| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * EMIF driver | 
 |  * | 
 |  * Copyright (C) 2012 Texas Instruments, Inc. | 
 |  * | 
 |  * Aneesh V <aneesh@ti.com> | 
 |  * Santosh Shilimkar <santosh.shilimkar@ti.com> | 
 |  */ | 
 | #include <linux/err.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/reboot.h> | 
 | #include <linux/platform_data/emif_plat.h> | 
 | #include <linux/io.h> | 
 | #include <linux/device.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/of.h> | 
 | #include <linux/debugfs.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/module.h> | 
 | #include <linux/list.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/pm.h> | 
 |  | 
 | #include "emif.h" | 
 | #include "jedec_ddr.h" | 
 | #include "of_memory.h" | 
 |  | 
 | /** | 
 |  * struct emif_data - Per device static data for driver's use | 
 |  * @duplicate:			Whether the DDR devices attached to this EMIF | 
 |  *				instance are exactly same as that on EMIF1. In | 
 |  *				this case we can save some memory and processing | 
 |  * @temperature_level:		Maximum temperature of LPDDR2 devices attached | 
 |  *				to this EMIF - read from MR4 register. If there | 
 |  *				are two devices attached to this EMIF, this | 
 |  *				value is the maximum of the two temperature | 
 |  *				levels. | 
 |  * @node:			node in the device list | 
 |  * @base:			base address of memory-mapped IO registers. | 
 |  * @dev:			device pointer. | 
 |  * @addressing			table with addressing information from the spec | 
 |  * @regs_cache:			An array of 'struct emif_regs' that stores | 
 |  *				calculated register values for different | 
 |  *				frequencies, to avoid re-calculating them on | 
 |  *				each DVFS transition. | 
 |  * @curr_regs:			The set of register values used in the last | 
 |  *				frequency change (i.e. corresponding to the | 
 |  *				frequency in effect at the moment) | 
 |  * @plat_data:			Pointer to saved platform data. | 
 |  * @debugfs_root:		dentry to the root folder for EMIF in debugfs | 
 |  * @np_ddr:			Pointer to ddr device tree node | 
 |  */ | 
 | struct emif_data { | 
 | 	u8				duplicate; | 
 | 	u8				temperature_level; | 
 | 	u8				lpmode; | 
 | 	struct list_head		node; | 
 | 	unsigned long			irq_state; | 
 | 	void __iomem			*base; | 
 | 	struct device			*dev; | 
 | 	const struct lpddr2_addressing	*addressing; | 
 | 	struct emif_regs		*regs_cache[EMIF_MAX_NUM_FREQUENCIES]; | 
 | 	struct emif_regs		*curr_regs; | 
 | 	struct emif_platform_data	*plat_data; | 
 | 	struct dentry			*debugfs_root; | 
 | 	struct device_node		*np_ddr; | 
 | }; | 
 |  | 
 | static struct emif_data *emif1; | 
 | static spinlock_t	emif_lock; | 
 | static unsigned long	irq_state; | 
 | static u32		t_ck; /* DDR clock period in ps */ | 
 | static LIST_HEAD(device_list); | 
 |  | 
 | #ifdef CONFIG_DEBUG_FS | 
 | static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif, | 
 | 	struct emif_regs *regs) | 
 | { | 
 | 	u32 type = emif->plat_data->device_info->type; | 
 | 	u32 ip_rev = emif->plat_data->ip_rev; | 
 |  | 
 | 	seq_printf(s, "EMIF register cache dump for %dMHz\n", | 
 | 		regs->freq/1000000); | 
 |  | 
 | 	seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw); | 
 | 	seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw); | 
 | 	seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw); | 
 | 	seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw); | 
 |  | 
 | 	if (ip_rev == EMIF_4D) { | 
 | 		seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n", | 
 | 			regs->read_idle_ctrl_shdw_normal); | 
 | 		seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n", | 
 | 			regs->read_idle_ctrl_shdw_volt_ramp); | 
 | 	} else if (ip_rev == EMIF_4D5) { | 
 | 		seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n", | 
 | 			regs->dll_calib_ctrl_shdw_normal); | 
 | 		seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n", | 
 | 			regs->dll_calib_ctrl_shdw_volt_ramp); | 
 | 	} | 
 |  | 
 | 	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { | 
 | 		seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n", | 
 | 			regs->ref_ctrl_shdw_derated); | 
 | 		seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n", | 
 | 			regs->sdram_tim1_shdw_derated); | 
 | 		seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n", | 
 | 			regs->sdram_tim3_shdw_derated); | 
 | 	} | 
 | } | 
 |  | 
 | static int emif_regdump_show(struct seq_file *s, void *unused) | 
 | { | 
 | 	struct emif_data	*emif	= s->private; | 
 | 	struct emif_regs	**regs_cache; | 
 | 	int			i; | 
 |  | 
 | 	if (emif->duplicate) | 
 | 		regs_cache = emif1->regs_cache; | 
 | 	else | 
 | 		regs_cache = emif->regs_cache; | 
 |  | 
 | 	for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { | 
 | 		do_emif_regdump_show(s, emif, regs_cache[i]); | 
 | 		seq_putc(s, '\n'); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | DEFINE_SHOW_ATTRIBUTE(emif_regdump); | 
 |  | 
 | static int emif_mr4_show(struct seq_file *s, void *unused) | 
 | { | 
 | 	struct emif_data *emif = s->private; | 
 |  | 
 | 	seq_printf(s, "MR4=%d\n", emif->temperature_level); | 
 | 	return 0; | 
 | } | 
 |  | 
 | DEFINE_SHOW_ATTRIBUTE(emif_mr4); | 
 |  | 
 | static int __init_or_module emif_debugfs_init(struct emif_data *emif) | 
 | { | 
 | 	emif->debugfs_root = debugfs_create_dir(dev_name(emif->dev), NULL); | 
 | 	debugfs_create_file("regcache_dump", S_IRUGO, emif->debugfs_root, emif, | 
 | 			    &emif_regdump_fops); | 
 | 	debugfs_create_file("mr4", S_IRUGO, emif->debugfs_root, emif, | 
 | 			    &emif_mr4_fops); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __exit emif_debugfs_exit(struct emif_data *emif) | 
 | { | 
 | 	debugfs_remove_recursive(emif->debugfs_root); | 
 | 	emif->debugfs_root = NULL; | 
 | } | 
 | #else | 
 | static inline int __init_or_module emif_debugfs_init(struct emif_data *emif) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void __exit emif_debugfs_exit(struct emif_data *emif) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Calculate the period of DDR clock from frequency value | 
 |  */ | 
 | static void set_ddr_clk_period(u32 freq) | 
 | { | 
 | 	/* Divide 10^12 by frequency to get period in ps */ | 
 | 	t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq); | 
 | } | 
 |  | 
 | /* | 
 |  * Get bus width used by EMIF. Note that this may be different from the | 
 |  * bus width of the DDR devices used. For instance two 16-bit DDR devices | 
 |  * may be connected to a given CS of EMIF. In this case bus width as far | 
 |  * as EMIF is concerned is 32, where as the DDR bus width is 16 bits. | 
 |  */ | 
 | static u32 get_emif_bus_width(struct emif_data *emif) | 
 | { | 
 | 	u32		width; | 
 | 	void __iomem	*base = emif->base; | 
 |  | 
 | 	width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK) | 
 | 			>> NARROW_MODE_SHIFT; | 
 | 	width = width == 0 ? 32 : 16; | 
 |  | 
 | 	return width; | 
 | } | 
 |  | 
 | /* | 
 |  * Get the CL from SDRAM_CONFIG register | 
 |  */ | 
 | static u32 get_cl(struct emif_data *emif) | 
 | { | 
 | 	u32		cl; | 
 | 	void __iomem	*base = emif->base; | 
 |  | 
 | 	cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT; | 
 |  | 
 | 	return cl; | 
 | } | 
 |  | 
 | static void set_lpmode(struct emif_data *emif, u8 lpmode) | 
 | { | 
 | 	u32 temp; | 
 | 	void __iomem *base = emif->base; | 
 |  | 
 | 	/* | 
 | 	 * Workaround for errata i743 - LPDDR2 Power-Down State is Not | 
 | 	 * Efficient | 
 | 	 * | 
 | 	 * i743 DESCRIPTION: | 
 | 	 * The EMIF supports power-down state for low power. The EMIF | 
 | 	 * automatically puts the SDRAM into power-down after the memory is | 
 | 	 * not accessed for a defined number of cycles and the | 
 | 	 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4. | 
 | 	 * As the EMIF supports automatic output impedance calibration, a ZQ | 
 | 	 * calibration long command is issued every time it exits active | 
 | 	 * power-down and precharge power-down modes. The EMIF waits and | 
 | 	 * blocks any other command during this calibration. | 
 | 	 * The EMIF does not allow selective disabling of ZQ calibration upon | 
 | 	 * exit of power-down mode. Due to very short periods of power-down | 
 | 	 * cycles, ZQ calibration overhead creates bandwidth issues and | 
 | 	 * increases overall system power consumption. On the other hand, | 
 | 	 * issuing ZQ calibration long commands when exiting self-refresh is | 
 | 	 * still required. | 
 | 	 * | 
 | 	 * WORKAROUND | 
 | 	 * Because there is no power consumption benefit of the power-down due | 
 | 	 * to the calibration and there is a performance risk, the guideline | 
 | 	 * is to not allow power-down state and, therefore, to not have set | 
 | 	 * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4. | 
 | 	 */ | 
 | 	if ((emif->plat_data->ip_rev == EMIF_4D) && | 
 | 	    (lpmode == EMIF_LP_MODE_PWR_DN)) { | 
 | 		WARN_ONCE(1, | 
 | 			  "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n"); | 
 | 		/* rollback LP_MODE to Self-refresh mode */ | 
 | 		lpmode = EMIF_LP_MODE_SELF_REFRESH; | 
 | 	} | 
 |  | 
 | 	temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL); | 
 | 	temp &= ~LP_MODE_MASK; | 
 | 	temp |= (lpmode << LP_MODE_SHIFT); | 
 | 	writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL); | 
 | } | 
 |  | 
 | static void do_freq_update(void) | 
 | { | 
 | 	struct emif_data *emif; | 
 |  | 
 | 	/* | 
 | 	 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE | 
 | 	 * | 
 | 	 * i728 DESCRIPTION: | 
 | 	 * The EMIF automatically puts the SDRAM into self-refresh mode | 
 | 	 * after the EMIF has not performed accesses during | 
 | 	 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles | 
 | 	 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set | 
 | 	 * to 0x2. If during a small window the following three events | 
 | 	 * occur: | 
 | 	 * - The SR_TIMING counter expires | 
 | 	 * - And frequency change is requested | 
 | 	 * - And OCP access is requested | 
 | 	 * Then it causes instable clock on the DDR interface. | 
 | 	 * | 
 | 	 * WORKAROUND | 
 | 	 * To avoid the occurrence of the three events, the workaround | 
 | 	 * is to disable the self-refresh when requesting a frequency | 
 | 	 * change. Before requesting a frequency change the software must | 
 | 	 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the | 
 | 	 * frequency change has been done, the software can reprogram | 
 | 	 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2 | 
 | 	 */ | 
 | 	list_for_each_entry(emif, &device_list, node) { | 
 | 		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) | 
 | 			set_lpmode(emif, EMIF_LP_MODE_DISABLE); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * TODO: Do FREQ_UPDATE here when an API | 
 | 	 * is available for this as part of the new | 
 | 	 * clock framework | 
 | 	 */ | 
 |  | 
 | 	list_for_each_entry(emif, &device_list, node) { | 
 | 		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) | 
 | 			set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); | 
 | 	} | 
 | } | 
 |  | 
 | /* Find addressing table entry based on the device's type and density */ | 
 | static const struct lpddr2_addressing *get_addressing_table( | 
 | 	const struct ddr_device_info *device_info) | 
 | { | 
 | 	u32		index, type, density; | 
 |  | 
 | 	type = device_info->type; | 
 | 	density = device_info->density; | 
 |  | 
 | 	switch (type) { | 
 | 	case DDR_TYPE_LPDDR2_S4: | 
 | 		index = density - 1; | 
 | 		break; | 
 | 	case DDR_TYPE_LPDDR2_S2: | 
 | 		switch (density) { | 
 | 		case DDR_DENSITY_1Gb: | 
 | 		case DDR_DENSITY_2Gb: | 
 | 			index = density + 3; | 
 | 			break; | 
 | 		default: | 
 | 			index = density - 1; | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	return &lpddr2_jedec_addressing_table[index]; | 
 | } | 
 |  | 
 | /* | 
 |  * Find the the right timing table from the array of timing | 
 |  * tables of the device using DDR clock frequency | 
 |  */ | 
 | static const struct lpddr2_timings *get_timings_table(struct emif_data *emif, | 
 | 		u32 freq) | 
 | { | 
 | 	u32				i, min, max, freq_nearest; | 
 | 	const struct lpddr2_timings	*timings = NULL; | 
 | 	const struct lpddr2_timings	*timings_arr = emif->plat_data->timings; | 
 | 	struct				device *dev = emif->dev; | 
 |  | 
 | 	/* Start with a very high frequency - 1GHz */ | 
 | 	freq_nearest = 1000000000; | 
 |  | 
 | 	/* | 
 | 	 * Find the timings table such that: | 
 | 	 *  1. the frequency range covers the required frequency(safe) AND | 
 | 	 *  2. the max_freq is closest to the required frequency(optimal) | 
 | 	 */ | 
 | 	for (i = 0; i < emif->plat_data->timings_arr_size; i++) { | 
 | 		max = timings_arr[i].max_freq; | 
 | 		min = timings_arr[i].min_freq; | 
 | 		if ((freq >= min) && (freq <= max) && (max < freq_nearest)) { | 
 | 			freq_nearest = max; | 
 | 			timings = &timings_arr[i]; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!timings) | 
 | 		dev_err(dev, "%s: couldn't find timings for - %dHz\n", | 
 | 			__func__, freq); | 
 |  | 
 | 	dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n", | 
 | 		__func__, freq, freq_nearest); | 
 |  | 
 | 	return timings; | 
 | } | 
 |  | 
 | static u32 get_sdram_ref_ctrl_shdw(u32 freq, | 
 | 		const struct lpddr2_addressing *addressing) | 
 | { | 
 | 	u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi; | 
 |  | 
 | 	/* Scale down frequency and t_refi to avoid overflow */ | 
 | 	freq_khz = freq / 1000; | 
 | 	t_refi = addressing->tREFI_ns / 100; | 
 |  | 
 | 	/* | 
 | 	 * refresh rate to be set is 'tREFI(in us) * freq in MHz | 
 | 	 * division by 10000 to account for change in units | 
 | 	 */ | 
 | 	val = t_refi * freq_khz / 10000; | 
 | 	ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT; | 
 |  | 
 | 	return ref_ctrl_shdw; | 
 | } | 
 |  | 
 | static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings, | 
 | 		const struct lpddr2_min_tck *min_tck, | 
 | 		const struct lpddr2_addressing *addressing) | 
 | { | 
 | 	u32 tim1 = 0, val = 0; | 
 |  | 
 | 	val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; | 
 | 	tim1 |= val << T_WTR_SHIFT; | 
 |  | 
 | 	if (addressing->num_banks == B8) | 
 | 		val = DIV_ROUND_UP(timings->tFAW, t_ck*4); | 
 | 	else | 
 | 		val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck)); | 
 | 	tim1 |= (val - 1) << T_RRD_SHIFT; | 
 |  | 
 | 	val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1; | 
 | 	tim1 |= val << T_RC_SHIFT; | 
 |  | 
 | 	val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck)); | 
 | 	tim1 |= (val - 1) << T_RAS_SHIFT; | 
 |  | 
 | 	val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; | 
 | 	tim1 |= val << T_WR_SHIFT; | 
 |  | 
 | 	val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1; | 
 | 	tim1 |= val << T_RCD_SHIFT; | 
 |  | 
 | 	val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1; | 
 | 	tim1 |= val << T_RP_SHIFT; | 
 |  | 
 | 	return tim1; | 
 | } | 
 |  | 
 | static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings, | 
 | 		const struct lpddr2_min_tck *min_tck, | 
 | 		const struct lpddr2_addressing *addressing) | 
 | { | 
 | 	u32 tim1 = 0, val = 0; | 
 |  | 
 | 	val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; | 
 | 	tim1 = val << T_WTR_SHIFT; | 
 |  | 
 | 	/* | 
 | 	 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps | 
 | 	 * to tFAW for de-rating | 
 | 	 */ | 
 | 	if (addressing->num_banks == B8) { | 
 | 		val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1; | 
 | 	} else { | 
 | 		val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck); | 
 | 		val = max(min_tck->tRRD, val) - 1; | 
 | 	} | 
 | 	tim1 |= val << T_RRD_SHIFT; | 
 |  | 
 | 	val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck); | 
 | 	tim1 |= (val - 1) << T_RC_SHIFT; | 
 |  | 
 | 	val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck); | 
 | 	val = max(min_tck->tRASmin, val) - 1; | 
 | 	tim1 |= val << T_RAS_SHIFT; | 
 |  | 
 | 	val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; | 
 | 	tim1 |= val << T_WR_SHIFT; | 
 |  | 
 | 	val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck)); | 
 | 	tim1 |= (val - 1) << T_RCD_SHIFT; | 
 |  | 
 | 	val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck)); | 
 | 	tim1 |= (val - 1) << T_RP_SHIFT; | 
 |  | 
 | 	return tim1; | 
 | } | 
 |  | 
 | static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings, | 
 | 		const struct lpddr2_min_tck *min_tck, | 
 | 		const struct lpddr2_addressing *addressing, | 
 | 		u32 type) | 
 | { | 
 | 	u32 tim2 = 0, val = 0; | 
 |  | 
 | 	val = min_tck->tCKE - 1; | 
 | 	tim2 |= val << T_CKE_SHIFT; | 
 |  | 
 | 	val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1; | 
 | 	tim2 |= val << T_RTP_SHIFT; | 
 |  | 
 | 	/* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */ | 
 | 	val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1; | 
 | 	tim2 |= val << T_XSNR_SHIFT; | 
 |  | 
 | 	/* XSRD same as XSNR for LPDDR2 */ | 
 | 	tim2 |= val << T_XSRD_SHIFT; | 
 |  | 
 | 	val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1; | 
 | 	tim2 |= val << T_XP_SHIFT; | 
 |  | 
 | 	return tim2; | 
 | } | 
 |  | 
 | static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings, | 
 | 		const struct lpddr2_min_tck *min_tck, | 
 | 		const struct lpddr2_addressing *addressing, | 
 | 		u32 type, u32 ip_rev, u32 derated) | 
 | { | 
 | 	u32 tim3 = 0, val = 0, t_dqsck; | 
 |  | 
 | 	val = timings->tRAS_max_ns / addressing->tREFI_ns - 1; | 
 | 	val = val > 0xF ? 0xF : val; | 
 | 	tim3 |= val << T_RAS_MAX_SHIFT; | 
 |  | 
 | 	val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1; | 
 | 	tim3 |= val << T_RFC_SHIFT; | 
 |  | 
 | 	t_dqsck = (derated == EMIF_DERATED_TIMINGS) ? | 
 | 		timings->tDQSCK_max_derated : timings->tDQSCK_max; | 
 | 	if (ip_rev == EMIF_4D5) | 
 | 		val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1; | 
 | 	else | 
 | 		val = DIV_ROUND_UP(t_dqsck, t_ck) - 1; | 
 |  | 
 | 	tim3 |= val << T_TDQSCKMAX_SHIFT; | 
 |  | 
 | 	val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1; | 
 | 	tim3 |= val << ZQ_ZQCS_SHIFT; | 
 |  | 
 | 	val = DIV_ROUND_UP(timings->tCKESR, t_ck); | 
 | 	val = max(min_tck->tCKESR, val) - 1; | 
 | 	tim3 |= val << T_CKESR_SHIFT; | 
 |  | 
 | 	if (ip_rev == EMIF_4D5) { | 
 | 		tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT; | 
 |  | 
 | 		val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1; | 
 | 		tim3 |= val << T_PDLL_UL_SHIFT; | 
 | 	} | 
 |  | 
 | 	return tim3; | 
 | } | 
 |  | 
 | static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing, | 
 | 		bool cs1_used, bool cal_resistors_per_cs) | 
 | { | 
 | 	u32 zq = 0, val = 0; | 
 |  | 
 | 	val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns; | 
 | 	zq |= val << ZQ_REFINTERVAL_SHIFT; | 
 |  | 
 | 	val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1; | 
 | 	zq |= val << ZQ_ZQCL_MULT_SHIFT; | 
 |  | 
 | 	val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1; | 
 | 	zq |= val << ZQ_ZQINIT_MULT_SHIFT; | 
 |  | 
 | 	zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT; | 
 |  | 
 | 	if (cal_resistors_per_cs) | 
 | 		zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT; | 
 | 	else | 
 | 		zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT; | 
 |  | 
 | 	zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */ | 
 |  | 
 | 	val = cs1_used ? 1 : 0; | 
 | 	zq |= val << ZQ_CS1EN_SHIFT; | 
 |  | 
 | 	return zq; | 
 | } | 
 |  | 
 | static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing, | 
 | 		const struct emif_custom_configs *custom_configs, bool cs1_used, | 
 | 		u32 sdram_io_width, u32 emif_bus_width) | 
 | { | 
 | 	u32 alert = 0, interval, devcnt; | 
 |  | 
 | 	if (custom_configs && (custom_configs->mask & | 
 | 				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)) | 
 | 		interval = custom_configs->temp_alert_poll_interval_ms; | 
 | 	else | 
 | 		interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS; | 
 |  | 
 | 	interval *= 1000000;			/* Convert to ns */ | 
 | 	interval /= addressing->tREFI_ns;	/* Convert to refresh cycles */ | 
 | 	alert |= (interval << TA_REFINTERVAL_SHIFT); | 
 |  | 
 | 	/* | 
 | 	 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width | 
 | 	 * also to this form and subtract to get TA_DEVCNT, which is | 
 | 	 * in log2(x) form. | 
 | 	 */ | 
 | 	emif_bus_width = __fls(emif_bus_width) - 1; | 
 | 	devcnt = emif_bus_width - sdram_io_width; | 
 | 	alert |= devcnt << TA_DEVCNT_SHIFT; | 
 |  | 
 | 	/* DEVWDT is in 'log2(x) - 3' form */ | 
 | 	alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT; | 
 |  | 
 | 	alert |= 1 << TA_SFEXITEN_SHIFT; | 
 | 	alert |= 1 << TA_CS0EN_SHIFT; | 
 | 	alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT; | 
 |  | 
 | 	return alert; | 
 | } | 
 |  | 
 | static u32 get_read_idle_ctrl_shdw(u8 volt_ramp) | 
 | { | 
 | 	u32 idle = 0, val = 0; | 
 |  | 
 | 	/* | 
 | 	 * Maximum value in normal conditions and increased frequency | 
 | 	 * when voltage is ramping | 
 | 	 */ | 
 | 	if (volt_ramp) | 
 | 		val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1; | 
 | 	else | 
 | 		val = 0x1FF; | 
 |  | 
 | 	/* | 
 | 	 * READ_IDLE_CTRL register in EMIF4D has same offset and fields | 
 | 	 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts | 
 | 	 */ | 
 | 	idle |= val << DLL_CALIB_INTERVAL_SHIFT; | 
 | 	idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT; | 
 |  | 
 | 	return idle; | 
 | } | 
 |  | 
 | static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp) | 
 | { | 
 | 	u32 calib = 0, val = 0; | 
 |  | 
 | 	if (volt_ramp == DDR_VOLTAGE_RAMPING) | 
 | 		val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1; | 
 | 	else | 
 | 		val = 0; /* Disabled when voltage is stable */ | 
 |  | 
 | 	calib |= val << DLL_CALIB_INTERVAL_SHIFT; | 
 | 	calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT; | 
 |  | 
 | 	return calib; | 
 | } | 
 |  | 
 | static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings, | 
 | 	u32 freq, u8 RL) | 
 | { | 
 | 	u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0; | 
 |  | 
 | 	val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1; | 
 | 	phy |= val << READ_LATENCY_SHIFT_4D; | 
 |  | 
 | 	if (freq <= 100000000) | 
 | 		val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY; | 
 | 	else if (freq <= 200000000) | 
 | 		val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY; | 
 | 	else | 
 | 		val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY; | 
 |  | 
 | 	phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D; | 
 |  | 
 | 	return phy; | 
 | } | 
 |  | 
 | static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl) | 
 | { | 
 | 	u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay; | 
 |  | 
 | 	/* | 
 | 	 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz, | 
 | 	 * half-delay is not needed else set half-delay | 
 | 	 */ | 
 | 	if (freq >= 265000000 && freq < 267000000) | 
 | 		half_delay = 0; | 
 | 	else | 
 | 		half_delay = 1; | 
 |  | 
 | 	phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5; | 
 | 	phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS, | 
 | 			t_ck) - 1) << READ_LATENCY_SHIFT_4D5); | 
 |  | 
 | 	return phy; | 
 | } | 
 |  | 
 | static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void) | 
 | { | 
 | 	u32 fifo_we_slave_ratio; | 
 |  | 
 | 	fifo_we_slave_ratio =  DIV_ROUND_CLOSEST( | 
 | 		EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck); | 
 |  | 
 | 	return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 | | 
 | 		fifo_we_slave_ratio << 22; | 
 | } | 
 |  | 
 | static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void) | 
 | { | 
 | 	u32 fifo_we_slave_ratio; | 
 |  | 
 | 	fifo_we_slave_ratio =  DIV_ROUND_CLOSEST( | 
 | 		EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck); | 
 |  | 
 | 	return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 | | 
 | 		fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23; | 
 | } | 
 |  | 
 | static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void) | 
 | { | 
 | 	u32 fifo_we_slave_ratio; | 
 |  | 
 | 	fifo_we_slave_ratio =  DIV_ROUND_CLOSEST( | 
 | 		EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck); | 
 |  | 
 | 	return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 | | 
 | 		fifo_we_slave_ratio << 13; | 
 | } | 
 |  | 
 | static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev) | 
 | { | 
 | 	u32 pwr_mgmt_ctrl	= 0, timeout; | 
 | 	u32 lpmode		= EMIF_LP_MODE_SELF_REFRESH; | 
 | 	u32 timeout_perf	= EMIF_LP_MODE_TIMEOUT_PERFORMANCE; | 
 | 	u32 timeout_pwr		= EMIF_LP_MODE_TIMEOUT_POWER; | 
 | 	u32 freq_threshold	= EMIF_LP_MODE_FREQ_THRESHOLD; | 
 | 	u32 mask; | 
 | 	u8 shift; | 
 |  | 
 | 	struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs; | 
 |  | 
 | 	if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) { | 
 | 		lpmode		= cust_cfgs->lpmode; | 
 | 		timeout_perf	= cust_cfgs->lpmode_timeout_performance; | 
 | 		timeout_pwr	= cust_cfgs->lpmode_timeout_power; | 
 | 		freq_threshold  = cust_cfgs->lpmode_freq_threshold; | 
 | 	} | 
 |  | 
 | 	/* Timeout based on DDR frequency */ | 
 | 	timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr; | 
 |  | 
 | 	/* | 
 | 	 * The value to be set in register is "log2(timeout) - 3" | 
 | 	 * if timeout < 16 load 0 in register | 
 | 	 * if timeout is not a power of 2, round to next highest power of 2 | 
 | 	 */ | 
 | 	if (timeout < 16) { | 
 | 		timeout = 0; | 
 | 	} else { | 
 | 		if (timeout & (timeout - 1)) | 
 | 			timeout <<= 1; | 
 | 		timeout = __fls(timeout) - 3; | 
 | 	} | 
 |  | 
 | 	switch (lpmode) { | 
 | 	case EMIF_LP_MODE_CLOCK_STOP: | 
 | 		shift = CS_TIM_SHIFT; | 
 | 		mask = CS_TIM_MASK; | 
 | 		break; | 
 | 	case EMIF_LP_MODE_SELF_REFRESH: | 
 | 		/* Workaround for errata i735 */ | 
 | 		if (timeout < 6) | 
 | 			timeout = 6; | 
 |  | 
 | 		shift = SR_TIM_SHIFT; | 
 | 		mask = SR_TIM_MASK; | 
 | 		break; | 
 | 	case EMIF_LP_MODE_PWR_DN: | 
 | 		shift = PD_TIM_SHIFT; | 
 | 		mask = PD_TIM_MASK; | 
 | 		break; | 
 | 	case EMIF_LP_MODE_DISABLE: | 
 | 	default: | 
 | 		mask = 0; | 
 | 		shift = 0; | 
 | 		break; | 
 | 	} | 
 | 	/* Round to maximum in case of overflow, BUT warn! */ | 
 | 	if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) { | 
 | 		pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n", | 
 | 		       lpmode, | 
 | 		       timeout_perf, | 
 | 		       timeout_pwr, | 
 | 		       freq_threshold); | 
 | 		WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n", | 
 | 		     timeout, mask >> shift); | 
 | 		timeout = mask >> shift; | 
 | 	} | 
 |  | 
 | 	/* Setup required timing */ | 
 | 	pwr_mgmt_ctrl = (timeout << shift) & mask; | 
 | 	/* setup a default mask for rest of the modes */ | 
 | 	pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) & | 
 | 			  ~mask; | 
 |  | 
 | 	/* No CS_TIM in EMIF_4D5 */ | 
 | 	if (ip_rev == EMIF_4D5) | 
 | 		pwr_mgmt_ctrl &= ~CS_TIM_MASK; | 
 |  | 
 | 	pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT; | 
 |  | 
 | 	return pwr_mgmt_ctrl; | 
 | } | 
 |  | 
 | /* | 
 |  * Get the temperature level of the EMIF instance: | 
 |  * Reads the MR4 register of attached SDRAM parts to find out the temperature | 
 |  * level. If there are two parts attached(one on each CS), then the temperature | 
 |  * level for the EMIF instance is the higher of the two temperatures. | 
 |  */ | 
 | static void get_temperature_level(struct emif_data *emif) | 
 | { | 
 | 	u32		temp, temperature_level; | 
 | 	void __iomem	*base; | 
 |  | 
 | 	base = emif->base; | 
 |  | 
 | 	/* Read mode register 4 */ | 
 | 	writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG); | 
 | 	temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA); | 
 | 	temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >> | 
 | 				MR4_SDRAM_REF_RATE_SHIFT; | 
 |  | 
 | 	if (emif->plat_data->device_info->cs1_used) { | 
 | 		writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG); | 
 | 		temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA); | 
 | 		temp = (temp & MR4_SDRAM_REF_RATE_MASK) | 
 | 				>> MR4_SDRAM_REF_RATE_SHIFT; | 
 | 		temperature_level = max(temp, temperature_level); | 
 | 	} | 
 |  | 
 | 	/* treat everything less than nominal(3) in MR4 as nominal */ | 
 | 	if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL)) | 
 | 		temperature_level = SDRAM_TEMP_NOMINAL; | 
 |  | 
 | 	/* if we get reserved value in MR4 persist with the existing value */ | 
 | 	if (likely(temperature_level != SDRAM_TEMP_RESERVED_4)) | 
 | 		emif->temperature_level = temperature_level; | 
 | } | 
 |  | 
 | /* | 
 |  * Program EMIF shadow registers that are not dependent on temperature | 
 |  * or voltage | 
 |  */ | 
 | static void setup_registers(struct emif_data *emif, struct emif_regs *regs) | 
 | { | 
 | 	void __iomem	*base = emif->base; | 
 |  | 
 | 	writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW); | 
 | 	writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW); | 
 | 	writel(regs->pwr_mgmt_ctrl_shdw, | 
 | 	       base + EMIF_POWER_MANAGEMENT_CTRL_SHDW); | 
 |  | 
 | 	/* Settings specific for EMIF4D5 */ | 
 | 	if (emif->plat_data->ip_rev != EMIF_4D5) | 
 | 		return; | 
 | 	writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW); | 
 | 	writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW); | 
 | 	writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW); | 
 | } | 
 |  | 
 | /* | 
 |  * When voltage ramps dll calibration and forced read idle should | 
 |  * happen more often | 
 |  */ | 
 | static void setup_volt_sensitive_regs(struct emif_data *emif, | 
 | 		struct emif_regs *regs, u32 volt_state) | 
 | { | 
 | 	u32		calib_ctrl; | 
 | 	void __iomem	*base = emif->base; | 
 |  | 
 | 	/* | 
 | 	 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as | 
 | 	 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_* | 
 | 	 * is an alias of the respective read_idle_ctrl_shdw_* (members of | 
 | 	 * a union). So, the below code takes care of both cases | 
 | 	 */ | 
 | 	if (volt_state == DDR_VOLTAGE_RAMPING) | 
 | 		calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp; | 
 | 	else | 
 | 		calib_ctrl = regs->dll_calib_ctrl_shdw_normal; | 
 |  | 
 | 	writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW); | 
 | } | 
 |  | 
 | /* | 
 |  * setup_temperature_sensitive_regs() - set the timings for temperature | 
 |  * sensitive registers. This happens once at initialisation time based | 
 |  * on the temperature at boot time and subsequently based on the temperature | 
 |  * alert interrupt. Temperature alert can happen when the temperature | 
 |  * increases or drops. So this function can have the effect of either | 
 |  * derating the timings or going back to nominal values. | 
 |  */ | 
 | static void setup_temperature_sensitive_regs(struct emif_data *emif, | 
 | 		struct emif_regs *regs) | 
 | { | 
 | 	u32		tim1, tim3, ref_ctrl, type; | 
 | 	void __iomem	*base = emif->base; | 
 | 	u32		temperature; | 
 |  | 
 | 	type = emif->plat_data->device_info->type; | 
 |  | 
 | 	tim1 = regs->sdram_tim1_shdw; | 
 | 	tim3 = regs->sdram_tim3_shdw; | 
 | 	ref_ctrl = regs->ref_ctrl_shdw; | 
 |  | 
 | 	/* No de-rating for non-lpddr2 devices */ | 
 | 	if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4) | 
 | 		goto out; | 
 |  | 
 | 	temperature = emif->temperature_level; | 
 | 	if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) { | 
 | 		ref_ctrl = regs->ref_ctrl_shdw_derated; | 
 | 	} else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) { | 
 | 		tim1 = regs->sdram_tim1_shdw_derated; | 
 | 		tim3 = regs->sdram_tim3_shdw_derated; | 
 | 		ref_ctrl = regs->ref_ctrl_shdw_derated; | 
 | 	} | 
 |  | 
 | out: | 
 | 	writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW); | 
 | 	writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW); | 
 | 	writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW); | 
 | } | 
 |  | 
 | static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif) | 
 | { | 
 | 	u32		old_temp_level; | 
 | 	irqreturn_t	ret = IRQ_HANDLED; | 
 | 	struct emif_custom_configs *custom_configs; | 
 |  | 
 | 	spin_lock_irqsave(&emif_lock, irq_state); | 
 | 	old_temp_level = emif->temperature_level; | 
 | 	get_temperature_level(emif); | 
 |  | 
 | 	if (unlikely(emif->temperature_level == old_temp_level)) { | 
 | 		goto out; | 
 | 	} else if (!emif->curr_regs) { | 
 | 		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	custom_configs = emif->plat_data->custom_configs; | 
 |  | 
 | 	/* | 
 | 	 * IF we detect higher than "nominal rating" from DDR sensor | 
 | 	 * on an unsupported DDR part, shutdown system | 
 | 	 */ | 
 | 	if (custom_configs && !(custom_configs->mask & | 
 | 				EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) { | 
 | 		if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) { | 
 | 			dev_err(emif->dev, | 
 | 				"%s:NOT Extended temperature capable memory. Converting MR4=0x%02x as shutdown event\n", | 
 | 				__func__, emif->temperature_level); | 
 | 			/* | 
 | 			 * Temperature far too high - do kernel_power_off() | 
 | 			 * from thread context | 
 | 			 */ | 
 | 			emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN; | 
 | 			ret = IRQ_WAKE_THREAD; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (emif->temperature_level < old_temp_level || | 
 | 		emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) { | 
 | 		/* | 
 | 		 * Temperature coming down - defer handling to thread OR | 
 | 		 * Temperature far too high - do kernel_power_off() from | 
 | 		 * thread context | 
 | 		 */ | 
 | 		ret = IRQ_WAKE_THREAD; | 
 | 	} else { | 
 | 		/* Temperature is going up - handle immediately */ | 
 | 		setup_temperature_sensitive_regs(emif, emif->curr_regs); | 
 | 		do_freq_update(); | 
 | 	} | 
 |  | 
 | out: | 
 | 	spin_unlock_irqrestore(&emif_lock, irq_state); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static irqreturn_t emif_interrupt_handler(int irq, void *dev_id) | 
 | { | 
 | 	u32			interrupts; | 
 | 	struct emif_data	*emif = dev_id; | 
 | 	void __iomem		*base = emif->base; | 
 | 	struct device		*dev = emif->dev; | 
 | 	irqreturn_t		ret = IRQ_HANDLED; | 
 |  | 
 | 	/* Save the status and clear it */ | 
 | 	interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); | 
 | 	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); | 
 |  | 
 | 	/* | 
 | 	 * Handle temperature alert | 
 | 	 * Temperature alert should be same for all ports | 
 | 	 * So, it's enough to process it only for one of the ports | 
 | 	 */ | 
 | 	if (interrupts & TA_SYS_MASK) | 
 | 		ret = handle_temp_alert(base, emif); | 
 |  | 
 | 	if (interrupts & ERR_SYS_MASK) | 
 | 		dev_err(dev, "Access error from SYS port - %x\n", interrupts); | 
 |  | 
 | 	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) { | 
 | 		/* Save the status and clear it */ | 
 | 		interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS); | 
 | 		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS); | 
 |  | 
 | 		if (interrupts & ERR_LL_MASK) | 
 | 			dev_err(dev, "Access error from LL port - %x\n", | 
 | 				interrupts); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static irqreturn_t emif_threaded_isr(int irq, void *dev_id) | 
 | { | 
 | 	struct emif_data	*emif = dev_id; | 
 |  | 
 | 	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) { | 
 | 		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n"); | 
 |  | 
 | 		/* If we have Power OFF ability, use it, else try restarting */ | 
 | 		if (pm_power_off) { | 
 | 			kernel_power_off(); | 
 | 		} else { | 
 | 			WARN(1, "FIXME: NO pm_power_off!!! trying restart\n"); | 
 | 			kernel_restart("SDRAM Over-temp Emergency restart"); | 
 | 		} | 
 | 		return IRQ_HANDLED; | 
 | 	} | 
 |  | 
 | 	spin_lock_irqsave(&emif_lock, irq_state); | 
 |  | 
 | 	if (emif->curr_regs) { | 
 | 		setup_temperature_sensitive_regs(emif, emif->curr_regs); | 
 | 		do_freq_update(); | 
 | 	} else { | 
 | 		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n"); | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&emif_lock, irq_state); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static void clear_all_interrupts(struct emif_data *emif) | 
 | { | 
 | 	void __iomem	*base = emif->base; | 
 |  | 
 | 	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS), | 
 | 		base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); | 
 | 	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) | 
 | 		writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS), | 
 | 			base + EMIF_LL_OCP_INTERRUPT_STATUS); | 
 | } | 
 |  | 
 | static void disable_and_clear_all_interrupts(struct emif_data *emif) | 
 | { | 
 | 	void __iomem		*base = emif->base; | 
 |  | 
 | 	/* Disable all interrupts */ | 
 | 	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET), | 
 | 		base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR); | 
 | 	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) | 
 | 		writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET), | 
 | 			base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR); | 
 |  | 
 | 	/* Clear all interrupts */ | 
 | 	clear_all_interrupts(emif); | 
 | } | 
 |  | 
 | static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq) | 
 | { | 
 | 	u32		interrupts, type; | 
 | 	void __iomem	*base = emif->base; | 
 |  | 
 | 	type = emif->plat_data->device_info->type; | 
 |  | 
 | 	clear_all_interrupts(emif); | 
 |  | 
 | 	/* Enable interrupts for SYS interface */ | 
 | 	interrupts = EN_ERR_SYS_MASK; | 
 | 	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) | 
 | 		interrupts |= EN_TA_SYS_MASK; | 
 | 	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET); | 
 |  | 
 | 	/* Enable interrupts for LL interface */ | 
 | 	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) { | 
 | 		/* TA need not be enabled for LL */ | 
 | 		interrupts = EN_ERR_LL_MASK; | 
 | 		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET); | 
 | 	} | 
 |  | 
 | 	/* setup IRQ handlers */ | 
 | 	return devm_request_threaded_irq(emif->dev, irq, | 
 | 				    emif_interrupt_handler, | 
 | 				    emif_threaded_isr, | 
 | 				    0, dev_name(emif->dev), | 
 | 				    emif); | 
 |  | 
 | } | 
 |  | 
 | static void __init_or_module emif_onetime_settings(struct emif_data *emif) | 
 | { | 
 | 	u32				pwr_mgmt_ctrl, zq, temp_alert_cfg; | 
 | 	void __iomem			*base = emif->base; | 
 | 	const struct lpddr2_addressing	*addressing; | 
 | 	const struct ddr_device_info	*device_info; | 
 |  | 
 | 	device_info = emif->plat_data->device_info; | 
 | 	addressing = get_addressing_table(device_info); | 
 |  | 
 | 	/* | 
 | 	 * Init power management settings | 
 | 	 * We don't know the frequency yet. Use a high frequency | 
 | 	 * value for a conservative timeout setting | 
 | 	 */ | 
 | 	pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif, | 
 | 			emif->plat_data->ip_rev); | 
 | 	emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT; | 
 | 	writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL); | 
 |  | 
 | 	/* Init ZQ calibration settings */ | 
 | 	zq = get_zq_config_reg(addressing, device_info->cs1_used, | 
 | 		device_info->cal_resistors_per_cs); | 
 | 	writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG); | 
 |  | 
 | 	/* Check temperature level temperature level*/ | 
 | 	get_temperature_level(emif); | 
 | 	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) | 
 | 		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n"); | 
 |  | 
 | 	/* Init temperature polling */ | 
 | 	temp_alert_cfg = get_temp_alert_config(addressing, | 
 | 		emif->plat_data->custom_configs, device_info->cs1_used, | 
 | 		device_info->io_width, get_emif_bus_width(emif)); | 
 | 	writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG); | 
 |  | 
 | 	/* | 
 | 	 * Program external PHY control registers that are not frequency | 
 | 	 * dependent | 
 | 	 */ | 
 | 	if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY) | 
 | 		return; | 
 | 	writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW); | 
 | 	writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW); | 
 | 	writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW); | 
 | 	writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW); | 
 | 	writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW); | 
 | 	writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW); | 
 | 	writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW); | 
 | 	writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW); | 
 | 	writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW); | 
 | 	writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW); | 
 | 	writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW); | 
 | 	writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW); | 
 | 	writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW); | 
 | 	writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW); | 
 | 	writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW); | 
 | 	writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW); | 
 | 	writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW); | 
 | 	writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW); | 
 | 	writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW); | 
 | 	writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW); | 
 | 	writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW); | 
 | } | 
 |  | 
 | static void get_default_timings(struct emif_data *emif) | 
 | { | 
 | 	struct emif_platform_data *pd = emif->plat_data; | 
 |  | 
 | 	pd->timings		= lpddr2_jedec_timings; | 
 | 	pd->timings_arr_size	= ARRAY_SIZE(lpddr2_jedec_timings); | 
 |  | 
 | 	dev_warn(emif->dev, "%s: using default timings\n", __func__); | 
 | } | 
 |  | 
 | static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type, | 
 | 		u32 ip_rev, struct device *dev) | 
 | { | 
 | 	int valid; | 
 |  | 
 | 	valid = (type == DDR_TYPE_LPDDR2_S4 || | 
 | 			type == DDR_TYPE_LPDDR2_S2) | 
 | 		&& (density >= DDR_DENSITY_64Mb | 
 | 			&& density <= DDR_DENSITY_8Gb) | 
 | 		&& (io_width >= DDR_IO_WIDTH_8 | 
 | 			&& io_width <= DDR_IO_WIDTH_32); | 
 |  | 
 | 	/* Combinations of EMIF and PHY revisions that we support today */ | 
 | 	switch (ip_rev) { | 
 | 	case EMIF_4D: | 
 | 		valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY); | 
 | 		break; | 
 | 	case EMIF_4D5: | 
 | 		valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY); | 
 | 		break; | 
 | 	default: | 
 | 		valid = 0; | 
 | 	} | 
 |  | 
 | 	if (!valid) | 
 | 		dev_err(dev, "%s: invalid DDR details\n", __func__); | 
 | 	return valid; | 
 | } | 
 |  | 
 | static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs, | 
 | 		struct device *dev) | 
 | { | 
 | 	int valid = 1; | 
 |  | 
 | 	if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) && | 
 | 		(cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE)) | 
 | 		valid = cust_cfgs->lpmode_freq_threshold && | 
 | 			cust_cfgs->lpmode_timeout_performance && | 
 | 			cust_cfgs->lpmode_timeout_power; | 
 |  | 
 | 	if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL) | 
 | 		valid = valid && cust_cfgs->temp_alert_poll_interval_ms; | 
 |  | 
 | 	if (!valid) | 
 | 		dev_warn(dev, "%s: invalid custom configs\n", __func__); | 
 |  | 
 | 	return valid; | 
 | } | 
 |  | 
 | #if defined(CONFIG_OF) | 
 | static void __init_or_module of_get_custom_configs(struct device_node *np_emif, | 
 | 		struct emif_data *emif) | 
 | { | 
 | 	struct emif_custom_configs	*cust_cfgs = NULL; | 
 | 	int				len; | 
 | 	const __be32			*lpmode, *poll_intvl; | 
 |  | 
 | 	lpmode = of_get_property(np_emif, "low-power-mode", &len); | 
 | 	poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len); | 
 |  | 
 | 	if (lpmode || poll_intvl) | 
 | 		cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs), | 
 | 			GFP_KERNEL); | 
 |  | 
 | 	if (!cust_cfgs) | 
 | 		return; | 
 |  | 
 | 	if (lpmode) { | 
 | 		cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE; | 
 | 		cust_cfgs->lpmode = be32_to_cpup(lpmode); | 
 | 		of_property_read_u32(np_emif, | 
 | 				"low-power-mode-timeout-performance", | 
 | 				&cust_cfgs->lpmode_timeout_performance); | 
 | 		of_property_read_u32(np_emif, | 
 | 				"low-power-mode-timeout-power", | 
 | 				&cust_cfgs->lpmode_timeout_power); | 
 | 		of_property_read_u32(np_emif, | 
 | 				"low-power-mode-freq-threshold", | 
 | 				&cust_cfgs->lpmode_freq_threshold); | 
 | 	} | 
 |  | 
 | 	if (poll_intvl) { | 
 | 		cust_cfgs->mask |= | 
 | 				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL; | 
 | 		cust_cfgs->temp_alert_poll_interval_ms = | 
 | 						be32_to_cpup(poll_intvl); | 
 | 	} | 
 |  | 
 | 	if (of_find_property(np_emif, "extended-temp-part", &len)) | 
 | 		cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART; | 
 |  | 
 | 	if (!is_custom_config_valid(cust_cfgs, emif->dev)) { | 
 | 		devm_kfree(emif->dev, cust_cfgs); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	emif->plat_data->custom_configs = cust_cfgs; | 
 | } | 
 |  | 
 | static void __init_or_module of_get_ddr_info(struct device_node *np_emif, | 
 | 		struct device_node *np_ddr, | 
 | 		struct ddr_device_info *dev_info) | 
 | { | 
 | 	u32 density = 0, io_width = 0; | 
 | 	int len; | 
 |  | 
 | 	if (of_find_property(np_emif, "cs1-used", &len)) | 
 | 		dev_info->cs1_used = true; | 
 |  | 
 | 	if (of_find_property(np_emif, "cal-resistor-per-cs", &len)) | 
 | 		dev_info->cal_resistors_per_cs = true; | 
 |  | 
 | 	if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s4")) | 
 | 		dev_info->type = DDR_TYPE_LPDDR2_S4; | 
 | 	else if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s2")) | 
 | 		dev_info->type = DDR_TYPE_LPDDR2_S2; | 
 |  | 
 | 	of_property_read_u32(np_ddr, "density", &density); | 
 | 	of_property_read_u32(np_ddr, "io-width", &io_width); | 
 |  | 
 | 	/* Convert from density in Mb to the density encoding in jedc_ddr.h */ | 
 | 	if (density & (density - 1)) | 
 | 		dev_info->density = 0; | 
 | 	else | 
 | 		dev_info->density = __fls(density) - 5; | 
 |  | 
 | 	/* Convert from io_width in bits to io_width encoding in jedc_ddr.h */ | 
 | 	if (io_width & (io_width - 1)) | 
 | 		dev_info->io_width = 0; | 
 | 	else | 
 | 		dev_info->io_width = __fls(io_width) - 1; | 
 | } | 
 |  | 
 | static struct emif_data * __init_or_module of_get_memory_device_details( | 
 | 		struct device_node *np_emif, struct device *dev) | 
 | { | 
 | 	struct emif_data		*emif = NULL; | 
 | 	struct ddr_device_info		*dev_info = NULL; | 
 | 	struct emif_platform_data	*pd = NULL; | 
 | 	struct device_node		*np_ddr; | 
 | 	int				len; | 
 |  | 
 | 	np_ddr = of_parse_phandle(np_emif, "device-handle", 0); | 
 | 	if (!np_ddr) | 
 | 		goto error; | 
 | 	emif	= devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL); | 
 | 	pd	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); | 
 | 	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL); | 
 |  | 
 | 	if (!emif || !pd || !dev_info) { | 
 | 		dev_err(dev, "%s: Out of memory!!\n", | 
 | 			__func__); | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	emif->plat_data		= pd; | 
 | 	pd->device_info		= dev_info; | 
 | 	emif->dev		= dev; | 
 | 	emif->np_ddr		= np_ddr; | 
 | 	emif->temperature_level	= SDRAM_TEMP_NOMINAL; | 
 |  | 
 | 	if (of_device_is_compatible(np_emif, "ti,emif-4d")) | 
 | 		emif->plat_data->ip_rev = EMIF_4D; | 
 | 	else if (of_device_is_compatible(np_emif, "ti,emif-4d5")) | 
 | 		emif->plat_data->ip_rev = EMIF_4D5; | 
 |  | 
 | 	of_property_read_u32(np_emif, "phy-type", &pd->phy_type); | 
 |  | 
 | 	if (of_find_property(np_emif, "hw-caps-ll-interface", &len)) | 
 | 		pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE; | 
 |  | 
 | 	of_get_ddr_info(np_emif, np_ddr, dev_info); | 
 | 	if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density, | 
 | 			pd->device_info->io_width, pd->phy_type, pd->ip_rev, | 
 | 			emif->dev)) { | 
 | 		dev_err(dev, "%s: invalid device data!!\n", __func__); | 
 | 		goto error; | 
 | 	} | 
 | 	/* | 
 | 	 * For EMIF instances other than EMIF1 see if the devices connected | 
 | 	 * are exactly same as on EMIF1(which is typically the case). If so, | 
 | 	 * mark it as a duplicate of EMIF1. This will save some memory and | 
 | 	 * computation. | 
 | 	 */ | 
 | 	if (emif1 && emif1->np_ddr == np_ddr) { | 
 | 		emif->duplicate = true; | 
 | 		goto out; | 
 | 	} else if (emif1) { | 
 | 		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n", | 
 | 			__func__); | 
 | 	} | 
 |  | 
 | 	of_get_custom_configs(np_emif, emif); | 
 | 	emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev, | 
 | 					emif->plat_data->device_info->type, | 
 | 					&emif->plat_data->timings_arr_size); | 
 |  | 
 | 	emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev); | 
 | 	goto out; | 
 |  | 
 | error: | 
 | 	return NULL; | 
 | out: | 
 | 	return emif; | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static struct emif_data * __init_or_module of_get_memory_device_details( | 
 | 		struct device_node *np_emif, struct device *dev) | 
 | { | 
 | 	return NULL; | 
 | } | 
 | #endif | 
 |  | 
 | static struct emif_data *__init_or_module get_device_details( | 
 | 		struct platform_device *pdev) | 
 | { | 
 | 	u32				size; | 
 | 	struct emif_data		*emif = NULL; | 
 | 	struct ddr_device_info		*dev_info; | 
 | 	struct emif_custom_configs	*cust_cfgs; | 
 | 	struct emif_platform_data	*pd; | 
 | 	struct device			*dev; | 
 | 	void				*temp; | 
 |  | 
 | 	pd = pdev->dev.platform_data; | 
 | 	dev = &pdev->dev; | 
 |  | 
 | 	if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type, | 
 | 			pd->device_info->density, pd->device_info->io_width, | 
 | 			pd->phy_type, pd->ip_rev, dev))) { | 
 | 		dev_err(dev, "%s: invalid device data\n", __func__); | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	emif	= devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL); | 
 | 	temp	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); | 
 | 	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL); | 
 |  | 
 | 	if (!emif || !temp || !dev_info) { | 
 | 		dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__); | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	memcpy(temp, pd, sizeof(*pd)); | 
 | 	pd = temp; | 
 | 	memcpy(dev_info, pd->device_info, sizeof(*dev_info)); | 
 |  | 
 | 	pd->device_info		= dev_info; | 
 | 	emif->plat_data		= pd; | 
 | 	emif->dev		= dev; | 
 | 	emif->temperature_level	= SDRAM_TEMP_NOMINAL; | 
 |  | 
 | 	/* | 
 | 	 * For EMIF instances other than EMIF1 see if the devices connected | 
 | 	 * are exactly same as on EMIF1(which is typically the case). If so, | 
 | 	 * mark it as a duplicate of EMIF1 and skip copying timings data. | 
 | 	 * This will save some memory and some computation later. | 
 | 	 */ | 
 | 	emif->duplicate = emif1 && (memcmp(dev_info, | 
 | 		emif1->plat_data->device_info, | 
 | 		sizeof(struct ddr_device_info)) == 0); | 
 |  | 
 | 	if (emif->duplicate) { | 
 | 		pd->timings = NULL; | 
 | 		pd->min_tck = NULL; | 
 | 		goto out; | 
 | 	} else if (emif1) { | 
 | 		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n", | 
 | 			__func__); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Copy custom configs - ignore allocation error, if any, as | 
 | 	 * custom_configs is not very critical | 
 | 	 */ | 
 | 	cust_cfgs = pd->custom_configs; | 
 | 	if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) { | 
 | 		temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL); | 
 | 		if (temp) | 
 | 			memcpy(temp, cust_cfgs, sizeof(*cust_cfgs)); | 
 | 		else | 
 | 			dev_warn(dev, "%s:%d: allocation error\n", __func__, | 
 | 				__LINE__); | 
 | 		pd->custom_configs = temp; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Copy timings and min-tck values from platform data. If it is not | 
 | 	 * available or if memory allocation fails, use JEDEC defaults | 
 | 	 */ | 
 | 	size = sizeof(struct lpddr2_timings) * pd->timings_arr_size; | 
 | 	if (pd->timings) { | 
 | 		temp = devm_kzalloc(dev, size, GFP_KERNEL); | 
 | 		if (temp) { | 
 | 			memcpy(temp, pd->timings, size); | 
 | 			pd->timings = temp; | 
 | 		} else { | 
 | 			dev_warn(dev, "%s:%d: allocation error\n", __func__, | 
 | 				__LINE__); | 
 | 			get_default_timings(emif); | 
 | 		} | 
 | 	} else { | 
 | 		get_default_timings(emif); | 
 | 	} | 
 |  | 
 | 	if (pd->min_tck) { | 
 | 		temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL); | 
 | 		if (temp) { | 
 | 			memcpy(temp, pd->min_tck, sizeof(*pd->min_tck)); | 
 | 			pd->min_tck = temp; | 
 | 		} else { | 
 | 			dev_warn(dev, "%s:%d: allocation error\n", __func__, | 
 | 				__LINE__); | 
 | 			pd->min_tck = &lpddr2_jedec_min_tck; | 
 | 		} | 
 | 	} else { | 
 | 		pd->min_tck = &lpddr2_jedec_min_tck; | 
 | 	} | 
 |  | 
 | out: | 
 | 	return emif; | 
 |  | 
 | error: | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int __init_or_module emif_probe(struct platform_device *pdev) | 
 | { | 
 | 	struct emif_data	*emif; | 
 | 	struct resource		*res; | 
 | 	int			irq, ret; | 
 |  | 
 | 	if (pdev->dev.of_node) | 
 | 		emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev); | 
 | 	else | 
 | 		emif = get_device_details(pdev); | 
 |  | 
 | 	if (!emif) { | 
 | 		pr_err("%s: error getting device data\n", __func__); | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	list_add(&emif->node, &device_list); | 
 | 	emif->addressing = get_addressing_table(emif->plat_data->device_info); | 
 |  | 
 | 	/* Save pointers to each other in emif and device structures */ | 
 | 	emif->dev = &pdev->dev; | 
 | 	platform_set_drvdata(pdev, emif); | 
 |  | 
 | 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
 | 	emif->base = devm_ioremap_resource(emif->dev, res); | 
 | 	if (IS_ERR(emif->base)) | 
 | 		goto error; | 
 |  | 
 | 	irq = platform_get_irq(pdev, 0); | 
 | 	if (irq < 0) | 
 | 		goto error; | 
 |  | 
 | 	emif_onetime_settings(emif); | 
 | 	emif_debugfs_init(emif); | 
 | 	disable_and_clear_all_interrupts(emif); | 
 | 	ret = setup_interrupts(emif, irq); | 
 | 	if (ret) | 
 | 		goto error; | 
 |  | 
 | 	/* One-time actions taken on probing the first device */ | 
 | 	if (!emif1) { | 
 | 		emif1 = emif; | 
 | 		spin_lock_init(&emif_lock); | 
 |  | 
 | 		/* | 
 | 		 * TODO: register notifiers for frequency and voltage | 
 | 		 * change here once the respective frameworks are | 
 | 		 * available | 
 | 		 */ | 
 | 	} | 
 |  | 
 | 	dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n", | 
 | 		__func__, emif->base, irq); | 
 |  | 
 | 	return 0; | 
 | error: | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | static int __exit emif_remove(struct platform_device *pdev) | 
 | { | 
 | 	struct emif_data *emif = platform_get_drvdata(pdev); | 
 |  | 
 | 	emif_debugfs_exit(emif); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void emif_shutdown(struct platform_device *pdev) | 
 | { | 
 | 	struct emif_data	*emif = platform_get_drvdata(pdev); | 
 |  | 
 | 	disable_and_clear_all_interrupts(emif); | 
 | } | 
 |  | 
 | static int get_emif_reg_values(struct emif_data *emif, u32 freq, | 
 | 		struct emif_regs *regs) | 
 | { | 
 | 	u32				ip_rev, phy_type; | 
 | 	u32				cl, type; | 
 | 	const struct lpddr2_timings	*timings; | 
 | 	const struct lpddr2_min_tck	*min_tck; | 
 | 	const struct ddr_device_info	*device_info; | 
 | 	const struct lpddr2_addressing	*addressing; | 
 | 	struct emif_data		*emif_for_calc; | 
 | 	struct device			*dev; | 
 |  | 
 | 	dev = emif->dev; | 
 | 	/* | 
 | 	 * If the devices on this EMIF instance is duplicate of EMIF1, | 
 | 	 * use EMIF1 details for the calculation | 
 | 	 */ | 
 | 	emif_for_calc	= emif->duplicate ? emif1 : emif; | 
 | 	timings		= get_timings_table(emif_for_calc, freq); | 
 | 	addressing	= emif_for_calc->addressing; | 
 | 	if (!timings || !addressing) { | 
 | 		dev_err(dev, "%s: not enough data available for %dHz", | 
 | 			__func__, freq); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	device_info	= emif_for_calc->plat_data->device_info; | 
 | 	type		= device_info->type; | 
 | 	ip_rev		= emif_for_calc->plat_data->ip_rev; | 
 | 	phy_type	= emif_for_calc->plat_data->phy_type; | 
 |  | 
 | 	min_tck		= emif_for_calc->plat_data->min_tck; | 
 |  | 
 | 	set_ddr_clk_period(freq); | 
 |  | 
 | 	regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing); | 
 | 	regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck, | 
 | 			addressing); | 
 | 	regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck, | 
 | 			addressing, type); | 
 | 	regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck, | 
 | 		addressing, type, ip_rev, EMIF_NORMAL_TIMINGS); | 
 |  | 
 | 	cl = get_cl(emif); | 
 |  | 
 | 	if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) { | 
 | 		regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d( | 
 | 			timings, freq, cl); | 
 | 	} else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) { | 
 | 		regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl); | 
 | 		regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5(); | 
 | 		regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5(); | 
 | 		regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5(); | 
 | 	} else { | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	/* Only timeout values in pwr_mgmt_ctrl_shdw register */ | 
 | 	regs->pwr_mgmt_ctrl_shdw = | 
 | 		get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) & | 
 | 		(CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK); | 
 |  | 
 | 	if (ip_rev & EMIF_4D) { | 
 | 		regs->read_idle_ctrl_shdw_normal = | 
 | 			get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE); | 
 |  | 
 | 		regs->read_idle_ctrl_shdw_volt_ramp = | 
 | 			get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING); | 
 | 	} else if (ip_rev & EMIF_4D5) { | 
 | 		regs->dll_calib_ctrl_shdw_normal = | 
 | 			get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE); | 
 |  | 
 | 		regs->dll_calib_ctrl_shdw_volt_ramp = | 
 | 			get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING); | 
 | 	} | 
 |  | 
 | 	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { | 
 | 		regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4, | 
 | 			addressing); | 
 |  | 
 | 		regs->sdram_tim1_shdw_derated = | 
 | 			get_sdram_tim_1_shdw_derated(timings, min_tck, | 
 | 				addressing); | 
 |  | 
 | 		regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings, | 
 | 			min_tck, addressing, type, ip_rev, | 
 | 			EMIF_DERATED_TIMINGS); | 
 | 	} | 
 |  | 
 | 	regs->freq = freq; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * get_regs() - gets the cached emif_regs structure for a given EMIF instance | 
 |  * given frequency(freq): | 
 |  * | 
 |  * As an optimisation, every EMIF instance other than EMIF1 shares the | 
 |  * register cache with EMIF1 if the devices connected on this instance | 
 |  * are same as that on EMIF1(indicated by the duplicate flag) | 
 |  * | 
 |  * If we do not have an entry corresponding to the frequency given, we | 
 |  * allocate a new entry and calculate the values | 
 |  * | 
 |  * Upon finding the right reg dump, save it in curr_regs. It can be | 
 |  * directly used for thermal de-rating and voltage ramping changes. | 
 |  */ | 
 | static struct emif_regs *get_regs(struct emif_data *emif, u32 freq) | 
 | { | 
 | 	int			i; | 
 | 	struct emif_regs	**regs_cache; | 
 | 	struct emif_regs	*regs = NULL; | 
 | 	struct device		*dev; | 
 |  | 
 | 	dev = emif->dev; | 
 | 	if (emif->curr_regs && emif->curr_regs->freq == freq) { | 
 | 		dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq); | 
 | 		return emif->curr_regs; | 
 | 	} | 
 |  | 
 | 	if (emif->duplicate) | 
 | 		regs_cache = emif1->regs_cache; | 
 | 	else | 
 | 		regs_cache = emif->regs_cache; | 
 |  | 
 | 	for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { | 
 | 		if (regs_cache[i]->freq == freq) { | 
 | 			regs = regs_cache[i]; | 
 | 			dev_dbg(dev, | 
 | 				"%s: reg dump found in reg cache for %u Hz\n", | 
 | 				__func__, freq); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we don't have an entry for this frequency in the cache create one | 
 | 	 * and calculate the values | 
 | 	 */ | 
 | 	if (!regs) { | 
 | 		regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC); | 
 | 		if (!regs) | 
 | 			return NULL; | 
 |  | 
 | 		if (get_emif_reg_values(emif, freq, regs)) { | 
 | 			devm_kfree(emif->dev, regs); | 
 | 			return NULL; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Now look for an un-used entry in the cache and save the | 
 | 		 * newly created struct. If there are no free entries | 
 | 		 * over-write the last entry | 
 | 		 */ | 
 | 		for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) | 
 | 			; | 
 |  | 
 | 		if (i >= EMIF_MAX_NUM_FREQUENCIES) { | 
 | 			dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n", | 
 | 				__func__); | 
 | 			i = EMIF_MAX_NUM_FREQUENCIES - 1; | 
 | 			devm_kfree(emif->dev, regs_cache[i]); | 
 | 		} | 
 | 		regs_cache[i] = regs; | 
 | 	} | 
 |  | 
 | 	return regs; | 
 | } | 
 |  | 
 | static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state) | 
 | { | 
 | 	dev_dbg(emif->dev, "%s: voltage notification : %d", __func__, | 
 | 		volt_state); | 
 |  | 
 | 	if (!emif->curr_regs) { | 
 | 		dev_err(emif->dev, | 
 | 			"%s: volt-notify before registers are ready: %d\n", | 
 | 			__func__, volt_state); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state); | 
 | } | 
 |  | 
 | /* | 
 |  * TODO: voltage notify handling should be hooked up to | 
 |  * regulator framework as soon as the necessary support | 
 |  * is available in mainline kernel. This function is un-used | 
 |  * right now. | 
 |  */ | 
 | static void __attribute__((unused)) volt_notify_handling(u32 volt_state) | 
 | { | 
 | 	struct emif_data *emif; | 
 |  | 
 | 	spin_lock_irqsave(&emif_lock, irq_state); | 
 |  | 
 | 	list_for_each_entry(emif, &device_list, node) | 
 | 		do_volt_notify_handling(emif, volt_state); | 
 | 	do_freq_update(); | 
 |  | 
 | 	spin_unlock_irqrestore(&emif_lock, irq_state); | 
 | } | 
 |  | 
 | static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq) | 
 | { | 
 | 	struct emif_regs *regs; | 
 |  | 
 | 	regs = get_regs(emif, new_freq); | 
 | 	if (!regs) | 
 | 		return; | 
 |  | 
 | 	emif->curr_regs = regs; | 
 |  | 
 | 	/* | 
 | 	 * Update the shadow registers: | 
 | 	 * Temperature and voltage-ramp sensitive settings are also configured | 
 | 	 * in terms of DDR cycles. So, we need to update them too when there | 
 | 	 * is a freq change | 
 | 	 */ | 
 | 	dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz", | 
 | 		__func__, new_freq); | 
 | 	setup_registers(emif, regs); | 
 | 	setup_temperature_sensitive_regs(emif, regs); | 
 | 	setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE); | 
 |  | 
 | 	/* | 
 | 	 * Part of workaround for errata i728. See do_freq_update() | 
 | 	 * for more details | 
 | 	 */ | 
 | 	if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) | 
 | 		set_lpmode(emif, EMIF_LP_MODE_DISABLE); | 
 | } | 
 |  | 
 | /* | 
 |  * TODO: frequency notify handling should be hooked up to | 
 |  * clock framework as soon as the necessary support is | 
 |  * available in mainline kernel. This function is un-used | 
 |  * right now. | 
 |  */ | 
 | static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq) | 
 | { | 
 | 	struct emif_data *emif; | 
 |  | 
 | 	/* | 
 | 	 * NOTE: we are taking the spin-lock here and releases it | 
 | 	 * only in post-notifier. This doesn't look good and | 
 | 	 * Sparse complains about it, but this seems to be | 
 | 	 * un-avoidable. We need to lock a sequence of events | 
 | 	 * that is split between EMIF and clock framework. | 
 | 	 * | 
 | 	 * 1. EMIF driver updates EMIF timings in shadow registers in the | 
 | 	 *    frequency pre-notify callback from clock framework | 
 | 	 * 2. clock framework sets up the registers for the new frequency | 
 | 	 * 3. clock framework initiates a hw-sequence that updates | 
 | 	 *    the frequency EMIF timings synchronously. | 
 | 	 * | 
 | 	 * All these 3 steps should be performed as an atomic operation | 
 | 	 * vis-a-vis similar sequence in the EMIF interrupt handler | 
 | 	 * for temperature events. Otherwise, there could be race | 
 | 	 * conditions that could result in incorrect EMIF timings for | 
 | 	 * a given frequency | 
 | 	 */ | 
 | 	spin_lock_irqsave(&emif_lock, irq_state); | 
 |  | 
 | 	list_for_each_entry(emif, &device_list, node) | 
 | 		do_freq_pre_notify_handling(emif, new_freq); | 
 | } | 
 |  | 
 | static void do_freq_post_notify_handling(struct emif_data *emif) | 
 | { | 
 | 	/* | 
 | 	 * Part of workaround for errata i728. See do_freq_update() | 
 | 	 * for more details | 
 | 	 */ | 
 | 	if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) | 
 | 		set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); | 
 | } | 
 |  | 
 | /* | 
 |  * TODO: frequency notify handling should be hooked up to | 
 |  * clock framework as soon as the necessary support is | 
 |  * available in mainline kernel. This function is un-used | 
 |  * right now. | 
 |  */ | 
 | static void __attribute__((unused)) freq_post_notify_handling(void) | 
 | { | 
 | 	struct emif_data *emif; | 
 |  | 
 | 	list_for_each_entry(emif, &device_list, node) | 
 | 		do_freq_post_notify_handling(emif); | 
 |  | 
 | 	/* | 
 | 	 * Lock is done in pre-notify handler. See freq_pre_notify_handling() | 
 | 	 * for more details | 
 | 	 */ | 
 | 	spin_unlock_irqrestore(&emif_lock, irq_state); | 
 | } | 
 |  | 
 | #if defined(CONFIG_OF) | 
 | static const struct of_device_id emif_of_match[] = { | 
 | 		{ .compatible = "ti,emif-4d" }, | 
 | 		{ .compatible = "ti,emif-4d5" }, | 
 | 		{}, | 
 | }; | 
 | MODULE_DEVICE_TABLE(of, emif_of_match); | 
 | #endif | 
 |  | 
 | static struct platform_driver emif_driver = { | 
 | 	.remove		= __exit_p(emif_remove), | 
 | 	.shutdown	= emif_shutdown, | 
 | 	.driver = { | 
 | 		.name = "emif", | 
 | 		.of_match_table = of_match_ptr(emif_of_match), | 
 | 	}, | 
 | }; | 
 |  | 
 | module_platform_driver_probe(emif_driver, emif_probe); | 
 |  | 
 | MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver"); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_ALIAS("platform:emif"); | 
 | MODULE_AUTHOR("Texas Instruments Inc"); |