| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * mm/truncate.c - code for taking down pages from address_spaces | 
 |  * | 
 |  * Copyright (C) 2002, Linus Torvalds | 
 |  * | 
 |  * 10Sep2002	Andrew Morton | 
 |  *		Initial version. | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/dax.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/export.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/task_io_accounting_ops.h> | 
 | #include <linux/shmem_fs.h> | 
 | #include <linux/rmap.h> | 
 | #include "internal.h" | 
 |  | 
 | /* | 
 |  * Regular page slots are stabilized by the page lock even without the tree | 
 |  * itself locked.  These unlocked entries need verification under the tree | 
 |  * lock. | 
 |  */ | 
 | static inline void __clear_shadow_entry(struct address_space *mapping, | 
 | 				pgoff_t index, void *entry) | 
 | { | 
 | 	XA_STATE(xas, &mapping->i_pages, index); | 
 |  | 
 | 	xas_set_update(&xas, workingset_update_node); | 
 | 	if (xas_load(&xas) != entry) | 
 | 		return; | 
 | 	xas_store(&xas, NULL); | 
 | } | 
 |  | 
 | static void clear_shadow_entry(struct address_space *mapping, pgoff_t index, | 
 | 			       void *entry) | 
 | { | 
 | 	spin_lock(&mapping->host->i_lock); | 
 | 	xa_lock_irq(&mapping->i_pages); | 
 | 	__clear_shadow_entry(mapping, index, entry); | 
 | 	xa_unlock_irq(&mapping->i_pages); | 
 | 	if (mapping_shrinkable(mapping)) | 
 | 		inode_add_lru(mapping->host); | 
 | 	spin_unlock(&mapping->host->i_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Unconditionally remove exceptional entries. Usually called from truncate | 
 |  * path. Note that the folio_batch may be altered by this function by removing | 
 |  * exceptional entries similar to what folio_batch_remove_exceptionals() does. | 
 |  */ | 
 | static void truncate_folio_batch_exceptionals(struct address_space *mapping, | 
 | 				struct folio_batch *fbatch, pgoff_t *indices) | 
 | { | 
 | 	int i, j; | 
 | 	bool dax; | 
 |  | 
 | 	/* Handled by shmem itself */ | 
 | 	if (shmem_mapping(mapping)) | 
 | 		return; | 
 |  | 
 | 	for (j = 0; j < folio_batch_count(fbatch); j++) | 
 | 		if (xa_is_value(fbatch->folios[j])) | 
 | 			break; | 
 |  | 
 | 	if (j == folio_batch_count(fbatch)) | 
 | 		return; | 
 |  | 
 | 	dax = dax_mapping(mapping); | 
 | 	if (!dax) { | 
 | 		spin_lock(&mapping->host->i_lock); | 
 | 		xa_lock_irq(&mapping->i_pages); | 
 | 	} | 
 |  | 
 | 	for (i = j; i < folio_batch_count(fbatch); i++) { | 
 | 		struct folio *folio = fbatch->folios[i]; | 
 | 		pgoff_t index = indices[i]; | 
 |  | 
 | 		if (!xa_is_value(folio)) { | 
 | 			fbatch->folios[j++] = folio; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (unlikely(dax)) { | 
 | 			dax_delete_mapping_entry(mapping, index); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		__clear_shadow_entry(mapping, index, folio); | 
 | 	} | 
 |  | 
 | 	if (!dax) { | 
 | 		xa_unlock_irq(&mapping->i_pages); | 
 | 		if (mapping_shrinkable(mapping)) | 
 | 			inode_add_lru(mapping->host); | 
 | 		spin_unlock(&mapping->host->i_lock); | 
 | 	} | 
 | 	fbatch->nr = j; | 
 | } | 
 |  | 
 | /* | 
 |  * Invalidate exceptional entry if easily possible. This handles exceptional | 
 |  * entries for invalidate_inode_pages(). | 
 |  */ | 
 | static int invalidate_exceptional_entry(struct address_space *mapping, | 
 | 					pgoff_t index, void *entry) | 
 | { | 
 | 	/* Handled by shmem itself, or for DAX we do nothing. */ | 
 | 	if (shmem_mapping(mapping) || dax_mapping(mapping)) | 
 | 		return 1; | 
 | 	clear_shadow_entry(mapping, index, entry); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Invalidate exceptional entry if clean. This handles exceptional entries for | 
 |  * invalidate_inode_pages2() so for DAX it evicts only clean entries. | 
 |  */ | 
 | static int invalidate_exceptional_entry2(struct address_space *mapping, | 
 | 					 pgoff_t index, void *entry) | 
 | { | 
 | 	/* Handled by shmem itself */ | 
 | 	if (shmem_mapping(mapping)) | 
 | 		return 1; | 
 | 	if (dax_mapping(mapping)) | 
 | 		return dax_invalidate_mapping_entry_sync(mapping, index); | 
 | 	clear_shadow_entry(mapping, index, entry); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /** | 
 |  * folio_invalidate - Invalidate part or all of a folio. | 
 |  * @folio: The folio which is affected. | 
 |  * @offset: start of the range to invalidate | 
 |  * @length: length of the range to invalidate | 
 |  * | 
 |  * folio_invalidate() is called when all or part of the folio has become | 
 |  * invalidated by a truncate operation. | 
 |  * | 
 |  * folio_invalidate() does not have to release all buffers, but it must | 
 |  * ensure that no dirty buffer is left outside @offset and that no I/O | 
 |  * is underway against any of the blocks which are outside the truncation | 
 |  * point.  Because the caller is about to free (and possibly reuse) those | 
 |  * blocks on-disk. | 
 |  */ | 
 | void folio_invalidate(struct folio *folio, size_t offset, size_t length) | 
 | { | 
 | 	const struct address_space_operations *aops = folio->mapping->a_ops; | 
 |  | 
 | 	if (aops->invalidate_folio) | 
 | 		aops->invalidate_folio(folio, offset, length); | 
 | } | 
 | EXPORT_SYMBOL_GPL(folio_invalidate); | 
 |  | 
 | /* | 
 |  * If truncate cannot remove the fs-private metadata from the page, the page | 
 |  * becomes orphaned.  It will be left on the LRU and may even be mapped into | 
 |  * user pagetables if we're racing with filemap_fault(). | 
 |  * | 
 |  * We need to bail out if page->mapping is no longer equal to the original | 
 |  * mapping.  This happens a) when the VM reclaimed the page while we waited on | 
 |  * its lock, b) when a concurrent invalidate_mapping_pages got there first and | 
 |  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. | 
 |  */ | 
 | static void truncate_cleanup_folio(struct folio *folio) | 
 | { | 
 | 	if (folio_mapped(folio)) | 
 | 		unmap_mapping_folio(folio); | 
 |  | 
 | 	if (folio_needs_release(folio)) | 
 | 		folio_invalidate(folio, 0, folio_size(folio)); | 
 |  | 
 | 	/* | 
 | 	 * Some filesystems seem to re-dirty the page even after | 
 | 	 * the VM has canceled the dirty bit (eg ext3 journaling). | 
 | 	 * Hence dirty accounting check is placed after invalidation. | 
 | 	 */ | 
 | 	folio_cancel_dirty(folio); | 
 | 	folio_clear_mappedtodisk(folio); | 
 | } | 
 |  | 
 | int truncate_inode_folio(struct address_space *mapping, struct folio *folio) | 
 | { | 
 | 	if (folio->mapping != mapping) | 
 | 		return -EIO; | 
 |  | 
 | 	truncate_cleanup_folio(folio); | 
 | 	filemap_remove_folio(folio); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Handle partial folios.  The folio may be entirely within the | 
 |  * range if a split has raced with us.  If not, we zero the part of the | 
 |  * folio that's within the [start, end] range, and then split the folio if | 
 |  * it's large.  split_page_range() will discard pages which now lie beyond | 
 |  * i_size, and we rely on the caller to discard pages which lie within a | 
 |  * newly created hole. | 
 |  * | 
 |  * Returns false if splitting failed so the caller can avoid | 
 |  * discarding the entire folio which is stubbornly unsplit. | 
 |  */ | 
 | bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end) | 
 | { | 
 | 	loff_t pos = folio_pos(folio); | 
 | 	unsigned int offset, length; | 
 |  | 
 | 	if (pos < start) | 
 | 		offset = start - pos; | 
 | 	else | 
 | 		offset = 0; | 
 | 	length = folio_size(folio); | 
 | 	if (pos + length <= (u64)end) | 
 | 		length = length - offset; | 
 | 	else | 
 | 		length = end + 1 - pos - offset; | 
 |  | 
 | 	folio_wait_writeback(folio); | 
 | 	if (length == folio_size(folio)) { | 
 | 		truncate_inode_folio(folio->mapping, folio); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We may be zeroing pages we're about to discard, but it avoids | 
 | 	 * doing a complex calculation here, and then doing the zeroing | 
 | 	 * anyway if the page split fails. | 
 | 	 */ | 
 | 	folio_zero_range(folio, offset, length); | 
 |  | 
 | 	if (folio_needs_release(folio)) | 
 | 		folio_invalidate(folio, offset, length); | 
 | 	if (!folio_test_large(folio)) | 
 | 		return true; | 
 | 	if (split_folio(folio) == 0) | 
 | 		return true; | 
 | 	if (folio_test_dirty(folio)) | 
 | 		return false; | 
 | 	truncate_inode_folio(folio->mapping, folio); | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Used to get rid of pages on hardware memory corruption. | 
 |  */ | 
 | int generic_error_remove_page(struct address_space *mapping, struct page *page) | 
 | { | 
 | 	VM_BUG_ON_PAGE(PageTail(page), page); | 
 |  | 
 | 	if (!mapping) | 
 | 		return -EINVAL; | 
 | 	/* | 
 | 	 * Only punch for normal data pages for now. | 
 | 	 * Handling other types like directories would need more auditing. | 
 | 	 */ | 
 | 	if (!S_ISREG(mapping->host->i_mode)) | 
 | 		return -EIO; | 
 | 	return truncate_inode_folio(mapping, page_folio(page)); | 
 | } | 
 | EXPORT_SYMBOL(generic_error_remove_page); | 
 |  | 
 | static long mapping_evict_folio(struct address_space *mapping, | 
 | 		struct folio *folio) | 
 | { | 
 | 	if (folio_test_dirty(folio) || folio_test_writeback(folio)) | 
 | 		return 0; | 
 | 	/* The refcount will be elevated if any page in the folio is mapped */ | 
 | 	if (folio_ref_count(folio) > | 
 | 			folio_nr_pages(folio) + folio_has_private(folio) + 1) | 
 | 		return 0; | 
 | 	if (!filemap_release_folio(folio, 0)) | 
 | 		return 0; | 
 |  | 
 | 	return remove_mapping(mapping, folio); | 
 | } | 
 |  | 
 | /** | 
 |  * invalidate_inode_page() - Remove an unused page from the pagecache. | 
 |  * @page: The page to remove. | 
 |  * | 
 |  * Safely invalidate one page from its pagecache mapping. | 
 |  * It only drops clean, unused pages. | 
 |  * | 
 |  * Context: Page must be locked. | 
 |  * Return: The number of pages successfully removed. | 
 |  */ | 
 | long invalidate_inode_page(struct page *page) | 
 | { | 
 | 	struct folio *folio = page_folio(page); | 
 | 	struct address_space *mapping = folio_mapping(folio); | 
 |  | 
 | 	/* The page may have been truncated before it was locked */ | 
 | 	if (!mapping) | 
 | 		return 0; | 
 | 	return mapping_evict_folio(mapping, folio); | 
 | } | 
 |  | 
 | /** | 
 |  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets | 
 |  * @mapping: mapping to truncate | 
 |  * @lstart: offset from which to truncate | 
 |  * @lend: offset to which to truncate (inclusive) | 
 |  * | 
 |  * Truncate the page cache, removing the pages that are between | 
 |  * specified offsets (and zeroing out partial pages | 
 |  * if lstart or lend + 1 is not page aligned). | 
 |  * | 
 |  * Truncate takes two passes - the first pass is nonblocking.  It will not | 
 |  * block on page locks and it will not block on writeback.  The second pass | 
 |  * will wait.  This is to prevent as much IO as possible in the affected region. | 
 |  * The first pass will remove most pages, so the search cost of the second pass | 
 |  * is low. | 
 |  * | 
 |  * We pass down the cache-hot hint to the page freeing code.  Even if the | 
 |  * mapping is large, it is probably the case that the final pages are the most | 
 |  * recently touched, and freeing happens in ascending file offset order. | 
 |  * | 
 |  * Note that since ->invalidate_folio() accepts range to invalidate | 
 |  * truncate_inode_pages_range is able to handle cases where lend + 1 is not | 
 |  * page aligned properly. | 
 |  */ | 
 | void truncate_inode_pages_range(struct address_space *mapping, | 
 | 				loff_t lstart, loff_t lend) | 
 | { | 
 | 	pgoff_t		start;		/* inclusive */ | 
 | 	pgoff_t		end;		/* exclusive */ | 
 | 	struct folio_batch fbatch; | 
 | 	pgoff_t		indices[PAGEVEC_SIZE]; | 
 | 	pgoff_t		index; | 
 | 	int		i; | 
 | 	struct folio	*folio; | 
 | 	bool		same_folio; | 
 |  | 
 | 	if (mapping_empty(mapping)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * 'start' and 'end' always covers the range of pages to be fully | 
 | 	 * truncated. Partial pages are covered with 'partial_start' at the | 
 | 	 * start of the range and 'partial_end' at the end of the range. | 
 | 	 * Note that 'end' is exclusive while 'lend' is inclusive. | 
 | 	 */ | 
 | 	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
 | 	if (lend == -1) | 
 | 		/* | 
 | 		 * lend == -1 indicates end-of-file so we have to set 'end' | 
 | 		 * to the highest possible pgoff_t and since the type is | 
 | 		 * unsigned we're using -1. | 
 | 		 */ | 
 | 		end = -1; | 
 | 	else | 
 | 		end = (lend + 1) >> PAGE_SHIFT; | 
 |  | 
 | 	folio_batch_init(&fbatch); | 
 | 	index = start; | 
 | 	while (index < end && find_lock_entries(mapping, index, end - 1, | 
 | 			&fbatch, indices)) { | 
 | 		index = indices[folio_batch_count(&fbatch) - 1] + 1; | 
 | 		truncate_folio_batch_exceptionals(mapping, &fbatch, indices); | 
 | 		for (i = 0; i < folio_batch_count(&fbatch); i++) | 
 | 			truncate_cleanup_folio(fbatch.folios[i]); | 
 | 		delete_from_page_cache_batch(mapping, &fbatch); | 
 | 		for (i = 0; i < folio_batch_count(&fbatch); i++) | 
 | 			folio_unlock(fbatch.folios[i]); | 
 | 		folio_batch_release(&fbatch); | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); | 
 | 	folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0); | 
 | 	if (folio) { | 
 | 		same_folio = lend < folio_pos(folio) + folio_size(folio); | 
 | 		if (!truncate_inode_partial_folio(folio, lstart, lend)) { | 
 | 			start = folio->index + folio_nr_pages(folio); | 
 | 			if (same_folio) | 
 | 				end = folio->index; | 
 | 		} | 
 | 		folio_unlock(folio); | 
 | 		folio_put(folio); | 
 | 		folio = NULL; | 
 | 	} | 
 |  | 
 | 	if (!same_folio) | 
 | 		folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT, | 
 | 						FGP_LOCK, 0); | 
 | 	if (folio) { | 
 | 		if (!truncate_inode_partial_folio(folio, lstart, lend)) | 
 | 			end = folio->index; | 
 | 		folio_unlock(folio); | 
 | 		folio_put(folio); | 
 | 	} | 
 |  | 
 | 	index = start; | 
 | 	while (index < end) { | 
 | 		cond_resched(); | 
 | 		if (!find_get_entries(mapping, index, end - 1, &fbatch, | 
 | 				indices)) { | 
 | 			/* If all gone from start onwards, we're done */ | 
 | 			if (index == start) | 
 | 				break; | 
 | 			/* Otherwise restart to make sure all gone */ | 
 | 			index = start; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		for (i = 0; i < folio_batch_count(&fbatch); i++) { | 
 | 			struct folio *folio = fbatch.folios[i]; | 
 |  | 
 | 			/* We rely upon deletion not changing page->index */ | 
 | 			index = indices[i]; | 
 |  | 
 | 			if (xa_is_value(folio)) | 
 | 				continue; | 
 |  | 
 | 			folio_lock(folio); | 
 | 			VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); | 
 | 			folio_wait_writeback(folio); | 
 | 			truncate_inode_folio(mapping, folio); | 
 | 			folio_unlock(folio); | 
 | 			index = folio_index(folio) + folio_nr_pages(folio) - 1; | 
 | 		} | 
 | 		truncate_folio_batch_exceptionals(mapping, &fbatch, indices); | 
 | 		folio_batch_release(&fbatch); | 
 | 		index++; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(truncate_inode_pages_range); | 
 |  | 
 | /** | 
 |  * truncate_inode_pages - truncate *all* the pages from an offset | 
 |  * @mapping: mapping to truncate | 
 |  * @lstart: offset from which to truncate | 
 |  * | 
 |  * Called under (and serialised by) inode->i_rwsem and | 
 |  * mapping->invalidate_lock. | 
 |  * | 
 |  * Note: When this function returns, there can be a page in the process of | 
 |  * deletion (inside __filemap_remove_folio()) in the specified range.  Thus | 
 |  * mapping->nrpages can be non-zero when this function returns even after | 
 |  * truncation of the whole mapping. | 
 |  */ | 
 | void truncate_inode_pages(struct address_space *mapping, loff_t lstart) | 
 | { | 
 | 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1); | 
 | } | 
 | EXPORT_SYMBOL(truncate_inode_pages); | 
 |  | 
 | /** | 
 |  * truncate_inode_pages_final - truncate *all* pages before inode dies | 
 |  * @mapping: mapping to truncate | 
 |  * | 
 |  * Called under (and serialized by) inode->i_rwsem. | 
 |  * | 
 |  * Filesystems have to use this in the .evict_inode path to inform the | 
 |  * VM that this is the final truncate and the inode is going away. | 
 |  */ | 
 | void truncate_inode_pages_final(struct address_space *mapping) | 
 | { | 
 | 	/* | 
 | 	 * Page reclaim can not participate in regular inode lifetime | 
 | 	 * management (can't call iput()) and thus can race with the | 
 | 	 * inode teardown.  Tell it when the address space is exiting, | 
 | 	 * so that it does not install eviction information after the | 
 | 	 * final truncate has begun. | 
 | 	 */ | 
 | 	mapping_set_exiting(mapping); | 
 |  | 
 | 	if (!mapping_empty(mapping)) { | 
 | 		/* | 
 | 		 * As truncation uses a lockless tree lookup, cycle | 
 | 		 * the tree lock to make sure any ongoing tree | 
 | 		 * modification that does not see AS_EXITING is | 
 | 		 * completed before starting the final truncate. | 
 | 		 */ | 
 | 		xa_lock_irq(&mapping->i_pages); | 
 | 		xa_unlock_irq(&mapping->i_pages); | 
 | 	} | 
 |  | 
 | 	truncate_inode_pages(mapping, 0); | 
 | } | 
 | EXPORT_SYMBOL(truncate_inode_pages_final); | 
 |  | 
 | /** | 
 |  * invalidate_mapping_pagevec - Invalidate all the unlocked pages of one inode | 
 |  * @mapping: the address_space which holds the pages to invalidate | 
 |  * @start: the offset 'from' which to invalidate | 
 |  * @end: the offset 'to' which to invalidate (inclusive) | 
 |  * @nr_pagevec: invalidate failed page number for caller | 
 |  * | 
 |  * This helper is similar to invalidate_mapping_pages(), except that it accounts | 
 |  * for pages that are likely on a pagevec and counts them in @nr_pagevec, which | 
 |  * will be used by the caller. | 
 |  */ | 
 | unsigned long invalidate_mapping_pagevec(struct address_space *mapping, | 
 | 		pgoff_t start, pgoff_t end, unsigned long *nr_pagevec) | 
 | { | 
 | 	pgoff_t indices[PAGEVEC_SIZE]; | 
 | 	struct folio_batch fbatch; | 
 | 	pgoff_t index = start; | 
 | 	unsigned long ret; | 
 | 	unsigned long count = 0; | 
 | 	int i; | 
 |  | 
 | 	folio_batch_init(&fbatch); | 
 | 	while (find_lock_entries(mapping, index, end, &fbatch, indices)) { | 
 | 		for (i = 0; i < folio_batch_count(&fbatch); i++) { | 
 | 			struct folio *folio = fbatch.folios[i]; | 
 |  | 
 | 			/* We rely upon deletion not changing folio->index */ | 
 | 			index = indices[i]; | 
 |  | 
 | 			if (xa_is_value(folio)) { | 
 | 				count += invalidate_exceptional_entry(mapping, | 
 | 								      index, | 
 | 								      folio); | 
 | 				continue; | 
 | 			} | 
 | 			index += folio_nr_pages(folio) - 1; | 
 |  | 
 | 			ret = mapping_evict_folio(mapping, folio); | 
 | 			folio_unlock(folio); | 
 | 			/* | 
 | 			 * Invalidation is a hint that the folio is no longer | 
 | 			 * of interest and try to speed up its reclaim. | 
 | 			 */ | 
 | 			if (!ret) { | 
 | 				deactivate_file_folio(folio); | 
 | 				/* It is likely on the pagevec of a remote CPU */ | 
 | 				if (nr_pagevec) | 
 | 					(*nr_pagevec)++; | 
 | 			} | 
 | 			count += ret; | 
 | 		} | 
 | 		folio_batch_remove_exceptionals(&fbatch); | 
 | 		folio_batch_release(&fbatch); | 
 | 		cond_resched(); | 
 | 		index++; | 
 | 	} | 
 | 	return count; | 
 | } | 
 |  | 
 | /** | 
 |  * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode | 
 |  * @mapping: the address_space which holds the cache to invalidate | 
 |  * @start: the offset 'from' which to invalidate | 
 |  * @end: the offset 'to' which to invalidate (inclusive) | 
 |  * | 
 |  * This function removes pages that are clean, unmapped and unlocked, | 
 |  * as well as shadow entries. It will not block on IO activity. | 
 |  * | 
 |  * If you want to remove all the pages of one inode, regardless of | 
 |  * their use and writeback state, use truncate_inode_pages(). | 
 |  * | 
 |  * Return: the number of the cache entries that were invalidated | 
 |  */ | 
 | unsigned long invalidate_mapping_pages(struct address_space *mapping, | 
 | 		pgoff_t start, pgoff_t end) | 
 | { | 
 | 	return invalidate_mapping_pagevec(mapping, start, end, NULL); | 
 | } | 
 | EXPORT_SYMBOL(invalidate_mapping_pages); | 
 |  | 
 | /* | 
 |  * This is like invalidate_inode_page(), except it ignores the page's | 
 |  * refcount.  We do this because invalidate_inode_pages2() needs stronger | 
 |  * invalidation guarantees, and cannot afford to leave pages behind because | 
 |  * shrink_page_list() has a temp ref on them, or because they're transiently | 
 |  * sitting in the lru_cache_add() pagevecs. | 
 |  */ | 
 | static int invalidate_complete_folio2(struct address_space *mapping, | 
 | 					struct folio *folio) | 
 | { | 
 | 	if (folio->mapping != mapping) | 
 | 		return 0; | 
 |  | 
 | 	if (!filemap_release_folio(folio, GFP_KERNEL)) | 
 | 		return 0; | 
 |  | 
 | 	spin_lock(&mapping->host->i_lock); | 
 | 	xa_lock_irq(&mapping->i_pages); | 
 | 	if (folio_test_dirty(folio)) | 
 | 		goto failed; | 
 |  | 
 | 	BUG_ON(folio_has_private(folio)); | 
 | 	__filemap_remove_folio(folio, NULL); | 
 | 	xa_unlock_irq(&mapping->i_pages); | 
 | 	if (mapping_shrinkable(mapping)) | 
 | 		inode_add_lru(mapping->host); | 
 | 	spin_unlock(&mapping->host->i_lock); | 
 |  | 
 | 	filemap_free_folio(mapping, folio); | 
 | 	return 1; | 
 | failed: | 
 | 	xa_unlock_irq(&mapping->i_pages); | 
 | 	spin_unlock(&mapping->host->i_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int folio_launder(struct address_space *mapping, struct folio *folio) | 
 | { | 
 | 	if (!folio_test_dirty(folio)) | 
 | 		return 0; | 
 | 	if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL) | 
 | 		return 0; | 
 | 	return mapping->a_ops->launder_folio(folio); | 
 | } | 
 |  | 
 | /** | 
 |  * invalidate_inode_pages2_range - remove range of pages from an address_space | 
 |  * @mapping: the address_space | 
 |  * @start: the page offset 'from' which to invalidate | 
 |  * @end: the page offset 'to' which to invalidate (inclusive) | 
 |  * | 
 |  * Any pages which are found to be mapped into pagetables are unmapped prior to | 
 |  * invalidation. | 
 |  * | 
 |  * Return: -EBUSY if any pages could not be invalidated. | 
 |  */ | 
 | int invalidate_inode_pages2_range(struct address_space *mapping, | 
 | 				  pgoff_t start, pgoff_t end) | 
 | { | 
 | 	pgoff_t indices[PAGEVEC_SIZE]; | 
 | 	struct folio_batch fbatch; | 
 | 	pgoff_t index; | 
 | 	int i; | 
 | 	int ret = 0; | 
 | 	int ret2 = 0; | 
 | 	int did_range_unmap = 0; | 
 |  | 
 | 	if (mapping_empty(mapping)) | 
 | 		return 0; | 
 |  | 
 | 	folio_batch_init(&fbatch); | 
 | 	index = start; | 
 | 	while (find_get_entries(mapping, index, end, &fbatch, indices)) { | 
 | 		for (i = 0; i < folio_batch_count(&fbatch); i++) { | 
 | 			struct folio *folio = fbatch.folios[i]; | 
 |  | 
 | 			/* We rely upon deletion not changing folio->index */ | 
 | 			index = indices[i]; | 
 |  | 
 | 			if (xa_is_value(folio)) { | 
 | 				if (!invalidate_exceptional_entry2(mapping, | 
 | 						index, folio)) | 
 | 					ret = -EBUSY; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			if (!did_range_unmap && folio_mapped(folio)) { | 
 | 				/* | 
 | 				 * If folio is mapped, before taking its lock, | 
 | 				 * zap the rest of the file in one hit. | 
 | 				 */ | 
 | 				unmap_mapping_pages(mapping, index, | 
 | 						(1 + end - index), false); | 
 | 				did_range_unmap = 1; | 
 | 			} | 
 |  | 
 | 			folio_lock(folio); | 
 | 			VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); | 
 | 			if (folio->mapping != mapping) { | 
 | 				folio_unlock(folio); | 
 | 				continue; | 
 | 			} | 
 | 			folio_wait_writeback(folio); | 
 |  | 
 | 			if (folio_mapped(folio)) | 
 | 				unmap_mapping_folio(folio); | 
 | 			BUG_ON(folio_mapped(folio)); | 
 |  | 
 | 			ret2 = folio_launder(mapping, folio); | 
 | 			if (ret2 == 0) { | 
 | 				if (!invalidate_complete_folio2(mapping, folio)) | 
 | 					ret2 = -EBUSY; | 
 | 			} | 
 | 			if (ret2 < 0) | 
 | 				ret = ret2; | 
 | 			folio_unlock(folio); | 
 | 		} | 
 | 		folio_batch_remove_exceptionals(&fbatch); | 
 | 		folio_batch_release(&fbatch); | 
 | 		cond_resched(); | 
 | 		index++; | 
 | 	} | 
 | 	/* | 
 | 	 * For DAX we invalidate page tables after invalidating page cache.  We | 
 | 	 * could invalidate page tables while invalidating each entry however | 
 | 	 * that would be expensive. And doing range unmapping before doesn't | 
 | 	 * work as we have no cheap way to find whether page cache entry didn't | 
 | 	 * get remapped later. | 
 | 	 */ | 
 | 	if (dax_mapping(mapping)) { | 
 | 		unmap_mapping_pages(mapping, start, end - start + 1, false); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); | 
 |  | 
 | /** | 
 |  * invalidate_inode_pages2 - remove all pages from an address_space | 
 |  * @mapping: the address_space | 
 |  * | 
 |  * Any pages which are found to be mapped into pagetables are unmapped prior to | 
 |  * invalidation. | 
 |  * | 
 |  * Return: -EBUSY if any pages could not be invalidated. | 
 |  */ | 
 | int invalidate_inode_pages2(struct address_space *mapping) | 
 | { | 
 | 	return invalidate_inode_pages2_range(mapping, 0, -1); | 
 | } | 
 | EXPORT_SYMBOL_GPL(invalidate_inode_pages2); | 
 |  | 
 | /** | 
 |  * truncate_pagecache - unmap and remove pagecache that has been truncated | 
 |  * @inode: inode | 
 |  * @newsize: new file size | 
 |  * | 
 |  * inode's new i_size must already be written before truncate_pagecache | 
 |  * is called. | 
 |  * | 
 |  * This function should typically be called before the filesystem | 
 |  * releases resources associated with the freed range (eg. deallocates | 
 |  * blocks). This way, pagecache will always stay logically coherent | 
 |  * with on-disk format, and the filesystem would not have to deal with | 
 |  * situations such as writepage being called for a page that has already | 
 |  * had its underlying blocks deallocated. | 
 |  */ | 
 | void truncate_pagecache(struct inode *inode, loff_t newsize) | 
 | { | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	loff_t holebegin = round_up(newsize, PAGE_SIZE); | 
 |  | 
 | 	/* | 
 | 	 * unmap_mapping_range is called twice, first simply for | 
 | 	 * efficiency so that truncate_inode_pages does fewer | 
 | 	 * single-page unmaps.  However after this first call, and | 
 | 	 * before truncate_inode_pages finishes, it is possible for | 
 | 	 * private pages to be COWed, which remain after | 
 | 	 * truncate_inode_pages finishes, hence the second | 
 | 	 * unmap_mapping_range call must be made for correctness. | 
 | 	 */ | 
 | 	unmap_mapping_range(mapping, holebegin, 0, 1); | 
 | 	truncate_inode_pages(mapping, newsize); | 
 | 	unmap_mapping_range(mapping, holebegin, 0, 1); | 
 | } | 
 | EXPORT_SYMBOL(truncate_pagecache); | 
 |  | 
 | /** | 
 |  * truncate_setsize - update inode and pagecache for a new file size | 
 |  * @inode: inode | 
 |  * @newsize: new file size | 
 |  * | 
 |  * truncate_setsize updates i_size and performs pagecache truncation (if | 
 |  * necessary) to @newsize. It will be typically be called from the filesystem's | 
 |  * setattr function when ATTR_SIZE is passed in. | 
 |  * | 
 |  * Must be called with a lock serializing truncates and writes (generally | 
 |  * i_rwsem but e.g. xfs uses a different lock) and before all filesystem | 
 |  * specific block truncation has been performed. | 
 |  */ | 
 | void truncate_setsize(struct inode *inode, loff_t newsize) | 
 | { | 
 | 	loff_t oldsize = inode->i_size; | 
 |  | 
 | 	i_size_write(inode, newsize); | 
 | 	if (newsize > oldsize) | 
 | 		pagecache_isize_extended(inode, oldsize, newsize); | 
 | 	truncate_pagecache(inode, newsize); | 
 | } | 
 | EXPORT_SYMBOL(truncate_setsize); | 
 |  | 
 | /** | 
 |  * pagecache_isize_extended - update pagecache after extension of i_size | 
 |  * @inode:	inode for which i_size was extended | 
 |  * @from:	original inode size | 
 |  * @to:		new inode size | 
 |  * | 
 |  * Handle extension of inode size either caused by extending truncate or by | 
 |  * write starting after current i_size. We mark the page straddling current | 
 |  * i_size RO so that page_mkwrite() is called on the nearest write access to | 
 |  * the page.  This way filesystem can be sure that page_mkwrite() is called on | 
 |  * the page before user writes to the page via mmap after the i_size has been | 
 |  * changed. | 
 |  * | 
 |  * The function must be called after i_size is updated so that page fault | 
 |  * coming after we unlock the page will already see the new i_size. | 
 |  * The function must be called while we still hold i_rwsem - this not only | 
 |  * makes sure i_size is stable but also that userspace cannot observe new | 
 |  * i_size value before we are prepared to store mmap writes at new inode size. | 
 |  */ | 
 | void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) | 
 | { | 
 | 	int bsize = i_blocksize(inode); | 
 | 	loff_t rounded_from; | 
 | 	struct page *page; | 
 | 	pgoff_t index; | 
 |  | 
 | 	WARN_ON(to > inode->i_size); | 
 |  | 
 | 	if (from >= to || bsize == PAGE_SIZE) | 
 | 		return; | 
 | 	/* Page straddling @from will not have any hole block created? */ | 
 | 	rounded_from = round_up(from, bsize); | 
 | 	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) | 
 | 		return; | 
 |  | 
 | 	index = from >> PAGE_SHIFT; | 
 | 	page = find_lock_page(inode->i_mapping, index); | 
 | 	/* Page not cached? Nothing to do */ | 
 | 	if (!page) | 
 | 		return; | 
 | 	/* | 
 | 	 * See clear_page_dirty_for_io() for details why set_page_dirty() | 
 | 	 * is needed. | 
 | 	 */ | 
 | 	if (page_mkclean(page)) | 
 | 		set_page_dirty(page); | 
 | 	unlock_page(page); | 
 | 	put_page(page); | 
 | } | 
 | EXPORT_SYMBOL(pagecache_isize_extended); | 
 |  | 
 | /** | 
 |  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched | 
 |  * @inode: inode | 
 |  * @lstart: offset of beginning of hole | 
 |  * @lend: offset of last byte of hole | 
 |  * | 
 |  * This function should typically be called before the filesystem | 
 |  * releases resources associated with the freed range (eg. deallocates | 
 |  * blocks). This way, pagecache will always stay logically coherent | 
 |  * with on-disk format, and the filesystem would not have to deal with | 
 |  * situations such as writepage being called for a page that has already | 
 |  * had its underlying blocks deallocated. | 
 |  */ | 
 | void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) | 
 | { | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	loff_t unmap_start = round_up(lstart, PAGE_SIZE); | 
 | 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; | 
 | 	/* | 
 | 	 * This rounding is currently just for example: unmap_mapping_range | 
 | 	 * expands its hole outwards, whereas we want it to contract the hole | 
 | 	 * inwards.  However, existing callers of truncate_pagecache_range are | 
 | 	 * doing their own page rounding first.  Note that unmap_mapping_range | 
 | 	 * allows holelen 0 for all, and we allow lend -1 for end of file. | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only | 
 | 	 * once (before truncating pagecache), and without "even_cows" flag: | 
 | 	 * hole-punching should not remove private COWed pages from the hole. | 
 | 	 */ | 
 | 	if ((u64)unmap_end > (u64)unmap_start) | 
 | 		unmap_mapping_range(mapping, unmap_start, | 
 | 				    1 + unmap_end - unmap_start, 0); | 
 | 	truncate_inode_pages_range(mapping, lstart, lend); | 
 | } | 
 | EXPORT_SYMBOL(truncate_pagecache_range); |