| // SPDX-License-Identifier: GPL-2.0-or-later | 
 | /* LRW: as defined by Cyril Guyot in | 
 |  *	http://grouper.ieee.org/groups/1619/email/pdf00017.pdf | 
 |  * | 
 |  * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org> | 
 |  * | 
 |  * Based on ecb.c | 
 |  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> | 
 |  */ | 
 | /* This implementation is checked against the test vectors in the above | 
 |  * document and by a test vector provided by Ken Buchanan at | 
 |  * https://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html | 
 |  * | 
 |  * The test vectors are included in the testing module tcrypt.[ch] */ | 
 |  | 
 | #include <crypto/internal/skcipher.h> | 
 | #include <crypto/scatterwalk.h> | 
 | #include <linux/err.h> | 
 | #include <linux/init.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/scatterlist.h> | 
 | #include <linux/slab.h> | 
 |  | 
 | #include <crypto/b128ops.h> | 
 | #include <crypto/gf128mul.h> | 
 |  | 
 | #define LRW_BLOCK_SIZE 16 | 
 |  | 
 | struct lrw_tfm_ctx { | 
 | 	struct crypto_skcipher *child; | 
 |  | 
 | 	/* | 
 | 	 * optimizes multiplying a random (non incrementing, as at the | 
 | 	 * start of a new sector) value with key2, we could also have | 
 | 	 * used 4k optimization tables or no optimization at all. In the | 
 | 	 * latter case we would have to store key2 here | 
 | 	 */ | 
 | 	struct gf128mul_64k *table; | 
 |  | 
 | 	/* | 
 | 	 * stores: | 
 | 	 *  key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 }, | 
 | 	 *  key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 } | 
 | 	 *  key2*{ 0,0,...1,1,1,1,1 }, etc | 
 | 	 * needed for optimized multiplication of incrementing values | 
 | 	 * with key2 | 
 | 	 */ | 
 | 	be128 mulinc[128]; | 
 | }; | 
 |  | 
 | struct lrw_request_ctx { | 
 | 	be128 t; | 
 | 	struct skcipher_request subreq; | 
 | }; | 
 |  | 
 | static inline void lrw_setbit128_bbe(void *b, int bit) | 
 | { | 
 | 	__set_bit(bit ^ (0x80 - | 
 | #ifdef __BIG_ENDIAN | 
 | 			 BITS_PER_LONG | 
 | #else | 
 | 			 BITS_PER_BYTE | 
 | #endif | 
 | 			), b); | 
 | } | 
 |  | 
 | static int lrw_setkey(struct crypto_skcipher *parent, const u8 *key, | 
 | 		      unsigned int keylen) | 
 | { | 
 | 	struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(parent); | 
 | 	struct crypto_skcipher *child = ctx->child; | 
 | 	int err, bsize = LRW_BLOCK_SIZE; | 
 | 	const u8 *tweak = key + keylen - bsize; | 
 | 	be128 tmp = { 0 }; | 
 | 	int i; | 
 |  | 
 | 	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); | 
 | 	crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) & | 
 | 					 CRYPTO_TFM_REQ_MASK); | 
 | 	err = crypto_skcipher_setkey(child, key, keylen - bsize); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (ctx->table) | 
 | 		gf128mul_free_64k(ctx->table); | 
 |  | 
 | 	/* initialize multiplication table for Key2 */ | 
 | 	ctx->table = gf128mul_init_64k_bbe((be128 *)tweak); | 
 | 	if (!ctx->table) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* initialize optimization table */ | 
 | 	for (i = 0; i < 128; i++) { | 
 | 		lrw_setbit128_bbe(&tmp, i); | 
 | 		ctx->mulinc[i] = tmp; | 
 | 		gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns the number of trailing '1' bits in the words of the counter, which is | 
 |  * represented by 4 32-bit words, arranged from least to most significant. | 
 |  * At the same time, increments the counter by one. | 
 |  * | 
 |  * For example: | 
 |  * | 
 |  * u32 counter[4] = { 0xFFFFFFFF, 0x1, 0x0, 0x0 }; | 
 |  * int i = lrw_next_index(&counter); | 
 |  * // i == 33, counter == { 0x0, 0x2, 0x0, 0x0 } | 
 |  */ | 
 | static int lrw_next_index(u32 *counter) | 
 | { | 
 | 	int i, res = 0; | 
 |  | 
 | 	for (i = 0; i < 4; i++) { | 
 | 		if (counter[i] + 1 != 0) | 
 | 			return res + ffz(counter[i]++); | 
 |  | 
 | 		counter[i] = 0; | 
 | 		res += 32; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we get here, then x == 128 and we are incrementing the counter | 
 | 	 * from all ones to all zeros. This means we must return index 127, i.e. | 
 | 	 * the one corresponding to key2*{ 1,...,1 }. | 
 | 	 */ | 
 | 	return 127; | 
 | } | 
 |  | 
 | /* | 
 |  * We compute the tweak masks twice (both before and after the ECB encryption or | 
 |  * decryption) to avoid having to allocate a temporary buffer and/or make | 
 |  * mutliple calls to the 'ecb(..)' instance, which usually would be slower than | 
 |  * just doing the lrw_next_index() calls again. | 
 |  */ | 
 | static int lrw_xor_tweak(struct skcipher_request *req, bool second_pass) | 
 | { | 
 | 	const int bs = LRW_BLOCK_SIZE; | 
 | 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); | 
 | 	const struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); | 
 | 	struct lrw_request_ctx *rctx = skcipher_request_ctx(req); | 
 | 	be128 t = rctx->t; | 
 | 	struct skcipher_walk w; | 
 | 	__be32 *iv; | 
 | 	u32 counter[4]; | 
 | 	int err; | 
 |  | 
 | 	if (second_pass) { | 
 | 		req = &rctx->subreq; | 
 | 		/* set to our TFM to enforce correct alignment: */ | 
 | 		skcipher_request_set_tfm(req, tfm); | 
 | 	} | 
 |  | 
 | 	err = skcipher_walk_virt(&w, req, false); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	iv = (__be32 *)w.iv; | 
 | 	counter[0] = be32_to_cpu(iv[3]); | 
 | 	counter[1] = be32_to_cpu(iv[2]); | 
 | 	counter[2] = be32_to_cpu(iv[1]); | 
 | 	counter[3] = be32_to_cpu(iv[0]); | 
 |  | 
 | 	while (w.nbytes) { | 
 | 		unsigned int avail = w.nbytes; | 
 | 		be128 *wsrc; | 
 | 		be128 *wdst; | 
 |  | 
 | 		wsrc = w.src.virt.addr; | 
 | 		wdst = w.dst.virt.addr; | 
 |  | 
 | 		do { | 
 | 			be128_xor(wdst++, &t, wsrc++); | 
 |  | 
 | 			/* T <- I*Key2, using the optimization | 
 | 			 * discussed in the specification */ | 
 | 			be128_xor(&t, &t, | 
 | 				  &ctx->mulinc[lrw_next_index(counter)]); | 
 | 		} while ((avail -= bs) >= bs); | 
 |  | 
 | 		if (second_pass && w.nbytes == w.total) { | 
 | 			iv[0] = cpu_to_be32(counter[3]); | 
 | 			iv[1] = cpu_to_be32(counter[2]); | 
 | 			iv[2] = cpu_to_be32(counter[1]); | 
 | 			iv[3] = cpu_to_be32(counter[0]); | 
 | 		} | 
 |  | 
 | 		err = skcipher_walk_done(&w, avail); | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int lrw_xor_tweak_pre(struct skcipher_request *req) | 
 | { | 
 | 	return lrw_xor_tweak(req, false); | 
 | } | 
 |  | 
 | static int lrw_xor_tweak_post(struct skcipher_request *req) | 
 | { | 
 | 	return lrw_xor_tweak(req, true); | 
 | } | 
 |  | 
 | static void lrw_crypt_done(void *data, int err) | 
 | { | 
 | 	struct skcipher_request *req = data; | 
 |  | 
 | 	if (!err) { | 
 | 		struct lrw_request_ctx *rctx = skcipher_request_ctx(req); | 
 |  | 
 | 		rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; | 
 | 		err = lrw_xor_tweak_post(req); | 
 | 	} | 
 |  | 
 | 	skcipher_request_complete(req, err); | 
 | } | 
 |  | 
 | static void lrw_init_crypt(struct skcipher_request *req) | 
 | { | 
 | 	const struct lrw_tfm_ctx *ctx = | 
 | 		crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)); | 
 | 	struct lrw_request_ctx *rctx = skcipher_request_ctx(req); | 
 | 	struct skcipher_request *subreq = &rctx->subreq; | 
 |  | 
 | 	skcipher_request_set_tfm(subreq, ctx->child); | 
 | 	skcipher_request_set_callback(subreq, req->base.flags, lrw_crypt_done, | 
 | 				      req); | 
 | 	/* pass req->iv as IV (will be used by xor_tweak, ECB will ignore it) */ | 
 | 	skcipher_request_set_crypt(subreq, req->dst, req->dst, | 
 | 				   req->cryptlen, req->iv); | 
 |  | 
 | 	/* calculate first value of T */ | 
 | 	memcpy(&rctx->t, req->iv, sizeof(rctx->t)); | 
 |  | 
 | 	/* T <- I*Key2 */ | 
 | 	gf128mul_64k_bbe(&rctx->t, ctx->table); | 
 | } | 
 |  | 
 | static int lrw_encrypt(struct skcipher_request *req) | 
 | { | 
 | 	struct lrw_request_ctx *rctx = skcipher_request_ctx(req); | 
 | 	struct skcipher_request *subreq = &rctx->subreq; | 
 |  | 
 | 	lrw_init_crypt(req); | 
 | 	return lrw_xor_tweak_pre(req) ?: | 
 | 		crypto_skcipher_encrypt(subreq) ?: | 
 | 		lrw_xor_tweak_post(req); | 
 | } | 
 |  | 
 | static int lrw_decrypt(struct skcipher_request *req) | 
 | { | 
 | 	struct lrw_request_ctx *rctx = skcipher_request_ctx(req); | 
 | 	struct skcipher_request *subreq = &rctx->subreq; | 
 |  | 
 | 	lrw_init_crypt(req); | 
 | 	return lrw_xor_tweak_pre(req) ?: | 
 | 		crypto_skcipher_decrypt(subreq) ?: | 
 | 		lrw_xor_tweak_post(req); | 
 | } | 
 |  | 
 | static int lrw_init_tfm(struct crypto_skcipher *tfm) | 
 | { | 
 | 	struct skcipher_instance *inst = skcipher_alg_instance(tfm); | 
 | 	struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst); | 
 | 	struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); | 
 | 	struct crypto_skcipher *cipher; | 
 |  | 
 | 	cipher = crypto_spawn_skcipher(spawn); | 
 | 	if (IS_ERR(cipher)) | 
 | 		return PTR_ERR(cipher); | 
 |  | 
 | 	ctx->child = cipher; | 
 |  | 
 | 	crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) + | 
 | 					 sizeof(struct lrw_request_ctx)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void lrw_exit_tfm(struct crypto_skcipher *tfm) | 
 | { | 
 | 	struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); | 
 |  | 
 | 	if (ctx->table) | 
 | 		gf128mul_free_64k(ctx->table); | 
 | 	crypto_free_skcipher(ctx->child); | 
 | } | 
 |  | 
 | static void lrw_free_instance(struct skcipher_instance *inst) | 
 | { | 
 | 	crypto_drop_skcipher(skcipher_instance_ctx(inst)); | 
 | 	kfree(inst); | 
 | } | 
 |  | 
 | static int lrw_create(struct crypto_template *tmpl, struct rtattr **tb) | 
 | { | 
 | 	struct crypto_skcipher_spawn *spawn; | 
 | 	struct skcipher_instance *inst; | 
 | 	struct skcipher_alg *alg; | 
 | 	const char *cipher_name; | 
 | 	char ecb_name[CRYPTO_MAX_ALG_NAME]; | 
 | 	u32 mask; | 
 | 	int err; | 
 |  | 
 | 	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	cipher_name = crypto_attr_alg_name(tb[1]); | 
 | 	if (IS_ERR(cipher_name)) | 
 | 		return PTR_ERR(cipher_name); | 
 |  | 
 | 	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL); | 
 | 	if (!inst) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	spawn = skcipher_instance_ctx(inst); | 
 |  | 
 | 	err = crypto_grab_skcipher(spawn, skcipher_crypto_instance(inst), | 
 | 				   cipher_name, 0, mask); | 
 | 	if (err == -ENOENT) { | 
 | 		err = -ENAMETOOLONG; | 
 | 		if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)", | 
 | 			     cipher_name) >= CRYPTO_MAX_ALG_NAME) | 
 | 			goto err_free_inst; | 
 |  | 
 | 		err = crypto_grab_skcipher(spawn, | 
 | 					   skcipher_crypto_instance(inst), | 
 | 					   ecb_name, 0, mask); | 
 | 	} | 
 |  | 
 | 	if (err) | 
 | 		goto err_free_inst; | 
 |  | 
 | 	alg = crypto_skcipher_spawn_alg(spawn); | 
 |  | 
 | 	err = -EINVAL; | 
 | 	if (alg->base.cra_blocksize != LRW_BLOCK_SIZE) | 
 | 		goto err_free_inst; | 
 |  | 
 | 	if (crypto_skcipher_alg_ivsize(alg)) | 
 | 		goto err_free_inst; | 
 |  | 
 | 	err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw", | 
 | 				  &alg->base); | 
 | 	if (err) | 
 | 		goto err_free_inst; | 
 |  | 
 | 	err = -EINVAL; | 
 | 	cipher_name = alg->base.cra_name; | 
 |  | 
 | 	/* Alas we screwed up the naming so we have to mangle the | 
 | 	 * cipher name. | 
 | 	 */ | 
 | 	if (!strncmp(cipher_name, "ecb(", 4)) { | 
 | 		int len; | 
 |  | 
 | 		len = strscpy(ecb_name, cipher_name + 4, sizeof(ecb_name)); | 
 | 		if (len < 2) | 
 | 			goto err_free_inst; | 
 |  | 
 | 		if (ecb_name[len - 1] != ')') | 
 | 			goto err_free_inst; | 
 |  | 
 | 		ecb_name[len - 1] = 0; | 
 |  | 
 | 		if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, | 
 | 			     "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) { | 
 | 			err = -ENAMETOOLONG; | 
 | 			goto err_free_inst; | 
 | 		} | 
 | 	} else | 
 | 		goto err_free_inst; | 
 |  | 
 | 	inst->alg.base.cra_priority = alg->base.cra_priority; | 
 | 	inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE; | 
 | 	inst->alg.base.cra_alignmask = alg->base.cra_alignmask | | 
 | 				       (__alignof__(be128) - 1); | 
 |  | 
 | 	inst->alg.ivsize = LRW_BLOCK_SIZE; | 
 | 	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) + | 
 | 				LRW_BLOCK_SIZE; | 
 | 	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) + | 
 | 				LRW_BLOCK_SIZE; | 
 |  | 
 | 	inst->alg.base.cra_ctxsize = sizeof(struct lrw_tfm_ctx); | 
 |  | 
 | 	inst->alg.init = lrw_init_tfm; | 
 | 	inst->alg.exit = lrw_exit_tfm; | 
 |  | 
 | 	inst->alg.setkey = lrw_setkey; | 
 | 	inst->alg.encrypt = lrw_encrypt; | 
 | 	inst->alg.decrypt = lrw_decrypt; | 
 |  | 
 | 	inst->free = lrw_free_instance; | 
 |  | 
 | 	err = skcipher_register_instance(tmpl, inst); | 
 | 	if (err) { | 
 | err_free_inst: | 
 | 		lrw_free_instance(inst); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | static struct crypto_template lrw_tmpl = { | 
 | 	.name = "lrw", | 
 | 	.create = lrw_create, | 
 | 	.module = THIS_MODULE, | 
 | }; | 
 |  | 
 | static int __init lrw_module_init(void) | 
 | { | 
 | 	return crypto_register_template(&lrw_tmpl); | 
 | } | 
 |  | 
 | static void __exit lrw_module_exit(void) | 
 | { | 
 | 	crypto_unregister_template(&lrw_tmpl); | 
 | } | 
 |  | 
 | subsys_initcall(lrw_module_init); | 
 | module_exit(lrw_module_exit); | 
 |  | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_DESCRIPTION("LRW block cipher mode"); | 
 | MODULE_ALIAS_CRYPTO("lrw"); | 
 | MODULE_SOFTDEP("pre: ecb"); |