|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2008 Oracle.  All rights reserved. | 
|  | */ | 
|  |  | 
|  | #include <linux/sched.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/list_sort.h> | 
|  | #include <linux/iversion.h> | 
|  | #include "misc.h" | 
|  | #include "ctree.h" | 
|  | #include "tree-log.h" | 
|  | #include "disk-io.h" | 
|  | #include "locking.h" | 
|  | #include "print-tree.h" | 
|  | #include "backref.h" | 
|  | #include "compression.h" | 
|  | #include "qgroup.h" | 
|  | #include "block-group.h" | 
|  | #include "space-info.h" | 
|  | #include "zoned.h" | 
|  | #include "inode-item.h" | 
|  | #include "fs.h" | 
|  | #include "accessors.h" | 
|  | #include "extent-tree.h" | 
|  | #include "root-tree.h" | 
|  | #include "dir-item.h" | 
|  | #include "file-item.h" | 
|  | #include "file.h" | 
|  | #include "orphan.h" | 
|  | #include "tree-checker.h" | 
|  |  | 
|  | #define MAX_CONFLICT_INODES 10 | 
|  |  | 
|  | /* magic values for the inode_only field in btrfs_log_inode: | 
|  | * | 
|  | * LOG_INODE_ALL means to log everything | 
|  | * LOG_INODE_EXISTS means to log just enough to recreate the inode | 
|  | * during log replay | 
|  | */ | 
|  | enum { | 
|  | LOG_INODE_ALL, | 
|  | LOG_INODE_EXISTS, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * directory trouble cases | 
|  | * | 
|  | * 1) on rename or unlink, if the inode being unlinked isn't in the fsync | 
|  | * log, we must force a full commit before doing an fsync of the directory | 
|  | * where the unlink was done. | 
|  | * ---> record transid of last unlink/rename per directory | 
|  | * | 
|  | * mkdir foo/some_dir | 
|  | * normal commit | 
|  | * rename foo/some_dir foo2/some_dir | 
|  | * mkdir foo/some_dir | 
|  | * fsync foo/some_dir/some_file | 
|  | * | 
|  | * The fsync above will unlink the original some_dir without recording | 
|  | * it in its new location (foo2).  After a crash, some_dir will be gone | 
|  | * unless the fsync of some_file forces a full commit | 
|  | * | 
|  | * 2) we must log any new names for any file or dir that is in the fsync | 
|  | * log. ---> check inode while renaming/linking. | 
|  | * | 
|  | * 2a) we must log any new names for any file or dir during rename | 
|  | * when the directory they are being removed from was logged. | 
|  | * ---> check inode and old parent dir during rename | 
|  | * | 
|  | *  2a is actually the more important variant.  With the extra logging | 
|  | *  a crash might unlink the old name without recreating the new one | 
|  | * | 
|  | * 3) after a crash, we must go through any directories with a link count | 
|  | * of zero and redo the rm -rf | 
|  | * | 
|  | * mkdir f1/foo | 
|  | * normal commit | 
|  | * rm -rf f1/foo | 
|  | * fsync(f1) | 
|  | * | 
|  | * The directory f1 was fully removed from the FS, but fsync was never | 
|  | * called on f1, only its parent dir.  After a crash the rm -rf must | 
|  | * be replayed.  This must be able to recurse down the entire | 
|  | * directory tree.  The inode link count fixup code takes care of the | 
|  | * ugly details. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * stages for the tree walking.  The first | 
|  | * stage (0) is to only pin down the blocks we find | 
|  | * the second stage (1) is to make sure that all the inodes | 
|  | * we find in the log are created in the subvolume. | 
|  | * | 
|  | * The last stage is to deal with directories and links and extents | 
|  | * and all the other fun semantics | 
|  | */ | 
|  | enum { | 
|  | LOG_WALK_PIN_ONLY, | 
|  | LOG_WALK_REPLAY_INODES, | 
|  | LOG_WALK_REPLAY_DIR_INDEX, | 
|  | LOG_WALK_REPLAY_ALL, | 
|  | }; | 
|  |  | 
|  | static int btrfs_log_inode(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | int inode_only, | 
|  | struct btrfs_log_ctx *ctx); | 
|  | static int link_to_fixup_dir(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, u64 objectid); | 
|  | static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_root *log, | 
|  | struct btrfs_path *path, | 
|  | u64 dirid, int del_all); | 
|  | static void wait_log_commit(struct btrfs_root *root, int transid); | 
|  |  | 
|  | /* | 
|  | * tree logging is a special write ahead log used to make sure that | 
|  | * fsyncs and O_SYNCs can happen without doing full tree commits. | 
|  | * | 
|  | * Full tree commits are expensive because they require commonly | 
|  | * modified blocks to be recowed, creating many dirty pages in the | 
|  | * extent tree an 4x-6x higher write load than ext3. | 
|  | * | 
|  | * Instead of doing a tree commit on every fsync, we use the | 
|  | * key ranges and transaction ids to find items for a given file or directory | 
|  | * that have changed in this transaction.  Those items are copied into | 
|  | * a special tree (one per subvolume root), that tree is written to disk | 
|  | * and then the fsync is considered complete. | 
|  | * | 
|  | * After a crash, items are copied out of the log-tree back into the | 
|  | * subvolume tree.  Any file data extents found are recorded in the extent | 
|  | * allocation tree, and the log-tree freed. | 
|  | * | 
|  | * The log tree is read three times, once to pin down all the extents it is | 
|  | * using in ram and once, once to create all the inodes logged in the tree | 
|  | * and once to do all the other items. | 
|  | */ | 
|  |  | 
|  | static struct inode *btrfs_iget_logging(u64 objectid, struct btrfs_root *root) | 
|  | { | 
|  | unsigned int nofs_flag; | 
|  | struct inode *inode; | 
|  |  | 
|  | /* | 
|  | * We're holding a transaction handle whether we are logging or | 
|  | * replaying a log tree, so we must make sure NOFS semantics apply | 
|  | * because btrfs_alloc_inode() may be triggered and it uses GFP_KERNEL | 
|  | * to allocate an inode, which can recurse back into the filesystem and | 
|  | * attempt a transaction commit, resulting in a deadlock. | 
|  | */ | 
|  | nofs_flag = memalloc_nofs_save(); | 
|  | inode = btrfs_iget(root->fs_info->sb, objectid, root); | 
|  | memalloc_nofs_restore(nofs_flag); | 
|  |  | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * start a sub transaction and setup the log tree | 
|  | * this increments the log tree writer count to make the people | 
|  | * syncing the tree wait for us to finish | 
|  | */ | 
|  | static int start_log_trans(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_root *tree_root = fs_info->tree_root; | 
|  | const bool zoned = btrfs_is_zoned(fs_info); | 
|  | int ret = 0; | 
|  | bool created = false; | 
|  |  | 
|  | /* | 
|  | * First check if the log root tree was already created. If not, create | 
|  | * it before locking the root's log_mutex, just to keep lockdep happy. | 
|  | */ | 
|  | if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) { | 
|  | mutex_lock(&tree_root->log_mutex); | 
|  | if (!fs_info->log_root_tree) { | 
|  | ret = btrfs_init_log_root_tree(trans, fs_info); | 
|  | if (!ret) { | 
|  | set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state); | 
|  | created = true; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&tree_root->log_mutex); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | mutex_lock(&root->log_mutex); | 
|  |  | 
|  | again: | 
|  | if (root->log_root) { | 
|  | int index = (root->log_transid + 1) % 2; | 
|  |  | 
|  | if (btrfs_need_log_full_commit(trans)) { | 
|  | ret = BTRFS_LOG_FORCE_COMMIT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (zoned && atomic_read(&root->log_commit[index])) { | 
|  | wait_log_commit(root, root->log_transid - 1); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | if (!root->log_start_pid) { | 
|  | clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); | 
|  | root->log_start_pid = current->pid; | 
|  | } else if (root->log_start_pid != current->pid) { | 
|  | set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * This means fs_info->log_root_tree was already created | 
|  | * for some other FS trees. Do the full commit not to mix | 
|  | * nodes from multiple log transactions to do sequential | 
|  | * writing. | 
|  | */ | 
|  | if (zoned && !created) { | 
|  | ret = BTRFS_LOG_FORCE_COMMIT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = btrfs_add_log_tree(trans, root); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); | 
|  | clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); | 
|  | root->log_start_pid = current->pid; | 
|  | } | 
|  |  | 
|  | atomic_inc(&root->log_writers); | 
|  | if (!ctx->logging_new_name) { | 
|  | int index = root->log_transid % 2; | 
|  | list_add_tail(&ctx->list, &root->log_ctxs[index]); | 
|  | ctx->log_transid = root->log_transid; | 
|  | } | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&root->log_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * returns 0 if there was a log transaction running and we were able | 
|  | * to join, or returns -ENOENT if there were not transactions | 
|  | * in progress | 
|  | */ | 
|  | static int join_running_log_trans(struct btrfs_root *root) | 
|  | { | 
|  | const bool zoned = btrfs_is_zoned(root->fs_info); | 
|  | int ret = -ENOENT; | 
|  |  | 
|  | if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state)) | 
|  | return ret; | 
|  |  | 
|  | mutex_lock(&root->log_mutex); | 
|  | again: | 
|  | if (root->log_root) { | 
|  | int index = (root->log_transid + 1) % 2; | 
|  |  | 
|  | ret = 0; | 
|  | if (zoned && atomic_read(&root->log_commit[index])) { | 
|  | wait_log_commit(root, root->log_transid - 1); | 
|  | goto again; | 
|  | } | 
|  | atomic_inc(&root->log_writers); | 
|  | } | 
|  | mutex_unlock(&root->log_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This either makes the current running log transaction wait | 
|  | * until you call btrfs_end_log_trans() or it makes any future | 
|  | * log transactions wait until you call btrfs_end_log_trans() | 
|  | */ | 
|  | void btrfs_pin_log_trans(struct btrfs_root *root) | 
|  | { | 
|  | atomic_inc(&root->log_writers); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * indicate we're done making changes to the log tree | 
|  | * and wake up anyone waiting to do a sync | 
|  | */ | 
|  | void btrfs_end_log_trans(struct btrfs_root *root) | 
|  | { | 
|  | if (atomic_dec_and_test(&root->log_writers)) { | 
|  | /* atomic_dec_and_test implies a barrier */ | 
|  | cond_wake_up_nomb(&root->log_writer_wait); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the walk control struct is used to pass state down the chain when | 
|  | * processing the log tree.  The stage field tells us which part | 
|  | * of the log tree processing we are currently doing.  The others | 
|  | * are state fields used for that specific part | 
|  | */ | 
|  | struct walk_control { | 
|  | /* should we free the extent on disk when done?  This is used | 
|  | * at transaction commit time while freeing a log tree | 
|  | */ | 
|  | int free; | 
|  |  | 
|  | /* pin only walk, we record which extents on disk belong to the | 
|  | * log trees | 
|  | */ | 
|  | int pin; | 
|  |  | 
|  | /* what stage of the replay code we're currently in */ | 
|  | int stage; | 
|  |  | 
|  | /* | 
|  | * Ignore any items from the inode currently being processed. Needs | 
|  | * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in | 
|  | * the LOG_WALK_REPLAY_INODES stage. | 
|  | */ | 
|  | bool ignore_cur_inode; | 
|  |  | 
|  | /* the root we are currently replaying */ | 
|  | struct btrfs_root *replay_dest; | 
|  |  | 
|  | /* the trans handle for the current replay */ | 
|  | struct btrfs_trans_handle *trans; | 
|  |  | 
|  | /* the function that gets used to process blocks we find in the | 
|  | * tree.  Note the extent_buffer might not be up to date when it is | 
|  | * passed in, and it must be checked or read if you need the data | 
|  | * inside it | 
|  | */ | 
|  | int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, | 
|  | struct walk_control *wc, u64 gen, int level); | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * process_func used to pin down extents, write them or wait on them | 
|  | */ | 
|  | static int process_one_buffer(struct btrfs_root *log, | 
|  | struct extent_buffer *eb, | 
|  | struct walk_control *wc, u64 gen, int level) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = log->fs_info; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * If this fs is mixed then we need to be able to process the leaves to | 
|  | * pin down any logged extents, so we have to read the block. | 
|  | */ | 
|  | if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { | 
|  | struct btrfs_tree_parent_check check = { | 
|  | .level = level, | 
|  | .transid = gen | 
|  | }; | 
|  |  | 
|  | ret = btrfs_read_extent_buffer(eb, &check); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (wc->pin) { | 
|  | ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start, | 
|  | eb->len); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (btrfs_buffer_uptodate(eb, gen, 0) && | 
|  | btrfs_header_level(eb) == 0) | 
|  | ret = btrfs_exclude_logged_extents(eb); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Item overwrite used by replay and tree logging.  eb, slot and key all refer | 
|  | * to the src data we are copying out. | 
|  | * | 
|  | * root is the tree we are copying into, and path is a scratch | 
|  | * path for use in this function (it should be released on entry and | 
|  | * will be released on exit). | 
|  | * | 
|  | * If the key is already in the destination tree the existing item is | 
|  | * overwritten.  If the existing item isn't big enough, it is extended. | 
|  | * If it is too large, it is truncated. | 
|  | * | 
|  | * If the key isn't in the destination yet, a new item is inserted. | 
|  | */ | 
|  | static int overwrite_item(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct extent_buffer *eb, int slot, | 
|  | struct btrfs_key *key) | 
|  | { | 
|  | int ret; | 
|  | u32 item_size; | 
|  | u64 saved_i_size = 0; | 
|  | int save_old_i_size = 0; | 
|  | unsigned long src_ptr; | 
|  | unsigned long dst_ptr; | 
|  | bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; | 
|  |  | 
|  | /* | 
|  | * This is only used during log replay, so the root is always from a | 
|  | * fs/subvolume tree. In case we ever need to support a log root, then | 
|  | * we'll have to clone the leaf in the path, release the path and use | 
|  | * the leaf before writing into the log tree. See the comments at | 
|  | * copy_items() for more details. | 
|  | */ | 
|  | ASSERT(root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID); | 
|  |  | 
|  | item_size = btrfs_item_size(eb, slot); | 
|  | src_ptr = btrfs_item_ptr_offset(eb, slot); | 
|  |  | 
|  | /* Look for the key in the destination tree. */ | 
|  | ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (ret == 0) { | 
|  | char *src_copy; | 
|  | char *dst_copy; | 
|  | u32 dst_size = btrfs_item_size(path->nodes[0], | 
|  | path->slots[0]); | 
|  | if (dst_size != item_size) | 
|  | goto insert; | 
|  |  | 
|  | if (item_size == 0) { | 
|  | btrfs_release_path(path); | 
|  | return 0; | 
|  | } | 
|  | dst_copy = kmalloc(item_size, GFP_NOFS); | 
|  | src_copy = kmalloc(item_size, GFP_NOFS); | 
|  | if (!dst_copy || !src_copy) { | 
|  | btrfs_release_path(path); | 
|  | kfree(dst_copy); | 
|  | kfree(src_copy); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | read_extent_buffer(eb, src_copy, src_ptr, item_size); | 
|  |  | 
|  | dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | 
|  | read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, | 
|  | item_size); | 
|  | ret = memcmp(dst_copy, src_copy, item_size); | 
|  |  | 
|  | kfree(dst_copy); | 
|  | kfree(src_copy); | 
|  | /* | 
|  | * they have the same contents, just return, this saves | 
|  | * us from cowing blocks in the destination tree and doing | 
|  | * extra writes that may not have been done by a previous | 
|  | * sync | 
|  | */ | 
|  | if (ret == 0) { | 
|  | btrfs_release_path(path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to load the old nbytes into the inode so when we | 
|  | * replay the extents we've logged we get the right nbytes. | 
|  | */ | 
|  | if (inode_item) { | 
|  | struct btrfs_inode_item *item; | 
|  | u64 nbytes; | 
|  | u32 mode; | 
|  |  | 
|  | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_inode_item); | 
|  | nbytes = btrfs_inode_nbytes(path->nodes[0], item); | 
|  | item = btrfs_item_ptr(eb, slot, | 
|  | struct btrfs_inode_item); | 
|  | btrfs_set_inode_nbytes(eb, item, nbytes); | 
|  |  | 
|  | /* | 
|  | * If this is a directory we need to reset the i_size to | 
|  | * 0 so that we can set it up properly when replaying | 
|  | * the rest of the items in this log. | 
|  | */ | 
|  | mode = btrfs_inode_mode(eb, item); | 
|  | if (S_ISDIR(mode)) | 
|  | btrfs_set_inode_size(eb, item, 0); | 
|  | } | 
|  | } else if (inode_item) { | 
|  | struct btrfs_inode_item *item; | 
|  | u32 mode; | 
|  |  | 
|  | /* | 
|  | * New inode, set nbytes to 0 so that the nbytes comes out | 
|  | * properly when we replay the extents. | 
|  | */ | 
|  | item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); | 
|  | btrfs_set_inode_nbytes(eb, item, 0); | 
|  |  | 
|  | /* | 
|  | * If this is a directory we need to reset the i_size to 0 so | 
|  | * that we can set it up properly when replaying the rest of | 
|  | * the items in this log. | 
|  | */ | 
|  | mode = btrfs_inode_mode(eb, item); | 
|  | if (S_ISDIR(mode)) | 
|  | btrfs_set_inode_size(eb, item, 0); | 
|  | } | 
|  | insert: | 
|  | btrfs_release_path(path); | 
|  | /* try to insert the key into the destination tree */ | 
|  | path->skip_release_on_error = 1; | 
|  | ret = btrfs_insert_empty_item(trans, root, path, | 
|  | key, item_size); | 
|  | path->skip_release_on_error = 0; | 
|  |  | 
|  | /* make sure any existing item is the correct size */ | 
|  | if (ret == -EEXIST || ret == -EOVERFLOW) { | 
|  | u32 found_size; | 
|  | found_size = btrfs_item_size(path->nodes[0], | 
|  | path->slots[0]); | 
|  | if (found_size > item_size) | 
|  | btrfs_truncate_item(trans, path, item_size, 1); | 
|  | else if (found_size < item_size) | 
|  | btrfs_extend_item(trans, path, item_size - found_size); | 
|  | } else if (ret) { | 
|  | return ret; | 
|  | } | 
|  | dst_ptr = btrfs_item_ptr_offset(path->nodes[0], | 
|  | path->slots[0]); | 
|  |  | 
|  | /* don't overwrite an existing inode if the generation number | 
|  | * was logged as zero.  This is done when the tree logging code | 
|  | * is just logging an inode to make sure it exists after recovery. | 
|  | * | 
|  | * Also, don't overwrite i_size on directories during replay. | 
|  | * log replay inserts and removes directory items based on the | 
|  | * state of the tree found in the subvolume, and i_size is modified | 
|  | * as it goes | 
|  | */ | 
|  | if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { | 
|  | struct btrfs_inode_item *src_item; | 
|  | struct btrfs_inode_item *dst_item; | 
|  |  | 
|  | src_item = (struct btrfs_inode_item *)src_ptr; | 
|  | dst_item = (struct btrfs_inode_item *)dst_ptr; | 
|  |  | 
|  | if (btrfs_inode_generation(eb, src_item) == 0) { | 
|  | struct extent_buffer *dst_eb = path->nodes[0]; | 
|  | const u64 ino_size = btrfs_inode_size(eb, src_item); | 
|  |  | 
|  | /* | 
|  | * For regular files an ino_size == 0 is used only when | 
|  | * logging that an inode exists, as part of a directory | 
|  | * fsync, and the inode wasn't fsynced before. In this | 
|  | * case don't set the size of the inode in the fs/subvol | 
|  | * tree, otherwise we would be throwing valid data away. | 
|  | */ | 
|  | if (S_ISREG(btrfs_inode_mode(eb, src_item)) && | 
|  | S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && | 
|  | ino_size != 0) | 
|  | btrfs_set_inode_size(dst_eb, dst_item, ino_size); | 
|  | goto no_copy; | 
|  | } | 
|  |  | 
|  | if (S_ISDIR(btrfs_inode_mode(eb, src_item)) && | 
|  | S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { | 
|  | save_old_i_size = 1; | 
|  | saved_i_size = btrfs_inode_size(path->nodes[0], | 
|  | dst_item); | 
|  | } | 
|  | } | 
|  |  | 
|  | copy_extent_buffer(path->nodes[0], eb, dst_ptr, | 
|  | src_ptr, item_size); | 
|  |  | 
|  | if (save_old_i_size) { | 
|  | struct btrfs_inode_item *dst_item; | 
|  | dst_item = (struct btrfs_inode_item *)dst_ptr; | 
|  | btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); | 
|  | } | 
|  |  | 
|  | /* make sure the generation is filled in */ | 
|  | if (key->type == BTRFS_INODE_ITEM_KEY) { | 
|  | struct btrfs_inode_item *dst_item; | 
|  | dst_item = (struct btrfs_inode_item *)dst_ptr; | 
|  | if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { | 
|  | btrfs_set_inode_generation(path->nodes[0], dst_item, | 
|  | trans->transid); | 
|  | } | 
|  | } | 
|  | no_copy: | 
|  | btrfs_mark_buffer_dirty(trans, path->nodes[0]); | 
|  | btrfs_release_path(path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len, | 
|  | struct fscrypt_str *name) | 
|  | { | 
|  | char *buf; | 
|  |  | 
|  | buf = kmalloc(len, GFP_NOFS); | 
|  | if (!buf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | read_extent_buffer(eb, buf, (unsigned long)start, len); | 
|  | name->name = buf; | 
|  | name->len = len; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * simple helper to read an inode off the disk from a given root | 
|  | * This can only be called for subvolume roots and not for the log | 
|  | */ | 
|  | static noinline struct inode *read_one_inode(struct btrfs_root *root, | 
|  | u64 objectid) | 
|  | { | 
|  | struct inode *inode; | 
|  |  | 
|  | inode = btrfs_iget_logging(objectid, root); | 
|  | if (IS_ERR(inode)) | 
|  | inode = NULL; | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | /* replays a single extent in 'eb' at 'slot' with 'key' into the | 
|  | * subvolume 'root'.  path is released on entry and should be released | 
|  | * on exit. | 
|  | * | 
|  | * extents in the log tree have not been allocated out of the extent | 
|  | * tree yet.  So, this completes the allocation, taking a reference | 
|  | * as required if the extent already exists or creating a new extent | 
|  | * if it isn't in the extent allocation tree yet. | 
|  | * | 
|  | * The extent is inserted into the file, dropping any existing extents | 
|  | * from the file that overlap the new one. | 
|  | */ | 
|  | static noinline int replay_one_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct extent_buffer *eb, int slot, | 
|  | struct btrfs_key *key) | 
|  | { | 
|  | struct btrfs_drop_extents_args drop_args = { 0 }; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | int found_type; | 
|  | u64 extent_end; | 
|  | u64 start = key->offset; | 
|  | u64 nbytes = 0; | 
|  | struct btrfs_file_extent_item *item; | 
|  | struct inode *inode = NULL; | 
|  | unsigned long size; | 
|  | int ret = 0; | 
|  |  | 
|  | item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); | 
|  | found_type = btrfs_file_extent_type(eb, item); | 
|  |  | 
|  | if (found_type == BTRFS_FILE_EXTENT_REG || | 
|  | found_type == BTRFS_FILE_EXTENT_PREALLOC) { | 
|  | nbytes = btrfs_file_extent_num_bytes(eb, item); | 
|  | extent_end = start + nbytes; | 
|  |  | 
|  | /* | 
|  | * We don't add to the inodes nbytes if we are prealloc or a | 
|  | * hole. | 
|  | */ | 
|  | if (btrfs_file_extent_disk_bytenr(eb, item) == 0) | 
|  | nbytes = 0; | 
|  | } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { | 
|  | size = btrfs_file_extent_ram_bytes(eb, item); | 
|  | nbytes = btrfs_file_extent_ram_bytes(eb, item); | 
|  | extent_end = ALIGN(start + size, | 
|  | fs_info->sectorsize); | 
|  | } else { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | inode = read_one_inode(root, key->objectid); | 
|  | if (!inode) { | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * first check to see if we already have this extent in the | 
|  | * file.  This must be done before the btrfs_drop_extents run | 
|  | * so we don't try to drop this extent. | 
|  | */ | 
|  | ret = btrfs_lookup_file_extent(trans, root, path, | 
|  | btrfs_ino(BTRFS_I(inode)), start, 0); | 
|  |  | 
|  | if (ret == 0 && | 
|  | (found_type == BTRFS_FILE_EXTENT_REG || | 
|  | found_type == BTRFS_FILE_EXTENT_PREALLOC)) { | 
|  | struct btrfs_file_extent_item cmp1; | 
|  | struct btrfs_file_extent_item cmp2; | 
|  | struct btrfs_file_extent_item *existing; | 
|  | struct extent_buffer *leaf; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | existing = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  |  | 
|  | read_extent_buffer(eb, &cmp1, (unsigned long)item, | 
|  | sizeof(cmp1)); | 
|  | read_extent_buffer(leaf, &cmp2, (unsigned long)existing, | 
|  | sizeof(cmp2)); | 
|  |  | 
|  | /* | 
|  | * we already have a pointer to this exact extent, | 
|  | * we don't have to do anything | 
|  | */ | 
|  | if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { | 
|  | btrfs_release_path(path); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* drop any overlapping extents */ | 
|  | drop_args.start = start; | 
|  | drop_args.end = extent_end; | 
|  | drop_args.drop_cache = true; | 
|  | ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (found_type == BTRFS_FILE_EXTENT_REG || | 
|  | found_type == BTRFS_FILE_EXTENT_PREALLOC) { | 
|  | u64 offset; | 
|  | unsigned long dest_offset; | 
|  | struct btrfs_key ins; | 
|  |  | 
|  | if (btrfs_file_extent_disk_bytenr(eb, item) == 0 && | 
|  | btrfs_fs_incompat(fs_info, NO_HOLES)) | 
|  | goto update_inode; | 
|  |  | 
|  | ret = btrfs_insert_empty_item(trans, root, path, key, | 
|  | sizeof(*item)); | 
|  | if (ret) | 
|  | goto out; | 
|  | dest_offset = btrfs_item_ptr_offset(path->nodes[0], | 
|  | path->slots[0]); | 
|  | copy_extent_buffer(path->nodes[0], eb, dest_offset, | 
|  | (unsigned long)item,  sizeof(*item)); | 
|  |  | 
|  | ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); | 
|  | ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); | 
|  | ins.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | offset = key->offset - btrfs_file_extent_offset(eb, item); | 
|  |  | 
|  | /* | 
|  | * Manually record dirty extent, as here we did a shallow | 
|  | * file extent item copy and skip normal backref update, | 
|  | * but modifying extent tree all by ourselves. | 
|  | * So need to manually record dirty extent for qgroup, | 
|  | * as the owner of the file extent changed from log tree | 
|  | * (doesn't affect qgroup) to fs/file tree(affects qgroup) | 
|  | */ | 
|  | ret = btrfs_qgroup_trace_extent(trans, | 
|  | btrfs_file_extent_disk_bytenr(eb, item), | 
|  | btrfs_file_extent_disk_num_bytes(eb, item)); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | if (ins.objectid > 0) { | 
|  | struct btrfs_ref ref = { 0 }; | 
|  | u64 csum_start; | 
|  | u64 csum_end; | 
|  | LIST_HEAD(ordered_sums); | 
|  |  | 
|  | /* | 
|  | * is this extent already allocated in the extent | 
|  | * allocation tree?  If so, just add a reference | 
|  | */ | 
|  | ret = btrfs_lookup_data_extent(fs_info, ins.objectid, | 
|  | ins.offset); | 
|  | if (ret < 0) { | 
|  | goto out; | 
|  | } else if (ret == 0) { | 
|  | btrfs_init_generic_ref(&ref, | 
|  | BTRFS_ADD_DELAYED_REF, | 
|  | ins.objectid, ins.offset, 0); | 
|  | btrfs_init_data_ref(&ref, | 
|  | root->root_key.objectid, | 
|  | key->objectid, offset, 0, false); | 
|  | ret = btrfs_inc_extent_ref(trans, &ref); | 
|  | if (ret) | 
|  | goto out; | 
|  | } else { | 
|  | /* | 
|  | * insert the extent pointer in the extent | 
|  | * allocation tree | 
|  | */ | 
|  | ret = btrfs_alloc_logged_file_extent(trans, | 
|  | root->root_key.objectid, | 
|  | key->objectid, offset, &ins); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | if (btrfs_file_extent_compression(eb, item)) { | 
|  | csum_start = ins.objectid; | 
|  | csum_end = csum_start + ins.offset; | 
|  | } else { | 
|  | csum_start = ins.objectid + | 
|  | btrfs_file_extent_offset(eb, item); | 
|  | csum_end = csum_start + | 
|  | btrfs_file_extent_num_bytes(eb, item); | 
|  | } | 
|  |  | 
|  | ret = btrfs_lookup_csums_list(root->log_root, | 
|  | csum_start, csum_end - 1, | 
|  | &ordered_sums, 0, false); | 
|  | if (ret) | 
|  | goto out; | 
|  | /* | 
|  | * Now delete all existing cums in the csum root that | 
|  | * cover our range. We do this because we can have an | 
|  | * extent that is completely referenced by one file | 
|  | * extent item and partially referenced by another | 
|  | * file extent item (like after using the clone or | 
|  | * extent_same ioctls). In this case if we end up doing | 
|  | * the replay of the one that partially references the | 
|  | * extent first, and we do not do the csum deletion | 
|  | * below, we can get 2 csum items in the csum tree that | 
|  | * overlap each other. For example, imagine our log has | 
|  | * the two following file extent items: | 
|  | * | 
|  | * key (257 EXTENT_DATA 409600) | 
|  | *     extent data disk byte 12845056 nr 102400 | 
|  | *     extent data offset 20480 nr 20480 ram 102400 | 
|  | * | 
|  | * key (257 EXTENT_DATA 819200) | 
|  | *     extent data disk byte 12845056 nr 102400 | 
|  | *     extent data offset 0 nr 102400 ram 102400 | 
|  | * | 
|  | * Where the second one fully references the 100K extent | 
|  | * that starts at disk byte 12845056, and the log tree | 
|  | * has a single csum item that covers the entire range | 
|  | * of the extent: | 
|  | * | 
|  | * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 | 
|  | * | 
|  | * After the first file extent item is replayed, the | 
|  | * csum tree gets the following csum item: | 
|  | * | 
|  | * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 | 
|  | * | 
|  | * Which covers the 20K sub-range starting at offset 20K | 
|  | * of our extent. Now when we replay the second file | 
|  | * extent item, if we do not delete existing csum items | 
|  | * that cover any of its blocks, we end up getting two | 
|  | * csum items in our csum tree that overlap each other: | 
|  | * | 
|  | * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 | 
|  | * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 | 
|  | * | 
|  | * Which is a problem, because after this anyone trying | 
|  | * to lookup up for the checksum of any block of our | 
|  | * extent starting at an offset of 40K or higher, will | 
|  | * end up looking at the second csum item only, which | 
|  | * does not contain the checksum for any block starting | 
|  | * at offset 40K or higher of our extent. | 
|  | */ | 
|  | while (!list_empty(&ordered_sums)) { | 
|  | struct btrfs_ordered_sum *sums; | 
|  | struct btrfs_root *csum_root; | 
|  |  | 
|  | sums = list_entry(ordered_sums.next, | 
|  | struct btrfs_ordered_sum, | 
|  | list); | 
|  | csum_root = btrfs_csum_root(fs_info, | 
|  | sums->logical); | 
|  | if (!ret) | 
|  | ret = btrfs_del_csums(trans, csum_root, | 
|  | sums->logical, | 
|  | sums->len); | 
|  | if (!ret) | 
|  | ret = btrfs_csum_file_blocks(trans, | 
|  | csum_root, | 
|  | sums); | 
|  | list_del(&sums->list); | 
|  | kfree(sums); | 
|  | } | 
|  | if (ret) | 
|  | goto out; | 
|  | } else { | 
|  | btrfs_release_path(path); | 
|  | } | 
|  | } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { | 
|  | /* inline extents are easy, we just overwrite them */ | 
|  | ret = overwrite_item(trans, root, path, eb, slot, key); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, | 
|  | extent_end - start); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | update_inode: | 
|  | btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found); | 
|  | ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); | 
|  | out: | 
|  | iput(inode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *dir, | 
|  | struct btrfs_inode *inode, | 
|  | const struct fscrypt_str *name) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_unlink_inode(trans, dir, inode, name); | 
|  | if (ret) | 
|  | return ret; | 
|  | /* | 
|  | * Whenever we need to check if a name exists or not, we check the | 
|  | * fs/subvolume tree. So after an unlink we must run delayed items, so | 
|  | * that future checks for a name during log replay see that the name | 
|  | * does not exists anymore. | 
|  | */ | 
|  | return btrfs_run_delayed_items(trans); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * when cleaning up conflicts between the directory names in the | 
|  | * subvolume, directory names in the log and directory names in the | 
|  | * inode back references, we may have to unlink inodes from directories. | 
|  | * | 
|  | * This is a helper function to do the unlink of a specific directory | 
|  | * item | 
|  | */ | 
|  | static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_inode *dir, | 
|  | struct btrfs_dir_item *di) | 
|  | { | 
|  | struct btrfs_root *root = dir->root; | 
|  | struct inode *inode; | 
|  | struct fscrypt_str name; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key location; | 
|  | int ret; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  |  | 
|  | btrfs_dir_item_key_to_cpu(leaf, di, &location); | 
|  | ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name); | 
|  | if (ret) | 
|  | return -ENOMEM; | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | inode = read_one_inode(root, location.objectid); | 
|  | if (!inode) { | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = link_to_fixup_dir(trans, root, path, location.objectid); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name); | 
|  | out: | 
|  | kfree(name.name); | 
|  | iput(inode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * See if a given name and sequence number found in an inode back reference are | 
|  | * already in a directory and correctly point to this inode. | 
|  | * | 
|  | * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it | 
|  | * exists. | 
|  | */ | 
|  | static noinline int inode_in_dir(struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 dirid, u64 objectid, u64 index, | 
|  | struct fscrypt_str *name) | 
|  | { | 
|  | struct btrfs_dir_item *di; | 
|  | struct btrfs_key location; | 
|  | int ret = 0; | 
|  |  | 
|  | di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, | 
|  | index, name, 0); | 
|  | if (IS_ERR(di)) { | 
|  | ret = PTR_ERR(di); | 
|  | goto out; | 
|  | } else if (di) { | 
|  | btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); | 
|  | if (location.objectid != objectid) | 
|  | goto out; | 
|  | } else { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0); | 
|  | if (IS_ERR(di)) { | 
|  | ret = PTR_ERR(di); | 
|  | goto out; | 
|  | } else if (di) { | 
|  | btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); | 
|  | if (location.objectid == objectid) | 
|  | ret = 1; | 
|  | } | 
|  | out: | 
|  | btrfs_release_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function to check a log tree for a named back reference in | 
|  | * an inode.  This is used to decide if a back reference that is | 
|  | * found in the subvolume conflicts with what we find in the log. | 
|  | * | 
|  | * inode backreferences may have multiple refs in a single item, | 
|  | * during replay we process one reference at a time, and we don't | 
|  | * want to delete valid links to a file from the subvolume if that | 
|  | * link is also in the log. | 
|  | */ | 
|  | static noinline int backref_in_log(struct btrfs_root *log, | 
|  | struct btrfs_key *key, | 
|  | u64 ref_objectid, | 
|  | const struct fscrypt_str *name) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | int ret; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, log, key, path, 0, 0); | 
|  | if (ret < 0) { | 
|  | goto out; | 
|  | } else if (ret == 1) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (key->type == BTRFS_INODE_EXTREF_KEY) | 
|  | ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], | 
|  | path->slots[0], | 
|  | ref_objectid, name); | 
|  | else | 
|  | ret = !!btrfs_find_name_in_backref(path->nodes[0], | 
|  | path->slots[0], name); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int __add_inode_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_root *log_root, | 
|  | struct btrfs_inode *dir, | 
|  | struct btrfs_inode *inode, | 
|  | u64 inode_objectid, u64 parent_objectid, | 
|  | u64 ref_index, struct fscrypt_str *name) | 
|  | { | 
|  | int ret; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_dir_item *di; | 
|  | struct btrfs_key search_key; | 
|  | struct btrfs_inode_extref *extref; | 
|  |  | 
|  | again: | 
|  | /* Search old style refs */ | 
|  | search_key.objectid = inode_objectid; | 
|  | search_key.type = BTRFS_INODE_REF_KEY; | 
|  | search_key.offset = parent_objectid; | 
|  | ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } else if (ret == 0) { | 
|  | struct btrfs_inode_ref *victim_ref; | 
|  | unsigned long ptr; | 
|  | unsigned long ptr_end; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  |  | 
|  | /* are we trying to overwrite a back ref for the root directory | 
|  | * if so, just jump out, we're done | 
|  | */ | 
|  | if (search_key.objectid == search_key.offset) | 
|  | return 1; | 
|  |  | 
|  | /* check all the names in this back reference to see | 
|  | * if they are in the log.  if so, we allow them to stay | 
|  | * otherwise they must be unlinked as a conflict | 
|  | */ | 
|  | ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
|  | ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]); | 
|  | while (ptr < ptr_end) { | 
|  | struct fscrypt_str victim_name; | 
|  |  | 
|  | victim_ref = (struct btrfs_inode_ref *)ptr; | 
|  | ret = read_alloc_one_name(leaf, (victim_ref + 1), | 
|  | btrfs_inode_ref_name_len(leaf, victim_ref), | 
|  | &victim_name); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = backref_in_log(log_root, &search_key, | 
|  | parent_objectid, &victim_name); | 
|  | if (ret < 0) { | 
|  | kfree(victim_name.name); | 
|  | return ret; | 
|  | } else if (!ret) { | 
|  | inc_nlink(&inode->vfs_inode); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | ret = unlink_inode_for_log_replay(trans, dir, inode, | 
|  | &victim_name); | 
|  | kfree(victim_name.name); | 
|  | if (ret) | 
|  | return ret; | 
|  | goto again; | 
|  | } | 
|  | kfree(victim_name.name); | 
|  |  | 
|  | ptr = (unsigned long)(victim_ref + 1) + victim_name.len; | 
|  | } | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* Same search but for extended refs */ | 
|  | extref = btrfs_lookup_inode_extref(NULL, root, path, name, | 
|  | inode_objectid, parent_objectid, 0, | 
|  | 0); | 
|  | if (IS_ERR(extref)) { | 
|  | return PTR_ERR(extref); | 
|  | } else if (extref) { | 
|  | u32 item_size; | 
|  | u32 cur_offset = 0; | 
|  | unsigned long base; | 
|  | struct inode *victim_parent; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  |  | 
|  | item_size = btrfs_item_size(leaf, path->slots[0]); | 
|  | base = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
|  |  | 
|  | while (cur_offset < item_size) { | 
|  | struct fscrypt_str victim_name; | 
|  |  | 
|  | extref = (struct btrfs_inode_extref *)(base + cur_offset); | 
|  | victim_name.len = btrfs_inode_extref_name_len(leaf, extref); | 
|  |  | 
|  | if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) | 
|  | goto next; | 
|  |  | 
|  | ret = read_alloc_one_name(leaf, &extref->name, | 
|  | victim_name.len, &victim_name); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | search_key.objectid = inode_objectid; | 
|  | search_key.type = BTRFS_INODE_EXTREF_KEY; | 
|  | search_key.offset = btrfs_extref_hash(parent_objectid, | 
|  | victim_name.name, | 
|  | victim_name.len); | 
|  | ret = backref_in_log(log_root, &search_key, | 
|  | parent_objectid, &victim_name); | 
|  | if (ret < 0) { | 
|  | kfree(victim_name.name); | 
|  | return ret; | 
|  | } else if (!ret) { | 
|  | ret = -ENOENT; | 
|  | victim_parent = read_one_inode(root, | 
|  | parent_objectid); | 
|  | if (victim_parent) { | 
|  | inc_nlink(&inode->vfs_inode); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | ret = unlink_inode_for_log_replay(trans, | 
|  | BTRFS_I(victim_parent), | 
|  | inode, &victim_name); | 
|  | } | 
|  | iput(victim_parent); | 
|  | kfree(victim_name.name); | 
|  | if (ret) | 
|  | return ret; | 
|  | goto again; | 
|  | } | 
|  | kfree(victim_name.name); | 
|  | next: | 
|  | cur_offset += victim_name.len + sizeof(*extref); | 
|  | } | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* look for a conflicting sequence number */ | 
|  | di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), | 
|  | ref_index, name, 0); | 
|  | if (IS_ERR(di)) { | 
|  | return PTR_ERR(di); | 
|  | } else if (di) { | 
|  | ret = drop_one_dir_item(trans, path, dir, di); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* look for a conflicting name */ | 
|  | di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0); | 
|  | if (IS_ERR(di)) { | 
|  | return PTR_ERR(di); | 
|  | } else if (di) { | 
|  | ret = drop_one_dir_item(trans, path, dir, di); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, | 
|  | struct fscrypt_str *name, u64 *index, | 
|  | u64 *parent_objectid) | 
|  | { | 
|  | struct btrfs_inode_extref *extref; | 
|  | int ret; | 
|  |  | 
|  | extref = (struct btrfs_inode_extref *)ref_ptr; | 
|  |  | 
|  | ret = read_alloc_one_name(eb, &extref->name, | 
|  | btrfs_inode_extref_name_len(eb, extref), name); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (index) | 
|  | *index = btrfs_inode_extref_index(eb, extref); | 
|  | if (parent_objectid) | 
|  | *parent_objectid = btrfs_inode_extref_parent(eb, extref); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, | 
|  | struct fscrypt_str *name, u64 *index) | 
|  | { | 
|  | struct btrfs_inode_ref *ref; | 
|  | int ret; | 
|  |  | 
|  | ref = (struct btrfs_inode_ref *)ref_ptr; | 
|  |  | 
|  | ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref), | 
|  | name); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (index) | 
|  | *index = btrfs_inode_ref_index(eb, ref); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Take an inode reference item from the log tree and iterate all names from the | 
|  | * inode reference item in the subvolume tree with the same key (if it exists). | 
|  | * For any name that is not in the inode reference item from the log tree, do a | 
|  | * proper unlink of that name (that is, remove its entry from the inode | 
|  | * reference item and both dir index keys). | 
|  | */ | 
|  | static int unlink_old_inode_refs(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_inode *inode, | 
|  | struct extent_buffer *log_eb, | 
|  | int log_slot, | 
|  | struct btrfs_key *key) | 
|  | { | 
|  | int ret; | 
|  | unsigned long ref_ptr; | 
|  | unsigned long ref_end; | 
|  | struct extent_buffer *eb; | 
|  |  | 
|  | again: | 
|  | btrfs_release_path(path); | 
|  | ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | 
|  | if (ret > 0) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | eb = path->nodes[0]; | 
|  | ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]); | 
|  | ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]); | 
|  | while (ref_ptr < ref_end) { | 
|  | struct fscrypt_str name; | 
|  | u64 parent_id; | 
|  |  | 
|  | if (key->type == BTRFS_INODE_EXTREF_KEY) { | 
|  | ret = extref_get_fields(eb, ref_ptr, &name, | 
|  | NULL, &parent_id); | 
|  | } else { | 
|  | parent_id = key->offset; | 
|  | ret = ref_get_fields(eb, ref_ptr, &name, NULL); | 
|  | } | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (key->type == BTRFS_INODE_EXTREF_KEY) | 
|  | ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot, | 
|  | parent_id, &name); | 
|  | else | 
|  | ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name); | 
|  |  | 
|  | if (!ret) { | 
|  | struct inode *dir; | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | dir = read_one_inode(root, parent_id); | 
|  | if (!dir) { | 
|  | ret = -ENOENT; | 
|  | kfree(name.name); | 
|  | goto out; | 
|  | } | 
|  | ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), | 
|  | inode, &name); | 
|  | kfree(name.name); | 
|  | iput(dir); | 
|  | if (ret) | 
|  | goto out; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | kfree(name.name); | 
|  | ref_ptr += name.len; | 
|  | if (key->type == BTRFS_INODE_EXTREF_KEY) | 
|  | ref_ptr += sizeof(struct btrfs_inode_extref); | 
|  | else | 
|  | ref_ptr += sizeof(struct btrfs_inode_ref); | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | btrfs_release_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * replay one inode back reference item found in the log tree. | 
|  | * eb, slot and key refer to the buffer and key found in the log tree. | 
|  | * root is the destination we are replaying into, and path is for temp | 
|  | * use by this function.  (it should be released on return). | 
|  | */ | 
|  | static noinline int add_inode_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_root *log, | 
|  | struct btrfs_path *path, | 
|  | struct extent_buffer *eb, int slot, | 
|  | struct btrfs_key *key) | 
|  | { | 
|  | struct inode *dir = NULL; | 
|  | struct inode *inode = NULL; | 
|  | unsigned long ref_ptr; | 
|  | unsigned long ref_end; | 
|  | struct fscrypt_str name = { 0 }; | 
|  | int ret; | 
|  | int log_ref_ver = 0; | 
|  | u64 parent_objectid; | 
|  | u64 inode_objectid; | 
|  | u64 ref_index = 0; | 
|  | int ref_struct_size; | 
|  |  | 
|  | ref_ptr = btrfs_item_ptr_offset(eb, slot); | 
|  | ref_end = ref_ptr + btrfs_item_size(eb, slot); | 
|  |  | 
|  | if (key->type == BTRFS_INODE_EXTREF_KEY) { | 
|  | struct btrfs_inode_extref *r; | 
|  |  | 
|  | ref_struct_size = sizeof(struct btrfs_inode_extref); | 
|  | log_ref_ver = 1; | 
|  | r = (struct btrfs_inode_extref *)ref_ptr; | 
|  | parent_objectid = btrfs_inode_extref_parent(eb, r); | 
|  | } else { | 
|  | ref_struct_size = sizeof(struct btrfs_inode_ref); | 
|  | parent_objectid = key->offset; | 
|  | } | 
|  | inode_objectid = key->objectid; | 
|  |  | 
|  | /* | 
|  | * it is possible that we didn't log all the parent directories | 
|  | * for a given inode.  If we don't find the dir, just don't | 
|  | * copy the back ref in.  The link count fixup code will take | 
|  | * care of the rest | 
|  | */ | 
|  | dir = read_one_inode(root, parent_objectid); | 
|  | if (!dir) { | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | inode = read_one_inode(root, inode_objectid); | 
|  | if (!inode) { | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | while (ref_ptr < ref_end) { | 
|  | if (log_ref_ver) { | 
|  | ret = extref_get_fields(eb, ref_ptr, &name, | 
|  | &ref_index, &parent_objectid); | 
|  | /* | 
|  | * parent object can change from one array | 
|  | * item to another. | 
|  | */ | 
|  | if (!dir) | 
|  | dir = read_one_inode(root, parent_objectid); | 
|  | if (!dir) { | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | ret = ref_get_fields(eb, ref_ptr, &name, &ref_index); | 
|  | } | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)), | 
|  | btrfs_ino(BTRFS_I(inode)), ref_index, &name); | 
|  | if (ret < 0) { | 
|  | goto out; | 
|  | } else if (ret == 0) { | 
|  | /* | 
|  | * look for a conflicting back reference in the | 
|  | * metadata. if we find one we have to unlink that name | 
|  | * of the file before we add our new link.  Later on, we | 
|  | * overwrite any existing back reference, and we don't | 
|  | * want to create dangling pointers in the directory. | 
|  | */ | 
|  | ret = __add_inode_ref(trans, root, path, log, | 
|  | BTRFS_I(dir), BTRFS_I(inode), | 
|  | inode_objectid, parent_objectid, | 
|  | ref_index, &name); | 
|  | if (ret) { | 
|  | if (ret == 1) | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* insert our name */ | 
|  | ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), | 
|  | &name, 0, ref_index); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | /* Else, ret == 1, we already have a perfect match, we're done. */ | 
|  |  | 
|  | ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len; | 
|  | kfree(name.name); | 
|  | name.name = NULL; | 
|  | if (log_ref_ver) { | 
|  | iput(dir); | 
|  | dir = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Before we overwrite the inode reference item in the subvolume tree | 
|  | * with the item from the log tree, we must unlink all names from the | 
|  | * parent directory that are in the subvolume's tree inode reference | 
|  | * item, otherwise we end up with an inconsistent subvolume tree where | 
|  | * dir index entries exist for a name but there is no inode reference | 
|  | * item with the same name. | 
|  | */ | 
|  | ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot, | 
|  | key); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | /* finally write the back reference in the inode */ | 
|  | ret = overwrite_item(trans, root, path, eb, slot, key); | 
|  | out: | 
|  | btrfs_release_path(path); | 
|  | kfree(name.name); | 
|  | iput(dir); | 
|  | iput(inode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int count_inode_extrefs(struct btrfs_root *root, | 
|  | struct btrfs_inode *inode, struct btrfs_path *path) | 
|  | { | 
|  | int ret = 0; | 
|  | int name_len; | 
|  | unsigned int nlink = 0; | 
|  | u32 item_size; | 
|  | u32 cur_offset = 0; | 
|  | u64 inode_objectid = btrfs_ino(inode); | 
|  | u64 offset = 0; | 
|  | unsigned long ptr; | 
|  | struct btrfs_inode_extref *extref; | 
|  | struct extent_buffer *leaf; | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_find_one_extref(root, inode_objectid, offset, path, | 
|  | &extref, &offset); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | item_size = btrfs_item_size(leaf, path->slots[0]); | 
|  | ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
|  | cur_offset = 0; | 
|  |  | 
|  | while (cur_offset < item_size) { | 
|  | extref = (struct btrfs_inode_extref *) (ptr + cur_offset); | 
|  | name_len = btrfs_inode_extref_name_len(leaf, extref); | 
|  |  | 
|  | nlink++; | 
|  |  | 
|  | cur_offset += name_len + sizeof(*extref); | 
|  | } | 
|  |  | 
|  | offset++; | 
|  | btrfs_release_path(path); | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | if (ret < 0 && ret != -ENOENT) | 
|  | return ret; | 
|  | return nlink; | 
|  | } | 
|  |  | 
|  | static int count_inode_refs(struct btrfs_root *root, | 
|  | struct btrfs_inode *inode, struct btrfs_path *path) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_key key; | 
|  | unsigned int nlink = 0; | 
|  | unsigned long ptr; | 
|  | unsigned long ptr_end; | 
|  | int name_len; | 
|  | u64 ino = btrfs_ino(inode); | 
|  |  | 
|  | key.objectid = ino; | 
|  | key.type = BTRFS_INODE_REF_KEY; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | break; | 
|  | if (ret > 0) { | 
|  | if (path->slots[0] == 0) | 
|  | break; | 
|  | path->slots[0]--; | 
|  | } | 
|  | process_slot: | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, | 
|  | path->slots[0]); | 
|  | if (key.objectid != ino || | 
|  | key.type != BTRFS_INODE_REF_KEY) | 
|  | break; | 
|  | ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | 
|  | ptr_end = ptr + btrfs_item_size(path->nodes[0], | 
|  | path->slots[0]); | 
|  | while (ptr < ptr_end) { | 
|  | struct btrfs_inode_ref *ref; | 
|  |  | 
|  | ref = (struct btrfs_inode_ref *)ptr; | 
|  | name_len = btrfs_inode_ref_name_len(path->nodes[0], | 
|  | ref); | 
|  | ptr = (unsigned long)(ref + 1) + name_len; | 
|  | nlink++; | 
|  | } | 
|  |  | 
|  | if (key.offset == 0) | 
|  | break; | 
|  | if (path->slots[0] > 0) { | 
|  | path->slots[0]--; | 
|  | goto process_slot; | 
|  | } | 
|  | key.offset--; | 
|  | btrfs_release_path(path); | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | return nlink; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There are a few corners where the link count of the file can't | 
|  | * be properly maintained during replay.  So, instead of adding | 
|  | * lots of complexity to the log code, we just scan the backrefs | 
|  | * for any file that has been through replay. | 
|  | * | 
|  | * The scan will update the link count on the inode to reflect the | 
|  | * number of back refs found.  If it goes down to zero, the iput | 
|  | * will free the inode. | 
|  | */ | 
|  | static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct inode *inode) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | int ret; | 
|  | u64 nlink = 0; | 
|  | u64 ino = btrfs_ino(BTRFS_I(inode)); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = count_inode_refs(root, BTRFS_I(inode), path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | nlink = ret; | 
|  |  | 
|  | ret = count_inode_extrefs(root, BTRFS_I(inode), path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | nlink += ret; | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | if (nlink != inode->i_nlink) { | 
|  | set_nlink(inode, nlink); | 
|  | ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | BTRFS_I(inode)->index_cnt = (u64)-1; | 
|  |  | 
|  | if (inode->i_nlink == 0) { | 
|  | if (S_ISDIR(inode->i_mode)) { | 
|  | ret = replay_dir_deletes(trans, root, NULL, path, | 
|  | ino, 1); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | ret = btrfs_insert_orphan_item(trans, root, ino); | 
|  | if (ret == -EEXIST) | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_key key; | 
|  | struct inode *inode; | 
|  |  | 
|  | key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; | 
|  | key.type = BTRFS_ORPHAN_ITEM_KEY; | 
|  | key.offset = (u64)-1; | 
|  | while (1) { | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret < 0) | 
|  | break; | 
|  |  | 
|  | if (ret == 1) { | 
|  | ret = 0; | 
|  | if (path->slots[0] == 0) | 
|  | break; | 
|  | path->slots[0]--; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
|  | if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || | 
|  | key.type != BTRFS_ORPHAN_ITEM_KEY) | 
|  | break; | 
|  |  | 
|  | ret = btrfs_del_item(trans, root, path); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | inode = read_one_inode(root, key.offset); | 
|  | if (!inode) { | 
|  | ret = -EIO; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = fixup_inode_link_count(trans, root, inode); | 
|  | iput(inode); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * fixup on a directory may create new entries, | 
|  | * make sure we always look for the highset possible | 
|  | * offset | 
|  | */ | 
|  | key.offset = (u64)-1; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * record a given inode in the fixup dir so we can check its link | 
|  | * count when replay is done.  The link count is incremented here | 
|  | * so the inode won't go away until we check it | 
|  | */ | 
|  | static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 objectid) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | int ret = 0; | 
|  | struct inode *inode; | 
|  |  | 
|  | inode = read_one_inode(root, objectid); | 
|  | if (!inode) | 
|  | return -EIO; | 
|  |  | 
|  | key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; | 
|  | key.type = BTRFS_ORPHAN_ITEM_KEY; | 
|  | key.offset = objectid; | 
|  |  | 
|  | ret = btrfs_insert_empty_item(trans, root, path, &key, 0); | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | if (ret == 0) { | 
|  | if (!inode->i_nlink) | 
|  | set_nlink(inode, 1); | 
|  | else | 
|  | inc_nlink(inode); | 
|  | ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); | 
|  | } else if (ret == -EEXIST) { | 
|  | ret = 0; | 
|  | } | 
|  | iput(inode); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * when replaying the log for a directory, we only insert names | 
|  | * for inodes that actually exist.  This means an fsync on a directory | 
|  | * does not implicitly fsync all the new files in it | 
|  | */ | 
|  | static noinline int insert_one_name(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 dirid, u64 index, | 
|  | const struct fscrypt_str *name, | 
|  | struct btrfs_key *location) | 
|  | { | 
|  | struct inode *inode; | 
|  | struct inode *dir; | 
|  | int ret; | 
|  |  | 
|  | inode = read_one_inode(root, location->objectid); | 
|  | if (!inode) | 
|  | return -ENOENT; | 
|  |  | 
|  | dir = read_one_inode(root, dirid); | 
|  | if (!dir) { | 
|  | iput(inode); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, | 
|  | 1, index); | 
|  |  | 
|  | /* FIXME, put inode into FIXUP list */ | 
|  |  | 
|  | iput(inode); | 
|  | iput(dir); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *dir, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_dir_item *dst_di, | 
|  | const struct btrfs_key *log_key, | 
|  | u8 log_flags, | 
|  | bool exists) | 
|  | { | 
|  | struct btrfs_key found_key; | 
|  |  | 
|  | btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); | 
|  | /* The existing dentry points to the same inode, don't delete it. */ | 
|  | if (found_key.objectid == log_key->objectid && | 
|  | found_key.type == log_key->type && | 
|  | found_key.offset == log_key->offset && | 
|  | btrfs_dir_flags(path->nodes[0], dst_di) == log_flags) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * Don't drop the conflicting directory entry if the inode for the new | 
|  | * entry doesn't exist. | 
|  | */ | 
|  | if (!exists) | 
|  | return 0; | 
|  |  | 
|  | return drop_one_dir_item(trans, path, dir, dst_di); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * take a single entry in a log directory item and replay it into | 
|  | * the subvolume. | 
|  | * | 
|  | * if a conflicting item exists in the subdirectory already, | 
|  | * the inode it points to is unlinked and put into the link count | 
|  | * fix up tree. | 
|  | * | 
|  | * If a name from the log points to a file or directory that does | 
|  | * not exist in the FS, it is skipped.  fsyncs on directories | 
|  | * do not force down inodes inside that directory, just changes to the | 
|  | * names or unlinks in a directory. | 
|  | * | 
|  | * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a | 
|  | * non-existing inode) and 1 if the name was replayed. | 
|  | */ | 
|  | static noinline int replay_one_name(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct extent_buffer *eb, | 
|  | struct btrfs_dir_item *di, | 
|  | struct btrfs_key *key) | 
|  | { | 
|  | struct fscrypt_str name = { 0 }; | 
|  | struct btrfs_dir_item *dir_dst_di; | 
|  | struct btrfs_dir_item *index_dst_di; | 
|  | bool dir_dst_matches = false; | 
|  | bool index_dst_matches = false; | 
|  | struct btrfs_key log_key; | 
|  | struct btrfs_key search_key; | 
|  | struct inode *dir; | 
|  | u8 log_flags; | 
|  | bool exists; | 
|  | int ret; | 
|  | bool update_size = true; | 
|  | bool name_added = false; | 
|  |  | 
|  | dir = read_one_inode(root, key->objectid); | 
|  | if (!dir) | 
|  | return -EIO; | 
|  |  | 
|  | ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | log_flags = btrfs_dir_flags(eb, di); | 
|  | btrfs_dir_item_key_to_cpu(eb, di, &log_key); | 
|  | ret = btrfs_lookup_inode(trans, root, path, &log_key, 0); | 
|  | btrfs_release_path(path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | exists = (ret == 0); | 
|  | ret = 0; | 
|  |  | 
|  | dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, | 
|  | &name, 1); | 
|  | if (IS_ERR(dir_dst_di)) { | 
|  | ret = PTR_ERR(dir_dst_di); | 
|  | goto out; | 
|  | } else if (dir_dst_di) { | 
|  | ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path, | 
|  | dir_dst_di, &log_key, | 
|  | log_flags, exists); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | dir_dst_matches = (ret == 1); | 
|  | } | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | index_dst_di = btrfs_lookup_dir_index_item(trans, root, path, | 
|  | key->objectid, key->offset, | 
|  | &name, 1); | 
|  | if (IS_ERR(index_dst_di)) { | 
|  | ret = PTR_ERR(index_dst_di); | 
|  | goto out; | 
|  | } else if (index_dst_di) { | 
|  | ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path, | 
|  | index_dst_di, &log_key, | 
|  | log_flags, exists); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | index_dst_matches = (ret == 1); | 
|  | } | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | if (dir_dst_matches && index_dst_matches) { | 
|  | ret = 0; | 
|  | update_size = false; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if the inode reference exists in the log for the given name, | 
|  | * inode and parent inode | 
|  | */ | 
|  | search_key.objectid = log_key.objectid; | 
|  | search_key.type = BTRFS_INODE_REF_KEY; | 
|  | search_key.offset = key->objectid; | 
|  | ret = backref_in_log(root->log_root, &search_key, 0, &name); | 
|  | if (ret < 0) { | 
|  | goto out; | 
|  | } else if (ret) { | 
|  | /* The dentry will be added later. */ | 
|  | ret = 0; | 
|  | update_size = false; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | search_key.objectid = log_key.objectid; | 
|  | search_key.type = BTRFS_INODE_EXTREF_KEY; | 
|  | search_key.offset = key->objectid; | 
|  | ret = backref_in_log(root->log_root, &search_key, key->objectid, &name); | 
|  | if (ret < 0) { | 
|  | goto out; | 
|  | } else if (ret) { | 
|  | /* The dentry will be added later. */ | 
|  | ret = 0; | 
|  | update_size = false; | 
|  | goto out; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  | ret = insert_one_name(trans, root, key->objectid, key->offset, | 
|  | &name, &log_key); | 
|  | if (ret && ret != -ENOENT && ret != -EEXIST) | 
|  | goto out; | 
|  | if (!ret) | 
|  | name_added = true; | 
|  | update_size = false; | 
|  | ret = 0; | 
|  |  | 
|  | out: | 
|  | if (!ret && update_size) { | 
|  | btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2); | 
|  | ret = btrfs_update_inode(trans, root, BTRFS_I(dir)); | 
|  | } | 
|  | kfree(name.name); | 
|  | iput(dir); | 
|  | if (!ret && name_added) | 
|  | ret = 1; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */ | 
|  | static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct extent_buffer *eb, int slot, | 
|  | struct btrfs_key *key) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_dir_item *di; | 
|  |  | 
|  | /* We only log dir index keys, which only contain a single dir item. */ | 
|  | ASSERT(key->type == BTRFS_DIR_INDEX_KEY); | 
|  |  | 
|  | di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); | 
|  | ret = replay_one_name(trans, root, path, eb, di, key); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * If this entry refers to a non-directory (directories can not have a | 
|  | * link count > 1) and it was added in the transaction that was not | 
|  | * committed, make sure we fixup the link count of the inode the entry | 
|  | * points to. Otherwise something like the following would result in a | 
|  | * directory pointing to an inode with a wrong link that does not account | 
|  | * for this dir entry: | 
|  | * | 
|  | * mkdir testdir | 
|  | * touch testdir/foo | 
|  | * touch testdir/bar | 
|  | * sync | 
|  | * | 
|  | * ln testdir/bar testdir/bar_link | 
|  | * ln testdir/foo testdir/foo_link | 
|  | * xfs_io -c "fsync" testdir/bar | 
|  | * | 
|  | * <power failure> | 
|  | * | 
|  | * mount fs, log replay happens | 
|  | * | 
|  | * File foo would remain with a link count of 1 when it has two entries | 
|  | * pointing to it in the directory testdir. This would make it impossible | 
|  | * to ever delete the parent directory has it would result in stale | 
|  | * dentries that can never be deleted. | 
|  | */ | 
|  | if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) { | 
|  | struct btrfs_path *fixup_path; | 
|  | struct btrfs_key di_key; | 
|  |  | 
|  | fixup_path = btrfs_alloc_path(); | 
|  | if (!fixup_path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | btrfs_dir_item_key_to_cpu(eb, di, &di_key); | 
|  | ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid); | 
|  | btrfs_free_path(fixup_path); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * directory replay has two parts.  There are the standard directory | 
|  | * items in the log copied from the subvolume, and range items | 
|  | * created in the log while the subvolume was logged. | 
|  | * | 
|  | * The range items tell us which parts of the key space the log | 
|  | * is authoritative for.  During replay, if a key in the subvolume | 
|  | * directory is in a logged range item, but not actually in the log | 
|  | * that means it was deleted from the directory before the fsync | 
|  | * and should be removed. | 
|  | */ | 
|  | static noinline int find_dir_range(struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 dirid, | 
|  | u64 *start_ret, u64 *end_ret) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | u64 found_end; | 
|  | struct btrfs_dir_log_item *item; | 
|  | int ret; | 
|  | int nritems; | 
|  |  | 
|  | if (*start_ret == (u64)-1) | 
|  | return 1; | 
|  |  | 
|  | key.objectid = dirid; | 
|  | key.type = BTRFS_DIR_LOG_INDEX_KEY; | 
|  | key.offset = *start_ret; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) { | 
|  | if (path->slots[0] == 0) | 
|  | goto out; | 
|  | path->slots[0]--; | 
|  | } | 
|  | if (ret != 0) | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
|  |  | 
|  | if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) { | 
|  | ret = 1; | 
|  | goto next; | 
|  | } | 
|  | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_dir_log_item); | 
|  | found_end = btrfs_dir_log_end(path->nodes[0], item); | 
|  |  | 
|  | if (*start_ret >= key.offset && *start_ret <= found_end) { | 
|  | ret = 0; | 
|  | *start_ret = key.offset; | 
|  | *end_ret = found_end; | 
|  | goto out; | 
|  | } | 
|  | ret = 1; | 
|  | next: | 
|  | /* check the next slot in the tree to see if it is a valid item */ | 
|  | nritems = btrfs_header_nritems(path->nodes[0]); | 
|  | path->slots[0]++; | 
|  | if (path->slots[0] >= nritems) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
|  |  | 
|  | if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_dir_log_item); | 
|  | found_end = btrfs_dir_log_end(path->nodes[0], item); | 
|  | *start_ret = key.offset; | 
|  | *end_ret = found_end; | 
|  | ret = 0; | 
|  | out: | 
|  | btrfs_release_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this looks for a given directory item in the log.  If the directory | 
|  | * item is not in the log, the item is removed and the inode it points | 
|  | * to is unlinked | 
|  | */ | 
|  | static noinline int check_item_in_log(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *log, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_path *log_path, | 
|  | struct inode *dir, | 
|  | struct btrfs_key *dir_key) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(dir)->root; | 
|  | int ret; | 
|  | struct extent_buffer *eb; | 
|  | int slot; | 
|  | struct btrfs_dir_item *di; | 
|  | struct fscrypt_str name = { 0 }; | 
|  | struct inode *inode = NULL; | 
|  | struct btrfs_key location; | 
|  |  | 
|  | /* | 
|  | * Currently we only log dir index keys. Even if we replay a log created | 
|  | * by an older kernel that logged both dir index and dir item keys, all | 
|  | * we need to do is process the dir index keys, we (and our caller) can | 
|  | * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY). | 
|  | */ | 
|  | ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY); | 
|  |  | 
|  | eb = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); | 
|  | ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (log) { | 
|  | struct btrfs_dir_item *log_di; | 
|  |  | 
|  | log_di = btrfs_lookup_dir_index_item(trans, log, log_path, | 
|  | dir_key->objectid, | 
|  | dir_key->offset, &name, 0); | 
|  | if (IS_ERR(log_di)) { | 
|  | ret = PTR_ERR(log_di); | 
|  | goto out; | 
|  | } else if (log_di) { | 
|  | /* The dentry exists in the log, we have nothing to do. */ | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | btrfs_dir_item_key_to_cpu(eb, di, &location); | 
|  | btrfs_release_path(path); | 
|  | btrfs_release_path(log_path); | 
|  | inode = read_one_inode(root, location.objectid); | 
|  | if (!inode) { | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = link_to_fixup_dir(trans, root, path, location.objectid); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | inc_nlink(inode); | 
|  | ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode), | 
|  | &name); | 
|  | /* | 
|  | * Unlike dir item keys, dir index keys can only have one name (entry) in | 
|  | * them, as there are no key collisions since each key has a unique offset | 
|  | * (an index number), so we're done. | 
|  | */ | 
|  | out: | 
|  | btrfs_release_path(path); | 
|  | btrfs_release_path(log_path); | 
|  | kfree(name.name); | 
|  | iput(inode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int replay_xattr_deletes(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_root *log, | 
|  | struct btrfs_path *path, | 
|  | const u64 ino) | 
|  | { | 
|  | struct btrfs_key search_key; | 
|  | struct btrfs_path *log_path; | 
|  | int i; | 
|  | int nritems; | 
|  | int ret; | 
|  |  | 
|  | log_path = btrfs_alloc_path(); | 
|  | if (!log_path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | search_key.objectid = ino; | 
|  | search_key.type = BTRFS_XATTR_ITEM_KEY; | 
|  | search_key.offset = 0; | 
|  | again: | 
|  | ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | process_leaf: | 
|  | nritems = btrfs_header_nritems(path->nodes[0]); | 
|  | for (i = path->slots[0]; i < nritems; i++) { | 
|  | struct btrfs_key key; | 
|  | struct btrfs_dir_item *di; | 
|  | struct btrfs_dir_item *log_di; | 
|  | u32 total_size; | 
|  | u32 cur; | 
|  |  | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, i); | 
|  | if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); | 
|  | total_size = btrfs_item_size(path->nodes[0], i); | 
|  | cur = 0; | 
|  | while (cur < total_size) { | 
|  | u16 name_len = btrfs_dir_name_len(path->nodes[0], di); | 
|  | u16 data_len = btrfs_dir_data_len(path->nodes[0], di); | 
|  | u32 this_len = sizeof(*di) + name_len + data_len; | 
|  | char *name; | 
|  |  | 
|  | name = kmalloc(name_len, GFP_NOFS); | 
|  | if (!name) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | read_extent_buffer(path->nodes[0], name, | 
|  | (unsigned long)(di + 1), name_len); | 
|  |  | 
|  | log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, | 
|  | name, name_len, 0); | 
|  | btrfs_release_path(log_path); | 
|  | if (!log_di) { | 
|  | /* Doesn't exist in log tree, so delete it. */ | 
|  | btrfs_release_path(path); | 
|  | di = btrfs_lookup_xattr(trans, root, path, ino, | 
|  | name, name_len, -1); | 
|  | kfree(name); | 
|  | if (IS_ERR(di)) { | 
|  | ret = PTR_ERR(di); | 
|  | goto out; | 
|  | } | 
|  | ASSERT(di); | 
|  | ret = btrfs_delete_one_dir_name(trans, root, | 
|  | path, di); | 
|  | if (ret) | 
|  | goto out; | 
|  | btrfs_release_path(path); | 
|  | search_key = key; | 
|  | goto again; | 
|  | } | 
|  | kfree(name); | 
|  | if (IS_ERR(log_di)) { | 
|  | ret = PTR_ERR(log_di); | 
|  | goto out; | 
|  | } | 
|  | cur += this_len; | 
|  | di = (struct btrfs_dir_item *)((char *)di + this_len); | 
|  | } | 
|  | } | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret > 0) | 
|  | ret = 0; | 
|  | else if (ret == 0) | 
|  | goto process_leaf; | 
|  | out: | 
|  | btrfs_free_path(log_path); | 
|  | btrfs_release_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * deletion replay happens before we copy any new directory items | 
|  | * out of the log or out of backreferences from inodes.  It | 
|  | * scans the log to find ranges of keys that log is authoritative for, | 
|  | * and then scans the directory to find items in those ranges that are | 
|  | * not present in the log. | 
|  | * | 
|  | * Anything we don't find in the log is unlinked and removed from the | 
|  | * directory. | 
|  | */ | 
|  | static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_root *log, | 
|  | struct btrfs_path *path, | 
|  | u64 dirid, int del_all) | 
|  | { | 
|  | u64 range_start; | 
|  | u64 range_end; | 
|  | int ret = 0; | 
|  | struct btrfs_key dir_key; | 
|  | struct btrfs_key found_key; | 
|  | struct btrfs_path *log_path; | 
|  | struct inode *dir; | 
|  |  | 
|  | dir_key.objectid = dirid; | 
|  | dir_key.type = BTRFS_DIR_INDEX_KEY; | 
|  | log_path = btrfs_alloc_path(); | 
|  | if (!log_path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dir = read_one_inode(root, dirid); | 
|  | /* it isn't an error if the inode isn't there, that can happen | 
|  | * because we replay the deletes before we copy in the inode item | 
|  | * from the log | 
|  | */ | 
|  | if (!dir) { | 
|  | btrfs_free_path(log_path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | range_start = 0; | 
|  | range_end = 0; | 
|  | while (1) { | 
|  | if (del_all) | 
|  | range_end = (u64)-1; | 
|  | else { | 
|  | ret = find_dir_range(log, path, dirid, | 
|  | &range_start, &range_end); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | else if (ret > 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | dir_key.offset = range_start; | 
|  | while (1) { | 
|  | int nritems; | 
|  | ret = btrfs_search_slot(NULL, root, &dir_key, path, | 
|  | 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | nritems = btrfs_header_nritems(path->nodes[0]); | 
|  | if (path->slots[0] >= nritems) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret == 1) | 
|  | break; | 
|  | else if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
|  | path->slots[0]); | 
|  | if (found_key.objectid != dirid || | 
|  | found_key.type != dir_key.type) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (found_key.offset > range_end) | 
|  | break; | 
|  |  | 
|  | ret = check_item_in_log(trans, log, path, | 
|  | log_path, dir, | 
|  | &found_key); | 
|  | if (ret) | 
|  | goto out; | 
|  | if (found_key.offset == (u64)-1) | 
|  | break; | 
|  | dir_key.offset = found_key.offset + 1; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  | if (range_end == (u64)-1) | 
|  | break; | 
|  | range_start = range_end + 1; | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | btrfs_release_path(path); | 
|  | btrfs_free_path(log_path); | 
|  | iput(dir); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the process_func used to replay items from the log tree.  This | 
|  | * gets called in two different stages.  The first stage just looks | 
|  | * for inodes and makes sure they are all copied into the subvolume. | 
|  | * | 
|  | * The second stage copies all the other item types from the log into | 
|  | * the subvolume.  The two stage approach is slower, but gets rid of | 
|  | * lots of complexity around inodes referencing other inodes that exist | 
|  | * only in the log (references come from either directory items or inode | 
|  | * back refs). | 
|  | */ | 
|  | static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, | 
|  | struct walk_control *wc, u64 gen, int level) | 
|  | { | 
|  | int nritems; | 
|  | struct btrfs_tree_parent_check check = { | 
|  | .transid = gen, | 
|  | .level = level | 
|  | }; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_root *root = wc->replay_dest; | 
|  | struct btrfs_key key; | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_read_extent_buffer(eb, &check); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | level = btrfs_header_level(eb); | 
|  |  | 
|  | if (level != 0) | 
|  | return 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | nritems = btrfs_header_nritems(eb); | 
|  | for (i = 0; i < nritems; i++) { | 
|  | btrfs_item_key_to_cpu(eb, &key, i); | 
|  |  | 
|  | /* inode keys are done during the first stage */ | 
|  | if (key.type == BTRFS_INODE_ITEM_KEY && | 
|  | wc->stage == LOG_WALK_REPLAY_INODES) { | 
|  | struct btrfs_inode_item *inode_item; | 
|  | u32 mode; | 
|  |  | 
|  | inode_item = btrfs_item_ptr(eb, i, | 
|  | struct btrfs_inode_item); | 
|  | /* | 
|  | * If we have a tmpfile (O_TMPFILE) that got fsync'ed | 
|  | * and never got linked before the fsync, skip it, as | 
|  | * replaying it is pointless since it would be deleted | 
|  | * later. We skip logging tmpfiles, but it's always | 
|  | * possible we are replaying a log created with a kernel | 
|  | * that used to log tmpfiles. | 
|  | */ | 
|  | if (btrfs_inode_nlink(eb, inode_item) == 0) { | 
|  | wc->ignore_cur_inode = true; | 
|  | continue; | 
|  | } else { | 
|  | wc->ignore_cur_inode = false; | 
|  | } | 
|  | ret = replay_xattr_deletes(wc->trans, root, log, | 
|  | path, key.objectid); | 
|  | if (ret) | 
|  | break; | 
|  | mode = btrfs_inode_mode(eb, inode_item); | 
|  | if (S_ISDIR(mode)) { | 
|  | ret = replay_dir_deletes(wc->trans, | 
|  | root, log, path, key.objectid, 0); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | ret = overwrite_item(wc->trans, root, path, | 
|  | eb, i, &key); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Before replaying extents, truncate the inode to its | 
|  | * size. We need to do it now and not after log replay | 
|  | * because before an fsync we can have prealloc extents | 
|  | * added beyond the inode's i_size. If we did it after, | 
|  | * through orphan cleanup for example, we would drop | 
|  | * those prealloc extents just after replaying them. | 
|  | */ | 
|  | if (S_ISREG(mode)) { | 
|  | struct btrfs_drop_extents_args drop_args = { 0 }; | 
|  | struct inode *inode; | 
|  | u64 from; | 
|  |  | 
|  | inode = read_one_inode(root, key.objectid); | 
|  | if (!inode) { | 
|  | ret = -EIO; | 
|  | break; | 
|  | } | 
|  | from = ALIGN(i_size_read(inode), | 
|  | root->fs_info->sectorsize); | 
|  | drop_args.start = from; | 
|  | drop_args.end = (u64)-1; | 
|  | drop_args.drop_cache = true; | 
|  | ret = btrfs_drop_extents(wc->trans, root, | 
|  | BTRFS_I(inode), | 
|  | &drop_args); | 
|  | if (!ret) { | 
|  | inode_sub_bytes(inode, | 
|  | drop_args.bytes_found); | 
|  | /* Update the inode's nbytes. */ | 
|  | ret = btrfs_update_inode(wc->trans, | 
|  | root, BTRFS_I(inode)); | 
|  | } | 
|  | iput(inode); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = link_to_fixup_dir(wc->trans, root, | 
|  | path, key.objectid); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (wc->ignore_cur_inode) | 
|  | continue; | 
|  |  | 
|  | if (key.type == BTRFS_DIR_INDEX_KEY && | 
|  | wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { | 
|  | ret = replay_one_dir_item(wc->trans, root, path, | 
|  | eb, i, &key); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (wc->stage < LOG_WALK_REPLAY_ALL) | 
|  | continue; | 
|  |  | 
|  | /* these keys are simply copied */ | 
|  | if (key.type == BTRFS_XATTR_ITEM_KEY) { | 
|  | ret = overwrite_item(wc->trans, root, path, | 
|  | eb, i, &key); | 
|  | if (ret) | 
|  | break; | 
|  | } else if (key.type == BTRFS_INODE_REF_KEY || | 
|  | key.type == BTRFS_INODE_EXTREF_KEY) { | 
|  | ret = add_inode_ref(wc->trans, root, log, path, | 
|  | eb, i, &key); | 
|  | if (ret && ret != -ENOENT) | 
|  | break; | 
|  | ret = 0; | 
|  | } else if (key.type == BTRFS_EXTENT_DATA_KEY) { | 
|  | ret = replay_one_extent(wc->trans, root, path, | 
|  | eb, i, &key); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the | 
|  | * BTRFS_DIR_INDEX_KEY items which we use to derive the | 
|  | * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an | 
|  | * older kernel with such keys, ignore them. | 
|  | */ | 
|  | } | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Correctly adjust the reserved bytes occupied by a log tree extent buffer | 
|  | */ | 
|  | static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start) | 
|  | { | 
|  | struct btrfs_block_group *cache; | 
|  |  | 
|  | cache = btrfs_lookup_block_group(fs_info, start); | 
|  | if (!cache) { | 
|  | btrfs_err(fs_info, "unable to find block group for %llu", start); | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock(&cache->space_info->lock); | 
|  | spin_lock(&cache->lock); | 
|  | cache->reserved -= fs_info->nodesize; | 
|  | cache->space_info->bytes_reserved -= fs_info->nodesize; | 
|  | spin_unlock(&cache->lock); | 
|  | spin_unlock(&cache->space_info->lock); | 
|  |  | 
|  | btrfs_put_block_group(cache); | 
|  | } | 
|  |  | 
|  | static int clean_log_buffer(struct btrfs_trans_handle *trans, | 
|  | struct extent_buffer *eb) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | btrfs_tree_lock(eb); | 
|  | btrfs_clear_buffer_dirty(trans, eb); | 
|  | wait_on_extent_buffer_writeback(eb); | 
|  | btrfs_tree_unlock(eb); | 
|  |  | 
|  | if (trans) { | 
|  | ret = btrfs_pin_reserved_extent(trans, eb->start, eb->len); | 
|  | if (ret) | 
|  | return ret; | 
|  | btrfs_redirty_list_add(trans->transaction, eb); | 
|  | } else { | 
|  | unaccount_log_buffer(eb->fs_info, eb->start); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, int *level, | 
|  | struct walk_control *wc) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | u64 bytenr; | 
|  | u64 ptr_gen; | 
|  | struct extent_buffer *next; | 
|  | struct extent_buffer *cur; | 
|  | int ret = 0; | 
|  |  | 
|  | while (*level > 0) { | 
|  | struct btrfs_tree_parent_check check = { 0 }; | 
|  |  | 
|  | cur = path->nodes[*level]; | 
|  |  | 
|  | WARN_ON(btrfs_header_level(cur) != *level); | 
|  |  | 
|  | if (path->slots[*level] >= | 
|  | btrfs_header_nritems(cur)) | 
|  | break; | 
|  |  | 
|  | bytenr = btrfs_node_blockptr(cur, path->slots[*level]); | 
|  | ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); | 
|  | check.transid = ptr_gen; | 
|  | check.level = *level - 1; | 
|  | check.has_first_key = true; | 
|  | btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]); | 
|  |  | 
|  | next = btrfs_find_create_tree_block(fs_info, bytenr, | 
|  | btrfs_header_owner(cur), | 
|  | *level - 1); | 
|  | if (IS_ERR(next)) | 
|  | return PTR_ERR(next); | 
|  |  | 
|  | if (*level == 1) { | 
|  | ret = wc->process_func(root, next, wc, ptr_gen, | 
|  | *level - 1); | 
|  | if (ret) { | 
|  | free_extent_buffer(next); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | path->slots[*level]++; | 
|  | if (wc->free) { | 
|  | ret = btrfs_read_extent_buffer(next, &check); | 
|  | if (ret) { | 
|  | free_extent_buffer(next); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = clean_log_buffer(trans, next); | 
|  | if (ret) { | 
|  | free_extent_buffer(next); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | free_extent_buffer(next); | 
|  | continue; | 
|  | } | 
|  | ret = btrfs_read_extent_buffer(next, &check); | 
|  | if (ret) { | 
|  | free_extent_buffer(next); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (path->nodes[*level-1]) | 
|  | free_extent_buffer(path->nodes[*level-1]); | 
|  | path->nodes[*level-1] = next; | 
|  | *level = btrfs_header_level(next); | 
|  | path->slots[*level] = 0; | 
|  | cond_resched(); | 
|  | } | 
|  | path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); | 
|  |  | 
|  | cond_resched(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, int *level, | 
|  | struct walk_control *wc) | 
|  | { | 
|  | int i; | 
|  | int slot; | 
|  | int ret; | 
|  |  | 
|  | for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { | 
|  | slot = path->slots[i]; | 
|  | if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { | 
|  | path->slots[i]++; | 
|  | *level = i; | 
|  | WARN_ON(*level == 0); | 
|  | return 0; | 
|  | } else { | 
|  | ret = wc->process_func(root, path->nodes[*level], wc, | 
|  | btrfs_header_generation(path->nodes[*level]), | 
|  | *level); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (wc->free) { | 
|  | ret = clean_log_buffer(trans, path->nodes[*level]); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | free_extent_buffer(path->nodes[*level]); | 
|  | path->nodes[*level] = NULL; | 
|  | *level = i + 1; | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * drop the reference count on the tree rooted at 'snap'.  This traverses | 
|  | * the tree freeing any blocks that have a ref count of zero after being | 
|  | * decremented. | 
|  | */ | 
|  | static int walk_log_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *log, struct walk_control *wc) | 
|  | { | 
|  | int ret = 0; | 
|  | int wret; | 
|  | int level; | 
|  | struct btrfs_path *path; | 
|  | int orig_level; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | level = btrfs_header_level(log->node); | 
|  | orig_level = level; | 
|  | path->nodes[level] = log->node; | 
|  | atomic_inc(&log->node->refs); | 
|  | path->slots[level] = 0; | 
|  |  | 
|  | while (1) { | 
|  | wret = walk_down_log_tree(trans, log, path, &level, wc); | 
|  | if (wret > 0) | 
|  | break; | 
|  | if (wret < 0) { | 
|  | ret = wret; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | wret = walk_up_log_tree(trans, log, path, &level, wc); | 
|  | if (wret > 0) | 
|  | break; | 
|  | if (wret < 0) { | 
|  | ret = wret; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* was the root node processed? if not, catch it here */ | 
|  | if (path->nodes[orig_level]) { | 
|  | ret = wc->process_func(log, path->nodes[orig_level], wc, | 
|  | btrfs_header_generation(path->nodes[orig_level]), | 
|  | orig_level); | 
|  | if (ret) | 
|  | goto out; | 
|  | if (wc->free) | 
|  | ret = clean_log_buffer(trans, path->nodes[orig_level]); | 
|  | } | 
|  |  | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function to update the item for a given subvolumes log root | 
|  | * in the tree of log roots | 
|  | */ | 
|  | static int update_log_root(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *log, | 
|  | struct btrfs_root_item *root_item) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = log->fs_info; | 
|  | int ret; | 
|  |  | 
|  | if (log->log_transid == 1) { | 
|  | /* insert root item on the first sync */ | 
|  | ret = btrfs_insert_root(trans, fs_info->log_root_tree, | 
|  | &log->root_key, root_item); | 
|  | } else { | 
|  | ret = btrfs_update_root(trans, fs_info->log_root_tree, | 
|  | &log->root_key, root_item); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void wait_log_commit(struct btrfs_root *root, int transid) | 
|  | { | 
|  | DEFINE_WAIT(wait); | 
|  | int index = transid % 2; | 
|  |  | 
|  | /* | 
|  | * we only allow two pending log transactions at a time, | 
|  | * so we know that if ours is more than 2 older than the | 
|  | * current transaction, we're done | 
|  | */ | 
|  | for (;;) { | 
|  | prepare_to_wait(&root->log_commit_wait[index], | 
|  | &wait, TASK_UNINTERRUPTIBLE); | 
|  |  | 
|  | if (!(root->log_transid_committed < transid && | 
|  | atomic_read(&root->log_commit[index]))) | 
|  | break; | 
|  |  | 
|  | mutex_unlock(&root->log_mutex); | 
|  | schedule(); | 
|  | mutex_lock(&root->log_mutex); | 
|  | } | 
|  | finish_wait(&root->log_commit_wait[index], &wait); | 
|  | } | 
|  |  | 
|  | static void wait_for_writer(struct btrfs_root *root) | 
|  | { | 
|  | DEFINE_WAIT(wait); | 
|  |  | 
|  | for (;;) { | 
|  | prepare_to_wait(&root->log_writer_wait, &wait, | 
|  | TASK_UNINTERRUPTIBLE); | 
|  | if (!atomic_read(&root->log_writers)) | 
|  | break; | 
|  |  | 
|  | mutex_unlock(&root->log_mutex); | 
|  | schedule(); | 
|  | mutex_lock(&root->log_mutex); | 
|  | } | 
|  | finish_wait(&root->log_writer_wait, &wait); | 
|  | } | 
|  |  | 
|  | static inline void btrfs_remove_log_ctx(struct btrfs_root *root, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | mutex_lock(&root->log_mutex); | 
|  | list_del_init(&ctx->list); | 
|  | mutex_unlock(&root->log_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Invoked in log mutex context, or be sure there is no other task which | 
|  | * can access the list. | 
|  | */ | 
|  | static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, | 
|  | int index, int error) | 
|  | { | 
|  | struct btrfs_log_ctx *ctx; | 
|  | struct btrfs_log_ctx *safe; | 
|  |  | 
|  | list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) { | 
|  | list_del_init(&ctx->list); | 
|  | ctx->log_ret = error; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * btrfs_sync_log does sends a given tree log down to the disk and | 
|  | * updates the super blocks to record it.  When this call is done, | 
|  | * you know that any inodes previously logged are safely on disk only | 
|  | * if it returns 0. | 
|  | * | 
|  | * Any other return value means you need to call btrfs_commit_transaction. | 
|  | * Some of the edge cases for fsyncing directories that have had unlinks | 
|  | * or renames done in the past mean that sometimes the only safe | 
|  | * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN, | 
|  | * that has happened. | 
|  | */ | 
|  | int btrfs_sync_log(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | int index1; | 
|  | int index2; | 
|  | int mark; | 
|  | int ret; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_root *log = root->log_root; | 
|  | struct btrfs_root *log_root_tree = fs_info->log_root_tree; | 
|  | struct btrfs_root_item new_root_item; | 
|  | int log_transid = 0; | 
|  | struct btrfs_log_ctx root_log_ctx; | 
|  | struct blk_plug plug; | 
|  | u64 log_root_start; | 
|  | u64 log_root_level; | 
|  |  | 
|  | mutex_lock(&root->log_mutex); | 
|  | log_transid = ctx->log_transid; | 
|  | if (root->log_transid_committed >= log_transid) { | 
|  | mutex_unlock(&root->log_mutex); | 
|  | return ctx->log_ret; | 
|  | } | 
|  |  | 
|  | index1 = log_transid % 2; | 
|  | if (atomic_read(&root->log_commit[index1])) { | 
|  | wait_log_commit(root, log_transid); | 
|  | mutex_unlock(&root->log_mutex); | 
|  | return ctx->log_ret; | 
|  | } | 
|  | ASSERT(log_transid == root->log_transid); | 
|  | atomic_set(&root->log_commit[index1], 1); | 
|  |  | 
|  | /* wait for previous tree log sync to complete */ | 
|  | if (atomic_read(&root->log_commit[(index1 + 1) % 2])) | 
|  | wait_log_commit(root, log_transid - 1); | 
|  |  | 
|  | while (1) { | 
|  | int batch = atomic_read(&root->log_batch); | 
|  | /* when we're on an ssd, just kick the log commit out */ | 
|  | if (!btrfs_test_opt(fs_info, SSD) && | 
|  | test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { | 
|  | mutex_unlock(&root->log_mutex); | 
|  | schedule_timeout_uninterruptible(1); | 
|  | mutex_lock(&root->log_mutex); | 
|  | } | 
|  | wait_for_writer(root); | 
|  | if (batch == atomic_read(&root->log_batch)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* bail out if we need to do a full commit */ | 
|  | if (btrfs_need_log_full_commit(trans)) { | 
|  | ret = BTRFS_LOG_FORCE_COMMIT; | 
|  | mutex_unlock(&root->log_mutex); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (log_transid % 2 == 0) | 
|  | mark = EXTENT_DIRTY; | 
|  | else | 
|  | mark = EXTENT_NEW; | 
|  |  | 
|  | /* we start IO on  all the marked extents here, but we don't actually | 
|  | * wait for them until later. | 
|  | */ | 
|  | blk_start_plug(&plug); | 
|  | ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark); | 
|  | /* | 
|  | * -EAGAIN happens when someone, e.g., a concurrent transaction | 
|  | *  commit, writes a dirty extent in this tree-log commit. This | 
|  | *  concurrent write will create a hole writing out the extents, | 
|  | *  and we cannot proceed on a zoned filesystem, requiring | 
|  | *  sequential writing. While we can bail out to a full commit | 
|  | *  here, but we can continue hoping the concurrent writing fills | 
|  | *  the hole. | 
|  | */ | 
|  | if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) | 
|  | ret = 0; | 
|  | if (ret) { | 
|  | blk_finish_plug(&plug); | 
|  | btrfs_set_log_full_commit(trans); | 
|  | mutex_unlock(&root->log_mutex); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We _must_ update under the root->log_mutex in order to make sure we | 
|  | * have a consistent view of the log root we are trying to commit at | 
|  | * this moment. | 
|  | * | 
|  | * We _must_ copy this into a local copy, because we are not holding the | 
|  | * log_root_tree->log_mutex yet.  This is important because when we | 
|  | * commit the log_root_tree we must have a consistent view of the | 
|  | * log_root_tree when we update the super block to point at the | 
|  | * log_root_tree bytenr.  If we update the log_root_tree here we'll race | 
|  | * with the commit and possibly point at the new block which we may not | 
|  | * have written out. | 
|  | */ | 
|  | btrfs_set_root_node(&log->root_item, log->node); | 
|  | memcpy(&new_root_item, &log->root_item, sizeof(new_root_item)); | 
|  |  | 
|  | root->log_transid++; | 
|  | log->log_transid = root->log_transid; | 
|  | root->log_start_pid = 0; | 
|  | /* | 
|  | * IO has been started, blocks of the log tree have WRITTEN flag set | 
|  | * in their headers. new modifications of the log will be written to | 
|  | * new positions. so it's safe to allow log writers to go in. | 
|  | */ | 
|  | mutex_unlock(&root->log_mutex); | 
|  |  | 
|  | if (btrfs_is_zoned(fs_info)) { | 
|  | mutex_lock(&fs_info->tree_root->log_mutex); | 
|  | if (!log_root_tree->node) { | 
|  | ret = btrfs_alloc_log_tree_node(trans, log_root_tree); | 
|  | if (ret) { | 
|  | mutex_unlock(&fs_info->tree_root->log_mutex); | 
|  | blk_finish_plug(&plug); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&fs_info->tree_root->log_mutex); | 
|  | } | 
|  |  | 
|  | btrfs_init_log_ctx(&root_log_ctx, NULL); | 
|  |  | 
|  | mutex_lock(&log_root_tree->log_mutex); | 
|  |  | 
|  | index2 = log_root_tree->log_transid % 2; | 
|  | list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); | 
|  | root_log_ctx.log_transid = log_root_tree->log_transid; | 
|  |  | 
|  | /* | 
|  | * Now we are safe to update the log_root_tree because we're under the | 
|  | * log_mutex, and we're a current writer so we're holding the commit | 
|  | * open until we drop the log_mutex. | 
|  | */ | 
|  | ret = update_log_root(trans, log, &new_root_item); | 
|  | if (ret) { | 
|  | if (!list_empty(&root_log_ctx.list)) | 
|  | list_del_init(&root_log_ctx.list); | 
|  |  | 
|  | blk_finish_plug(&plug); | 
|  | btrfs_set_log_full_commit(trans); | 
|  | if (ret != -ENOSPC) | 
|  | btrfs_err(fs_info, | 
|  | "failed to update log for root %llu ret %d", | 
|  | root->root_key.objectid, ret); | 
|  | btrfs_wait_tree_log_extents(log, mark); | 
|  | mutex_unlock(&log_root_tree->log_mutex); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { | 
|  | blk_finish_plug(&plug); | 
|  | list_del_init(&root_log_ctx.list); | 
|  | mutex_unlock(&log_root_tree->log_mutex); | 
|  | ret = root_log_ctx.log_ret; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | index2 = root_log_ctx.log_transid % 2; | 
|  | if (atomic_read(&log_root_tree->log_commit[index2])) { | 
|  | blk_finish_plug(&plug); | 
|  | ret = btrfs_wait_tree_log_extents(log, mark); | 
|  | wait_log_commit(log_root_tree, | 
|  | root_log_ctx.log_transid); | 
|  | mutex_unlock(&log_root_tree->log_mutex); | 
|  | if (!ret) | 
|  | ret = root_log_ctx.log_ret; | 
|  | goto out; | 
|  | } | 
|  | ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); | 
|  | atomic_set(&log_root_tree->log_commit[index2], 1); | 
|  |  | 
|  | if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { | 
|  | wait_log_commit(log_root_tree, | 
|  | root_log_ctx.log_transid - 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * now that we've moved on to the tree of log tree roots, | 
|  | * check the full commit flag again | 
|  | */ | 
|  | if (btrfs_need_log_full_commit(trans)) { | 
|  | blk_finish_plug(&plug); | 
|  | btrfs_wait_tree_log_extents(log, mark); | 
|  | mutex_unlock(&log_root_tree->log_mutex); | 
|  | ret = BTRFS_LOG_FORCE_COMMIT; | 
|  | goto out_wake_log_root; | 
|  | } | 
|  |  | 
|  | ret = btrfs_write_marked_extents(fs_info, | 
|  | &log_root_tree->dirty_log_pages, | 
|  | EXTENT_DIRTY | EXTENT_NEW); | 
|  | blk_finish_plug(&plug); | 
|  | /* | 
|  | * As described above, -EAGAIN indicates a hole in the extents. We | 
|  | * cannot wait for these write outs since the waiting cause a | 
|  | * deadlock. Bail out to the full commit instead. | 
|  | */ | 
|  | if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) { | 
|  | btrfs_set_log_full_commit(trans); | 
|  | btrfs_wait_tree_log_extents(log, mark); | 
|  | mutex_unlock(&log_root_tree->log_mutex); | 
|  | goto out_wake_log_root; | 
|  | } else if (ret) { | 
|  | btrfs_set_log_full_commit(trans); | 
|  | mutex_unlock(&log_root_tree->log_mutex); | 
|  | goto out_wake_log_root; | 
|  | } | 
|  | ret = btrfs_wait_tree_log_extents(log, mark); | 
|  | if (!ret) | 
|  | ret = btrfs_wait_tree_log_extents(log_root_tree, | 
|  | EXTENT_NEW | EXTENT_DIRTY); | 
|  | if (ret) { | 
|  | btrfs_set_log_full_commit(trans); | 
|  | mutex_unlock(&log_root_tree->log_mutex); | 
|  | goto out_wake_log_root; | 
|  | } | 
|  |  | 
|  | log_root_start = log_root_tree->node->start; | 
|  | log_root_level = btrfs_header_level(log_root_tree->node); | 
|  | log_root_tree->log_transid++; | 
|  | mutex_unlock(&log_root_tree->log_mutex); | 
|  |  | 
|  | /* | 
|  | * Here we are guaranteed that nobody is going to write the superblock | 
|  | * for the current transaction before us and that neither we do write | 
|  | * our superblock before the previous transaction finishes its commit | 
|  | * and writes its superblock, because: | 
|  | * | 
|  | * 1) We are holding a handle on the current transaction, so no body | 
|  | *    can commit it until we release the handle; | 
|  | * | 
|  | * 2) Before writing our superblock we acquire the tree_log_mutex, so | 
|  | *    if the previous transaction is still committing, and hasn't yet | 
|  | *    written its superblock, we wait for it to do it, because a | 
|  | *    transaction commit acquires the tree_log_mutex when the commit | 
|  | *    begins and releases it only after writing its superblock. | 
|  | */ | 
|  | mutex_lock(&fs_info->tree_log_mutex); | 
|  |  | 
|  | /* | 
|  | * The previous transaction writeout phase could have failed, and thus | 
|  | * marked the fs in an error state.  We must not commit here, as we | 
|  | * could have updated our generation in the super_for_commit and | 
|  | * writing the super here would result in transid mismatches.  If there | 
|  | * is an error here just bail. | 
|  | */ | 
|  | if (BTRFS_FS_ERROR(fs_info)) { | 
|  | ret = -EIO; | 
|  | btrfs_set_log_full_commit(trans); | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | mutex_unlock(&fs_info->tree_log_mutex); | 
|  | goto out_wake_log_root; | 
|  | } | 
|  |  | 
|  | btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start); | 
|  | btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level); | 
|  | ret = write_all_supers(fs_info, 1); | 
|  | mutex_unlock(&fs_info->tree_log_mutex); | 
|  | if (ret) { | 
|  | btrfs_set_log_full_commit(trans); | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out_wake_log_root; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We know there can only be one task here, since we have not yet set | 
|  | * root->log_commit[index1] to 0 and any task attempting to sync the | 
|  | * log must wait for the previous log transaction to commit if it's | 
|  | * still in progress or wait for the current log transaction commit if | 
|  | * someone else already started it. We use <= and not < because the | 
|  | * first log transaction has an ID of 0. | 
|  | */ | 
|  | ASSERT(root->last_log_commit <= log_transid); | 
|  | root->last_log_commit = log_transid; | 
|  |  | 
|  | out_wake_log_root: | 
|  | mutex_lock(&log_root_tree->log_mutex); | 
|  | btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); | 
|  |  | 
|  | log_root_tree->log_transid_committed++; | 
|  | atomic_set(&log_root_tree->log_commit[index2], 0); | 
|  | mutex_unlock(&log_root_tree->log_mutex); | 
|  |  | 
|  | /* | 
|  | * The barrier before waitqueue_active (in cond_wake_up) is needed so | 
|  | * all the updates above are seen by the woken threads. It might not be | 
|  | * necessary, but proving that seems to be hard. | 
|  | */ | 
|  | cond_wake_up(&log_root_tree->log_commit_wait[index2]); | 
|  | out: | 
|  | mutex_lock(&root->log_mutex); | 
|  | btrfs_remove_all_log_ctxs(root, index1, ret); | 
|  | root->log_transid_committed++; | 
|  | atomic_set(&root->log_commit[index1], 0); | 
|  | mutex_unlock(&root->log_mutex); | 
|  |  | 
|  | /* | 
|  | * The barrier before waitqueue_active (in cond_wake_up) is needed so | 
|  | * all the updates above are seen by the woken threads. It might not be | 
|  | * necessary, but proving that seems to be hard. | 
|  | */ | 
|  | cond_wake_up(&root->log_commit_wait[index1]); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void free_log_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *log) | 
|  | { | 
|  | int ret; | 
|  | struct walk_control wc = { | 
|  | .free = 1, | 
|  | .process_func = process_one_buffer | 
|  | }; | 
|  |  | 
|  | if (log->node) { | 
|  | ret = walk_log_tree(trans, log, &wc); | 
|  | if (ret) { | 
|  | /* | 
|  | * We weren't able to traverse the entire log tree, the | 
|  | * typical scenario is getting an -EIO when reading an | 
|  | * extent buffer of the tree, due to a previous writeback | 
|  | * failure of it. | 
|  | */ | 
|  | set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, | 
|  | &log->fs_info->fs_state); | 
|  |  | 
|  | /* | 
|  | * Some extent buffers of the log tree may still be dirty | 
|  | * and not yet written back to storage, because we may | 
|  | * have updates to a log tree without syncing a log tree, | 
|  | * such as during rename and link operations. So flush | 
|  | * them out and wait for their writeback to complete, so | 
|  | * that we properly cleanup their state and pages. | 
|  | */ | 
|  | btrfs_write_marked_extents(log->fs_info, | 
|  | &log->dirty_log_pages, | 
|  | EXTENT_DIRTY | EXTENT_NEW); | 
|  | btrfs_wait_tree_log_extents(log, | 
|  | EXTENT_DIRTY | EXTENT_NEW); | 
|  |  | 
|  | if (trans) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | else | 
|  | btrfs_handle_fs_error(log->fs_info, ret, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1, | 
|  | EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT); | 
|  | extent_io_tree_release(&log->log_csum_range); | 
|  |  | 
|  | btrfs_put_root(log); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * free all the extents used by the tree log.  This should be called | 
|  | * at commit time of the full transaction | 
|  | */ | 
|  | int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) | 
|  | { | 
|  | if (root->log_root) { | 
|  | free_log_tree(trans, root->log_root); | 
|  | root->log_root = NULL; | 
|  | clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | if (fs_info->log_root_tree) { | 
|  | free_log_tree(trans, fs_info->log_root_tree); | 
|  | fs_info->log_root_tree = NULL; | 
|  | clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if an inode was logged in the current transaction. This correctly deals | 
|  | * with the case where the inode was logged but has a logged_trans of 0, which | 
|  | * happens if the inode is evicted and loaded again, as logged_trans is an in | 
|  | * memory only field (not persisted). | 
|  | * | 
|  | * Returns 1 if the inode was logged before in the transaction, 0 if it was not, | 
|  | * and < 0 on error. | 
|  | */ | 
|  | static int inode_logged(const struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct btrfs_path *path_in) | 
|  | { | 
|  | struct btrfs_path *path = path_in; | 
|  | struct btrfs_key key; | 
|  | int ret; | 
|  |  | 
|  | if (inode->logged_trans == trans->transid) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * If logged_trans is not 0, then we know the inode logged was not logged | 
|  | * in this transaction, so we can return false right away. | 
|  | */ | 
|  | if (inode->logged_trans > 0) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If no log tree was created for this root in this transaction, then | 
|  | * the inode can not have been logged in this transaction. In that case | 
|  | * set logged_trans to anything greater than 0 and less than the current | 
|  | * transaction's ID, to avoid the search below in a future call in case | 
|  | * a log tree gets created after this. | 
|  | */ | 
|  | if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) { | 
|  | inode->logged_trans = trans->transid - 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have a log tree and the inode's logged_trans is 0. We can't tell | 
|  | * for sure if the inode was logged before in this transaction by looking | 
|  | * only at logged_trans. We could be pessimistic and assume it was, but | 
|  | * that can lead to unnecessarily logging an inode during rename and link | 
|  | * operations, and then further updating the log in followup rename and | 
|  | * link operations, specially if it's a directory, which adds latency | 
|  | * visible to applications doing a series of rename or link operations. | 
|  | * | 
|  | * A logged_trans of 0 here can mean several things: | 
|  | * | 
|  | * 1) The inode was never logged since the filesystem was mounted, and may | 
|  | *    or may have not been evicted and loaded again; | 
|  | * | 
|  | * 2) The inode was logged in a previous transaction, then evicted and | 
|  | *    then loaded again; | 
|  | * | 
|  | * 3) The inode was logged in the current transaction, then evicted and | 
|  | *    then loaded again. | 
|  | * | 
|  | * For cases 1) and 2) we don't want to return true, but we need to detect | 
|  | * case 3) and return true. So we do a search in the log root for the inode | 
|  | * item. | 
|  | */ | 
|  | key.objectid = btrfs_ino(inode); | 
|  | key.type = BTRFS_INODE_ITEM_KEY; | 
|  | key.offset = 0; | 
|  |  | 
|  | if (!path) { | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0); | 
|  |  | 
|  | if (path_in) | 
|  | btrfs_release_path(path); | 
|  | else | 
|  | btrfs_free_path(path); | 
|  |  | 
|  | /* | 
|  | * Logging an inode always results in logging its inode item. So if we | 
|  | * did not find the item we know the inode was not logged for sure. | 
|  | */ | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } else if (ret > 0) { | 
|  | /* | 
|  | * Set logged_trans to a value greater than 0 and less then the | 
|  | * current transaction to avoid doing the search in future calls. | 
|  | */ | 
|  | inode->logged_trans = trans->transid - 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The inode was previously logged and then evicted, set logged_trans to | 
|  | * the current transacion's ID, to avoid future tree searches as long as | 
|  | * the inode is not evicted again. | 
|  | */ | 
|  | inode->logged_trans = trans->transid; | 
|  |  | 
|  | /* | 
|  | * If it's a directory, then we must set last_dir_index_offset to the | 
|  | * maximum possible value, so that the next attempt to log the inode does | 
|  | * not skip checking if dir index keys found in modified subvolume tree | 
|  | * leaves have been logged before, otherwise it would result in attempts | 
|  | * to insert duplicate dir index keys in the log tree. This must be done | 
|  | * because last_dir_index_offset is an in-memory only field, not persisted | 
|  | * in the inode item or any other on-disk structure, so its value is lost | 
|  | * once the inode is evicted. | 
|  | */ | 
|  | if (S_ISDIR(inode->vfs_inode.i_mode)) | 
|  | inode->last_dir_index_offset = (u64)-1; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Delete a directory entry from the log if it exists. | 
|  | * | 
|  | * Returns < 0 on error | 
|  | *           1 if the entry does not exists | 
|  | *           0 if the entry existed and was successfully deleted | 
|  | */ | 
|  | static int del_logged_dentry(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *log, | 
|  | struct btrfs_path *path, | 
|  | u64 dir_ino, | 
|  | const struct fscrypt_str *name, | 
|  | u64 index) | 
|  | { | 
|  | struct btrfs_dir_item *di; | 
|  |  | 
|  | /* | 
|  | * We only log dir index items of a directory, so we don't need to look | 
|  | * for dir item keys. | 
|  | */ | 
|  | di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, | 
|  | index, name, -1); | 
|  | if (IS_ERR(di)) | 
|  | return PTR_ERR(di); | 
|  | else if (!di) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * We do not need to update the size field of the directory's | 
|  | * inode item because on log replay we update the field to reflect | 
|  | * all existing entries in the directory (see overwrite_item()). | 
|  | */ | 
|  | return btrfs_delete_one_dir_name(trans, log, path, di); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If both a file and directory are logged, and unlinks or renames are | 
|  | * mixed in, we have a few interesting corners: | 
|  | * | 
|  | * create file X in dir Y | 
|  | * link file X to X.link in dir Y | 
|  | * fsync file X | 
|  | * unlink file X but leave X.link | 
|  | * fsync dir Y | 
|  | * | 
|  | * After a crash we would expect only X.link to exist.  But file X | 
|  | * didn't get fsync'd again so the log has back refs for X and X.link. | 
|  | * | 
|  | * We solve this by removing directory entries and inode backrefs from the | 
|  | * log when a file that was logged in the current transaction is | 
|  | * unlinked.  Any later fsync will include the updated log entries, and | 
|  | * we'll be able to reconstruct the proper directory items from backrefs. | 
|  | * | 
|  | * This optimizations allows us to avoid relogging the entire inode | 
|  | * or the entire directory. | 
|  | */ | 
|  | void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | const struct fscrypt_str *name, | 
|  | struct btrfs_inode *dir, u64 index) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | int ret; | 
|  |  | 
|  | ret = inode_logged(trans, dir, NULL); | 
|  | if (ret == 0) | 
|  | return; | 
|  | else if (ret < 0) { | 
|  | btrfs_set_log_full_commit(trans); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ret = join_running_log_trans(root); | 
|  | if (ret) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&dir->log_mutex); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | ret = -ENOMEM; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir), | 
|  | name, index); | 
|  | btrfs_free_path(path); | 
|  | out_unlock: | 
|  | mutex_unlock(&dir->log_mutex); | 
|  | if (ret < 0) | 
|  | btrfs_set_log_full_commit(trans); | 
|  | btrfs_end_log_trans(root); | 
|  | } | 
|  |  | 
|  | /* see comments for btrfs_del_dir_entries_in_log */ | 
|  | void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | const struct fscrypt_str *name, | 
|  | struct btrfs_inode *inode, u64 dirid) | 
|  | { | 
|  | struct btrfs_root *log; | 
|  | u64 index; | 
|  | int ret; | 
|  |  | 
|  | ret = inode_logged(trans, inode, NULL); | 
|  | if (ret == 0) | 
|  | return; | 
|  | else if (ret < 0) { | 
|  | btrfs_set_log_full_commit(trans); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ret = join_running_log_trans(root); | 
|  | if (ret) | 
|  | return; | 
|  | log = root->log_root; | 
|  | mutex_lock(&inode->log_mutex); | 
|  |  | 
|  | ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode), | 
|  | dirid, &index); | 
|  | mutex_unlock(&inode->log_mutex); | 
|  | if (ret < 0 && ret != -ENOENT) | 
|  | btrfs_set_log_full_commit(trans); | 
|  | btrfs_end_log_trans(root); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * creates a range item in the log for 'dirid'.  first_offset and | 
|  | * last_offset tell us which parts of the key space the log should | 
|  | * be considered authoritative for. | 
|  | */ | 
|  | static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *log, | 
|  | struct btrfs_path *path, | 
|  | u64 dirid, | 
|  | u64 first_offset, u64 last_offset) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_dir_log_item *item; | 
|  |  | 
|  | key.objectid = dirid; | 
|  | key.offset = first_offset; | 
|  | key.type = BTRFS_DIR_LOG_INDEX_KEY; | 
|  | ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); | 
|  | /* | 
|  | * -EEXIST is fine and can happen sporadically when we are logging a | 
|  | * directory and have concurrent insertions in the subvolume's tree for | 
|  | * items from other inodes and that result in pushing off some dir items | 
|  | * from one leaf to another in order to accommodate for the new items. | 
|  | * This results in logging the same dir index range key. | 
|  | */ | 
|  | if (ret && ret != -EEXIST) | 
|  | return ret; | 
|  |  | 
|  | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_dir_log_item); | 
|  | if (ret == -EEXIST) { | 
|  | const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item); | 
|  |  | 
|  | /* | 
|  | * btrfs_del_dir_entries_in_log() might have been called during | 
|  | * an unlink between the initial insertion of this key and the | 
|  | * current update, or we might be logging a single entry deletion | 
|  | * during a rename, so set the new last_offset to the max value. | 
|  | */ | 
|  | last_offset = max(last_offset, curr_end); | 
|  | } | 
|  | btrfs_set_dir_log_end(path->nodes[0], item, last_offset); | 
|  | btrfs_mark_buffer_dirty(trans, path->nodes[0]); | 
|  | btrfs_release_path(path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int flush_dir_items_batch(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct extent_buffer *src, | 
|  | struct btrfs_path *dst_path, | 
|  | int start_slot, | 
|  | int count) | 
|  | { | 
|  | struct btrfs_root *log = inode->root->log_root; | 
|  | char *ins_data = NULL; | 
|  | struct btrfs_item_batch batch; | 
|  | struct extent_buffer *dst; | 
|  | unsigned long src_offset; | 
|  | unsigned long dst_offset; | 
|  | u64 last_index; | 
|  | struct btrfs_key key; | 
|  | u32 item_size; | 
|  | int ret; | 
|  | int i; | 
|  |  | 
|  | ASSERT(count > 0); | 
|  | batch.nr = count; | 
|  |  | 
|  | if (count == 1) { | 
|  | btrfs_item_key_to_cpu(src, &key, start_slot); | 
|  | item_size = btrfs_item_size(src, start_slot); | 
|  | batch.keys = &key; | 
|  | batch.data_sizes = &item_size; | 
|  | batch.total_data_size = item_size; | 
|  | } else { | 
|  | struct btrfs_key *ins_keys; | 
|  | u32 *ins_sizes; | 
|  |  | 
|  | ins_data = kmalloc(count * sizeof(u32) + | 
|  | count * sizeof(struct btrfs_key), GFP_NOFS); | 
|  | if (!ins_data) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ins_sizes = (u32 *)ins_data; | 
|  | ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32)); | 
|  | batch.keys = ins_keys; | 
|  | batch.data_sizes = ins_sizes; | 
|  | batch.total_data_size = 0; | 
|  |  | 
|  | for (i = 0; i < count; i++) { | 
|  | const int slot = start_slot + i; | 
|  |  | 
|  | btrfs_item_key_to_cpu(src, &ins_keys[i], slot); | 
|  | ins_sizes[i] = btrfs_item_size(src, slot); | 
|  | batch.total_data_size += ins_sizes[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = btrfs_insert_empty_items(trans, log, dst_path, &batch); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | dst = dst_path->nodes[0]; | 
|  | /* | 
|  | * Copy all the items in bulk, in a single copy operation. Item data is | 
|  | * organized such that it's placed at the end of a leaf and from right | 
|  | * to left. For example, the data for the second item ends at an offset | 
|  | * that matches the offset where the data for the first item starts, the | 
|  | * data for the third item ends at an offset that matches the offset | 
|  | * where the data of the second items starts, and so on. | 
|  | * Therefore our source and destination start offsets for copy match the | 
|  | * offsets of the last items (highest slots). | 
|  | */ | 
|  | dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1); | 
|  | src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1); | 
|  | copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size); | 
|  | btrfs_release_path(dst_path); | 
|  |  | 
|  | last_index = batch.keys[count - 1].offset; | 
|  | ASSERT(last_index > inode->last_dir_index_offset); | 
|  |  | 
|  | /* | 
|  | * If for some unexpected reason the last item's index is not greater | 
|  | * than the last index we logged, warn and force a transaction commit. | 
|  | */ | 
|  | if (WARN_ON(last_index <= inode->last_dir_index_offset)) | 
|  | ret = BTRFS_LOG_FORCE_COMMIT; | 
|  | else | 
|  | inode->last_dir_index_offset = last_index; | 
|  |  | 
|  | if (btrfs_get_first_dir_index_to_log(inode) == 0) | 
|  | btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset); | 
|  | out: | 
|  | kfree(ins_data); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int process_dir_items_leaf(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_path *dst_path, | 
|  | struct btrfs_log_ctx *ctx, | 
|  | u64 *last_old_dentry_offset) | 
|  | { | 
|  | struct btrfs_root *log = inode->root->log_root; | 
|  | struct extent_buffer *src; | 
|  | const int nritems = btrfs_header_nritems(path->nodes[0]); | 
|  | const u64 ino = btrfs_ino(inode); | 
|  | bool last_found = false; | 
|  | int batch_start = 0; | 
|  | int batch_size = 0; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * We need to clone the leaf, release the read lock on it, and use the | 
|  | * clone before modifying the log tree. See the comment at copy_items() | 
|  | * about why we need to do this. | 
|  | */ | 
|  | src = btrfs_clone_extent_buffer(path->nodes[0]); | 
|  | if (!src) | 
|  | return -ENOMEM; | 
|  |  | 
|  | i = path->slots[0]; | 
|  | btrfs_release_path(path); | 
|  | path->nodes[0] = src; | 
|  | path->slots[0] = i; | 
|  |  | 
|  | for (; i < nritems; i++) { | 
|  | struct btrfs_dir_item *di; | 
|  | struct btrfs_key key; | 
|  | int ret; | 
|  |  | 
|  | btrfs_item_key_to_cpu(src, &key, i); | 
|  |  | 
|  | if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) { | 
|  | last_found = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | di = btrfs_item_ptr(src, i, struct btrfs_dir_item); | 
|  |  | 
|  | /* | 
|  | * Skip ranges of items that consist only of dir item keys created | 
|  | * in past transactions. However if we find a gap, we must log a | 
|  | * dir index range item for that gap, so that index keys in that | 
|  | * gap are deleted during log replay. | 
|  | */ | 
|  | if (btrfs_dir_transid(src, di) < trans->transid) { | 
|  | if (key.offset > *last_old_dentry_offset + 1) { | 
|  | ret = insert_dir_log_key(trans, log, dst_path, | 
|  | ino, *last_old_dentry_offset + 1, | 
|  | key.offset - 1); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | *last_old_dentry_offset = key.offset; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* If we logged this dir index item before, we can skip it. */ | 
|  | if (key.offset <= inode->last_dir_index_offset) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * We must make sure that when we log a directory entry, the | 
|  | * corresponding inode, after log replay, has a matching link | 
|  | * count. For example: | 
|  | * | 
|  | * touch foo | 
|  | * mkdir mydir | 
|  | * sync | 
|  | * ln foo mydir/bar | 
|  | * xfs_io -c "fsync" mydir | 
|  | * <crash> | 
|  | * <mount fs and log replay> | 
|  | * | 
|  | * Would result in a fsync log that when replayed, our file inode | 
|  | * would have a link count of 1, but we get two directory entries | 
|  | * pointing to the same inode. After removing one of the names, | 
|  | * it would not be possible to remove the other name, which | 
|  | * resulted always in stale file handle errors, and would not be | 
|  | * possible to rmdir the parent directory, since its i_size could | 
|  | * never be decremented to the value BTRFS_EMPTY_DIR_SIZE, | 
|  | * resulting in -ENOTEMPTY errors. | 
|  | */ | 
|  | if (!ctx->log_new_dentries) { | 
|  | struct btrfs_key di_key; | 
|  |  | 
|  | btrfs_dir_item_key_to_cpu(src, di, &di_key); | 
|  | if (di_key.type != BTRFS_ROOT_ITEM_KEY) | 
|  | ctx->log_new_dentries = true; | 
|  | } | 
|  |  | 
|  | if (batch_size == 0) | 
|  | batch_start = i; | 
|  | batch_size++; | 
|  | } | 
|  |  | 
|  | if (batch_size > 0) { | 
|  | int ret; | 
|  |  | 
|  | ret = flush_dir_items_batch(trans, inode, src, dst_path, | 
|  | batch_start, batch_size); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return last_found ? 1 : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * log all the items included in the current transaction for a given | 
|  | * directory.  This also creates the range items in the log tree required | 
|  | * to replay anything deleted before the fsync | 
|  | */ | 
|  | static noinline int log_dir_items(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_path *dst_path, | 
|  | struct btrfs_log_ctx *ctx, | 
|  | u64 min_offset, u64 *last_offset_ret) | 
|  | { | 
|  | struct btrfs_key min_key; | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct btrfs_root *log = root->log_root; | 
|  | int ret; | 
|  | u64 last_old_dentry_offset = min_offset - 1; | 
|  | u64 last_offset = (u64)-1; | 
|  | u64 ino = btrfs_ino(inode); | 
|  |  | 
|  | min_key.objectid = ino; | 
|  | min_key.type = BTRFS_DIR_INDEX_KEY; | 
|  | min_key.offset = min_offset; | 
|  |  | 
|  | ret = btrfs_search_forward(root, &min_key, path, trans->transid); | 
|  |  | 
|  | /* | 
|  | * we didn't find anything from this transaction, see if there | 
|  | * is anything at all | 
|  | */ | 
|  | if (ret != 0 || min_key.objectid != ino || | 
|  | min_key.type != BTRFS_DIR_INDEX_KEY) { | 
|  | min_key.objectid = ino; | 
|  | min_key.type = BTRFS_DIR_INDEX_KEY; | 
|  | min_key.offset = (u64)-1; | 
|  | btrfs_release_path(path); | 
|  | ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); | 
|  | if (ret < 0) { | 
|  | btrfs_release_path(path); | 
|  | return ret; | 
|  | } | 
|  | ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY); | 
|  |  | 
|  | /* if ret == 0 there are items for this type, | 
|  | * create a range to tell us the last key of this type. | 
|  | * otherwise, there are no items in this directory after | 
|  | * *min_offset, and we create a range to indicate that. | 
|  | */ | 
|  | if (ret == 0) { | 
|  | struct btrfs_key tmp; | 
|  |  | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &tmp, | 
|  | path->slots[0]); | 
|  | if (tmp.type == BTRFS_DIR_INDEX_KEY) | 
|  | last_old_dentry_offset = tmp.offset; | 
|  | } else if (ret > 0) { | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* go backward to find any previous key */ | 
|  | ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY); | 
|  | if (ret == 0) { | 
|  | struct btrfs_key tmp; | 
|  |  | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); | 
|  | /* | 
|  | * The dir index key before the first one we found that needs to | 
|  | * be logged might be in a previous leaf, and there might be a | 
|  | * gap between these keys, meaning that we had deletions that | 
|  | * happened. So the key range item we log (key type | 
|  | * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the | 
|  | * previous key's offset plus 1, so that those deletes are replayed. | 
|  | */ | 
|  | if (tmp.type == BTRFS_DIR_INDEX_KEY) | 
|  | last_old_dentry_offset = tmp.offset; | 
|  | } else if (ret < 0) { | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * Find the first key from this transaction again or the one we were at | 
|  | * in the loop below in case we had to reschedule. We may be logging the | 
|  | * directory without holding its VFS lock, which happen when logging new | 
|  | * dentries (through log_new_dir_dentries()) or in some cases when we | 
|  | * need to log the parent directory of an inode. This means a dir index | 
|  | * key might be deleted from the inode's root, and therefore we may not | 
|  | * find it anymore. If we can't find it, just move to the next key. We | 
|  | * can not bail out and ignore, because if we do that we will simply | 
|  | * not log dir index keys that come after the one that was just deleted | 
|  | * and we can end up logging a dir index range that ends at (u64)-1 | 
|  | * (@last_offset is initialized to that), resulting in removing dir | 
|  | * entries we should not remove at log replay time. | 
|  | */ | 
|  | search: | 
|  | ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); | 
|  | if (ret > 0) { | 
|  | ret = btrfs_next_item(root, path); | 
|  | if (ret > 0) { | 
|  | /* There are no more keys in the inode's root. */ | 
|  | ret = 0; | 
|  | goto done; | 
|  | } | 
|  | } | 
|  | if (ret < 0) | 
|  | goto done; | 
|  |  | 
|  | /* | 
|  | * we have a block from this transaction, log every item in it | 
|  | * from our directory | 
|  | */ | 
|  | while (1) { | 
|  | ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx, | 
|  | &last_old_dentry_offset); | 
|  | if (ret != 0) { | 
|  | if (ret > 0) | 
|  | ret = 0; | 
|  | goto done; | 
|  | } | 
|  | path->slots[0] = btrfs_header_nritems(path->nodes[0]); | 
|  |  | 
|  | /* | 
|  | * look ahead to the next item and see if it is also | 
|  | * from this directory and from this transaction | 
|  | */ | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret) { | 
|  | if (ret == 1) { | 
|  | last_offset = (u64)-1; | 
|  | ret = 0; | 
|  | } | 
|  | goto done; | 
|  | } | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]); | 
|  | if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) { | 
|  | last_offset = (u64)-1; | 
|  | goto done; | 
|  | } | 
|  | if (btrfs_header_generation(path->nodes[0]) != trans->transid) { | 
|  | /* | 
|  | * The next leaf was not changed in the current transaction | 
|  | * and has at least one dir index key. | 
|  | * We check for the next key because there might have been | 
|  | * one or more deletions between the last key we logged and | 
|  | * that next key. So the key range item we log (key type | 
|  | * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's | 
|  | * offset minus 1, so that those deletes are replayed. | 
|  | */ | 
|  | last_offset = min_key.offset - 1; | 
|  | goto done; | 
|  | } | 
|  | if (need_resched()) { | 
|  | btrfs_release_path(path); | 
|  | cond_resched(); | 
|  | goto search; | 
|  | } | 
|  | } | 
|  | done: | 
|  | btrfs_release_path(path); | 
|  | btrfs_release_path(dst_path); | 
|  |  | 
|  | if (ret == 0) { | 
|  | *last_offset_ret = last_offset; | 
|  | /* | 
|  | * In case the leaf was changed in the current transaction but | 
|  | * all its dir items are from a past transaction, the last item | 
|  | * in the leaf is a dir item and there's no gap between that last | 
|  | * dir item and the first one on the next leaf (which did not | 
|  | * change in the current transaction), then we don't need to log | 
|  | * a range, last_old_dentry_offset is == to last_offset. | 
|  | */ | 
|  | ASSERT(last_old_dentry_offset <= last_offset); | 
|  | if (last_old_dentry_offset < last_offset) | 
|  | ret = insert_dir_log_key(trans, log, path, ino, | 
|  | last_old_dentry_offset + 1, | 
|  | last_offset); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the inode was logged before and it was evicted, then its | 
|  | * last_dir_index_offset is (u64)-1, so we don't the value of the last index | 
|  | * key offset. If that's the case, search for it and update the inode. This | 
|  | * is to avoid lookups in the log tree every time we try to insert a dir index | 
|  | * key from a leaf changed in the current transaction, and to allow us to always | 
|  | * do batch insertions of dir index keys. | 
|  | */ | 
|  | static int update_last_dir_index_offset(struct btrfs_inode *inode, | 
|  | struct btrfs_path *path, | 
|  | const struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | const u64 ino = btrfs_ino(inode); | 
|  | struct btrfs_key key; | 
|  | int ret; | 
|  |  | 
|  | lockdep_assert_held(&inode->log_mutex); | 
|  |  | 
|  | if (inode->last_dir_index_offset != (u64)-1) | 
|  | return 0; | 
|  |  | 
|  | if (!ctx->logged_before) { | 
|  | inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | key.objectid = ino; | 
|  | key.type = BTRFS_DIR_INDEX_KEY; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0); | 
|  | /* | 
|  | * An error happened or we actually have an index key with an offset | 
|  | * value of (u64)-1. Bail out, we're done. | 
|  | */ | 
|  | if (ret <= 0) | 
|  | goto out; | 
|  |  | 
|  | ret = 0; | 
|  | inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1; | 
|  |  | 
|  | /* | 
|  | * No dir index items, bail out and leave last_dir_index_offset with | 
|  | * the value right before the first valid index value. | 
|  | */ | 
|  | if (path->slots[0] == 0) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * btrfs_search_slot() left us at one slot beyond the slot with the last | 
|  | * index key, or beyond the last key of the directory that is not an | 
|  | * index key. If we have an index key before, set last_dir_index_offset | 
|  | * to its offset value, otherwise leave it with a value right before the | 
|  | * first valid index value, as it means we have an empty directory. | 
|  | */ | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); | 
|  | if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY) | 
|  | inode->last_dir_index_offset = key.offset; | 
|  |  | 
|  | out: | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * logging directories is very similar to logging inodes, We find all the items | 
|  | * from the current transaction and write them to the log. | 
|  | * | 
|  | * The recovery code scans the directory in the subvolume, and if it finds a | 
|  | * key in the range logged that is not present in the log tree, then it means | 
|  | * that dir entry was unlinked during the transaction. | 
|  | * | 
|  | * In order for that scan to work, we must include one key smaller than | 
|  | * the smallest logged by this transaction and one key larger than the largest | 
|  | * key logged by this transaction. | 
|  | */ | 
|  | static noinline int log_directory_changes(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_path *dst_path, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | u64 min_key; | 
|  | u64 max_key; | 
|  | int ret; | 
|  |  | 
|  | ret = update_last_dir_index_offset(inode, path, ctx); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | min_key = BTRFS_DIR_START_INDEX; | 
|  | max_key = 0; | 
|  |  | 
|  | while (1) { | 
|  | ret = log_dir_items(trans, inode, path, dst_path, | 
|  | ctx, min_key, &max_key); | 
|  | if (ret) | 
|  | return ret; | 
|  | if (max_key == (u64)-1) | 
|  | break; | 
|  | min_key = max_key + 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * a helper function to drop items from the log before we relog an | 
|  | * inode.  max_key_type indicates the highest item type to remove. | 
|  | * This cannot be run for file data extents because it does not | 
|  | * free the extents they point to. | 
|  | */ | 
|  | static int drop_inode_items(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *log, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_inode *inode, | 
|  | int max_key_type) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | int start_slot; | 
|  |  | 
|  | key.objectid = btrfs_ino(inode); | 
|  | key.type = max_key_type; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_search_slot(trans, log, &key, path, -1, 1); | 
|  | if (ret < 0) { | 
|  | break; | 
|  | } else if (ret > 0) { | 
|  | if (path->slots[0] == 0) | 
|  | break; | 
|  | path->slots[0]--; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
|  | path->slots[0]); | 
|  |  | 
|  | if (found_key.objectid != key.objectid) | 
|  | break; | 
|  |  | 
|  | found_key.offset = 0; | 
|  | found_key.type = 0; | 
|  | ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot); | 
|  | if (ret < 0) | 
|  | break; | 
|  |  | 
|  | ret = btrfs_del_items(trans, log, path, start_slot, | 
|  | path->slots[0] - start_slot + 1); | 
|  | /* | 
|  | * If start slot isn't 0 then we don't need to re-search, we've | 
|  | * found the last guy with the objectid in this tree. | 
|  | */ | 
|  | if (ret || start_slot != 0) | 
|  | break; | 
|  | btrfs_release_path(path); | 
|  | } | 
|  | btrfs_release_path(path); | 
|  | if (ret > 0) | 
|  | ret = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int truncate_inode_items(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *log_root, | 
|  | struct btrfs_inode *inode, | 
|  | u64 new_size, u32 min_type) | 
|  | { | 
|  | struct btrfs_truncate_control control = { | 
|  | .new_size = new_size, | 
|  | .ino = btrfs_ino(inode), | 
|  | .min_type = min_type, | 
|  | .skip_ref_updates = true, | 
|  | }; | 
|  |  | 
|  | return btrfs_truncate_inode_items(trans, log_root, &control); | 
|  | } | 
|  |  | 
|  | static void fill_inode_item(struct btrfs_trans_handle *trans, | 
|  | struct extent_buffer *leaf, | 
|  | struct btrfs_inode_item *item, | 
|  | struct inode *inode, int log_inode_only, | 
|  | u64 logged_isize) | 
|  | { | 
|  | struct btrfs_map_token token; | 
|  | u64 flags; | 
|  |  | 
|  | btrfs_init_map_token(&token, leaf); | 
|  |  | 
|  | if (log_inode_only) { | 
|  | /* set the generation to zero so the recover code | 
|  | * can tell the difference between an logging | 
|  | * just to say 'this inode exists' and a logging | 
|  | * to say 'update this inode with these values' | 
|  | */ | 
|  | btrfs_set_token_inode_generation(&token, item, 0); | 
|  | btrfs_set_token_inode_size(&token, item, logged_isize); | 
|  | } else { | 
|  | btrfs_set_token_inode_generation(&token, item, | 
|  | BTRFS_I(inode)->generation); | 
|  | btrfs_set_token_inode_size(&token, item, inode->i_size); | 
|  | } | 
|  |  | 
|  | btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); | 
|  | btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); | 
|  | btrfs_set_token_inode_mode(&token, item, inode->i_mode); | 
|  | btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); | 
|  |  | 
|  | btrfs_set_token_timespec_sec(&token, &item->atime, | 
|  | inode->i_atime.tv_sec); | 
|  | btrfs_set_token_timespec_nsec(&token, &item->atime, | 
|  | inode->i_atime.tv_nsec); | 
|  |  | 
|  | btrfs_set_token_timespec_sec(&token, &item->mtime, | 
|  | inode->i_mtime.tv_sec); | 
|  | btrfs_set_token_timespec_nsec(&token, &item->mtime, | 
|  | inode->i_mtime.tv_nsec); | 
|  |  | 
|  | btrfs_set_token_timespec_sec(&token, &item->ctime, | 
|  | inode_get_ctime(inode).tv_sec); | 
|  | btrfs_set_token_timespec_nsec(&token, &item->ctime, | 
|  | inode_get_ctime(inode).tv_nsec); | 
|  |  | 
|  | /* | 
|  | * We do not need to set the nbytes field, in fact during a fast fsync | 
|  | * its value may not even be correct, since a fast fsync does not wait | 
|  | * for ordered extent completion, which is where we update nbytes, it | 
|  | * only waits for writeback to complete. During log replay as we find | 
|  | * file extent items and replay them, we adjust the nbytes field of the | 
|  | * inode item in subvolume tree as needed (see overwrite_item()). | 
|  | */ | 
|  |  | 
|  | btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); | 
|  | btrfs_set_token_inode_transid(&token, item, trans->transid); | 
|  | btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); | 
|  | flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, | 
|  | BTRFS_I(inode)->ro_flags); | 
|  | btrfs_set_token_inode_flags(&token, item, flags); | 
|  | btrfs_set_token_inode_block_group(&token, item, 0); | 
|  | } | 
|  |  | 
|  | static int log_inode_item(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *log, struct btrfs_path *path, | 
|  | struct btrfs_inode *inode, bool inode_item_dropped) | 
|  | { | 
|  | struct btrfs_inode_item *inode_item; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * If we are doing a fast fsync and the inode was logged before in the | 
|  | * current transaction, then we know the inode was previously logged and | 
|  | * it exists in the log tree. For performance reasons, in this case use | 
|  | * btrfs_search_slot() directly with ins_len set to 0 so that we never | 
|  | * attempt a write lock on the leaf's parent, which adds unnecessary lock | 
|  | * contention in case there are concurrent fsyncs for other inodes of the | 
|  | * same subvolume. Using btrfs_insert_empty_item() when the inode item | 
|  | * already exists can also result in unnecessarily splitting a leaf. | 
|  | */ | 
|  | if (!inode_item_dropped && inode->logged_trans == trans->transid) { | 
|  | ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1); | 
|  | ASSERT(ret <= 0); | 
|  | if (ret > 0) | 
|  | ret = -ENOENT; | 
|  | } else { | 
|  | /* | 
|  | * This means it is the first fsync in the current transaction, | 
|  | * so the inode item is not in the log and we need to insert it. | 
|  | * We can never get -EEXIST because we are only called for a fast | 
|  | * fsync and in case an inode eviction happens after the inode was | 
|  | * logged before in the current transaction, when we load again | 
|  | * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime | 
|  | * flags and set ->logged_trans to 0. | 
|  | */ | 
|  | ret = btrfs_insert_empty_item(trans, log, path, &inode->location, | 
|  | sizeof(*inode_item)); | 
|  | ASSERT(ret != -EEXIST); | 
|  | } | 
|  | if (ret) | 
|  | return ret; | 
|  | inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_inode_item); | 
|  | fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode, | 
|  | 0, 0); | 
|  | btrfs_release_path(path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int log_csums(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct btrfs_root *log_root, | 
|  | struct btrfs_ordered_sum *sums) | 
|  | { | 
|  | const u64 lock_end = sums->logical + sums->len - 1; | 
|  | struct extent_state *cached_state = NULL; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * If this inode was not used for reflink operations in the current | 
|  | * transaction with new extents, then do the fast path, no need to | 
|  | * worry about logging checksum items with overlapping ranges. | 
|  | */ | 
|  | if (inode->last_reflink_trans < trans->transid) | 
|  | return btrfs_csum_file_blocks(trans, log_root, sums); | 
|  |  | 
|  | /* | 
|  | * Serialize logging for checksums. This is to avoid racing with the | 
|  | * same checksum being logged by another task that is logging another | 
|  | * file which happens to refer to the same extent as well. Such races | 
|  | * can leave checksum items in the log with overlapping ranges. | 
|  | */ | 
|  | ret = lock_extent(&log_root->log_csum_range, sums->logical, lock_end, | 
|  | &cached_state); | 
|  | if (ret) | 
|  | return ret; | 
|  | /* | 
|  | * Due to extent cloning, we might have logged a csum item that covers a | 
|  | * subrange of a cloned extent, and later we can end up logging a csum | 
|  | * item for a larger subrange of the same extent or the entire range. | 
|  | * This would leave csum items in the log tree that cover the same range | 
|  | * and break the searches for checksums in the log tree, resulting in | 
|  | * some checksums missing in the fs/subvolume tree. So just delete (or | 
|  | * trim and adjust) any existing csum items in the log for this range. | 
|  | */ | 
|  | ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len); | 
|  | if (!ret) | 
|  | ret = btrfs_csum_file_blocks(trans, log_root, sums); | 
|  |  | 
|  | unlock_extent(&log_root->log_csum_range, sums->logical, lock_end, | 
|  | &cached_state); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int copy_items(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct btrfs_path *dst_path, | 
|  | struct btrfs_path *src_path, | 
|  | int start_slot, int nr, int inode_only, | 
|  | u64 logged_isize) | 
|  | { | 
|  | struct btrfs_root *log = inode->root->log_root; | 
|  | struct btrfs_file_extent_item *extent; | 
|  | struct extent_buffer *src; | 
|  | int ret = 0; | 
|  | struct btrfs_key *ins_keys; | 
|  | u32 *ins_sizes; | 
|  | struct btrfs_item_batch batch; | 
|  | char *ins_data; | 
|  | int i; | 
|  | int dst_index; | 
|  | const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM); | 
|  | const u64 i_size = i_size_read(&inode->vfs_inode); | 
|  |  | 
|  | /* | 
|  | * To keep lockdep happy and avoid deadlocks, clone the source leaf and | 
|  | * use the clone. This is because otherwise we would be changing the log | 
|  | * tree, to insert items from the subvolume tree or insert csum items, | 
|  | * while holding a read lock on a leaf from the subvolume tree, which | 
|  | * creates a nasty lock dependency when COWing log tree nodes/leaves: | 
|  | * | 
|  | * 1) Modifying the log tree triggers an extent buffer allocation while | 
|  | *    holding a write lock on a parent extent buffer from the log tree. | 
|  | *    Allocating the pages for an extent buffer, or the extent buffer | 
|  | *    struct, can trigger inode eviction and finally the inode eviction | 
|  | *    will trigger a release/remove of a delayed node, which requires | 
|  | *    taking the delayed node's mutex; | 
|  | * | 
|  | * 2) Allocating a metadata extent for a log tree can trigger the async | 
|  | *    reclaim thread and make us wait for it to release enough space and | 
|  | *    unblock our reservation ticket. The reclaim thread can start | 
|  | *    flushing delayed items, and that in turn results in the need to | 
|  | *    lock delayed node mutexes and in the need to write lock extent | 
|  | *    buffers of a subvolume tree - all this while holding a write lock | 
|  | *    on the parent extent buffer in the log tree. | 
|  | * | 
|  | * So one task in scenario 1) running in parallel with another task in | 
|  | * scenario 2) could lead to a deadlock, one wanting to lock a delayed | 
|  | * node mutex while having a read lock on a leaf from the subvolume, | 
|  | * while the other is holding the delayed node's mutex and wants to | 
|  | * write lock the same subvolume leaf for flushing delayed items. | 
|  | */ | 
|  | src = btrfs_clone_extent_buffer(src_path->nodes[0]); | 
|  | if (!src) | 
|  | return -ENOMEM; | 
|  |  | 
|  | i = src_path->slots[0]; | 
|  | btrfs_release_path(src_path); | 
|  | src_path->nodes[0] = src; | 
|  | src_path->slots[0] = i; | 
|  |  | 
|  | ins_data = kmalloc(nr * sizeof(struct btrfs_key) + | 
|  | nr * sizeof(u32), GFP_NOFS); | 
|  | if (!ins_data) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ins_sizes = (u32 *)ins_data; | 
|  | ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); | 
|  | batch.keys = ins_keys; | 
|  | batch.data_sizes = ins_sizes; | 
|  | batch.total_data_size = 0; | 
|  | batch.nr = 0; | 
|  |  | 
|  | dst_index = 0; | 
|  | for (i = 0; i < nr; i++) { | 
|  | const int src_slot = start_slot + i; | 
|  | struct btrfs_root *csum_root; | 
|  | struct btrfs_ordered_sum *sums; | 
|  | struct btrfs_ordered_sum *sums_next; | 
|  | LIST_HEAD(ordered_sums); | 
|  | u64 disk_bytenr; | 
|  | u64 disk_num_bytes; | 
|  | u64 extent_offset; | 
|  | u64 extent_num_bytes; | 
|  | bool is_old_extent; | 
|  |  | 
|  | btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot); | 
|  |  | 
|  | if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY) | 
|  | goto add_to_batch; | 
|  |  | 
|  | extent = btrfs_item_ptr(src, src_slot, | 
|  | struct btrfs_file_extent_item); | 
|  |  | 
|  | is_old_extent = (btrfs_file_extent_generation(src, extent) < | 
|  | trans->transid); | 
|  |  | 
|  | /* | 
|  | * Don't copy extents from past generations. That would make us | 
|  | * log a lot more metadata for common cases like doing only a | 
|  | * few random writes into a file and then fsync it for the first | 
|  | * time or after the full sync flag is set on the inode. We can | 
|  | * get leaves full of extent items, most of which are from past | 
|  | * generations, so we can skip them - as long as the inode has | 
|  | * not been the target of a reflink operation in this transaction, | 
|  | * as in that case it might have had file extent items with old | 
|  | * generations copied into it. We also must always log prealloc | 
|  | * extents that start at or beyond eof, otherwise we would lose | 
|  | * them on log replay. | 
|  | */ | 
|  | if (is_old_extent && | 
|  | ins_keys[dst_index].offset < i_size && | 
|  | inode->last_reflink_trans < trans->transid) | 
|  | continue; | 
|  |  | 
|  | if (skip_csum) | 
|  | goto add_to_batch; | 
|  |  | 
|  | /* Only regular extents have checksums. */ | 
|  | if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG) | 
|  | goto add_to_batch; | 
|  |  | 
|  | /* | 
|  | * If it's an extent created in a past transaction, then its | 
|  | * checksums are already accessible from the committed csum tree, | 
|  | * no need to log them. | 
|  | */ | 
|  | if (is_old_extent) | 
|  | goto add_to_batch; | 
|  |  | 
|  | disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent); | 
|  | /* If it's an explicit hole, there are no checksums. */ | 
|  | if (disk_bytenr == 0) | 
|  | goto add_to_batch; | 
|  |  | 
|  | disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent); | 
|  |  | 
|  | if (btrfs_file_extent_compression(src, extent)) { | 
|  | extent_offset = 0; | 
|  | extent_num_bytes = disk_num_bytes; | 
|  | } else { | 
|  | extent_offset = btrfs_file_extent_offset(src, extent); | 
|  | extent_num_bytes = btrfs_file_extent_num_bytes(src, extent); | 
|  | } | 
|  |  | 
|  | csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr); | 
|  | disk_bytenr += extent_offset; | 
|  | ret = btrfs_lookup_csums_list(csum_root, disk_bytenr, | 
|  | disk_bytenr + extent_num_bytes - 1, | 
|  | &ordered_sums, 0, false); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) { | 
|  | if (!ret) | 
|  | ret = log_csums(trans, inode, log, sums); | 
|  | list_del(&sums->list); | 
|  | kfree(sums); | 
|  | } | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | add_to_batch: | 
|  | ins_sizes[dst_index] = btrfs_item_size(src, src_slot); | 
|  | batch.total_data_size += ins_sizes[dst_index]; | 
|  | batch.nr++; | 
|  | dst_index++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have a leaf full of old extent items that don't need to be logged, | 
|  | * so we don't need to do anything. | 
|  | */ | 
|  | if (batch.nr == 0) | 
|  | goto out; | 
|  |  | 
|  | ret = btrfs_insert_empty_items(trans, log, dst_path, &batch); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | dst_index = 0; | 
|  | for (i = 0; i < nr; i++) { | 
|  | const int src_slot = start_slot + i; | 
|  | const int dst_slot = dst_path->slots[0] + dst_index; | 
|  | struct btrfs_key key; | 
|  | unsigned long src_offset; | 
|  | unsigned long dst_offset; | 
|  |  | 
|  | /* | 
|  | * We're done, all the remaining items in the source leaf | 
|  | * correspond to old file extent items. | 
|  | */ | 
|  | if (dst_index >= batch.nr) | 
|  | break; | 
|  |  | 
|  | btrfs_item_key_to_cpu(src, &key, src_slot); | 
|  |  | 
|  | if (key.type != BTRFS_EXTENT_DATA_KEY) | 
|  | goto copy_item; | 
|  |  | 
|  | extent = btrfs_item_ptr(src, src_slot, | 
|  | struct btrfs_file_extent_item); | 
|  |  | 
|  | /* See the comment in the previous loop, same logic. */ | 
|  | if (btrfs_file_extent_generation(src, extent) < trans->transid && | 
|  | key.offset < i_size && | 
|  | inode->last_reflink_trans < trans->transid) | 
|  | continue; | 
|  |  | 
|  | copy_item: | 
|  | dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot); | 
|  | src_offset = btrfs_item_ptr_offset(src, src_slot); | 
|  |  | 
|  | if (key.type == BTRFS_INODE_ITEM_KEY) { | 
|  | struct btrfs_inode_item *inode_item; | 
|  |  | 
|  | inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot, | 
|  | struct btrfs_inode_item); | 
|  | fill_inode_item(trans, dst_path->nodes[0], inode_item, | 
|  | &inode->vfs_inode, | 
|  | inode_only == LOG_INODE_EXISTS, | 
|  | logged_isize); | 
|  | } else { | 
|  | copy_extent_buffer(dst_path->nodes[0], src, dst_offset, | 
|  | src_offset, ins_sizes[dst_index]); | 
|  | } | 
|  |  | 
|  | dst_index++; | 
|  | } | 
|  |  | 
|  | btrfs_mark_buffer_dirty(trans, dst_path->nodes[0]); | 
|  | btrfs_release_path(dst_path); | 
|  | out: | 
|  | kfree(ins_data); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int extent_cmp(void *priv, const struct list_head *a, | 
|  | const struct list_head *b) | 
|  | { | 
|  | const struct extent_map *em1, *em2; | 
|  |  | 
|  | em1 = list_entry(a, struct extent_map, list); | 
|  | em2 = list_entry(b, struct extent_map, list); | 
|  |  | 
|  | if (em1->start < em2->start) | 
|  | return -1; | 
|  | else if (em1->start > em2->start) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int log_extent_csums(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct btrfs_root *log_root, | 
|  | const struct extent_map *em, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | struct btrfs_ordered_extent *ordered; | 
|  | struct btrfs_root *csum_root; | 
|  | u64 csum_offset; | 
|  | u64 csum_len; | 
|  | u64 mod_start = em->mod_start; | 
|  | u64 mod_len = em->mod_len; | 
|  | LIST_HEAD(ordered_sums); | 
|  | int ret = 0; | 
|  |  | 
|  | if (inode->flags & BTRFS_INODE_NODATASUM || | 
|  | test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || | 
|  | em->block_start == EXTENT_MAP_HOLE) | 
|  | return 0; | 
|  |  | 
|  | list_for_each_entry(ordered, &ctx->ordered_extents, log_list) { | 
|  | const u64 ordered_end = ordered->file_offset + ordered->num_bytes; | 
|  | const u64 mod_end = mod_start + mod_len; | 
|  | struct btrfs_ordered_sum *sums; | 
|  |  | 
|  | if (mod_len == 0) | 
|  | break; | 
|  |  | 
|  | if (ordered_end <= mod_start) | 
|  | continue; | 
|  | if (mod_end <= ordered->file_offset) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * We are going to copy all the csums on this ordered extent, so | 
|  | * go ahead and adjust mod_start and mod_len in case this ordered | 
|  | * extent has already been logged. | 
|  | */ | 
|  | if (ordered->file_offset > mod_start) { | 
|  | if (ordered_end >= mod_end) | 
|  | mod_len = ordered->file_offset - mod_start; | 
|  | /* | 
|  | * If we have this case | 
|  | * | 
|  | * |--------- logged extent ---------| | 
|  | *       |----- ordered extent ----| | 
|  | * | 
|  | * Just don't mess with mod_start and mod_len, we'll | 
|  | * just end up logging more csums than we need and it | 
|  | * will be ok. | 
|  | */ | 
|  | } else { | 
|  | if (ordered_end < mod_end) { | 
|  | mod_len = mod_end - ordered_end; | 
|  | mod_start = ordered_end; | 
|  | } else { | 
|  | mod_len = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To keep us from looping for the above case of an ordered | 
|  | * extent that falls inside of the logged extent. | 
|  | */ | 
|  | if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags)) | 
|  | continue; | 
|  |  | 
|  | list_for_each_entry(sums, &ordered->list, list) { | 
|  | ret = log_csums(trans, inode, log_root, sums); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* We're done, found all csums in the ordered extents. */ | 
|  | if (mod_len == 0) | 
|  | return 0; | 
|  |  | 
|  | /* If we're compressed we have to save the entire range of csums. */ | 
|  | if (em->compress_type) { | 
|  | csum_offset = 0; | 
|  | csum_len = max(em->block_len, em->orig_block_len); | 
|  | } else { | 
|  | csum_offset = mod_start - em->start; | 
|  | csum_len = mod_len; | 
|  | } | 
|  |  | 
|  | /* block start is already adjusted for the file extent offset. */ | 
|  | csum_root = btrfs_csum_root(trans->fs_info, em->block_start); | 
|  | ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset, | 
|  | em->block_start + csum_offset + | 
|  | csum_len - 1, &ordered_sums, 0, false); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | while (!list_empty(&ordered_sums)) { | 
|  | struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, | 
|  | struct btrfs_ordered_sum, | 
|  | list); | 
|  | if (!ret) | 
|  | ret = log_csums(trans, inode, log_root, sums); | 
|  | list_del(&sums->list); | 
|  | kfree(sums); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int log_one_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | const struct extent_map *em, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | struct btrfs_drop_extents_args drop_args = { 0 }; | 
|  | struct btrfs_root *log = inode->root->log_root; | 
|  | struct btrfs_file_extent_item fi = { 0 }; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  | u64 extent_offset = em->start - em->orig_start; | 
|  | u64 block_len; | 
|  | int ret; | 
|  |  | 
|  | btrfs_set_stack_file_extent_generation(&fi, trans->transid); | 
|  | if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) | 
|  | btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC); | 
|  | else | 
|  | btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG); | 
|  |  | 
|  | block_len = max(em->block_len, em->orig_block_len); | 
|  | if (em->compress_type != BTRFS_COMPRESS_NONE) { | 
|  | btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start); | 
|  | btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len); | 
|  | } else if (em->block_start < EXTENT_MAP_LAST_BYTE) { | 
|  | btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start - | 
|  | extent_offset); | 
|  | btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len); | 
|  | } | 
|  |  | 
|  | btrfs_set_stack_file_extent_offset(&fi, extent_offset); | 
|  | btrfs_set_stack_file_extent_num_bytes(&fi, em->len); | 
|  | btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes); | 
|  | btrfs_set_stack_file_extent_compression(&fi, em->compress_type); | 
|  |  | 
|  | ret = log_extent_csums(trans, inode, log, em, ctx); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * If this is the first time we are logging the inode in the current | 
|  | * transaction, we can avoid btrfs_drop_extents(), which is expensive | 
|  | * because it does a deletion search, which always acquires write locks | 
|  | * for extent buffers at levels 2, 1 and 0. This not only wastes time | 
|  | * but also adds significant contention in a log tree, since log trees | 
|  | * are small, with a root at level 2 or 3 at most, due to their short | 
|  | * life span. | 
|  | */ | 
|  | if (ctx->logged_before) { | 
|  | drop_args.path = path; | 
|  | drop_args.start = em->start; | 
|  | drop_args.end = em->start + em->len; | 
|  | drop_args.replace_extent = true; | 
|  | drop_args.extent_item_size = sizeof(fi); | 
|  | ret = btrfs_drop_extents(trans, log, inode, &drop_args); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (!drop_args.extent_inserted) { | 
|  | key.objectid = btrfs_ino(inode); | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = em->start; | 
|  |  | 
|  | ret = btrfs_insert_empty_item(trans, log, path, &key, | 
|  | sizeof(fi)); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | leaf = path->nodes[0]; | 
|  | write_extent_buffer(leaf, &fi, | 
|  | btrfs_item_ptr_offset(leaf, path->slots[0]), | 
|  | sizeof(fi)); | 
|  | btrfs_mark_buffer_dirty(trans, leaf); | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Log all prealloc extents beyond the inode's i_size to make sure we do not | 
|  | * lose them after doing a full/fast fsync and replaying the log. We scan the | 
|  | * subvolume's root instead of iterating the inode's extent map tree because | 
|  | * otherwise we can log incorrect extent items based on extent map conversion. | 
|  | * That can happen due to the fact that extent maps are merged when they | 
|  | * are not in the extent map tree's list of modified extents. | 
|  | */ | 
|  | static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct btrfs_key key; | 
|  | const u64 i_size = i_size_read(&inode->vfs_inode); | 
|  | const u64 ino = btrfs_ino(inode); | 
|  | struct btrfs_path *dst_path = NULL; | 
|  | bool dropped_extents = false; | 
|  | u64 truncate_offset = i_size; | 
|  | struct extent_buffer *leaf; | 
|  | int slot; | 
|  | int ins_nr = 0; | 
|  | int start_slot = 0; | 
|  | int ret; | 
|  |  | 
|  | if (!(inode->flags & BTRFS_INODE_PREALLOC)) | 
|  | return 0; | 
|  |  | 
|  | key.objectid = ino; | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = i_size; | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * We must check if there is a prealloc extent that starts before the | 
|  | * i_size and crosses the i_size boundary. This is to ensure later we | 
|  | * truncate down to the end of that extent and not to the i_size, as | 
|  | * otherwise we end up losing part of the prealloc extent after a log | 
|  | * replay and with an implicit hole if there is another prealloc extent | 
|  | * that starts at an offset beyond i_size. | 
|  | */ | 
|  | ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | if (ret == 0) { | 
|  | struct btrfs_file_extent_item *ei; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); | 
|  |  | 
|  | if (btrfs_file_extent_type(leaf, ei) == | 
|  | BTRFS_FILE_EXTENT_PREALLOC) { | 
|  | u64 extent_end; | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, slot); | 
|  | extent_end = key.offset + | 
|  | btrfs_file_extent_num_bytes(leaf, ei); | 
|  |  | 
|  | if (extent_end > i_size) | 
|  | truncate_offset = extent_end; | 
|  | } | 
|  | } else { | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | while (true) { | 
|  | leaf = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  |  | 
|  | if (slot >= btrfs_header_nritems(leaf)) { | 
|  | if (ins_nr > 0) { | 
|  | ret = copy_items(trans, inode, dst_path, path, | 
|  | start_slot, ins_nr, 1, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | ins_nr = 0; | 
|  | } | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, slot); | 
|  | if (key.objectid > ino) | 
|  | break; | 
|  | if (WARN_ON_ONCE(key.objectid < ino) || | 
|  | key.type < BTRFS_EXTENT_DATA_KEY || | 
|  | key.offset < i_size) { | 
|  | path->slots[0]++; | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * Avoid overlapping items in the log tree. The first time we | 
|  | * get here, get rid of everything from a past fsync. After | 
|  | * that, if the current extent starts before the end of the last | 
|  | * extent we copied, truncate the last one. This can happen if | 
|  | * an ordered extent completion modifies the subvolume tree | 
|  | * while btrfs_next_leaf() has the tree unlocked. | 
|  | */ | 
|  | if (!dropped_extents || key.offset < truncate_offset) { | 
|  | ret = truncate_inode_items(trans, root->log_root, inode, | 
|  | min(key.offset, truncate_offset), | 
|  | BTRFS_EXTENT_DATA_KEY); | 
|  | if (ret) | 
|  | goto out; | 
|  | dropped_extents = true; | 
|  | } | 
|  | truncate_offset = btrfs_file_extent_end(path); | 
|  | if (ins_nr == 0) | 
|  | start_slot = slot; | 
|  | ins_nr++; | 
|  | path->slots[0]++; | 
|  | if (!dst_path) { | 
|  | dst_path = btrfs_alloc_path(); | 
|  | if (!dst_path) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (ins_nr > 0) | 
|  | ret = copy_items(trans, inode, dst_path, path, | 
|  | start_slot, ins_nr, 1, 0); | 
|  | out: | 
|  | btrfs_release_path(path); | 
|  | btrfs_free_path(dst_path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | struct btrfs_ordered_extent *ordered; | 
|  | struct btrfs_ordered_extent *tmp; | 
|  | struct extent_map *em, *n; | 
|  | LIST_HEAD(extents); | 
|  | struct extent_map_tree *tree = &inode->extent_tree; | 
|  | int ret = 0; | 
|  | int num = 0; | 
|  |  | 
|  | write_lock(&tree->lock); | 
|  |  | 
|  | list_for_each_entry_safe(em, n, &tree->modified_extents, list) { | 
|  | list_del_init(&em->list); | 
|  | /* | 
|  | * Just an arbitrary number, this can be really CPU intensive | 
|  | * once we start getting a lot of extents, and really once we | 
|  | * have a bunch of extents we just want to commit since it will | 
|  | * be faster. | 
|  | */ | 
|  | if (++num > 32768) { | 
|  | list_del_init(&tree->modified_extents); | 
|  | ret = -EFBIG; | 
|  | goto process; | 
|  | } | 
|  |  | 
|  | if (em->generation < trans->transid) | 
|  | continue; | 
|  |  | 
|  | /* We log prealloc extents beyond eof later. */ | 
|  | if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && | 
|  | em->start >= i_size_read(&inode->vfs_inode)) | 
|  | continue; | 
|  |  | 
|  | /* Need a ref to keep it from getting evicted from cache */ | 
|  | refcount_inc(&em->refs); | 
|  | set_bit(EXTENT_FLAG_LOGGING, &em->flags); | 
|  | list_add_tail(&em->list, &extents); | 
|  | num++; | 
|  | } | 
|  |  | 
|  | list_sort(NULL, &extents, extent_cmp); | 
|  | process: | 
|  | while (!list_empty(&extents)) { | 
|  | em = list_entry(extents.next, struct extent_map, list); | 
|  |  | 
|  | list_del_init(&em->list); | 
|  |  | 
|  | /* | 
|  | * If we had an error we just need to delete everybody from our | 
|  | * private list. | 
|  | */ | 
|  | if (ret) { | 
|  | clear_em_logging(tree, em); | 
|  | free_extent_map(em); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | write_unlock(&tree->lock); | 
|  |  | 
|  | ret = log_one_extent(trans, inode, em, path, ctx); | 
|  | write_lock(&tree->lock); | 
|  | clear_em_logging(tree, em); | 
|  | free_extent_map(em); | 
|  | } | 
|  | WARN_ON(!list_empty(&extents)); | 
|  | write_unlock(&tree->lock); | 
|  |  | 
|  | if (!ret) | 
|  | ret = btrfs_log_prealloc_extents(trans, inode, path); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * We have logged all extents successfully, now make sure the commit of | 
|  | * the current transaction waits for the ordered extents to complete | 
|  | * before it commits and wipes out the log trees, otherwise we would | 
|  | * lose data if an ordered extents completes after the transaction | 
|  | * commits and a power failure happens after the transaction commit. | 
|  | */ | 
|  | list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) { | 
|  | list_del_init(&ordered->log_list); | 
|  | set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags); | 
|  |  | 
|  | if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { | 
|  | spin_lock_irq(&inode->ordered_tree.lock); | 
|  | if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { | 
|  | set_bit(BTRFS_ORDERED_PENDING, &ordered->flags); | 
|  | atomic_inc(&trans->transaction->pending_ordered); | 
|  | } | 
|  | spin_unlock_irq(&inode->ordered_tree.lock); | 
|  | } | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode, | 
|  | struct btrfs_path *path, u64 *size_ret) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | int ret; | 
|  |  | 
|  | key.objectid = btrfs_ino(inode); | 
|  | key.type = BTRFS_INODE_ITEM_KEY; | 
|  | key.offset = 0; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } else if (ret > 0) { | 
|  | *size_ret = 0; | 
|  | } else { | 
|  | struct btrfs_inode_item *item; | 
|  |  | 
|  | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_inode_item); | 
|  | *size_ret = btrfs_inode_size(path->nodes[0], item); | 
|  | /* | 
|  | * If the in-memory inode's i_size is smaller then the inode | 
|  | * size stored in the btree, return the inode's i_size, so | 
|  | * that we get a correct inode size after replaying the log | 
|  | * when before a power failure we had a shrinking truncate | 
|  | * followed by addition of a new name (rename / new hard link). | 
|  | * Otherwise return the inode size from the btree, to avoid | 
|  | * data loss when replaying a log due to previously doing a | 
|  | * write that expands the inode's size and logging a new name | 
|  | * immediately after. | 
|  | */ | 
|  | if (*size_ret > inode->vfs_inode.i_size) | 
|  | *size_ret = inode->vfs_inode.i_size; | 
|  | } | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * At the moment we always log all xattrs. This is to figure out at log replay | 
|  | * time which xattrs must have their deletion replayed. If a xattr is missing | 
|  | * in the log tree and exists in the fs/subvol tree, we delete it. This is | 
|  | * because if a xattr is deleted, the inode is fsynced and a power failure | 
|  | * happens, causing the log to be replayed the next time the fs is mounted, | 
|  | * we want the xattr to not exist anymore (same behaviour as other filesystems | 
|  | * with a journal, ext3/4, xfs, f2fs, etc). | 
|  | */ | 
|  | static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_path *dst_path) | 
|  | { | 
|  | struct btrfs_root *root = inode->root; | 
|  | int ret; | 
|  | struct btrfs_key key; | 
|  | const u64 ino = btrfs_ino(inode); | 
|  | int ins_nr = 0; | 
|  | int start_slot = 0; | 
|  | bool found_xattrs = false; | 
|  |  | 
|  | if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags)) | 
|  | return 0; | 
|  |  | 
|  | key.objectid = ino; | 
|  | key.type = BTRFS_XATTR_ITEM_KEY; | 
|  | key.offset = 0; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | while (true) { | 
|  | int slot = path->slots[0]; | 
|  | struct extent_buffer *leaf = path->nodes[0]; | 
|  | int nritems = btrfs_header_nritems(leaf); | 
|  |  | 
|  | if (slot >= nritems) { | 
|  | if (ins_nr > 0) { | 
|  | ret = copy_items(trans, inode, dst_path, path, | 
|  | start_slot, ins_nr, 1, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | ins_nr = 0; | 
|  | } | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | else if (ret > 0) | 
|  | break; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, slot); | 
|  | if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) | 
|  | break; | 
|  |  | 
|  | if (ins_nr == 0) | 
|  | start_slot = slot; | 
|  | ins_nr++; | 
|  | path->slots[0]++; | 
|  | found_xattrs = true; | 
|  | cond_resched(); | 
|  | } | 
|  | if (ins_nr > 0) { | 
|  | ret = copy_items(trans, inode, dst_path, path, | 
|  | start_slot, ins_nr, 1, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (!found_xattrs) | 
|  | set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When using the NO_HOLES feature if we punched a hole that causes the | 
|  | * deletion of entire leafs or all the extent items of the first leaf (the one | 
|  | * that contains the inode item and references) we may end up not processing | 
|  | * any extents, because there are no leafs with a generation matching the | 
|  | * current transaction that have extent items for our inode. So we need to find | 
|  | * if any holes exist and then log them. We also need to log holes after any | 
|  | * truncate operation that changes the inode's size. | 
|  | */ | 
|  | static int btrfs_log_holes(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_key key; | 
|  | const u64 ino = btrfs_ino(inode); | 
|  | const u64 i_size = i_size_read(&inode->vfs_inode); | 
|  | u64 prev_extent_end = 0; | 
|  | int ret; | 
|  |  | 
|  | if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0) | 
|  | return 0; | 
|  |  | 
|  | key.objectid = ino; | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = 0; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | while (true) { | 
|  | struct extent_buffer *leaf = path->nodes[0]; | 
|  |  | 
|  | if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (ret > 0) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | leaf = path->nodes[0]; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) | 
|  | break; | 
|  |  | 
|  | /* We have a hole, log it. */ | 
|  | if (prev_extent_end < key.offset) { | 
|  | const u64 hole_len = key.offset - prev_extent_end; | 
|  |  | 
|  | /* | 
|  | * Release the path to avoid deadlocks with other code | 
|  | * paths that search the root while holding locks on | 
|  | * leafs from the log root. | 
|  | */ | 
|  | btrfs_release_path(path); | 
|  | ret = btrfs_insert_hole_extent(trans, root->log_root, | 
|  | ino, prev_extent_end, | 
|  | hole_len); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Search for the same key again in the root. Since it's | 
|  | * an extent item and we are holding the inode lock, the | 
|  | * key must still exist. If it doesn't just emit warning | 
|  | * and return an error to fall back to a transaction | 
|  | * commit. | 
|  | */ | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (WARN_ON(ret > 0)) | 
|  | return -ENOENT; | 
|  | leaf = path->nodes[0]; | 
|  | } | 
|  |  | 
|  | prev_extent_end = btrfs_file_extent_end(path); | 
|  | path->slots[0]++; | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | if (prev_extent_end < i_size) { | 
|  | u64 hole_len; | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize); | 
|  | ret = btrfs_insert_hole_extent(trans, root->log_root, ino, | 
|  | prev_extent_end, hole_len); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When we are logging a new inode X, check if it doesn't have a reference that | 
|  | * matches the reference from some other inode Y created in a past transaction | 
|  | * and that was renamed in the current transaction. If we don't do this, then at | 
|  | * log replay time we can lose inode Y (and all its files if it's a directory): | 
|  | * | 
|  | * mkdir /mnt/x | 
|  | * echo "hello world" > /mnt/x/foobar | 
|  | * sync | 
|  | * mv /mnt/x /mnt/y | 
|  | * mkdir /mnt/x                 # or touch /mnt/x | 
|  | * xfs_io -c fsync /mnt/x | 
|  | * <power fail> | 
|  | * mount fs, trigger log replay | 
|  | * | 
|  | * After the log replay procedure, we would lose the first directory and all its | 
|  | * files (file foobar). | 
|  | * For the case where inode Y is not a directory we simply end up losing it: | 
|  | * | 
|  | * echo "123" > /mnt/foo | 
|  | * sync | 
|  | * mv /mnt/foo /mnt/bar | 
|  | * echo "abc" > /mnt/foo | 
|  | * xfs_io -c fsync /mnt/foo | 
|  | * <power fail> | 
|  | * | 
|  | * We also need this for cases where a snapshot entry is replaced by some other | 
|  | * entry (file or directory) otherwise we end up with an unreplayable log due to | 
|  | * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as | 
|  | * if it were a regular entry: | 
|  | * | 
|  | * mkdir /mnt/x | 
|  | * btrfs subvolume snapshot /mnt /mnt/x/snap | 
|  | * btrfs subvolume delete /mnt/x/snap | 
|  | * rmdir /mnt/x | 
|  | * mkdir /mnt/x | 
|  | * fsync /mnt/x or fsync some new file inside it | 
|  | * <power fail> | 
|  | * | 
|  | * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in | 
|  | * the same transaction. | 
|  | */ | 
|  | static int btrfs_check_ref_name_override(struct extent_buffer *eb, | 
|  | const int slot, | 
|  | const struct btrfs_key *key, | 
|  | struct btrfs_inode *inode, | 
|  | u64 *other_ino, u64 *other_parent) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_path *search_path; | 
|  | char *name = NULL; | 
|  | u32 name_len = 0; | 
|  | u32 item_size = btrfs_item_size(eb, slot); | 
|  | u32 cur_offset = 0; | 
|  | unsigned long ptr = btrfs_item_ptr_offset(eb, slot); | 
|  |  | 
|  | search_path = btrfs_alloc_path(); | 
|  | if (!search_path) | 
|  | return -ENOMEM; | 
|  | search_path->search_commit_root = 1; | 
|  | search_path->skip_locking = 1; | 
|  |  | 
|  | while (cur_offset < item_size) { | 
|  | u64 parent; | 
|  | u32 this_name_len; | 
|  | u32 this_len; | 
|  | unsigned long name_ptr; | 
|  | struct btrfs_dir_item *di; | 
|  | struct fscrypt_str name_str; | 
|  |  | 
|  | if (key->type == BTRFS_INODE_REF_KEY) { | 
|  | struct btrfs_inode_ref *iref; | 
|  |  | 
|  | iref = (struct btrfs_inode_ref *)(ptr + cur_offset); | 
|  | parent = key->offset; | 
|  | this_name_len = btrfs_inode_ref_name_len(eb, iref); | 
|  | name_ptr = (unsigned long)(iref + 1); | 
|  | this_len = sizeof(*iref) + this_name_len; | 
|  | } else { | 
|  | struct btrfs_inode_extref *extref; | 
|  |  | 
|  | extref = (struct btrfs_inode_extref *)(ptr + | 
|  | cur_offset); | 
|  | parent = btrfs_inode_extref_parent(eb, extref); | 
|  | this_name_len = btrfs_inode_extref_name_len(eb, extref); | 
|  | name_ptr = (unsigned long)&extref->name; | 
|  | this_len = sizeof(*extref) + this_name_len; | 
|  | } | 
|  |  | 
|  | if (this_name_len > name_len) { | 
|  | char *new_name; | 
|  |  | 
|  | new_name = krealloc(name, this_name_len, GFP_NOFS); | 
|  | if (!new_name) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | name_len = this_name_len; | 
|  | name = new_name; | 
|  | } | 
|  |  | 
|  | read_extent_buffer(eb, name, name_ptr, this_name_len); | 
|  |  | 
|  | name_str.name = name; | 
|  | name_str.len = this_name_len; | 
|  | di = btrfs_lookup_dir_item(NULL, inode->root, search_path, | 
|  | parent, &name_str, 0); | 
|  | if (di && !IS_ERR(di)) { | 
|  | struct btrfs_key di_key; | 
|  |  | 
|  | btrfs_dir_item_key_to_cpu(search_path->nodes[0], | 
|  | di, &di_key); | 
|  | if (di_key.type == BTRFS_INODE_ITEM_KEY) { | 
|  | if (di_key.objectid != key->objectid) { | 
|  | ret = 1; | 
|  | *other_ino = di_key.objectid; | 
|  | *other_parent = parent; | 
|  | } else { | 
|  | ret = 0; | 
|  | } | 
|  | } else { | 
|  | ret = -EAGAIN; | 
|  | } | 
|  | goto out; | 
|  | } else if (IS_ERR(di)) { | 
|  | ret = PTR_ERR(di); | 
|  | goto out; | 
|  | } | 
|  | btrfs_release_path(search_path); | 
|  |  | 
|  | cur_offset += this_len; | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | btrfs_free_path(search_path); | 
|  | kfree(name); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if we need to log an inode. This is used in contexts where while | 
|  | * logging an inode we need to log another inode (either that it exists or in | 
|  | * full mode). This is used instead of btrfs_inode_in_log() because the later | 
|  | * requires the inode to be in the log and have the log transaction committed, | 
|  | * while here we do not care if the log transaction was already committed - our | 
|  | * caller will commit the log later - and we want to avoid logging an inode | 
|  | * multiple times when multiple tasks have joined the same log transaction. | 
|  | */ | 
|  | static bool need_log_inode(const struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode) | 
|  | { | 
|  | /* | 
|  | * If a directory was not modified, no dentries added or removed, we can | 
|  | * and should avoid logging it. | 
|  | */ | 
|  | if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * If this inode does not have new/updated/deleted xattrs since the last | 
|  | * time it was logged and is flagged as logged in the current transaction, | 
|  | * we can skip logging it. As for new/deleted names, those are updated in | 
|  | * the log by link/unlink/rename operations. | 
|  | * In case the inode was logged and then evicted and reloaded, its | 
|  | * logged_trans will be 0, in which case we have to fully log it since | 
|  | * logged_trans is a transient field, not persisted. | 
|  | */ | 
|  | if (inode_logged(trans, inode, NULL) == 1 && | 
|  | !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | struct btrfs_dir_list { | 
|  | u64 ino; | 
|  | struct list_head list; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Log the inodes of the new dentries of a directory. | 
|  | * See process_dir_items_leaf() for details about why it is needed. | 
|  | * This is a recursive operation - if an existing dentry corresponds to a | 
|  | * directory, that directory's new entries are logged too (same behaviour as | 
|  | * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes | 
|  | * the dentries point to we do not acquire their VFS lock, otherwise lockdep | 
|  | * complains about the following circular lock dependency / possible deadlock: | 
|  | * | 
|  | *        CPU0                                        CPU1 | 
|  | *        ----                                        ---- | 
|  | * lock(&type->i_mutex_dir_key#3/2); | 
|  | *                                            lock(sb_internal#2); | 
|  | *                                            lock(&type->i_mutex_dir_key#3/2); | 
|  | * lock(&sb->s_type->i_mutex_key#14); | 
|  | * | 
|  | * Where sb_internal is the lock (a counter that works as a lock) acquired by | 
|  | * sb_start_intwrite() in btrfs_start_transaction(). | 
|  | * Not acquiring the VFS lock of the inodes is still safe because: | 
|  | * | 
|  | * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible | 
|  | *    that while logging the inode new references (names) are added or removed | 
|  | *    from the inode, leaving the logged inode item with a link count that does | 
|  | *    not match the number of logged inode reference items. This is fine because | 
|  | *    at log replay time we compute the real number of links and correct the | 
|  | *    link count in the inode item (see replay_one_buffer() and | 
|  | *    link_to_fixup_dir()); | 
|  | * | 
|  | * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that | 
|  | *    while logging the inode's items new index items (key type | 
|  | *    BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item | 
|  | *    has a size that doesn't match the sum of the lengths of all the logged | 
|  | *    names - this is ok, not a problem, because at log replay time we set the | 
|  | *    directory's i_size to the correct value (see replay_one_name() and | 
|  | *    overwrite_item()). | 
|  | */ | 
|  | static int log_new_dir_dentries(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *start_inode, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | struct btrfs_root *root = start_inode->root; | 
|  | struct btrfs_path *path; | 
|  | LIST_HEAD(dir_list); | 
|  | struct btrfs_dir_list *dir_elem; | 
|  | u64 ino = btrfs_ino(start_inode); | 
|  | struct btrfs_inode *curr_inode = start_inode; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * If we are logging a new name, as part of a link or rename operation, | 
|  | * don't bother logging new dentries, as we just want to log the names | 
|  | * of an inode and that any new parents exist. | 
|  | */ | 
|  | if (ctx->logging_new_name) | 
|  | return 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Pairs with btrfs_add_delayed_iput below. */ | 
|  | ihold(&curr_inode->vfs_inode); | 
|  |  | 
|  | while (true) { | 
|  | struct inode *vfs_inode; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | u64 next_index; | 
|  | bool continue_curr_inode = true; | 
|  | int iter_ret; | 
|  |  | 
|  | key.objectid = ino; | 
|  | key.type = BTRFS_DIR_INDEX_KEY; | 
|  | key.offset = btrfs_get_first_dir_index_to_log(curr_inode); | 
|  | next_index = key.offset; | 
|  | again: | 
|  | btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) { | 
|  | struct extent_buffer *leaf = path->nodes[0]; | 
|  | struct btrfs_dir_item *di; | 
|  | struct btrfs_key di_key; | 
|  | struct inode *di_inode; | 
|  | int log_mode = LOG_INODE_EXISTS; | 
|  | int type; | 
|  |  | 
|  | if (found_key.objectid != ino || | 
|  | found_key.type != BTRFS_DIR_INDEX_KEY) { | 
|  | continue_curr_inode = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | next_index = found_key.offset + 1; | 
|  |  | 
|  | di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); | 
|  | type = btrfs_dir_ftype(leaf, di); | 
|  | if (btrfs_dir_transid(leaf, di) < trans->transid) | 
|  | continue; | 
|  | btrfs_dir_item_key_to_cpu(leaf, di, &di_key); | 
|  | if (di_key.type == BTRFS_ROOT_ITEM_KEY) | 
|  | continue; | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | di_inode = btrfs_iget_logging(di_key.objectid, root); | 
|  | if (IS_ERR(di_inode)) { | 
|  | ret = PTR_ERR(di_inode); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!need_log_inode(trans, BTRFS_I(di_inode))) { | 
|  | btrfs_add_delayed_iput(BTRFS_I(di_inode)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | ctx->log_new_dentries = false; | 
|  | if (type == BTRFS_FT_DIR) | 
|  | log_mode = LOG_INODE_ALL; | 
|  | ret = btrfs_log_inode(trans, BTRFS_I(di_inode), | 
|  | log_mode, ctx); | 
|  | btrfs_add_delayed_iput(BTRFS_I(di_inode)); | 
|  | if (ret) | 
|  | goto out; | 
|  | if (ctx->log_new_dentries) { | 
|  | dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); | 
|  | if (!dir_elem) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | dir_elem->ino = di_key.objectid; | 
|  | list_add_tail(&dir_elem->list, &dir_list); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | if (iter_ret < 0) { | 
|  | ret = iter_ret; | 
|  | goto out; | 
|  | } else if (iter_ret > 0) { | 
|  | continue_curr_inode = false; | 
|  | } else { | 
|  | key = found_key; | 
|  | } | 
|  |  | 
|  | if (continue_curr_inode && key.offset < (u64)-1) { | 
|  | key.offset++; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | btrfs_set_first_dir_index_to_log(curr_inode, next_index); | 
|  |  | 
|  | if (list_empty(&dir_list)) | 
|  | break; | 
|  |  | 
|  | dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list); | 
|  | ino = dir_elem->ino; | 
|  | list_del(&dir_elem->list); | 
|  | kfree(dir_elem); | 
|  |  | 
|  | btrfs_add_delayed_iput(curr_inode); | 
|  | curr_inode = NULL; | 
|  |  | 
|  | vfs_inode = btrfs_iget_logging(ino, root); | 
|  | if (IS_ERR(vfs_inode)) { | 
|  | ret = PTR_ERR(vfs_inode); | 
|  | break; | 
|  | } | 
|  | curr_inode = BTRFS_I(vfs_inode); | 
|  | } | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | if (curr_inode) | 
|  | btrfs_add_delayed_iput(curr_inode); | 
|  |  | 
|  | if (ret) { | 
|  | struct btrfs_dir_list *next; | 
|  |  | 
|  | list_for_each_entry_safe(dir_elem, next, &dir_list, list) | 
|  | kfree(dir_elem); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct btrfs_ino_list { | 
|  | u64 ino; | 
|  | u64 parent; | 
|  | struct list_head list; | 
|  | }; | 
|  |  | 
|  | static void free_conflicting_inodes(struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | struct btrfs_ino_list *curr; | 
|  | struct btrfs_ino_list *next; | 
|  |  | 
|  | list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) { | 
|  | list_del(&curr->list); | 
|  | kfree(curr); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | int ret; | 
|  |  | 
|  | key.objectid = ino; | 
|  | key.type = BTRFS_INODE_ITEM_KEY; | 
|  | key.offset = 0; | 
|  |  | 
|  | path->search_commit_root = 1; | 
|  | path->skip_locking = 1; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (WARN_ON_ONCE(ret > 0)) { | 
|  | /* | 
|  | * We have previously found the inode through the commit root | 
|  | * so this should not happen. If it does, just error out and | 
|  | * fallback to a transaction commit. | 
|  | */ | 
|  | ret = -ENOENT; | 
|  | } else if (ret == 0) { | 
|  | struct btrfs_inode_item *item; | 
|  |  | 
|  | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_inode_item); | 
|  | if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item))) | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | path->search_commit_root = 0; | 
|  | path->skip_locking = 0; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int add_conflicting_inode(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 ino, u64 parent, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | struct btrfs_ino_list *ino_elem; | 
|  | struct inode *inode; | 
|  |  | 
|  | /* | 
|  | * It's rare to have a lot of conflicting inodes, in practice it is not | 
|  | * common to have more than 1 or 2. We don't want to collect too many, | 
|  | * as we could end up logging too many inodes (even if only in | 
|  | * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction | 
|  | * commits. | 
|  | */ | 
|  | if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES) | 
|  | return BTRFS_LOG_FORCE_COMMIT; | 
|  |  | 
|  | inode = btrfs_iget_logging(ino, root); | 
|  | /* | 
|  | * If the other inode that had a conflicting dir entry was deleted in | 
|  | * the current transaction then we either: | 
|  | * | 
|  | * 1) Log the parent directory (later after adding it to the list) if | 
|  | *    the inode is a directory. This is because it may be a deleted | 
|  | *    subvolume/snapshot or it may be a regular directory that had | 
|  | *    deleted subvolumes/snapshots (or subdirectories that had them), | 
|  | *    and at the moment we can't deal with dropping subvolumes/snapshots | 
|  | *    during log replay. So we just log the parent, which will result in | 
|  | *    a fallback to a transaction commit if we are dealing with those | 
|  | *    cases (last_unlink_trans will match the current transaction); | 
|  | * | 
|  | * 2) Do nothing if it's not a directory. During log replay we simply | 
|  | *    unlink the conflicting dentry from the parent directory and then | 
|  | *    add the dentry for our inode. Like this we can avoid logging the | 
|  | *    parent directory (and maybe fallback to a transaction commit in | 
|  | *    case it has a last_unlink_trans == trans->transid, due to moving | 
|  | *    some inode from it to some other directory). | 
|  | */ | 
|  | if (IS_ERR(inode)) { | 
|  | int ret = PTR_ERR(inode); | 
|  |  | 
|  | if (ret != -ENOENT) | 
|  | return ret; | 
|  |  | 
|  | ret = conflicting_inode_is_dir(root, ino, path); | 
|  | /* Not a directory or we got an error. */ | 
|  | if (ret <= 0) | 
|  | return ret; | 
|  |  | 
|  | /* Conflicting inode is a directory, so we'll log its parent. */ | 
|  | ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); | 
|  | if (!ino_elem) | 
|  | return -ENOMEM; | 
|  | ino_elem->ino = ino; | 
|  | ino_elem->parent = parent; | 
|  | list_add_tail(&ino_elem->list, &ctx->conflict_inodes); | 
|  | ctx->num_conflict_inodes++; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the inode was already logged skip it - otherwise we can hit an | 
|  | * infinite loop. Example: | 
|  | * | 
|  | * From the commit root (previous transaction) we have the following | 
|  | * inodes: | 
|  | * | 
|  | * inode 257 a directory | 
|  | * inode 258 with references "zz" and "zz_link" on inode 257 | 
|  | * inode 259 with reference "a" on inode 257 | 
|  | * | 
|  | * And in the current (uncommitted) transaction we have: | 
|  | * | 
|  | * inode 257 a directory, unchanged | 
|  | * inode 258 with references "a" and "a2" on inode 257 | 
|  | * inode 259 with reference "zz_link" on inode 257 | 
|  | * inode 261 with reference "zz" on inode 257 | 
|  | * | 
|  | * When logging inode 261 the following infinite loop could | 
|  | * happen if we don't skip already logged inodes: | 
|  | * | 
|  | * - we detect inode 258 as a conflicting inode, with inode 261 | 
|  | *   on reference "zz", and log it; | 
|  | * | 
|  | * - we detect inode 259 as a conflicting inode, with inode 258 | 
|  | *   on reference "a", and log it; | 
|  | * | 
|  | * - we detect inode 258 as a conflicting inode, with inode 259 | 
|  | *   on reference "zz_link", and log it - again! After this we | 
|  | *   repeat the above steps forever. | 
|  | * | 
|  | * Here we can use need_log_inode() because we only need to log the | 
|  | * inode in LOG_INODE_EXISTS mode and rename operations update the log, | 
|  | * so that the log ends up with the new name and without the old name. | 
|  | */ | 
|  | if (!need_log_inode(trans, BTRFS_I(inode))) { | 
|  | btrfs_add_delayed_iput(BTRFS_I(inode)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | btrfs_add_delayed_iput(BTRFS_I(inode)); | 
|  |  | 
|  | ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); | 
|  | if (!ino_elem) | 
|  | return -ENOMEM; | 
|  | ino_elem->ino = ino; | 
|  | ino_elem->parent = parent; | 
|  | list_add_tail(&ino_elem->list, &ctx->conflict_inodes); | 
|  | ctx->num_conflict_inodes++; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int log_conflicting_inodes(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * Conflicting inodes are logged by the first call to btrfs_log_inode(), | 
|  | * otherwise we could have unbounded recursion of btrfs_log_inode() | 
|  | * calls. This check guarantees we can have only 1 level of recursion. | 
|  | */ | 
|  | if (ctx->logging_conflict_inodes) | 
|  | return 0; | 
|  |  | 
|  | ctx->logging_conflict_inodes = true; | 
|  |  | 
|  | /* | 
|  | * New conflicting inodes may be found and added to the list while we | 
|  | * are logging a conflicting inode, so keep iterating while the list is | 
|  | * not empty. | 
|  | */ | 
|  | while (!list_empty(&ctx->conflict_inodes)) { | 
|  | struct btrfs_ino_list *curr; | 
|  | struct inode *inode; | 
|  | u64 ino; | 
|  | u64 parent; | 
|  |  | 
|  | curr = list_first_entry(&ctx->conflict_inodes, | 
|  | struct btrfs_ino_list, list); | 
|  | ino = curr->ino; | 
|  | parent = curr->parent; | 
|  | list_del(&curr->list); | 
|  | kfree(curr); | 
|  |  | 
|  | inode = btrfs_iget_logging(ino, root); | 
|  | /* | 
|  | * If the other inode that had a conflicting dir entry was | 
|  | * deleted in the current transaction, we need to log its parent | 
|  | * directory. See the comment at add_conflicting_inode(). | 
|  | */ | 
|  | if (IS_ERR(inode)) { | 
|  | ret = PTR_ERR(inode); | 
|  | if (ret != -ENOENT) | 
|  | break; | 
|  |  | 
|  | inode = btrfs_iget_logging(parent, root); | 
|  | if (IS_ERR(inode)) { | 
|  | ret = PTR_ERR(inode); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Always log the directory, we cannot make this | 
|  | * conditional on need_log_inode() because the directory | 
|  | * might have been logged in LOG_INODE_EXISTS mode or | 
|  | * the dir index of the conflicting inode is not in a | 
|  | * dir index key range logged for the directory. So we | 
|  | * must make sure the deletion is recorded. | 
|  | */ | 
|  | ret = btrfs_log_inode(trans, BTRFS_I(inode), | 
|  | LOG_INODE_ALL, ctx); | 
|  | btrfs_add_delayed_iput(BTRFS_I(inode)); | 
|  | if (ret) | 
|  | break; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Here we can use need_log_inode() because we only need to log | 
|  | * the inode in LOG_INODE_EXISTS mode and rename operations | 
|  | * update the log, so that the log ends up with the new name and | 
|  | * without the old name. | 
|  | * | 
|  | * We did this check at add_conflicting_inode(), but here we do | 
|  | * it again because if some other task logged the inode after | 
|  | * that, we can avoid doing it again. | 
|  | */ | 
|  | if (!need_log_inode(trans, BTRFS_I(inode))) { | 
|  | btrfs_add_delayed_iput(BTRFS_I(inode)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We are safe logging the other inode without acquiring its | 
|  | * lock as long as we log with the LOG_INODE_EXISTS mode. We | 
|  | * are safe against concurrent renames of the other inode as | 
|  | * well because during a rename we pin the log and update the | 
|  | * log with the new name before we unpin it. | 
|  | */ | 
|  | ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx); | 
|  | btrfs_add_delayed_iput(BTRFS_I(inode)); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  |  | 
|  | ctx->logging_conflict_inodes = false; | 
|  | if (ret) | 
|  | free_conflicting_inodes(ctx); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int copy_inode_items_to_log(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct btrfs_key *min_key, | 
|  | const struct btrfs_key *max_key, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_path *dst_path, | 
|  | const u64 logged_isize, | 
|  | const int inode_only, | 
|  | struct btrfs_log_ctx *ctx, | 
|  | bool *need_log_inode_item) | 
|  | { | 
|  | const u64 i_size = i_size_read(&inode->vfs_inode); | 
|  | struct btrfs_root *root = inode->root; | 
|  | int ins_start_slot = 0; | 
|  | int ins_nr = 0; | 
|  | int ret; | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_search_forward(root, min_key, path, trans->transid); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (ret > 0) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | again: | 
|  | /* Note, ins_nr might be > 0 here, cleanup outside the loop */ | 
|  | if (min_key->objectid != max_key->objectid) | 
|  | break; | 
|  | if (min_key->type > max_key->type) | 
|  | break; | 
|  |  | 
|  | if (min_key->type == BTRFS_INODE_ITEM_KEY) { | 
|  | *need_log_inode_item = false; | 
|  | } else if (min_key->type == BTRFS_EXTENT_DATA_KEY && | 
|  | min_key->offset >= i_size) { | 
|  | /* | 
|  | * Extents at and beyond eof are logged with | 
|  | * btrfs_log_prealloc_extents(). | 
|  | * Only regular files have BTRFS_EXTENT_DATA_KEY keys, | 
|  | * and no keys greater than that, so bail out. | 
|  | */ | 
|  | break; | 
|  | } else if ((min_key->type == BTRFS_INODE_REF_KEY || | 
|  | min_key->type == BTRFS_INODE_EXTREF_KEY) && | 
|  | (inode->generation == trans->transid || | 
|  | ctx->logging_conflict_inodes)) { | 
|  | u64 other_ino = 0; | 
|  | u64 other_parent = 0; | 
|  |  | 
|  | ret = btrfs_check_ref_name_override(path->nodes[0], | 
|  | path->slots[0], min_key, inode, | 
|  | &other_ino, &other_parent); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } else if (ret > 0 && | 
|  | other_ino != btrfs_ino(BTRFS_I(ctx->inode))) { | 
|  | if (ins_nr > 0) { | 
|  | ins_nr++; | 
|  | } else { | 
|  | ins_nr = 1; | 
|  | ins_start_slot = path->slots[0]; | 
|  | } | 
|  | ret = copy_items(trans, inode, dst_path, path, | 
|  | ins_start_slot, ins_nr, | 
|  | inode_only, logged_isize); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | ins_nr = 0; | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | ret = add_conflicting_inode(trans, root, path, | 
|  | other_ino, | 
|  | other_parent, ctx); | 
|  | if (ret) | 
|  | return ret; | 
|  | goto next_key; | 
|  | } | 
|  | } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) { | 
|  | /* Skip xattrs, logged later with btrfs_log_all_xattrs() */ | 
|  | if (ins_nr == 0) | 
|  | goto next_slot; | 
|  | ret = copy_items(trans, inode, dst_path, path, | 
|  | ins_start_slot, | 
|  | ins_nr, inode_only, logged_isize); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | ins_nr = 0; | 
|  | goto next_slot; | 
|  | } | 
|  |  | 
|  | if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { | 
|  | ins_nr++; | 
|  | goto next_slot; | 
|  | } else if (!ins_nr) { | 
|  | ins_start_slot = path->slots[0]; | 
|  | ins_nr = 1; | 
|  | goto next_slot; | 
|  | } | 
|  |  | 
|  | ret = copy_items(trans, inode, dst_path, path, ins_start_slot, | 
|  | ins_nr, inode_only, logged_isize); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | ins_nr = 1; | 
|  | ins_start_slot = path->slots[0]; | 
|  | next_slot: | 
|  | path->slots[0]++; | 
|  | if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) { | 
|  | btrfs_item_key_to_cpu(path->nodes[0], min_key, | 
|  | path->slots[0]); | 
|  | goto again; | 
|  | } | 
|  | if (ins_nr) { | 
|  | ret = copy_items(trans, inode, dst_path, path, | 
|  | ins_start_slot, ins_nr, inode_only, | 
|  | logged_isize); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | ins_nr = 0; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  | next_key: | 
|  | if (min_key->offset < (u64)-1) { | 
|  | min_key->offset++; | 
|  | } else if (min_key->type < max_key->type) { | 
|  | min_key->type++; | 
|  | min_key->offset = 0; | 
|  | } else { | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We may process many leaves full of items for our inode, so | 
|  | * avoid monopolizing a cpu for too long by rescheduling while | 
|  | * not holding locks on any tree. | 
|  | */ | 
|  | cond_resched(); | 
|  | } | 
|  | if (ins_nr) { | 
|  | ret = copy_items(trans, inode, dst_path, path, ins_start_slot, | 
|  | ins_nr, inode_only, logged_isize); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) { | 
|  | /* | 
|  | * Release the path because otherwise we might attempt to double | 
|  | * lock the same leaf with btrfs_log_prealloc_extents() below. | 
|  | */ | 
|  | btrfs_release_path(path); | 
|  | ret = btrfs_log_prealloc_extents(trans, inode, dst_path); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int insert_delayed_items_batch(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *log, | 
|  | struct btrfs_path *path, | 
|  | const struct btrfs_item_batch *batch, | 
|  | const struct btrfs_delayed_item *first_item) | 
|  | { | 
|  | const struct btrfs_delayed_item *curr = first_item; | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_insert_empty_items(trans, log, path, batch); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | for (int i = 0; i < batch->nr; i++) { | 
|  | char *data_ptr; | 
|  |  | 
|  | data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); | 
|  | write_extent_buffer(path->nodes[0], &curr->data, | 
|  | (unsigned long)data_ptr, curr->data_len); | 
|  | curr = list_next_entry(curr, log_list); | 
|  | path->slots[0]++; | 
|  | } | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int log_delayed_insertion_items(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct btrfs_path *path, | 
|  | const struct list_head *delayed_ins_list, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */ | 
|  | const int max_batch_size = 195; | 
|  | const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info); | 
|  | const u64 ino = btrfs_ino(inode); | 
|  | struct btrfs_root *log = inode->root->log_root; | 
|  | struct btrfs_item_batch batch = { | 
|  | .nr = 0, | 
|  | .total_data_size = 0, | 
|  | }; | 
|  | const struct btrfs_delayed_item *first = NULL; | 
|  | const struct btrfs_delayed_item *curr; | 
|  | char *ins_data; | 
|  | struct btrfs_key *ins_keys; | 
|  | u32 *ins_sizes; | 
|  | u64 curr_batch_size = 0; | 
|  | int batch_idx = 0; | 
|  | int ret; | 
|  |  | 
|  | /* We are adding dir index items to the log tree. */ | 
|  | lockdep_assert_held(&inode->log_mutex); | 
|  |  | 
|  | /* | 
|  | * We collect delayed items before copying index keys from the subvolume | 
|  | * to the log tree. However just after we collected them, they may have | 
|  | * been flushed (all of them or just some of them), and therefore we | 
|  | * could have copied them from the subvolume tree to the log tree. | 
|  | * So find the first delayed item that was not yet logged (they are | 
|  | * sorted by index number). | 
|  | */ | 
|  | list_for_each_entry(curr, delayed_ins_list, log_list) { | 
|  | if (curr->index > inode->last_dir_index_offset) { | 
|  | first = curr; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Empty list or all delayed items were already logged. */ | 
|  | if (!first) | 
|  | return 0; | 
|  |  | 
|  | ins_data = kmalloc(max_batch_size * sizeof(u32) + | 
|  | max_batch_size * sizeof(struct btrfs_key), GFP_NOFS); | 
|  | if (!ins_data) | 
|  | return -ENOMEM; | 
|  | ins_sizes = (u32 *)ins_data; | 
|  | batch.data_sizes = ins_sizes; | 
|  | ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32)); | 
|  | batch.keys = ins_keys; | 
|  |  | 
|  | curr = first; | 
|  | while (!list_entry_is_head(curr, delayed_ins_list, log_list)) { | 
|  | const u32 curr_size = curr->data_len + sizeof(struct btrfs_item); | 
|  |  | 
|  | if (curr_batch_size + curr_size > leaf_data_size || | 
|  | batch.nr == max_batch_size) { | 
|  | ret = insert_delayed_items_batch(trans, log, path, | 
|  | &batch, first); | 
|  | if (ret) | 
|  | goto out; | 
|  | batch_idx = 0; | 
|  | batch.nr = 0; | 
|  | batch.total_data_size = 0; | 
|  | curr_batch_size = 0; | 
|  | first = curr; | 
|  | } | 
|  |  | 
|  | ins_sizes[batch_idx] = curr->data_len; | 
|  | ins_keys[batch_idx].objectid = ino; | 
|  | ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY; | 
|  | ins_keys[batch_idx].offset = curr->index; | 
|  | curr_batch_size += curr_size; | 
|  | batch.total_data_size += curr->data_len; | 
|  | batch.nr++; | 
|  | batch_idx++; | 
|  | curr = list_next_entry(curr, log_list); | 
|  | } | 
|  |  | 
|  | ASSERT(batch.nr >= 1); | 
|  | ret = insert_delayed_items_batch(trans, log, path, &batch, first); | 
|  |  | 
|  | curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item, | 
|  | log_list); | 
|  | inode->last_dir_index_offset = curr->index; | 
|  | out: | 
|  | kfree(ins_data); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int log_delayed_deletions_full(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct btrfs_path *path, | 
|  | const struct list_head *delayed_del_list, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | const u64 ino = btrfs_ino(inode); | 
|  | const struct btrfs_delayed_item *curr; | 
|  |  | 
|  | curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item, | 
|  | log_list); | 
|  |  | 
|  | while (!list_entry_is_head(curr, delayed_del_list, log_list)) { | 
|  | u64 first_dir_index = curr->index; | 
|  | u64 last_dir_index; | 
|  | const struct btrfs_delayed_item *next; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Find a range of consecutive dir index items to delete. Like | 
|  | * this we log a single dir range item spanning several contiguous | 
|  | * dir items instead of logging one range item per dir index item. | 
|  | */ | 
|  | next = list_next_entry(curr, log_list); | 
|  | while (!list_entry_is_head(next, delayed_del_list, log_list)) { | 
|  | if (next->index != curr->index + 1) | 
|  | break; | 
|  | curr = next; | 
|  | next = list_next_entry(next, log_list); | 
|  | } | 
|  |  | 
|  | last_dir_index = curr->index; | 
|  | ASSERT(last_dir_index >= first_dir_index); | 
|  |  | 
|  | ret = insert_dir_log_key(trans, inode->root->log_root, path, | 
|  | ino, first_dir_index, last_dir_index); | 
|  | if (ret) | 
|  | return ret; | 
|  | curr = list_next_entry(curr, log_list); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_log_ctx *ctx, | 
|  | const struct list_head *delayed_del_list, | 
|  | const struct btrfs_delayed_item *first, | 
|  | const struct btrfs_delayed_item **last_ret) | 
|  | { | 
|  | const struct btrfs_delayed_item *next; | 
|  | struct extent_buffer *leaf = path->nodes[0]; | 
|  | const int last_slot = btrfs_header_nritems(leaf) - 1; | 
|  | int slot = path->slots[0] + 1; | 
|  | const u64 ino = btrfs_ino(inode); | 
|  |  | 
|  | next = list_next_entry(first, log_list); | 
|  |  | 
|  | while (slot < last_slot && | 
|  | !list_entry_is_head(next, delayed_del_list, log_list)) { | 
|  | struct btrfs_key key; | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, slot); | 
|  | if (key.objectid != ino || | 
|  | key.type != BTRFS_DIR_INDEX_KEY || | 
|  | key.offset != next->index) | 
|  | break; | 
|  |  | 
|  | slot++; | 
|  | *last_ret = next; | 
|  | next = list_next_entry(next, log_list); | 
|  | } | 
|  |  | 
|  | return btrfs_del_items(trans, inode->root->log_root, path, | 
|  | path->slots[0], slot - path->slots[0]); | 
|  | } | 
|  |  | 
|  | static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct btrfs_path *path, | 
|  | const struct list_head *delayed_del_list, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | struct btrfs_root *log = inode->root->log_root; | 
|  | const struct btrfs_delayed_item *curr; | 
|  | u64 last_range_start = 0; | 
|  | u64 last_range_end = 0; | 
|  | struct btrfs_key key; | 
|  |  | 
|  | key.objectid = btrfs_ino(inode); | 
|  | key.type = BTRFS_DIR_INDEX_KEY; | 
|  | curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item, | 
|  | log_list); | 
|  |  | 
|  | while (!list_entry_is_head(curr, delayed_del_list, log_list)) { | 
|  | const struct btrfs_delayed_item *last = curr; | 
|  | u64 first_dir_index = curr->index; | 
|  | u64 last_dir_index; | 
|  | bool deleted_items = false; | 
|  | int ret; | 
|  |  | 
|  | key.offset = curr->index; | 
|  | ret = btrfs_search_slot(trans, log, &key, path, -1, 1); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } else if (ret == 0) { | 
|  | ret = batch_delete_dir_index_items(trans, inode, path, ctx, | 
|  | delayed_del_list, curr, | 
|  | &last); | 
|  | if (ret) | 
|  | return ret; | 
|  | deleted_items = true; | 
|  | } | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * If we deleted items from the leaf, it means we have a range | 
|  | * item logging their range, so no need to add one or update an | 
|  | * existing one. Otherwise we have to log a dir range item. | 
|  | */ | 
|  | if (deleted_items) | 
|  | goto next_batch; | 
|  |  | 
|  | last_dir_index = last->index; | 
|  | ASSERT(last_dir_index >= first_dir_index); | 
|  | /* | 
|  | * If this range starts right after where the previous one ends, | 
|  | * then we want to reuse the previous range item and change its | 
|  | * end offset to the end of this range. This is just to minimize | 
|  | * leaf space usage, by avoiding adding a new range item. | 
|  | */ | 
|  | if (last_range_end != 0 && first_dir_index == last_range_end + 1) | 
|  | first_dir_index = last_range_start; | 
|  |  | 
|  | ret = insert_dir_log_key(trans, log, path, key.objectid, | 
|  | first_dir_index, last_dir_index); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | last_range_start = first_dir_index; | 
|  | last_range_end = last_dir_index; | 
|  | next_batch: | 
|  | curr = list_next_entry(last, log_list); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int log_delayed_deletion_items(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct btrfs_path *path, | 
|  | const struct list_head *delayed_del_list, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | /* | 
|  | * We are deleting dir index items from the log tree or adding range | 
|  | * items to it. | 
|  | */ | 
|  | lockdep_assert_held(&inode->log_mutex); | 
|  |  | 
|  | if (list_empty(delayed_del_list)) | 
|  | return 0; | 
|  |  | 
|  | if (ctx->logged_before) | 
|  | return log_delayed_deletions_incremental(trans, inode, path, | 
|  | delayed_del_list, ctx); | 
|  |  | 
|  | return log_delayed_deletions_full(trans, inode, path, delayed_del_list, | 
|  | ctx); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed | 
|  | * items instead of the subvolume tree. | 
|  | */ | 
|  | static int log_new_delayed_dentries(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | const struct list_head *delayed_ins_list, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | const bool orig_log_new_dentries = ctx->log_new_dentries; | 
|  | struct btrfs_delayed_item *item; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * No need for the log mutex, plus to avoid potential deadlocks or | 
|  | * lockdep annotations due to nesting of delayed inode mutexes and log | 
|  | * mutexes. | 
|  | */ | 
|  | lockdep_assert_not_held(&inode->log_mutex); | 
|  |  | 
|  | ASSERT(!ctx->logging_new_delayed_dentries); | 
|  | ctx->logging_new_delayed_dentries = true; | 
|  |  | 
|  | list_for_each_entry(item, delayed_ins_list, log_list) { | 
|  | struct btrfs_dir_item *dir_item; | 
|  | struct inode *di_inode; | 
|  | struct btrfs_key key; | 
|  | int log_mode = LOG_INODE_EXISTS; | 
|  |  | 
|  | dir_item = (struct btrfs_dir_item *)item->data; | 
|  | btrfs_disk_key_to_cpu(&key, &dir_item->location); | 
|  |  | 
|  | if (key.type == BTRFS_ROOT_ITEM_KEY) | 
|  | continue; | 
|  |  | 
|  | di_inode = btrfs_iget_logging(key.objectid, inode->root); | 
|  | if (IS_ERR(di_inode)) { | 
|  | ret = PTR_ERR(di_inode); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!need_log_inode(trans, BTRFS_I(di_inode))) { | 
|  | btrfs_add_delayed_iput(BTRFS_I(di_inode)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR) | 
|  | log_mode = LOG_INODE_ALL; | 
|  |  | 
|  | ctx->log_new_dentries = false; | 
|  | ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx); | 
|  |  | 
|  | if (!ret && ctx->log_new_dentries) | 
|  | ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx); | 
|  |  | 
|  | btrfs_add_delayed_iput(BTRFS_I(di_inode)); | 
|  |  | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  |  | 
|  | ctx->log_new_dentries = orig_log_new_dentries; | 
|  | ctx->logging_new_delayed_dentries = false; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* log a single inode in the tree log. | 
|  | * At least one parent directory for this inode must exist in the tree | 
|  | * or be logged already. | 
|  | * | 
|  | * Any items from this inode changed by the current transaction are copied | 
|  | * to the log tree.  An extra reference is taken on any extents in this | 
|  | * file, allowing us to avoid a whole pile of corner cases around logging | 
|  | * blocks that have been removed from the tree. | 
|  | * | 
|  | * See LOG_INODE_ALL and related defines for a description of what inode_only | 
|  | * does. | 
|  | * | 
|  | * This handles both files and directories. | 
|  | */ | 
|  | static int btrfs_log_inode(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | int inode_only, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_path *dst_path; | 
|  | struct btrfs_key min_key; | 
|  | struct btrfs_key max_key; | 
|  | struct btrfs_root *log = inode->root->log_root; | 
|  | int ret; | 
|  | bool fast_search = false; | 
|  | u64 ino = btrfs_ino(inode); | 
|  | struct extent_map_tree *em_tree = &inode->extent_tree; | 
|  | u64 logged_isize = 0; | 
|  | bool need_log_inode_item = true; | 
|  | bool xattrs_logged = false; | 
|  | bool inode_item_dropped = true; | 
|  | bool full_dir_logging = false; | 
|  | LIST_HEAD(delayed_ins_list); | 
|  | LIST_HEAD(delayed_del_list); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | dst_path = btrfs_alloc_path(); | 
|  | if (!dst_path) { | 
|  | btrfs_free_path(path); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | min_key.objectid = ino; | 
|  | min_key.type = BTRFS_INODE_ITEM_KEY; | 
|  | min_key.offset = 0; | 
|  |  | 
|  | max_key.objectid = ino; | 
|  |  | 
|  |  | 
|  | /* today the code can only do partial logging of directories */ | 
|  | if (S_ISDIR(inode->vfs_inode.i_mode) || | 
|  | (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, | 
|  | &inode->runtime_flags) && | 
|  | inode_only >= LOG_INODE_EXISTS)) | 
|  | max_key.type = BTRFS_XATTR_ITEM_KEY; | 
|  | else | 
|  | max_key.type = (u8)-1; | 
|  | max_key.offset = (u64)-1; | 
|  |  | 
|  | if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL) | 
|  | full_dir_logging = true; | 
|  |  | 
|  | /* | 
|  | * If we are logging a directory while we are logging dentries of the | 
|  | * delayed items of some other inode, then we need to flush the delayed | 
|  | * items of this directory and not log the delayed items directly. This | 
|  | * is to prevent more than one level of recursion into btrfs_log_inode() | 
|  | * by having something like this: | 
|  | * | 
|  | *     $ mkdir -p a/b/c/d/e/f/g/h/... | 
|  | *     $ xfs_io -c "fsync" a | 
|  | * | 
|  | * Where all directories in the path did not exist before and are | 
|  | * created in the current transaction. | 
|  | * So in such a case we directly log the delayed items of the main | 
|  | * directory ("a") without flushing them first, while for each of its | 
|  | * subdirectories we flush their delayed items before logging them. | 
|  | * This prevents a potential unbounded recursion like this: | 
|  | * | 
|  | * btrfs_log_inode() | 
|  | *   log_new_delayed_dentries() | 
|  | *      btrfs_log_inode() | 
|  | *        log_new_delayed_dentries() | 
|  | *          btrfs_log_inode() | 
|  | *            log_new_delayed_dentries() | 
|  | *              (...) | 
|  | * | 
|  | * We have thresholds for the maximum number of delayed items to have in | 
|  | * memory, and once they are hit, the items are flushed asynchronously. | 
|  | * However the limit is quite high, so lets prevent deep levels of | 
|  | * recursion to happen by limiting the maximum depth to be 1. | 
|  | */ | 
|  | if (full_dir_logging && ctx->logging_new_delayed_dentries) { | 
|  | ret = btrfs_commit_inode_delayed_items(trans, inode); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | mutex_lock(&inode->log_mutex); | 
|  |  | 
|  | /* | 
|  | * For symlinks, we must always log their content, which is stored in an | 
|  | * inline extent, otherwise we could end up with an empty symlink after | 
|  | * log replay, which is invalid on linux (symlink(2) returns -ENOENT if | 
|  | * one attempts to create an empty symlink). | 
|  | * We don't need to worry about flushing delalloc, because when we create | 
|  | * the inline extent when the symlink is created (we never have delalloc | 
|  | * for symlinks). | 
|  | */ | 
|  | if (S_ISLNK(inode->vfs_inode.i_mode)) | 
|  | inode_only = LOG_INODE_ALL; | 
|  |  | 
|  | /* | 
|  | * Before logging the inode item, cache the value returned by | 
|  | * inode_logged(), because after that we have the need to figure out if | 
|  | * the inode was previously logged in this transaction. | 
|  | */ | 
|  | ret = inode_logged(trans, inode, path); | 
|  | if (ret < 0) | 
|  | goto out_unlock; | 
|  | ctx->logged_before = (ret == 1); | 
|  | ret = 0; | 
|  |  | 
|  | /* | 
|  | * This is for cases where logging a directory could result in losing a | 
|  | * a file after replaying the log. For example, if we move a file from a | 
|  | * directory A to a directory B, then fsync directory A, we have no way | 
|  | * to known the file was moved from A to B, so logging just A would | 
|  | * result in losing the file after a log replay. | 
|  | */ | 
|  | if (full_dir_logging && inode->last_unlink_trans >= trans->transid) { | 
|  | ret = BTRFS_LOG_FORCE_COMMIT; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * a brute force approach to making sure we get the most uptodate | 
|  | * copies of everything. | 
|  | */ | 
|  | if (S_ISDIR(inode->vfs_inode.i_mode)) { | 
|  | clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags); | 
|  | if (ctx->logged_before) | 
|  | ret = drop_inode_items(trans, log, path, inode, | 
|  | BTRFS_XATTR_ITEM_KEY); | 
|  | } else { | 
|  | if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) { | 
|  | /* | 
|  | * Make sure the new inode item we write to the log has | 
|  | * the same isize as the current one (if it exists). | 
|  | * This is necessary to prevent data loss after log | 
|  | * replay, and also to prevent doing a wrong expanding | 
|  | * truncate - for e.g. create file, write 4K into offset | 
|  | * 0, fsync, write 4K into offset 4096, add hard link, | 
|  | * fsync some other file (to sync log), power fail - if | 
|  | * we use the inode's current i_size, after log replay | 
|  | * we get a 8Kb file, with the last 4Kb extent as a hole | 
|  | * (zeroes), as if an expanding truncate happened, | 
|  | * instead of getting a file of 4Kb only. | 
|  | */ | 
|  | ret = logged_inode_size(log, inode, path, &logged_isize); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  | } | 
|  | if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, | 
|  | &inode->runtime_flags)) { | 
|  | if (inode_only == LOG_INODE_EXISTS) { | 
|  | max_key.type = BTRFS_XATTR_ITEM_KEY; | 
|  | if (ctx->logged_before) | 
|  | ret = drop_inode_items(trans, log, path, | 
|  | inode, max_key.type); | 
|  | } else { | 
|  | clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, | 
|  | &inode->runtime_flags); | 
|  | clear_bit(BTRFS_INODE_COPY_EVERYTHING, | 
|  | &inode->runtime_flags); | 
|  | if (ctx->logged_before) | 
|  | ret = truncate_inode_items(trans, log, | 
|  | inode, 0, 0); | 
|  | } | 
|  | } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, | 
|  | &inode->runtime_flags) || | 
|  | inode_only == LOG_INODE_EXISTS) { | 
|  | if (inode_only == LOG_INODE_ALL) | 
|  | fast_search = true; | 
|  | max_key.type = BTRFS_XATTR_ITEM_KEY; | 
|  | if (ctx->logged_before) | 
|  | ret = drop_inode_items(trans, log, path, inode, | 
|  | max_key.type); | 
|  | } else { | 
|  | if (inode_only == LOG_INODE_ALL) | 
|  | fast_search = true; | 
|  | inode_item_dropped = false; | 
|  | goto log_extents; | 
|  | } | 
|  |  | 
|  | } | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * If we are logging a directory in full mode, collect the delayed items | 
|  | * before iterating the subvolume tree, so that we don't miss any new | 
|  | * dir index items in case they get flushed while or right after we are | 
|  | * iterating the subvolume tree. | 
|  | */ | 
|  | if (full_dir_logging && !ctx->logging_new_delayed_dentries) | 
|  | btrfs_log_get_delayed_items(inode, &delayed_ins_list, | 
|  | &delayed_del_list); | 
|  |  | 
|  | ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key, | 
|  | path, dst_path, logged_isize, | 
|  | inode_only, ctx, | 
|  | &need_log_inode_item); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | btrfs_release_path(dst_path); | 
|  | ret = btrfs_log_all_xattrs(trans, inode, path, dst_path); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  | xattrs_logged = true; | 
|  | if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { | 
|  | btrfs_release_path(path); | 
|  | btrfs_release_path(dst_path); | 
|  | ret = btrfs_log_holes(trans, inode, path); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  | } | 
|  | log_extents: | 
|  | btrfs_release_path(path); | 
|  | btrfs_release_path(dst_path); | 
|  | if (need_log_inode_item) { | 
|  | ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  | /* | 
|  | * If we are doing a fast fsync and the inode was logged before | 
|  | * in this transaction, we don't need to log the xattrs because | 
|  | * they were logged before. If xattrs were added, changed or | 
|  | * deleted since the last time we logged the inode, then we have | 
|  | * already logged them because the inode had the runtime flag | 
|  | * BTRFS_INODE_COPY_EVERYTHING set. | 
|  | */ | 
|  | if (!xattrs_logged && inode->logged_trans < trans->transid) { | 
|  | ret = btrfs_log_all_xattrs(trans, inode, path, dst_path); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  | btrfs_release_path(path); | 
|  | } | 
|  | } | 
|  | if (fast_search) { | 
|  | ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  | } else if (inode_only == LOG_INODE_ALL) { | 
|  | struct extent_map *em, *n; | 
|  |  | 
|  | write_lock(&em_tree->lock); | 
|  | list_for_each_entry_safe(em, n, &em_tree->modified_extents, list) | 
|  | list_del_init(&em->list); | 
|  | write_unlock(&em_tree->lock); | 
|  | } | 
|  |  | 
|  | if (full_dir_logging) { | 
|  | ret = log_directory_changes(trans, inode, path, dst_path, ctx); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  | ret = log_delayed_insertion_items(trans, inode, path, | 
|  | &delayed_ins_list, ctx); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  | ret = log_delayed_deletion_items(trans, inode, path, | 
|  | &delayed_del_list, ctx); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | spin_lock(&inode->lock); | 
|  | inode->logged_trans = trans->transid; | 
|  | /* | 
|  | * Don't update last_log_commit if we logged that an inode exists. | 
|  | * We do this for three reasons: | 
|  | * | 
|  | * 1) We might have had buffered writes to this inode that were | 
|  | *    flushed and had their ordered extents completed in this | 
|  | *    transaction, but we did not previously log the inode with | 
|  | *    LOG_INODE_ALL. Later the inode was evicted and after that | 
|  | *    it was loaded again and this LOG_INODE_EXISTS log operation | 
|  | *    happened. We must make sure that if an explicit fsync against | 
|  | *    the inode is performed later, it logs the new extents, an | 
|  | *    updated inode item, etc, and syncs the log. The same logic | 
|  | *    applies to direct IO writes instead of buffered writes. | 
|  | * | 
|  | * 2) When we log the inode with LOG_INODE_EXISTS, its inode item | 
|  | *    is logged with an i_size of 0 or whatever value was logged | 
|  | *    before. If later the i_size of the inode is increased by a | 
|  | *    truncate operation, the log is synced through an fsync of | 
|  | *    some other inode and then finally an explicit fsync against | 
|  | *    this inode is made, we must make sure this fsync logs the | 
|  | *    inode with the new i_size, the hole between old i_size and | 
|  | *    the new i_size, and syncs the log. | 
|  | * | 
|  | * 3) If we are logging that an ancestor inode exists as part of | 
|  | *    logging a new name from a link or rename operation, don't update | 
|  | *    its last_log_commit - otherwise if an explicit fsync is made | 
|  | *    against an ancestor, the fsync considers the inode in the log | 
|  | *    and doesn't sync the log, resulting in the ancestor missing after | 
|  | *    a power failure unless the log was synced as part of an fsync | 
|  | *    against any other unrelated inode. | 
|  | */ | 
|  | if (inode_only != LOG_INODE_EXISTS) | 
|  | inode->last_log_commit = inode->last_sub_trans; | 
|  | spin_unlock(&inode->lock); | 
|  |  | 
|  | /* | 
|  | * Reset the last_reflink_trans so that the next fsync does not need to | 
|  | * go through the slower path when logging extents and their checksums. | 
|  | */ | 
|  | if (inode_only == LOG_INODE_ALL) | 
|  | inode->last_reflink_trans = 0; | 
|  |  | 
|  | out_unlock: | 
|  | mutex_unlock(&inode->log_mutex); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | btrfs_free_path(dst_path); | 
|  |  | 
|  | if (ret) | 
|  | free_conflicting_inodes(ctx); | 
|  | else | 
|  | ret = log_conflicting_inodes(trans, inode->root, ctx); | 
|  |  | 
|  | if (full_dir_logging && !ctx->logging_new_delayed_dentries) { | 
|  | if (!ret) | 
|  | ret = log_new_delayed_dentries(trans, inode, | 
|  | &delayed_ins_list, ctx); | 
|  |  | 
|  | btrfs_log_put_delayed_items(inode, &delayed_ins_list, | 
|  | &delayed_del_list); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_root *root = inode->root; | 
|  | const u64 ino = btrfs_ino(inode); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | path->skip_locking = 1; | 
|  | path->search_commit_root = 1; | 
|  |  | 
|  | key.objectid = ino; | 
|  | key.type = BTRFS_INODE_REF_KEY; | 
|  | key.offset = 0; | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | while (true) { | 
|  | struct extent_buffer *leaf = path->nodes[0]; | 
|  | int slot = path->slots[0]; | 
|  | u32 cur_offset = 0; | 
|  | u32 item_size; | 
|  | unsigned long ptr; | 
|  |  | 
|  | if (slot >= btrfs_header_nritems(leaf)) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | else if (ret > 0) | 
|  | break; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, slot); | 
|  | /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ | 
|  | if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) | 
|  | break; | 
|  |  | 
|  | item_size = btrfs_item_size(leaf, slot); | 
|  | ptr = btrfs_item_ptr_offset(leaf, slot); | 
|  | while (cur_offset < item_size) { | 
|  | struct btrfs_key inode_key; | 
|  | struct inode *dir_inode; | 
|  |  | 
|  | inode_key.type = BTRFS_INODE_ITEM_KEY; | 
|  | inode_key.offset = 0; | 
|  |  | 
|  | if (key.type == BTRFS_INODE_EXTREF_KEY) { | 
|  | struct btrfs_inode_extref *extref; | 
|  |  | 
|  | extref = (struct btrfs_inode_extref *) | 
|  | (ptr + cur_offset); | 
|  | inode_key.objectid = btrfs_inode_extref_parent( | 
|  | leaf, extref); | 
|  | cur_offset += sizeof(*extref); | 
|  | cur_offset += btrfs_inode_extref_name_len(leaf, | 
|  | extref); | 
|  | } else { | 
|  | inode_key.objectid = key.offset; | 
|  | cur_offset = item_size; | 
|  | } | 
|  |  | 
|  | dir_inode = btrfs_iget_logging(inode_key.objectid, root); | 
|  | /* | 
|  | * If the parent inode was deleted, return an error to | 
|  | * fallback to a transaction commit. This is to prevent | 
|  | * getting an inode that was moved from one parent A to | 
|  | * a parent B, got its former parent A deleted and then | 
|  | * it got fsync'ed, from existing at both parents after | 
|  | * a log replay (and the old parent still existing). | 
|  | * Example: | 
|  | * | 
|  | * mkdir /mnt/A | 
|  | * mkdir /mnt/B | 
|  | * touch /mnt/B/bar | 
|  | * sync | 
|  | * mv /mnt/B/bar /mnt/A/bar | 
|  | * mv -T /mnt/A /mnt/B | 
|  | * fsync /mnt/B/bar | 
|  | * <power fail> | 
|  | * | 
|  | * If we ignore the old parent B which got deleted, | 
|  | * after a log replay we would have file bar linked | 
|  | * at both parents and the old parent B would still | 
|  | * exist. | 
|  | */ | 
|  | if (IS_ERR(dir_inode)) { | 
|  | ret = PTR_ERR(dir_inode); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!need_log_inode(trans, BTRFS_I(dir_inode))) { | 
|  | btrfs_add_delayed_iput(BTRFS_I(dir_inode)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ctx->log_new_dentries = false; | 
|  | ret = btrfs_log_inode(trans, BTRFS_I(dir_inode), | 
|  | LOG_INODE_ALL, ctx); | 
|  | if (!ret && ctx->log_new_dentries) | 
|  | ret = log_new_dir_dentries(trans, | 
|  | BTRFS_I(dir_inode), ctx); | 
|  | btrfs_add_delayed_iput(BTRFS_I(dir_inode)); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | path->slots[0]++; | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int log_new_ancestors(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | struct btrfs_key found_key; | 
|  |  | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); | 
|  |  | 
|  | while (true) { | 
|  | struct extent_buffer *leaf; | 
|  | int slot; | 
|  | struct btrfs_key search_key; | 
|  | struct inode *inode; | 
|  | u64 ino; | 
|  | int ret = 0; | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | ino = found_key.offset; | 
|  |  | 
|  | search_key.objectid = found_key.offset; | 
|  | search_key.type = BTRFS_INODE_ITEM_KEY; | 
|  | search_key.offset = 0; | 
|  | inode = btrfs_iget_logging(ino, root); | 
|  | if (IS_ERR(inode)) | 
|  | return PTR_ERR(inode); | 
|  |  | 
|  | if (BTRFS_I(inode)->generation >= trans->transid && | 
|  | need_log_inode(trans, BTRFS_I(inode))) | 
|  | ret = btrfs_log_inode(trans, BTRFS_I(inode), | 
|  | LOG_INODE_EXISTS, ctx); | 
|  | btrfs_add_delayed_iput(BTRFS_I(inode)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID) | 
|  | break; | 
|  |  | 
|  | search_key.type = BTRFS_INODE_REF_KEY; | 
|  | ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | if (slot >= btrfs_header_nritems(leaf)) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | else if (ret > 0) | 
|  | return -ENOENT; | 
|  | leaf = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
|  | if (found_key.objectid != search_key.objectid || | 
|  | found_key.type != BTRFS_INODE_REF_KEY) | 
|  | return -ENOENT; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int log_new_ancestors_fast(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct dentry *parent, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct dentry *old_parent = NULL; | 
|  | struct super_block *sb = inode->vfs_inode.i_sb; | 
|  | int ret = 0; | 
|  |  | 
|  | while (true) { | 
|  | if (!parent || d_really_is_negative(parent) || | 
|  | sb != parent->d_sb) | 
|  | break; | 
|  |  | 
|  | inode = BTRFS_I(d_inode(parent)); | 
|  | if (root != inode->root) | 
|  | break; | 
|  |  | 
|  | if (inode->generation >= trans->transid && | 
|  | need_log_inode(trans, inode)) { | 
|  | ret = btrfs_log_inode(trans, inode, | 
|  | LOG_INODE_EXISTS, ctx); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | if (IS_ROOT(parent)) | 
|  | break; | 
|  |  | 
|  | parent = dget_parent(parent); | 
|  | dput(old_parent); | 
|  | old_parent = parent; | 
|  | } | 
|  | dput(old_parent); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int log_all_new_ancestors(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct dentry *parent, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | struct btrfs_root *root = inode->root; | 
|  | const u64 ino = btrfs_ino(inode); | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_key search_key; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * For a single hard link case, go through a fast path that does not | 
|  | * need to iterate the fs/subvolume tree. | 
|  | */ | 
|  | if (inode->vfs_inode.i_nlink < 2) | 
|  | return log_new_ancestors_fast(trans, inode, parent, ctx); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | search_key.objectid = ino; | 
|  | search_key.type = BTRFS_INODE_REF_KEY; | 
|  | search_key.offset = 0; | 
|  | again: | 
|  | ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret == 0) | 
|  | path->slots[0]++; | 
|  |  | 
|  | while (true) { | 
|  | struct extent_buffer *leaf = path->nodes[0]; | 
|  | int slot = path->slots[0]; | 
|  | struct btrfs_key found_key; | 
|  |  | 
|  | if (slot >= btrfs_header_nritems(leaf)) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | else if (ret > 0) | 
|  | break; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
|  | if (found_key.objectid != ino || | 
|  | found_key.type > BTRFS_INODE_EXTREF_KEY) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Don't deal with extended references because they are rare | 
|  | * cases and too complex to deal with (we would need to keep | 
|  | * track of which subitem we are processing for each item in | 
|  | * this loop, etc). So just return some error to fallback to | 
|  | * a transaction commit. | 
|  | */ | 
|  | if (found_key.type == BTRFS_INODE_EXTREF_KEY) { | 
|  | ret = -EMLINK; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Logging ancestors needs to do more searches on the fs/subvol | 
|  | * tree, so it releases the path as needed to avoid deadlocks. | 
|  | * Keep track of the last inode ref key and resume from that key | 
|  | * after logging all new ancestors for the current hard link. | 
|  | */ | 
|  | memcpy(&search_key, &found_key, sizeof(search_key)); | 
|  |  | 
|  | ret = log_new_ancestors(trans, root, path, ctx); | 
|  | if (ret) | 
|  | goto out; | 
|  | btrfs_release_path(path); | 
|  | goto again; | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function around btrfs_log_inode to make sure newly created | 
|  | * parent directories also end up in the log.  A minimal inode and backref | 
|  | * only logging is done of any parent directories that are older than | 
|  | * the last committed transaction | 
|  | */ | 
|  | static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct dentry *parent, | 
|  | int inode_only, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | int ret = 0; | 
|  | bool log_dentries = false; | 
|  |  | 
|  | if (btrfs_test_opt(fs_info, NOTREELOG)) { | 
|  | ret = BTRFS_LOG_FORCE_COMMIT; | 
|  | goto end_no_trans; | 
|  | } | 
|  |  | 
|  | if (btrfs_root_refs(&root->root_item) == 0) { | 
|  | ret = BTRFS_LOG_FORCE_COMMIT; | 
|  | goto end_no_trans; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Skip already logged inodes or inodes corresponding to tmpfiles | 
|  | * (since logging them is pointless, a link count of 0 means they | 
|  | * will never be accessible). | 
|  | */ | 
|  | if ((btrfs_inode_in_log(inode, trans->transid) && | 
|  | list_empty(&ctx->ordered_extents)) || | 
|  | inode->vfs_inode.i_nlink == 0) { | 
|  | ret = BTRFS_NO_LOG_SYNC; | 
|  | goto end_no_trans; | 
|  | } | 
|  |  | 
|  | ret = start_log_trans(trans, root, ctx); | 
|  | if (ret) | 
|  | goto end_no_trans; | 
|  |  | 
|  | ret = btrfs_log_inode(trans, inode, inode_only, ctx); | 
|  | if (ret) | 
|  | goto end_trans; | 
|  |  | 
|  | /* | 
|  | * for regular files, if its inode is already on disk, we don't | 
|  | * have to worry about the parents at all.  This is because | 
|  | * we can use the last_unlink_trans field to record renames | 
|  | * and other fun in this file. | 
|  | */ | 
|  | if (S_ISREG(inode->vfs_inode.i_mode) && | 
|  | inode->generation < trans->transid && | 
|  | inode->last_unlink_trans < trans->transid) { | 
|  | ret = 0; | 
|  | goto end_trans; | 
|  | } | 
|  |  | 
|  | if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries) | 
|  | log_dentries = true; | 
|  |  | 
|  | /* | 
|  | * On unlink we must make sure all our current and old parent directory | 
|  | * inodes are fully logged. This is to prevent leaving dangling | 
|  | * directory index entries in directories that were our parents but are | 
|  | * not anymore. Not doing this results in old parent directory being | 
|  | * impossible to delete after log replay (rmdir will always fail with | 
|  | * error -ENOTEMPTY). | 
|  | * | 
|  | * Example 1: | 
|  | * | 
|  | * mkdir testdir | 
|  | * touch testdir/foo | 
|  | * ln testdir/foo testdir/bar | 
|  | * sync | 
|  | * unlink testdir/bar | 
|  | * xfs_io -c fsync testdir/foo | 
|  | * <power failure> | 
|  | * mount fs, triggers log replay | 
|  | * | 
|  | * If we don't log the parent directory (testdir), after log replay the | 
|  | * directory still has an entry pointing to the file inode using the bar | 
|  | * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and | 
|  | * the file inode has a link count of 1. | 
|  | * | 
|  | * Example 2: | 
|  | * | 
|  | * mkdir testdir | 
|  | * touch foo | 
|  | * ln foo testdir/foo2 | 
|  | * ln foo testdir/foo3 | 
|  | * sync | 
|  | * unlink testdir/foo3 | 
|  | * xfs_io -c fsync foo | 
|  | * <power failure> | 
|  | * mount fs, triggers log replay | 
|  | * | 
|  | * Similar as the first example, after log replay the parent directory | 
|  | * testdir still has an entry pointing to the inode file with name foo3 | 
|  | * but the file inode does not have a matching BTRFS_INODE_REF_KEY item | 
|  | * and has a link count of 2. | 
|  | */ | 
|  | if (inode->last_unlink_trans >= trans->transid) { | 
|  | ret = btrfs_log_all_parents(trans, inode, ctx); | 
|  | if (ret) | 
|  | goto end_trans; | 
|  | } | 
|  |  | 
|  | ret = log_all_new_ancestors(trans, inode, parent, ctx); | 
|  | if (ret) | 
|  | goto end_trans; | 
|  |  | 
|  | if (log_dentries) | 
|  | ret = log_new_dir_dentries(trans, inode, ctx); | 
|  | else | 
|  | ret = 0; | 
|  | end_trans: | 
|  | if (ret < 0) { | 
|  | btrfs_set_log_full_commit(trans); | 
|  | ret = BTRFS_LOG_FORCE_COMMIT; | 
|  | } | 
|  |  | 
|  | if (ret) | 
|  | btrfs_remove_log_ctx(root, ctx); | 
|  | btrfs_end_log_trans(root); | 
|  | end_no_trans: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * it is not safe to log dentry if the chunk root has added new | 
|  | * chunks.  This returns 0 if the dentry was logged, and 1 otherwise. | 
|  | * If this returns 1, you must commit the transaction to safely get your | 
|  | * data on disk. | 
|  | */ | 
|  | int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, | 
|  | struct dentry *dentry, | 
|  | struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | struct dentry *parent = dget_parent(dentry); | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent, | 
|  | LOG_INODE_ALL, ctx); | 
|  | dput(parent); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * should be called during mount to recover any replay any log trees | 
|  | * from the FS | 
|  | */ | 
|  | int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | struct btrfs_root *log; | 
|  | struct btrfs_fs_info *fs_info = log_root_tree->fs_info; | 
|  | struct walk_control wc = { | 
|  | .process_func = process_one_buffer, | 
|  | .stage = LOG_WALK_PIN_ONLY, | 
|  | }; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); | 
|  |  | 
|  | trans = btrfs_start_transaction(fs_info->tree_root, 0); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | wc.trans = trans; | 
|  | wc.pin = 1; | 
|  |  | 
|  | ret = walk_log_tree(trans, log_root_tree, &wc); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | again: | 
|  | key.objectid = BTRFS_TREE_LOG_OBJECTID; | 
|  | key.offset = (u64)-1; | 
|  | key.type = BTRFS_ROOT_ITEM_KEY; | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); | 
|  |  | 
|  | if (ret < 0) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto error; | 
|  | } | 
|  | if (ret > 0) { | 
|  | if (path->slots[0] == 0) | 
|  | break; | 
|  | path->slots[0]--; | 
|  | } | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
|  | path->slots[0]); | 
|  | btrfs_release_path(path); | 
|  | if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) | 
|  | break; | 
|  |  | 
|  | log = btrfs_read_tree_root(log_root_tree, &found_key); | 
|  | if (IS_ERR(log)) { | 
|  | ret = PTR_ERR(log); | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset, | 
|  | true); | 
|  | if (IS_ERR(wc.replay_dest)) { | 
|  | ret = PTR_ERR(wc.replay_dest); | 
|  |  | 
|  | /* | 
|  | * We didn't find the subvol, likely because it was | 
|  | * deleted.  This is ok, simply skip this log and go to | 
|  | * the next one. | 
|  | * | 
|  | * We need to exclude the root because we can't have | 
|  | * other log replays overwriting this log as we'll read | 
|  | * it back in a few more times.  This will keep our | 
|  | * block from being modified, and we'll just bail for | 
|  | * each subsequent pass. | 
|  | */ | 
|  | if (ret == -ENOENT) | 
|  | ret = btrfs_pin_extent_for_log_replay(trans, | 
|  | log->node->start, | 
|  | log->node->len); | 
|  | btrfs_put_root(log); | 
|  |  | 
|  | if (!ret) | 
|  | goto next; | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | wc.replay_dest->log_root = log; | 
|  | ret = btrfs_record_root_in_trans(trans, wc.replay_dest); | 
|  | if (ret) | 
|  | /* The loop needs to continue due to the root refs */ | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | else | 
|  | ret = walk_log_tree(trans, log, &wc); | 
|  |  | 
|  | if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { | 
|  | ret = fixup_inode_link_counts(trans, wc.replay_dest, | 
|  | path); | 
|  | if (ret) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | } | 
|  |  | 
|  | if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { | 
|  | struct btrfs_root *root = wc.replay_dest; | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * We have just replayed everything, and the highest | 
|  | * objectid of fs roots probably has changed in case | 
|  | * some inode_item's got replayed. | 
|  | * | 
|  | * root->objectid_mutex is not acquired as log replay | 
|  | * could only happen during mount. | 
|  | */ | 
|  | ret = btrfs_init_root_free_objectid(root); | 
|  | if (ret) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | } | 
|  |  | 
|  | wc.replay_dest->log_root = NULL; | 
|  | btrfs_put_root(wc.replay_dest); | 
|  | btrfs_put_root(log); | 
|  |  | 
|  | if (ret) | 
|  | goto error; | 
|  | next: | 
|  | if (found_key.offset == 0) | 
|  | break; | 
|  | key.offset = found_key.offset - 1; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* step one is to pin it all, step two is to replay just inodes */ | 
|  | if (wc.pin) { | 
|  | wc.pin = 0; | 
|  | wc.process_func = replay_one_buffer; | 
|  | wc.stage = LOG_WALK_REPLAY_INODES; | 
|  | goto again; | 
|  | } | 
|  | /* step three is to replay everything */ | 
|  | if (wc.stage < LOG_WALK_REPLAY_ALL) { | 
|  | wc.stage++; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | btrfs_free_path(path); | 
|  |  | 
|  | /* step 4: commit the transaction, which also unpins the blocks */ | 
|  | ret = btrfs_commit_transaction(trans); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | log_root_tree->log_root = NULL; | 
|  | clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); | 
|  | btrfs_put_root(log_root_tree); | 
|  |  | 
|  | return 0; | 
|  | error: | 
|  | if (wc.trans) | 
|  | btrfs_end_transaction(wc.trans); | 
|  | clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * there are some corner cases where we want to force a full | 
|  | * commit instead of allowing a directory to be logged. | 
|  | * | 
|  | * They revolve around files there were unlinked from the directory, and | 
|  | * this function updates the parent directory so that a full commit is | 
|  | * properly done if it is fsync'd later after the unlinks are done. | 
|  | * | 
|  | * Must be called before the unlink operations (updates to the subvolume tree, | 
|  | * inodes, etc) are done. | 
|  | */ | 
|  | void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *dir, struct btrfs_inode *inode, | 
|  | bool for_rename) | 
|  | { | 
|  | /* | 
|  | * when we're logging a file, if it hasn't been renamed | 
|  | * or unlinked, and its inode is fully committed on disk, | 
|  | * we don't have to worry about walking up the directory chain | 
|  | * to log its parents. | 
|  | * | 
|  | * So, we use the last_unlink_trans field to put this transid | 
|  | * into the file.  When the file is logged we check it and | 
|  | * don't log the parents if the file is fully on disk. | 
|  | */ | 
|  | mutex_lock(&inode->log_mutex); | 
|  | inode->last_unlink_trans = trans->transid; | 
|  | mutex_unlock(&inode->log_mutex); | 
|  |  | 
|  | if (!for_rename) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If this directory was already logged, any new names will be logged | 
|  | * with btrfs_log_new_name() and old names will be deleted from the log | 
|  | * tree with btrfs_del_dir_entries_in_log() or with | 
|  | * btrfs_del_inode_ref_in_log(). | 
|  | */ | 
|  | if (inode_logged(trans, dir, NULL) == 1) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If the inode we're about to unlink was logged before, the log will be | 
|  | * properly updated with the new name with btrfs_log_new_name() and the | 
|  | * old name removed with btrfs_del_dir_entries_in_log() or with | 
|  | * btrfs_del_inode_ref_in_log(). | 
|  | */ | 
|  | if (inode_logged(trans, inode, NULL) == 1) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * when renaming files across directories, if the directory | 
|  | * there we're unlinking from gets fsync'd later on, there's | 
|  | * no way to find the destination directory later and fsync it | 
|  | * properly.  So, we have to be conservative and force commits | 
|  | * so the new name gets discovered. | 
|  | */ | 
|  | mutex_lock(&dir->log_mutex); | 
|  | dir->last_unlink_trans = trans->transid; | 
|  | mutex_unlock(&dir->log_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure that if someone attempts to fsync the parent directory of a deleted | 
|  | * snapshot, it ends up triggering a transaction commit. This is to guarantee | 
|  | * that after replaying the log tree of the parent directory's root we will not | 
|  | * see the snapshot anymore and at log replay time we will not see any log tree | 
|  | * corresponding to the deleted snapshot's root, which could lead to replaying | 
|  | * it after replaying the log tree of the parent directory (which would replay | 
|  | * the snapshot delete operation). | 
|  | * | 
|  | * Must be called before the actual snapshot destroy operation (updates to the | 
|  | * parent root and tree of tree roots trees, etc) are done. | 
|  | */ | 
|  | void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *dir) | 
|  | { | 
|  | mutex_lock(&dir->log_mutex); | 
|  | dir->last_unlink_trans = trans->transid; | 
|  | mutex_unlock(&dir->log_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the log after adding a new name for an inode. | 
|  | * | 
|  | * @trans:              Transaction handle. | 
|  | * @old_dentry:         The dentry associated with the old name and the old | 
|  | *                      parent directory. | 
|  | * @old_dir:            The inode of the previous parent directory for the case | 
|  | *                      of a rename. For a link operation, it must be NULL. | 
|  | * @old_dir_index:      The index number associated with the old name, meaningful | 
|  | *                      only for rename operations (when @old_dir is not NULL). | 
|  | *                      Ignored for link operations. | 
|  | * @parent:             The dentry associated with the directory under which the | 
|  | *                      new name is located. | 
|  | * | 
|  | * Call this after adding a new name for an inode, as a result of a link or | 
|  | * rename operation, and it will properly update the log to reflect the new name. | 
|  | */ | 
|  | void btrfs_log_new_name(struct btrfs_trans_handle *trans, | 
|  | struct dentry *old_dentry, struct btrfs_inode *old_dir, | 
|  | u64 old_dir_index, struct dentry *parent) | 
|  | { | 
|  | struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry)); | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct btrfs_log_ctx ctx; | 
|  | bool log_pinned = false; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * this will force the logging code to walk the dentry chain | 
|  | * up for the file | 
|  | */ | 
|  | if (!S_ISDIR(inode->vfs_inode.i_mode)) | 
|  | inode->last_unlink_trans = trans->transid; | 
|  |  | 
|  | /* | 
|  | * if this inode hasn't been logged and directory we're renaming it | 
|  | * from hasn't been logged, we don't need to log it | 
|  | */ | 
|  | ret = inode_logged(trans, inode, NULL); | 
|  | if (ret < 0) { | 
|  | goto out; | 
|  | } else if (ret == 0) { | 
|  | if (!old_dir) | 
|  | return; | 
|  | /* | 
|  | * If the inode was not logged and we are doing a rename (old_dir is not | 
|  | * NULL), check if old_dir was logged - if it was not we can return and | 
|  | * do nothing. | 
|  | */ | 
|  | ret = inode_logged(trans, old_dir, NULL); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | else if (ret == 0) | 
|  | return; | 
|  | } | 
|  | ret = 0; | 
|  |  | 
|  | /* | 
|  | * If we are doing a rename (old_dir is not NULL) from a directory that | 
|  | * was previously logged, make sure that on log replay we get the old | 
|  | * dir entry deleted. This is needed because we will also log the new | 
|  | * name of the renamed inode, so we need to make sure that after log | 
|  | * replay we don't end up with both the new and old dir entries existing. | 
|  | */ | 
|  | if (old_dir && old_dir->logged_trans == trans->transid) { | 
|  | struct btrfs_root *log = old_dir->root->log_root; | 
|  | struct btrfs_path *path; | 
|  | struct fscrypt_name fname; | 
|  |  | 
|  | ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX); | 
|  |  | 
|  | ret = fscrypt_setup_filename(&old_dir->vfs_inode, | 
|  | &old_dentry->d_name, 0, &fname); | 
|  | if (ret) | 
|  | goto out; | 
|  | /* | 
|  | * We have two inodes to update in the log, the old directory and | 
|  | * the inode that got renamed, so we must pin the log to prevent | 
|  | * anyone from syncing the log until we have updated both inodes | 
|  | * in the log. | 
|  | */ | 
|  | ret = join_running_log_trans(root); | 
|  | /* | 
|  | * At least one of the inodes was logged before, so this should | 
|  | * not fail, but if it does, it's not serious, just bail out and | 
|  | * mark the log for a full commit. | 
|  | */ | 
|  | if (WARN_ON_ONCE(ret < 0)) { | 
|  | fscrypt_free_filename(&fname); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | log_pinned = true; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | ret = -ENOMEM; | 
|  | fscrypt_free_filename(&fname); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Other concurrent task might be logging the old directory, | 
|  | * as it can be triggered when logging other inode that had or | 
|  | * still has a dentry in the old directory. We lock the old | 
|  | * directory's log_mutex to ensure the deletion of the old | 
|  | * name is persisted, because during directory logging we | 
|  | * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of | 
|  | * the old name's dir index item is in the delayed items, so | 
|  | * it could be missed by an in progress directory logging. | 
|  | */ | 
|  | mutex_lock(&old_dir->log_mutex); | 
|  | ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir), | 
|  | &fname.disk_name, old_dir_index); | 
|  | if (ret > 0) { | 
|  | /* | 
|  | * The dentry does not exist in the log, so record its | 
|  | * deletion. | 
|  | */ | 
|  | btrfs_release_path(path); | 
|  | ret = insert_dir_log_key(trans, log, path, | 
|  | btrfs_ino(old_dir), | 
|  | old_dir_index, old_dir_index); | 
|  | } | 
|  | mutex_unlock(&old_dir->log_mutex); | 
|  |  | 
|  | btrfs_free_path(path); | 
|  | fscrypt_free_filename(&fname); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | btrfs_init_log_ctx(&ctx, &inode->vfs_inode); | 
|  | ctx.logging_new_name = true; | 
|  | /* | 
|  | * We don't care about the return value. If we fail to log the new name | 
|  | * then we know the next attempt to sync the log will fallback to a full | 
|  | * transaction commit (due to a call to btrfs_set_log_full_commit()), so | 
|  | * we don't need to worry about getting a log committed that has an | 
|  | * inconsistent state after a rename operation. | 
|  | */ | 
|  | btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx); | 
|  | ASSERT(list_empty(&ctx.conflict_inodes)); | 
|  | out: | 
|  | /* | 
|  | * If an error happened mark the log for a full commit because it's not | 
|  | * consistent and up to date or we couldn't find out if one of the | 
|  | * inodes was logged before in this transaction. Do it before unpinning | 
|  | * the log, to avoid any races with someone else trying to commit it. | 
|  | */ | 
|  | if (ret < 0) | 
|  | btrfs_set_log_full_commit(trans); | 
|  | if (log_pinned) | 
|  | btrfs_end_log_trans(root); | 
|  | } | 
|  |  |