|  | /* SPDX-License-Identifier: GPL-2.0 */ | 
|  | #ifndef __LINUX_BITMAP_H | 
|  | #define __LINUX_BITMAP_H | 
|  |  | 
|  | #ifndef __ASSEMBLY__ | 
|  |  | 
|  | #include <linux/align.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/find.h> | 
|  | #include <linux/limits.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/types.h> | 
|  |  | 
|  | struct device; | 
|  |  | 
|  | /* | 
|  | * bitmaps provide bit arrays that consume one or more unsigned | 
|  | * longs.  The bitmap interface and available operations are listed | 
|  | * here, in bitmap.h | 
|  | * | 
|  | * Function implementations generic to all architectures are in | 
|  | * lib/bitmap.c.  Functions implementations that are architecture | 
|  | * specific are in various include/asm-<arch>/bitops.h headers | 
|  | * and other arch/<arch> specific files. | 
|  | * | 
|  | * See lib/bitmap.c for more details. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * DOC: bitmap overview | 
|  | * | 
|  | * The available bitmap operations and their rough meaning in the | 
|  | * case that the bitmap is a single unsigned long are thus: | 
|  | * | 
|  | * The generated code is more efficient when nbits is known at | 
|  | * compile-time and at most BITS_PER_LONG. | 
|  | * | 
|  | * :: | 
|  | * | 
|  | *  bitmap_zero(dst, nbits)                     *dst = 0UL | 
|  | *  bitmap_fill(dst, nbits)                     *dst = ~0UL | 
|  | *  bitmap_copy(dst, src, nbits)                *dst = *src | 
|  | *  bitmap_and(dst, src1, src2, nbits)          *dst = *src1 & *src2 | 
|  | *  bitmap_or(dst, src1, src2, nbits)           *dst = *src1 | *src2 | 
|  | *  bitmap_xor(dst, src1, src2, nbits)          *dst = *src1 ^ *src2 | 
|  | *  bitmap_andnot(dst, src1, src2, nbits)       *dst = *src1 & ~(*src2) | 
|  | *  bitmap_complement(dst, src, nbits)          *dst = ~(*src) | 
|  | *  bitmap_equal(src1, src2, nbits)             Are *src1 and *src2 equal? | 
|  | *  bitmap_intersects(src1, src2, nbits)        Do *src1 and *src2 overlap? | 
|  | *  bitmap_subset(src1, src2, nbits)            Is *src1 a subset of *src2? | 
|  | *  bitmap_empty(src, nbits)                    Are all bits zero in *src? | 
|  | *  bitmap_full(src, nbits)                     Are all bits set in *src? | 
|  | *  bitmap_weight(src, nbits)                   Hamming Weight: number set bits | 
|  | *  bitmap_weight_and(src1, src2, nbits)        Hamming Weight of and'ed bitmap | 
|  | *  bitmap_set(dst, pos, nbits)                 Set specified bit area | 
|  | *  bitmap_clear(dst, pos, nbits)               Clear specified bit area | 
|  | *  bitmap_find_next_zero_area(buf, len, pos, n, mask)  Find bit free area | 
|  | *  bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off)  as above | 
|  | *  bitmap_shift_right(dst, src, n, nbits)      *dst = *src >> n | 
|  | *  bitmap_shift_left(dst, src, n, nbits)       *dst = *src << n | 
|  | *  bitmap_cut(dst, src, first, n, nbits)       Cut n bits from first, copy rest | 
|  | *  bitmap_replace(dst, old, new, mask, nbits)  *dst = (*old & ~(*mask)) | (*new & *mask) | 
|  | *  bitmap_remap(dst, src, old, new, nbits)     *dst = map(old, new)(src) | 
|  | *  bitmap_bitremap(oldbit, old, new, nbits)    newbit = map(old, new)(oldbit) | 
|  | *  bitmap_onto(dst, orig, relmap, nbits)       *dst = orig relative to relmap | 
|  | *  bitmap_fold(dst, orig, sz, nbits)           dst bits = orig bits mod sz | 
|  | *  bitmap_parse(buf, buflen, dst, nbits)       Parse bitmap dst from kernel buf | 
|  | *  bitmap_parse_user(ubuf, ulen, dst, nbits)   Parse bitmap dst from user buf | 
|  | *  bitmap_parselist(buf, dst, nbits)           Parse bitmap dst from kernel buf | 
|  | *  bitmap_parselist_user(buf, dst, nbits)      Parse bitmap dst from user buf | 
|  | *  bitmap_find_free_region(bitmap, bits, order)  Find and allocate bit region | 
|  | *  bitmap_release_region(bitmap, pos, order)   Free specified bit region | 
|  | *  bitmap_allocate_region(bitmap, pos, order)  Allocate specified bit region | 
|  | *  bitmap_from_arr32(dst, buf, nbits)          Copy nbits from u32[] buf to dst | 
|  | *  bitmap_from_arr64(dst, buf, nbits)          Copy nbits from u64[] buf to dst | 
|  | *  bitmap_to_arr32(buf, src, nbits)            Copy nbits from buf to u32[] dst | 
|  | *  bitmap_to_arr64(buf, src, nbits)            Copy nbits from buf to u64[] dst | 
|  | *  bitmap_get_value8(map, start)               Get 8bit value from map at start | 
|  | *  bitmap_set_value8(map, value, start)        Set 8bit value to map at start | 
|  | * | 
|  | * Note, bitmap_zero() and bitmap_fill() operate over the region of | 
|  | * unsigned longs, that is, bits behind bitmap till the unsigned long | 
|  | * boundary will be zeroed or filled as well. Consider to use | 
|  | * bitmap_clear() or bitmap_set() to make explicit zeroing or filling | 
|  | * respectively. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * DOC: bitmap bitops | 
|  | * | 
|  | * Also the following operations in asm/bitops.h apply to bitmaps.:: | 
|  | * | 
|  | *  set_bit(bit, addr)                  *addr |= bit | 
|  | *  clear_bit(bit, addr)                *addr &= ~bit | 
|  | *  change_bit(bit, addr)               *addr ^= bit | 
|  | *  test_bit(bit, addr)                 Is bit set in *addr? | 
|  | *  test_and_set_bit(bit, addr)         Set bit and return old value | 
|  | *  test_and_clear_bit(bit, addr)       Clear bit and return old value | 
|  | *  test_and_change_bit(bit, addr)      Change bit and return old value | 
|  | *  find_first_zero_bit(addr, nbits)    Position first zero bit in *addr | 
|  | *  find_first_bit(addr, nbits)         Position first set bit in *addr | 
|  | *  find_next_zero_bit(addr, nbits, bit) | 
|  | *                                      Position next zero bit in *addr >= bit | 
|  | *  find_next_bit(addr, nbits, bit)     Position next set bit in *addr >= bit | 
|  | *  find_next_and_bit(addr1, addr2, nbits, bit) | 
|  | *                                      Same as find_next_bit, but in | 
|  | *                                      (*addr1 & *addr2) | 
|  | * | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * DOC: declare bitmap | 
|  | * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used | 
|  | * to declare an array named 'name' of just enough unsigned longs to | 
|  | * contain all bit positions from 0 to 'bits' - 1. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Allocation and deallocation of bitmap. | 
|  | * Provided in lib/bitmap.c to avoid circular dependency. | 
|  | */ | 
|  | unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags); | 
|  | unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags); | 
|  | unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node); | 
|  | unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node); | 
|  | void bitmap_free(const unsigned long *bitmap); | 
|  |  | 
|  | /* Managed variants of the above. */ | 
|  | unsigned long *devm_bitmap_alloc(struct device *dev, | 
|  | unsigned int nbits, gfp_t flags); | 
|  | unsigned long *devm_bitmap_zalloc(struct device *dev, | 
|  | unsigned int nbits, gfp_t flags); | 
|  |  | 
|  | /* | 
|  | * lib/bitmap.c provides these functions: | 
|  | */ | 
|  |  | 
|  | bool __bitmap_equal(const unsigned long *bitmap1, | 
|  | const unsigned long *bitmap2, unsigned int nbits); | 
|  | bool __pure __bitmap_or_equal(const unsigned long *src1, | 
|  | const unsigned long *src2, | 
|  | const unsigned long *src3, | 
|  | unsigned int nbits); | 
|  | void __bitmap_complement(unsigned long *dst, const unsigned long *src, | 
|  | unsigned int nbits); | 
|  | void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, | 
|  | unsigned int shift, unsigned int nbits); | 
|  | void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, | 
|  | unsigned int shift, unsigned int nbits); | 
|  | void bitmap_cut(unsigned long *dst, const unsigned long *src, | 
|  | unsigned int first, unsigned int cut, unsigned int nbits); | 
|  | bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, | 
|  | const unsigned long *bitmap2, unsigned int nbits); | 
|  | void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, | 
|  | const unsigned long *bitmap2, unsigned int nbits); | 
|  | void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, | 
|  | const unsigned long *bitmap2, unsigned int nbits); | 
|  | bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, | 
|  | const unsigned long *bitmap2, unsigned int nbits); | 
|  | void __bitmap_replace(unsigned long *dst, | 
|  | const unsigned long *old, const unsigned long *new, | 
|  | const unsigned long *mask, unsigned int nbits); | 
|  | bool __bitmap_intersects(const unsigned long *bitmap1, | 
|  | const unsigned long *bitmap2, unsigned int nbits); | 
|  | bool __bitmap_subset(const unsigned long *bitmap1, | 
|  | const unsigned long *bitmap2, unsigned int nbits); | 
|  | unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits); | 
|  | unsigned int __bitmap_weight_and(const unsigned long *bitmap1, | 
|  | const unsigned long *bitmap2, unsigned int nbits); | 
|  | void __bitmap_set(unsigned long *map, unsigned int start, int len); | 
|  | void __bitmap_clear(unsigned long *map, unsigned int start, int len); | 
|  |  | 
|  | unsigned long bitmap_find_next_zero_area_off(unsigned long *map, | 
|  | unsigned long size, | 
|  | unsigned long start, | 
|  | unsigned int nr, | 
|  | unsigned long align_mask, | 
|  | unsigned long align_offset); | 
|  |  | 
|  | /** | 
|  | * bitmap_find_next_zero_area - find a contiguous aligned zero area | 
|  | * @map: The address to base the search on | 
|  | * @size: The bitmap size in bits | 
|  | * @start: The bitnumber to start searching at | 
|  | * @nr: The number of zeroed bits we're looking for | 
|  | * @align_mask: Alignment mask for zero area | 
|  | * | 
|  | * The @align_mask should be one less than a power of 2; the effect is that | 
|  | * the bit offset of all zero areas this function finds is multiples of that | 
|  | * power of 2. A @align_mask of 0 means no alignment is required. | 
|  | */ | 
|  | static inline unsigned long | 
|  | bitmap_find_next_zero_area(unsigned long *map, | 
|  | unsigned long size, | 
|  | unsigned long start, | 
|  | unsigned int nr, | 
|  | unsigned long align_mask) | 
|  | { | 
|  | return bitmap_find_next_zero_area_off(map, size, start, nr, | 
|  | align_mask, 0); | 
|  | } | 
|  |  | 
|  | int bitmap_parse(const char *buf, unsigned int buflen, | 
|  | unsigned long *dst, int nbits); | 
|  | int bitmap_parse_user(const char __user *ubuf, unsigned int ulen, | 
|  | unsigned long *dst, int nbits); | 
|  | int bitmap_parselist(const char *buf, unsigned long *maskp, | 
|  | int nmaskbits); | 
|  | int bitmap_parselist_user(const char __user *ubuf, unsigned int ulen, | 
|  | unsigned long *dst, int nbits); | 
|  | void bitmap_remap(unsigned long *dst, const unsigned long *src, | 
|  | const unsigned long *old, const unsigned long *new, unsigned int nbits); | 
|  | int bitmap_bitremap(int oldbit, | 
|  | const unsigned long *old, const unsigned long *new, int bits); | 
|  | void bitmap_onto(unsigned long *dst, const unsigned long *orig, | 
|  | const unsigned long *relmap, unsigned int bits); | 
|  | void bitmap_fold(unsigned long *dst, const unsigned long *orig, | 
|  | unsigned int sz, unsigned int nbits); | 
|  | int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order); | 
|  | void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order); | 
|  | int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order); | 
|  |  | 
|  | #ifdef __BIG_ENDIAN | 
|  | void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits); | 
|  | #else | 
|  | #define bitmap_copy_le bitmap_copy | 
|  | #endif | 
|  | int bitmap_print_to_pagebuf(bool list, char *buf, | 
|  | const unsigned long *maskp, int nmaskbits); | 
|  |  | 
|  | extern int bitmap_print_bitmask_to_buf(char *buf, const unsigned long *maskp, | 
|  | int nmaskbits, loff_t off, size_t count); | 
|  |  | 
|  | extern int bitmap_print_list_to_buf(char *buf, const unsigned long *maskp, | 
|  | int nmaskbits, loff_t off, size_t count); | 
|  |  | 
|  | #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1))) | 
|  | #define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1))) | 
|  |  | 
|  | static inline void bitmap_zero(unsigned long *dst, unsigned int nbits) | 
|  | { | 
|  | unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); | 
|  |  | 
|  | if (small_const_nbits(nbits)) | 
|  | *dst = 0; | 
|  | else | 
|  | memset(dst, 0, len); | 
|  | } | 
|  |  | 
|  | static inline void bitmap_fill(unsigned long *dst, unsigned int nbits) | 
|  | { | 
|  | unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); | 
|  |  | 
|  | if (small_const_nbits(nbits)) | 
|  | *dst = ~0UL; | 
|  | else | 
|  | memset(dst, 0xff, len); | 
|  | } | 
|  |  | 
|  | static inline void bitmap_copy(unsigned long *dst, const unsigned long *src, | 
|  | unsigned int nbits) | 
|  | { | 
|  | unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); | 
|  |  | 
|  | if (small_const_nbits(nbits)) | 
|  | *dst = *src; | 
|  | else | 
|  | memcpy(dst, src, len); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy bitmap and clear tail bits in last word. | 
|  | */ | 
|  | static inline void bitmap_copy_clear_tail(unsigned long *dst, | 
|  | const unsigned long *src, unsigned int nbits) | 
|  | { | 
|  | bitmap_copy(dst, src, nbits); | 
|  | if (nbits % BITS_PER_LONG) | 
|  | dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On 32-bit systems bitmaps are represented as u32 arrays internally. On LE64 | 
|  | * machines the order of hi and lo parts of numbers match the bitmap structure. | 
|  | * In both cases conversion is not needed when copying data from/to arrays of | 
|  | * u32. But in LE64 case, typecast in bitmap_copy_clear_tail() may lead | 
|  | * to out-of-bound access. To avoid that, both LE and BE variants of 64-bit | 
|  | * architectures are not using bitmap_copy_clear_tail(). | 
|  | */ | 
|  | #if BITS_PER_LONG == 64 | 
|  | void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, | 
|  | unsigned int nbits); | 
|  | void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, | 
|  | unsigned int nbits); | 
|  | #else | 
|  | #define bitmap_from_arr32(bitmap, buf, nbits)			\ | 
|  | bitmap_copy_clear_tail((unsigned long *) (bitmap),	\ | 
|  | (const unsigned long *) (buf), (nbits)) | 
|  | #define bitmap_to_arr32(buf, bitmap, nbits)			\ | 
|  | bitmap_copy_clear_tail((unsigned long *) (buf),		\ | 
|  | (const unsigned long *) (bitmap), (nbits)) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * On 64-bit systems bitmaps are represented as u64 arrays internally. So, | 
|  | * the conversion is not needed when copying data from/to arrays of u64. | 
|  | */ | 
|  | #if BITS_PER_LONG == 32 | 
|  | void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits); | 
|  | void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits); | 
|  | #else | 
|  | #define bitmap_from_arr64(bitmap, buf, nbits)			\ | 
|  | bitmap_copy_clear_tail((unsigned long *)(bitmap), (const unsigned long *)(buf), (nbits)) | 
|  | #define bitmap_to_arr64(buf, bitmap, nbits)			\ | 
|  | bitmap_copy_clear_tail((unsigned long *)(buf), (const unsigned long *)(bitmap), (nbits)) | 
|  | #endif | 
|  |  | 
|  | static inline bool bitmap_and(unsigned long *dst, const unsigned long *src1, | 
|  | const unsigned long *src2, unsigned int nbits) | 
|  | { | 
|  | if (small_const_nbits(nbits)) | 
|  | return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0; | 
|  | return __bitmap_and(dst, src1, src2, nbits); | 
|  | } | 
|  |  | 
|  | static inline void bitmap_or(unsigned long *dst, const unsigned long *src1, | 
|  | const unsigned long *src2, unsigned int nbits) | 
|  | { | 
|  | if (small_const_nbits(nbits)) | 
|  | *dst = *src1 | *src2; | 
|  | else | 
|  | __bitmap_or(dst, src1, src2, nbits); | 
|  | } | 
|  |  | 
|  | static inline void bitmap_xor(unsigned long *dst, const unsigned long *src1, | 
|  | const unsigned long *src2, unsigned int nbits) | 
|  | { | 
|  | if (small_const_nbits(nbits)) | 
|  | *dst = *src1 ^ *src2; | 
|  | else | 
|  | __bitmap_xor(dst, src1, src2, nbits); | 
|  | } | 
|  |  | 
|  | static inline bool bitmap_andnot(unsigned long *dst, const unsigned long *src1, | 
|  | const unsigned long *src2, unsigned int nbits) | 
|  | { | 
|  | if (small_const_nbits(nbits)) | 
|  | return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0; | 
|  | return __bitmap_andnot(dst, src1, src2, nbits); | 
|  | } | 
|  |  | 
|  | static inline void bitmap_complement(unsigned long *dst, const unsigned long *src, | 
|  | unsigned int nbits) | 
|  | { | 
|  | if (small_const_nbits(nbits)) | 
|  | *dst = ~(*src); | 
|  | else | 
|  | __bitmap_complement(dst, src, nbits); | 
|  | } | 
|  |  | 
|  | #ifdef __LITTLE_ENDIAN | 
|  | #define BITMAP_MEM_ALIGNMENT 8 | 
|  | #else | 
|  | #define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long)) | 
|  | #endif | 
|  | #define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1) | 
|  |  | 
|  | static inline bool bitmap_equal(const unsigned long *src1, | 
|  | const unsigned long *src2, unsigned int nbits) | 
|  | { | 
|  | if (small_const_nbits(nbits)) | 
|  | return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits)); | 
|  | if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) && | 
|  | IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) | 
|  | return !memcmp(src1, src2, nbits / 8); | 
|  | return __bitmap_equal(src1, src2, nbits); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bitmap_or_equal - Check whether the or of two bitmaps is equal to a third | 
|  | * @src1:	Pointer to bitmap 1 | 
|  | * @src2:	Pointer to bitmap 2 will be or'ed with bitmap 1 | 
|  | * @src3:	Pointer to bitmap 3. Compare to the result of *@src1 | *@src2 | 
|  | * @nbits:	number of bits in each of these bitmaps | 
|  | * | 
|  | * Returns: True if (*@src1 | *@src2) == *@src3, false otherwise | 
|  | */ | 
|  | static inline bool bitmap_or_equal(const unsigned long *src1, | 
|  | const unsigned long *src2, | 
|  | const unsigned long *src3, | 
|  | unsigned int nbits) | 
|  | { | 
|  | if (!small_const_nbits(nbits)) | 
|  | return __bitmap_or_equal(src1, src2, src3, nbits); | 
|  |  | 
|  | return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits)); | 
|  | } | 
|  |  | 
|  | static inline bool bitmap_intersects(const unsigned long *src1, | 
|  | const unsigned long *src2, | 
|  | unsigned int nbits) | 
|  | { | 
|  | if (small_const_nbits(nbits)) | 
|  | return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0; | 
|  | else | 
|  | return __bitmap_intersects(src1, src2, nbits); | 
|  | } | 
|  |  | 
|  | static inline bool bitmap_subset(const unsigned long *src1, | 
|  | const unsigned long *src2, unsigned int nbits) | 
|  | { | 
|  | if (small_const_nbits(nbits)) | 
|  | return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits)); | 
|  | else | 
|  | return __bitmap_subset(src1, src2, nbits); | 
|  | } | 
|  |  | 
|  | static inline bool bitmap_empty(const unsigned long *src, unsigned nbits) | 
|  | { | 
|  | if (small_const_nbits(nbits)) | 
|  | return ! (*src & BITMAP_LAST_WORD_MASK(nbits)); | 
|  |  | 
|  | return find_first_bit(src, nbits) == nbits; | 
|  | } | 
|  |  | 
|  | static inline bool bitmap_full(const unsigned long *src, unsigned int nbits) | 
|  | { | 
|  | if (small_const_nbits(nbits)) | 
|  | return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits)); | 
|  |  | 
|  | return find_first_zero_bit(src, nbits) == nbits; | 
|  | } | 
|  |  | 
|  | static __always_inline | 
|  | unsigned int bitmap_weight(const unsigned long *src, unsigned int nbits) | 
|  | { | 
|  | if (small_const_nbits(nbits)) | 
|  | return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits)); | 
|  | return __bitmap_weight(src, nbits); | 
|  | } | 
|  |  | 
|  | static __always_inline | 
|  | unsigned long bitmap_weight_and(const unsigned long *src1, | 
|  | const unsigned long *src2, unsigned int nbits) | 
|  | { | 
|  | if (small_const_nbits(nbits)) | 
|  | return hweight_long(*src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)); | 
|  | return __bitmap_weight_and(src1, src2, nbits); | 
|  | } | 
|  |  | 
|  | static __always_inline void bitmap_set(unsigned long *map, unsigned int start, | 
|  | unsigned int nbits) | 
|  | { | 
|  | if (__builtin_constant_p(nbits) && nbits == 1) | 
|  | __set_bit(start, map); | 
|  | else if (small_const_nbits(start + nbits)) | 
|  | *map |= GENMASK(start + nbits - 1, start); | 
|  | else if (__builtin_constant_p(start & BITMAP_MEM_MASK) && | 
|  | IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) && | 
|  | __builtin_constant_p(nbits & BITMAP_MEM_MASK) && | 
|  | IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) | 
|  | memset((char *)map + start / 8, 0xff, nbits / 8); | 
|  | else | 
|  | __bitmap_set(map, start, nbits); | 
|  | } | 
|  |  | 
|  | static __always_inline void bitmap_clear(unsigned long *map, unsigned int start, | 
|  | unsigned int nbits) | 
|  | { | 
|  | if (__builtin_constant_p(nbits) && nbits == 1) | 
|  | __clear_bit(start, map); | 
|  | else if (small_const_nbits(start + nbits)) | 
|  | *map &= ~GENMASK(start + nbits - 1, start); | 
|  | else if (__builtin_constant_p(start & BITMAP_MEM_MASK) && | 
|  | IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) && | 
|  | __builtin_constant_p(nbits & BITMAP_MEM_MASK) && | 
|  | IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) | 
|  | memset((char *)map + start / 8, 0, nbits / 8); | 
|  | else | 
|  | __bitmap_clear(map, start, nbits); | 
|  | } | 
|  |  | 
|  | static inline void bitmap_shift_right(unsigned long *dst, const unsigned long *src, | 
|  | unsigned int shift, unsigned int nbits) | 
|  | { | 
|  | if (small_const_nbits(nbits)) | 
|  | *dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift; | 
|  | else | 
|  | __bitmap_shift_right(dst, src, shift, nbits); | 
|  | } | 
|  |  | 
|  | static inline void bitmap_shift_left(unsigned long *dst, const unsigned long *src, | 
|  | unsigned int shift, unsigned int nbits) | 
|  | { | 
|  | if (small_const_nbits(nbits)) | 
|  | *dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits); | 
|  | else | 
|  | __bitmap_shift_left(dst, src, shift, nbits); | 
|  | } | 
|  |  | 
|  | static inline void bitmap_replace(unsigned long *dst, | 
|  | const unsigned long *old, | 
|  | const unsigned long *new, | 
|  | const unsigned long *mask, | 
|  | unsigned int nbits) | 
|  | { | 
|  | if (small_const_nbits(nbits)) | 
|  | *dst = (*old & ~(*mask)) | (*new & *mask); | 
|  | else | 
|  | __bitmap_replace(dst, old, new, mask, nbits); | 
|  | } | 
|  |  | 
|  | static inline void bitmap_next_set_region(unsigned long *bitmap, | 
|  | unsigned int *rs, unsigned int *re, | 
|  | unsigned int end) | 
|  | { | 
|  | *rs = find_next_bit(bitmap, end, *rs); | 
|  | *re = find_next_zero_bit(bitmap, end, *rs + 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap. | 
|  | * @n: u64 value | 
|  | * | 
|  | * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit | 
|  | * integers in 32-bit environment, and 64-bit integers in 64-bit one. | 
|  | * | 
|  | * There are four combinations of endianness and length of the word in linux | 
|  | * ABIs: LE64, BE64, LE32 and BE32. | 
|  | * | 
|  | * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in | 
|  | * bitmaps and therefore don't require any special handling. | 
|  | * | 
|  | * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory | 
|  | * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the | 
|  | * other hand is represented as an array of 32-bit words and the position of | 
|  | * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that | 
|  | * word.  For example, bit #42 is located at 10th position of 2nd word. | 
|  | * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit | 
|  | * values in memory as it usually does. But for BE we need to swap hi and lo | 
|  | * words manually. | 
|  | * | 
|  | * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and | 
|  | * lo parts of u64.  For LE32 it does nothing, and for BE environment it swaps | 
|  | * hi and lo words, as is expected by bitmap. | 
|  | */ | 
|  | #if __BITS_PER_LONG == 64 | 
|  | #define BITMAP_FROM_U64(n) (n) | 
|  | #else | 
|  | #define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \ | 
|  | ((unsigned long) ((u64)(n) >> 32)) | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * bitmap_from_u64 - Check and swap words within u64. | 
|  | *  @mask: source bitmap | 
|  | *  @dst:  destination bitmap | 
|  | * | 
|  | * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]`` | 
|  | * to read u64 mask, we will get the wrong word. | 
|  | * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits, | 
|  | * but we expect the lower 32-bits of u64. | 
|  | */ | 
|  | static inline void bitmap_from_u64(unsigned long *dst, u64 mask) | 
|  | { | 
|  | bitmap_from_arr64(dst, &mask, 64); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bitmap_get_value8 - get an 8-bit value within a memory region | 
|  | * @map: address to the bitmap memory region | 
|  | * @start: bit offset of the 8-bit value; must be a multiple of 8 | 
|  | * | 
|  | * Returns the 8-bit value located at the @start bit offset within the @src | 
|  | * memory region. | 
|  | */ | 
|  | static inline unsigned long bitmap_get_value8(const unsigned long *map, | 
|  | unsigned long start) | 
|  | { | 
|  | const size_t index = BIT_WORD(start); | 
|  | const unsigned long offset = start % BITS_PER_LONG; | 
|  |  | 
|  | return (map[index] >> offset) & 0xFF; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bitmap_set_value8 - set an 8-bit value within a memory region | 
|  | * @map: address to the bitmap memory region | 
|  | * @value: the 8-bit value; values wider than 8 bits may clobber bitmap | 
|  | * @start: bit offset of the 8-bit value; must be a multiple of 8 | 
|  | */ | 
|  | static inline void bitmap_set_value8(unsigned long *map, unsigned long value, | 
|  | unsigned long start) | 
|  | { | 
|  | const size_t index = BIT_WORD(start); | 
|  | const unsigned long offset = start % BITS_PER_LONG; | 
|  |  | 
|  | map[index] &= ~(0xFFUL << offset); | 
|  | map[index] |= value << offset; | 
|  | } | 
|  |  | 
|  | #endif /* __ASSEMBLY__ */ | 
|  |  | 
|  | #endif /* __LINUX_BITMAP_H */ |