | 
|  | * here so there is no possibility of being interrupted. | 
|  | */ | 
|  | static void record_and_restart(struct perf_event *event, unsigned long val, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | u64 period = event->hw.sample_period; | 
|  | s64 prev, delta, left; | 
|  | int record = 0; | 
|  |  | 
|  | if (event->hw.state & PERF_HES_STOPPED) { | 
|  | write_pmc(event->hw.idx, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* we don't have to worry about interrupts here */ | 
|  | prev = local64_read(&event->hw.prev_count); | 
|  | delta = check_and_compute_delta(prev, val); | 
|  | local64_add(delta, &event->count); | 
|  |  | 
|  | /* | 
|  | * See if the total period for this event has expired, | 
|  | * and update for the next period. | 
|  | */ | 
|  | val = 0; | 
|  | left = local64_read(&event->hw.period_left) - delta; | 
|  | if (delta == 0) | 
|  | left++; | 
|  | if (period) { | 
|  | if (left <= 0) { | 
|  | left += period; | 
|  | if (left <= 0) | 
|  | left = period; | 
|  |  | 
|  | /* | 
|  | * If address is not requested in the sample via | 
|  | * PERF_SAMPLE_IP, just record that sample irrespective | 
|  | * of SIAR valid check. | 
|  | */ | 
|  | if (event->attr.sample_type & PERF_SAMPLE_IP) | 
|  | record = siar_valid(regs); | 
|  | else | 
|  | record = 1; | 
|  |  | 
|  | event->hw.last_period = event->hw.sample_period; | 
|  | } | 
|  | if (left < 0x80000000LL) | 
|  | val = 0x80000000LL - left; | 
|  | } | 
|  |  | 
|  | write_pmc(event->hw.idx, val); | 
|  | local64_set(&event->hw.prev_count, val); | 
|  | local64_set(&event->hw.period_left, left); | 
|  | perf_event_update_userpage(event); | 
|  |  | 
|  | /* | 
|  | * Due to hardware limitation, sometimes SIAR could sample a kernel | 
|  | * address even when freeze on supervisor state (kernel) is set in | 
|  | * MMCR2. Check attr.exclude_kernel and address to drop the sample in | 
|  | * these cases. | 
|  | */ | 
|  | if (event->attr.exclude_kernel && | 
|  | (event->attr.sample_type & PERF_SAMPLE_IP) && | 
|  | is_kernel_addr(mfspr(SPRN_SIAR))) | 
|  | record = 0; | 
|  |  | 
|  | /* | 
|  | * Finally record data if requested. | 
|  | */ | 
|  | if (record) { | 
|  | struct perf_sample_data data; | 
|  |  | 
|  | perf_sample_data_init(&data, ~0ULL, event->hw.last_period); | 
|  |  | 
|  | if (event->attr.sample_type & | 
|  | (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) | 
|  | perf_get_data_addr(event, regs, &data.addr); | 
|  |  | 
|  | if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) { | 
|  | struct cpu_hw_events *cpuhw; | 
|  | cpuhw = this_cpu_ptr(&cpu_hw_events); | 
|  | power_pmu_bhrb_read(event, cpuhw); | 
|  | data.br_stack = &cpuhw->bhrb_stack; | 
|  | } | 
|  |  | 
|  | if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC && | 
|  | ppmu->get_mem_data_src) | 
|  | ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs); | 
|  |  | 
|  | if (event->attr.sample_type & PERF_SAMPLE_WEIGHT && | 
|  | ppmu->get_mem_weight) | 
|  | ppmu->get_mem_weight(&data.weight); | 
|  |  | 
|  | if (perf_event_overflow(event, &data, regs)) | 
|  | power_pmu_stop(event, 0); | 
|  | } else if (period) { | 
|  | /* Account for interrupt in case of invalid SIAR */ | 
|  | if (perf_event_account_interrupt(event)) | 
|  | power_pmu_stop(event, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called from generic code to get the misc flags (i.e. processor mode) | 
|  | * for an event_id. | 
|  | */ | 
|  | unsigned long perf_misc_flags(struct pt_regs *regs) | 
|  | { | 
|  | u32 flags = perf_get_misc_flags(regs); | 
|  |  | 
|  | if (flags) | 
|  | return flags; | 
|  | return user_mode(regs) ? PERF_RECORD_MISC_USER : | 
|  | PERF_RECORD_MISC_KERNEL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called from generic code to get the instruction pointer | 
|  | * for an event_id. | 
|  | */ | 
|  | unsigned long perf_instruction_pointer(struct pt_regs *regs) | 
|  | { | 
|  | bool use_siar = regs_use_siar(regs); | 
|  |  | 
|  | if (use_siar && siar_valid(regs)) | 
|  | return mfspr(SPRN_SIAR) + perf_ip_adjust(regs); | 
|  | else if (use_siar) | 
|  | return 0;		// no valid instruction pointer | 
|  | else | 
|  | return regs->nip; | 
|  | } | 
|  |  | 
|  | static bool pmc_overflow_power7(unsigned long val) | 
|  | { | 
|  | /* | 
|  | * Events on POWER7 can roll back if a speculative event doesn't | 
|  | * eventually complete. Unfortunately in some rare cases they will | 
|  | * raise a performance monitor exception. We need to catch this to | 
|  | * ensure we reset the PMC. In all cases the PMC will be 256 or less | 
|  | * cycles from overflow. | 
|  | * | 
|  | * We only do this if the first pass fails to find any overflowing | 
|  | * PMCs because a user might set a period of less than 256 and we | 
|  | * don't want to mistakenly reset them. | 
|  | */ | 
|  | if ((0x80000000 - val) <= 256) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool pmc_overflow(unsigned long val) | 
|  | { | 
|  | if ((int)val < 0) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Performance monitor interrupt stuff | 
|  | */ | 
|  | static void __perf_event_interrupt(struct pt_regs *regs) | 
|  | { | 
|  | int i, j; | 
|  | struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); | 
|  | struct perf_event *event; | 
|  | unsigned long val[8]; | 
|  | int found, active; | 
|  |  | 
|  | if (cpuhw->n_limited) | 
|  | freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5), | 
|  | mfspr(SPRN_PMC6)); | 
|  |  | 
|  | perf_read_regs(regs); | 
|  |  | 
|  | /* Read all the PMCs since we'll need them a bunch of times */ | 
|  | for (i = 0; i < ppmu->n_counter; ++i) | 
|  | val[i] = read_pmc(i + 1); | 
|  |  | 
|  | /* Try to find what caused the IRQ */ | 
|  | found = 0; | 
|  | for (i = 0; i < ppmu->n_counter; ++i) { | 
|  | if (!pmc_overflow(val[i])) | 
|  | continue; | 
|  | if (is_limited_pmc(i + 1)) | 
|  | continue; /* these won't generate IRQs */ | 
|  | /* | 
|  | * We've found one that's overflowed.  For active | 
|  | * counters we need to log this.  For inactive | 
|  | * counters, we need to reset it anyway | 
|  | */ | 
|  | found = 1; | 
|  | active = 0; | 
|  | for (j = 0; j < cpuhw->n_events; ++j) { | 
|  | event = cpuhw->event[j]; | 
|  | if (event->hw.idx == (i + 1)) { | 
|  | active = 1; | 
|  | record_and_restart(event, val[i], regs); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear PACA_IRQ_PMI in case it was set by | 
|  | * set_pmi_irq_pending() when PMU was enabled | 
|  | * after accounting for interrupts. | 
|  | */ | 
|  | clear_pmi_irq_pending(); | 
|  |  | 
|  | if (!active) | 
|  | /* reset non active counters that have overflowed */ | 
|  | write_pmc(i + 1, 0); | 
|  | } | 
|  | if (!found && pvr_version_is(PVR_POWER7)) { | 
|  | /* check active counters for special buggy p7 overflow */ | 
|  | for (i = 0; i < cpuhw->n_events; ++i) { | 
|  | event = cpuhw->event[i]; | 
|  | if (!event->hw.idx || is_limited_pmc(event->hw.idx)) | 
|  | continue; | 
|  | if (pmc_overflow_power7(val[event->hw.idx - 1])) { | 
|  | /* event has overflowed in a buggy way*/ | 
|  | found = 1; | 
|  | record_and_restart(event, | 
|  | val[event->hw.idx - 1], | 
|  | regs); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * During system wide profling or while specific CPU is monitored for an | 
|  | * event, some corner cases could cause PMC to overflow in idle path. This | 
|  | * will trigger a PMI after waking up from idle. Since counter values are _not_ | 
|  | * saved/restored in idle path, can lead to below "Can't find PMC" message. | 
|  | */ | 
|  | if (unlikely(!found) && !arch_irq_disabled_regs(regs)) | 
|  | printk_ratelimited(KERN_WARNING "Can't find PMC that caused IRQ\n"); | 
|  |  | 
|  | /* | 
|  | * Reset MMCR0 to its normal value.  This will set PMXE and | 
|  | * clear FC (freeze counters) and PMAO (perf mon alert occurred) | 
|  | * and thus allow interrupts to occur again. | 
|  | * XXX might want to use MSR.PM to keep the events frozen until | 
|  | * we get back out of this interrupt. | 
|  | */ | 
|  | write_mmcr0(cpuhw, cpuhw->mmcr.mmcr0); | 
|  | } | 
|  |  | 
|  | static void perf_event_interrupt(struct pt_regs *regs) | 
|  | { | 
|  | u64 start_clock = sched_clock(); | 
|  |  | 
|  | __perf_event_interrupt(regs); | 
|  | perf_sample_event_took(sched_clock() - start_clock); | 
|  | } | 
|  |  | 
|  | static int power_pmu_prepare_cpu(unsigned int cpu) | 
|  | { | 
|  | struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); | 
|  |  | 
|  | if (ppmu) { | 
|  | memset(cpuhw, 0, sizeof(*cpuhw)); | 
|  | cpuhw->mmcr.mmcr0 = MMCR0_FC; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int register_power_pmu(struct power_pmu *pmu) | 
|  | { | 
|  | if (ppmu) | 
|  | return -EBUSY;		/* something's already registered */ | 
|  |  | 
|  | ppmu = pmu; | 
|  | pr_info("%s performance monitor hardware support registered\n", | 
|  | pmu->name); | 
|  |  | 
|  | power_pmu.attr_groups = ppmu->attr_groups; | 
|  | power_pmu.capabilities |= (ppmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS); | 
|  |  | 
|  | #ifdef MSR_HV | 
|  | /* | 
|  | * Use FCHV to ignore kernel events if MSR.HV is set. | 
|  | */ | 
|  | if (mfmsr() & MSR_HV) | 
|  | freeze_events_kernel = MMCR0_FCHV; | 
|  | #endif /* CONFIG_PPC64 */ | 
|  |  | 
|  | perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW); | 
|  | cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare", | 
|  | power_pmu_prepare_cpu, NULL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC64 | 
|  | static int __init init_ppc64_pmu(void) | 
|  | { | 
|  | /* run through all the pmu drivers one at a time */ | 
|  | if (!init_power5_pmu()) | 
|  | return 0; | 
|  | else if (!init_power5p_pmu()) | 
|  | return 0; | 
|  | else if (!init_power6_pmu()) | 
|  | return 0; | 
|  | else if (!init_power7_pmu()) | 
|  | return 0; | 
|  | else if (!init_power8_pmu()) | 
|  | return 0; | 
|  | else if (!init_power9_pmu()) | 
|  | return 0; | 
|  | else if (!init_power10_pmu()) | 
|  | return 0; | 
|  | else if (!init_ppc970_pmu()) | 
|  | return 0; | 
|  | else | 
|  | return init_generic_compat_pmu(); | 
|  | } | 
|  | early_initcall(init_ppc64_pmu); | 
|  | #endif |