|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * drivers/media/i2c/ccs/ccs-core.c | 
|  | * | 
|  | * Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors | 
|  | * | 
|  | * Copyright (C) 2020 Intel Corporation | 
|  | * Copyright (C) 2010--2012 Nokia Corporation | 
|  | * Contact: Sakari Ailus <sakari.ailus@linux.intel.com> | 
|  | * | 
|  | * Based on smiapp driver by Vimarsh Zutshi | 
|  | * Based on jt8ev1.c by Vimarsh Zutshi | 
|  | * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/clk.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/firmware.h> | 
|  | #include <linux/gpio.h> | 
|  | #include <linux/gpio/consumer.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/pm_runtime.h> | 
|  | #include <linux/property.h> | 
|  | #include <linux/regulator/consumer.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/smiapp.h> | 
|  | #include <linux/v4l2-mediabus.h> | 
|  | #include <media/v4l2-fwnode.h> | 
|  | #include <media/v4l2-device.h> | 
|  | #include <uapi/linux/ccs.h> | 
|  |  | 
|  | #include "ccs.h" | 
|  |  | 
|  | #define CCS_ALIGN_DIM(dim, flags)	\ | 
|  | ((flags) & V4L2_SEL_FLAG_GE	\ | 
|  | ? ALIGN((dim), 2)		\ | 
|  | : (dim) & ~1) | 
|  |  | 
|  | static struct ccs_limit_offset { | 
|  | u16	lim; | 
|  | u16	info; | 
|  | } ccs_limit_offsets[CCS_L_LAST + 1]; | 
|  |  | 
|  | /* | 
|  | * ccs_module_idents - supported camera modules | 
|  | */ | 
|  | static const struct ccs_module_ident ccs_module_idents[] = { | 
|  | CCS_IDENT_L(0x01, 0x022b, -1, "vs6555"), | 
|  | CCS_IDENT_L(0x01, 0x022e, -1, "vw6558"), | 
|  | CCS_IDENT_L(0x07, 0x7698, -1, "ovm7698"), | 
|  | CCS_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"), | 
|  | CCS_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"), | 
|  | CCS_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk), | 
|  | CCS_IDENT_L(0x0c, 0x213e, -1, "et8en2"), | 
|  | CCS_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"), | 
|  | CCS_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk), | 
|  | CCS_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk), | 
|  | CCS_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk), | 
|  | }; | 
|  |  | 
|  | #define CCS_DEVICE_FLAG_IS_SMIA		BIT(0) | 
|  |  | 
|  | struct ccs_device { | 
|  | unsigned char flags; | 
|  | }; | 
|  |  | 
|  | static const char * const ccs_regulators[] = { "vcore", "vio", "vana" }; | 
|  |  | 
|  | /* | 
|  | * | 
|  | * Dynamic Capability Identification | 
|  | * | 
|  | */ | 
|  |  | 
|  | static void ccs_assign_limit(void *ptr, unsigned int width, u32 val) | 
|  | { | 
|  | switch (width) { | 
|  | case sizeof(u8): | 
|  | *(u8 *)ptr = val; | 
|  | break; | 
|  | case sizeof(u16): | 
|  | *(u16 *)ptr = val; | 
|  | break; | 
|  | case sizeof(u32): | 
|  | *(u32 *)ptr = val; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int ccs_limit_ptr(struct ccs_sensor *sensor, unsigned int limit, | 
|  | unsigned int offset, void **__ptr) | 
|  | { | 
|  | const struct ccs_limit *linfo; | 
|  |  | 
|  | if (WARN_ON(limit >= CCS_L_LAST)) | 
|  | return -EINVAL; | 
|  |  | 
|  | linfo = &ccs_limits[ccs_limit_offsets[limit].info]; | 
|  |  | 
|  | if (WARN_ON(!sensor->ccs_limits) || | 
|  | WARN_ON(offset + ccs_reg_width(linfo->reg) > | 
|  | ccs_limit_offsets[limit + 1].lim)) | 
|  | return -EINVAL; | 
|  |  | 
|  | *__ptr = sensor->ccs_limits + ccs_limit_offsets[limit].lim + offset; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void ccs_replace_limit(struct ccs_sensor *sensor, | 
|  | unsigned int limit, unsigned int offset, u32 val) | 
|  | { | 
|  | struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); | 
|  | const struct ccs_limit *linfo; | 
|  | void *ptr; | 
|  | int ret; | 
|  |  | 
|  | ret = ccs_limit_ptr(sensor, limit, offset, &ptr); | 
|  | if (ret) | 
|  | return; | 
|  |  | 
|  | linfo = &ccs_limits[ccs_limit_offsets[limit].info]; | 
|  |  | 
|  | dev_dbg(&client->dev, "quirk: 0x%8.8x \"%s\" %u = %d, 0x%x\n", | 
|  | linfo->reg, linfo->name, offset, val, val); | 
|  |  | 
|  | ccs_assign_limit(ptr, ccs_reg_width(linfo->reg), val); | 
|  | } | 
|  |  | 
|  | u32 ccs_get_limit(struct ccs_sensor *sensor, unsigned int limit, | 
|  | unsigned int offset) | 
|  | { | 
|  | void *ptr; | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | ret = ccs_limit_ptr(sensor, limit, offset, &ptr); | 
|  | if (ret) | 
|  | return 0; | 
|  |  | 
|  | switch (ccs_reg_width(ccs_limits[ccs_limit_offsets[limit].info].reg)) { | 
|  | case sizeof(u8): | 
|  | val = *(u8 *)ptr; | 
|  | break; | 
|  | case sizeof(u16): | 
|  | val = *(u16 *)ptr; | 
|  | break; | 
|  | case sizeof(u32): | 
|  | val = *(u32 *)ptr; | 
|  | break; | 
|  | default: | 
|  | WARN_ON(1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return ccs_reg_conv(sensor, ccs_limits[limit].reg, val); | 
|  | } | 
|  |  | 
|  | static int ccs_read_all_limits(struct ccs_sensor *sensor) | 
|  | { | 
|  | struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); | 
|  | void *ptr, *alloc, *end; | 
|  | unsigned int i, l; | 
|  | int ret; | 
|  |  | 
|  | kfree(sensor->ccs_limits); | 
|  | sensor->ccs_limits = NULL; | 
|  |  | 
|  | alloc = kzalloc(ccs_limit_offsets[CCS_L_LAST].lim, GFP_KERNEL); | 
|  | if (!alloc) | 
|  | return -ENOMEM; | 
|  |  | 
|  | end = alloc + ccs_limit_offsets[CCS_L_LAST].lim; | 
|  |  | 
|  | for (i = 0, l = 0, ptr = alloc; ccs_limits[i].size; i++) { | 
|  | u32 reg = ccs_limits[i].reg; | 
|  | unsigned int width = ccs_reg_width(reg); | 
|  | unsigned int j; | 
|  |  | 
|  | if (l == CCS_L_LAST) { | 
|  | dev_err(&client->dev, | 
|  | "internal error --- end of limit array\n"); | 
|  | ret = -EINVAL; | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | for (j = 0; j < ccs_limits[i].size / width; | 
|  | j++, reg += width, ptr += width) { | 
|  | u32 val; | 
|  |  | 
|  | ret = ccs_read_addr_noconv(sensor, reg, &val); | 
|  | if (ret) | 
|  | goto out_err; | 
|  |  | 
|  | if (ptr + width > end) { | 
|  | dev_err(&client->dev, | 
|  | "internal error --- no room for regs\n"); | 
|  | ret = -EINVAL; | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | if (!val && j) | 
|  | break; | 
|  |  | 
|  | ccs_assign_limit(ptr, width, val); | 
|  |  | 
|  | dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n", | 
|  | reg, ccs_limits[i].name, val, val); | 
|  | } | 
|  |  | 
|  | if (ccs_limits[i].flags & CCS_L_FL_SAME_REG) | 
|  | continue; | 
|  |  | 
|  | l++; | 
|  | ptr = alloc + ccs_limit_offsets[l].lim; | 
|  | } | 
|  |  | 
|  | if (l != CCS_L_LAST) { | 
|  | dev_err(&client->dev, | 
|  | "internal error --- insufficient limits\n"); | 
|  | ret = -EINVAL; | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | sensor->ccs_limits = alloc; | 
|  |  | 
|  | if (CCS_LIM(sensor, SCALER_N_MIN) < 16) | 
|  | ccs_replace_limit(sensor, CCS_L_SCALER_N_MIN, 0, 16); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_err: | 
|  | kfree(alloc); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ccs_read_frame_fmt(struct ccs_sensor *sensor) | 
|  | { | 
|  | struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); | 
|  | u8 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc; | 
|  | unsigned int i; | 
|  | int pixel_count = 0; | 
|  | int line_count = 0; | 
|  |  | 
|  | fmt_model_type = CCS_LIM(sensor, FRAME_FORMAT_MODEL_TYPE); | 
|  | fmt_model_subtype = CCS_LIM(sensor, FRAME_FORMAT_MODEL_SUBTYPE); | 
|  |  | 
|  | ncol_desc = (fmt_model_subtype | 
|  | & CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_MASK) | 
|  | >> CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_SHIFT; | 
|  | nrow_desc = fmt_model_subtype | 
|  | & CCS_FRAME_FORMAT_MODEL_SUBTYPE_ROWS_MASK; | 
|  |  | 
|  | dev_dbg(&client->dev, "format_model_type %s\n", | 
|  | fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE | 
|  | ? "2 byte" : | 
|  | fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE | 
|  | ? "4 byte" : "is simply bad"); | 
|  |  | 
|  | dev_dbg(&client->dev, "%u column and %u row descriptors\n", | 
|  | ncol_desc, nrow_desc); | 
|  |  | 
|  | for (i = 0; i < ncol_desc + nrow_desc; i++) { | 
|  | u32 desc; | 
|  | u32 pixelcode; | 
|  | u32 pixels; | 
|  | char *which; | 
|  | char *what; | 
|  |  | 
|  | if (fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE) { | 
|  | desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR, i); | 
|  |  | 
|  | pixelcode = | 
|  | (desc | 
|  | & CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_MASK) | 
|  | >> CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_SHIFT; | 
|  | pixels = desc & CCS_FRAME_FORMAT_DESCRIPTOR_PIXELS_MASK; | 
|  | } else if (fmt_model_type | 
|  | == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE) { | 
|  | desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR_4, i); | 
|  |  | 
|  | pixelcode = | 
|  | (desc | 
|  | & CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_MASK) | 
|  | >> CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_SHIFT; | 
|  | pixels = desc & | 
|  | CCS_FRAME_FORMAT_DESCRIPTOR_4_PIXELS_MASK; | 
|  | } else { | 
|  | dev_dbg(&client->dev, | 
|  | "invalid frame format model type %d\n", | 
|  | fmt_model_type); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (i < ncol_desc) | 
|  | which = "columns"; | 
|  | else | 
|  | which = "rows"; | 
|  |  | 
|  | switch (pixelcode) { | 
|  | case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED: | 
|  | what = "embedded"; | 
|  | break; | 
|  | case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DUMMY_PIXEL: | 
|  | what = "dummy"; | 
|  | break; | 
|  | case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_BLACK_PIXEL: | 
|  | what = "black"; | 
|  | break; | 
|  | case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DARK_PIXEL: | 
|  | what = "dark"; | 
|  | break; | 
|  | case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL: | 
|  | what = "visible"; | 
|  | break; | 
|  | default: | 
|  | what = "invalid"; | 
|  | break; | 
|  | } | 
|  |  | 
|  | dev_dbg(&client->dev, | 
|  | "%s pixels: %d %s (pixelcode %u)\n", | 
|  | what, pixels, which, pixelcode); | 
|  |  | 
|  | if (i < ncol_desc) { | 
|  | if (pixelcode == | 
|  | CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL) | 
|  | sensor->visible_pixel_start = pixel_count; | 
|  | pixel_count += pixels; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Handle row descriptors */ | 
|  | switch (pixelcode) { | 
|  | case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED: | 
|  | if (sensor->embedded_end) | 
|  | break; | 
|  | sensor->embedded_start = line_count; | 
|  | sensor->embedded_end = line_count + pixels; | 
|  | break; | 
|  | case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL: | 
|  | sensor->image_start = line_count; | 
|  | break; | 
|  | } | 
|  | line_count += pixels; | 
|  | } | 
|  |  | 
|  | if (sensor->embedded_end > sensor->image_start) { | 
|  | dev_dbg(&client->dev, | 
|  | "adjusting image start line to %u (was %u)\n", | 
|  | sensor->embedded_end, sensor->image_start); | 
|  | sensor->image_start = sensor->embedded_end; | 
|  | } | 
|  |  | 
|  | dev_dbg(&client->dev, "embedded data from lines %d to %d\n", | 
|  | sensor->embedded_start, sensor->embedded_end); | 
|  | dev_dbg(&client->dev, "image data starts at line %d\n", | 
|  | sensor->image_start); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ccs_pll_configure(struct ccs_sensor *sensor) | 
|  | { | 
|  | struct ccs_pll *pll = &sensor->pll; | 
|  | int rval; | 
|  |  | 
|  | rval = ccs_write(sensor, VT_PIX_CLK_DIV, pll->vt_bk.pix_clk_div); | 
|  | if (rval < 0) | 
|  | return rval; | 
|  |  | 
|  | rval = ccs_write(sensor, VT_SYS_CLK_DIV, pll->vt_bk.sys_clk_div); | 
|  | if (rval < 0) | 
|  | return rval; | 
|  |  | 
|  | rval = ccs_write(sensor, PRE_PLL_CLK_DIV, pll->vt_fr.pre_pll_clk_div); | 
|  | if (rval < 0) | 
|  | return rval; | 
|  |  | 
|  | rval = ccs_write(sensor, PLL_MULTIPLIER, pll->vt_fr.pll_multiplier); | 
|  | if (rval < 0) | 
|  | return rval; | 
|  |  | 
|  | if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY) & | 
|  | CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL)) { | 
|  | /* Lane op clock ratio does not apply here. */ | 
|  | rval = ccs_write(sensor, REQUESTED_LINK_RATE, | 
|  | DIV_ROUND_UP(pll->op_bk.sys_clk_freq_hz, | 
|  | 1000000 / 256 / 256) * | 
|  | (pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL ? | 
|  | sensor->pll.csi2.lanes : 1) << | 
|  | (pll->flags & CCS_PLL_FLAG_OP_SYS_DDR ? | 
|  | 1 : 0)); | 
|  | if (rval < 0) | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | if (sensor->pll.flags & CCS_PLL_FLAG_NO_OP_CLOCKS) | 
|  | return 0; | 
|  |  | 
|  | rval = ccs_write(sensor, OP_PIX_CLK_DIV, pll->op_bk.pix_clk_div); | 
|  | if (rval < 0) | 
|  | return rval; | 
|  |  | 
|  | rval = ccs_write(sensor, OP_SYS_CLK_DIV, pll->op_bk.sys_clk_div); | 
|  | if (rval < 0) | 
|  | return rval; | 
|  |  | 
|  | if (!(pll->flags & CCS_PLL_FLAG_DUAL_PLL)) | 
|  | return 0; | 
|  |  | 
|  | rval = ccs_write(sensor, PLL_MODE, CCS_PLL_MODE_DUAL); | 
|  | if (rval < 0) | 
|  | return rval; | 
|  |  | 
|  | rval = ccs_write(sensor, OP_PRE_PLL_CLK_DIV, | 
|  | pll->op_fr.pre_pll_clk_div); | 
|  | if (rval < 0) | 
|  | return rval; | 
|  |  | 
|  | return ccs_write(sensor, OP_PLL_MULTIPLIER, pll->op_fr.pll_multiplier); | 
|  | } | 
|  |  | 
|  | static int ccs_pll_try(struct ccs_sensor *sensor, struct ccs_pll *pll) | 
|  | { | 
|  | struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); | 
|  | struct ccs_pll_limits lim = { | 
|  | .vt_fr = { | 
|  | .min_pre_pll_clk_div = CCS_LIM(sensor, MIN_PRE_PLL_CLK_DIV), | 
|  | .max_pre_pll_clk_div = CCS_LIM(sensor, MAX_PRE_PLL_CLK_DIV), | 
|  | .min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_IP_CLK_FREQ_MHZ), | 
|  | .max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_IP_CLK_FREQ_MHZ), | 
|  | .min_pll_multiplier = CCS_LIM(sensor, MIN_PLL_MULTIPLIER), | 
|  | .max_pll_multiplier = CCS_LIM(sensor, MAX_PLL_MULTIPLIER), | 
|  | .min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_OP_CLK_FREQ_MHZ), | 
|  | .max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_OP_CLK_FREQ_MHZ), | 
|  | }, | 
|  | .op_fr = { | 
|  | .min_pre_pll_clk_div = CCS_LIM(sensor, MIN_OP_PRE_PLL_CLK_DIV), | 
|  | .max_pre_pll_clk_div = CCS_LIM(sensor, MAX_OP_PRE_PLL_CLK_DIV), | 
|  | .min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_IP_CLK_FREQ_MHZ), | 
|  | .max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_IP_CLK_FREQ_MHZ), | 
|  | .min_pll_multiplier = CCS_LIM(sensor, MIN_OP_PLL_MULTIPLIER), | 
|  | .max_pll_multiplier = CCS_LIM(sensor, MAX_OP_PLL_MULTIPLIER), | 
|  | .min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_OP_CLK_FREQ_MHZ), | 
|  | .max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_OP_CLK_FREQ_MHZ), | 
|  | }, | 
|  | .op_bk = { | 
|  | .min_sys_clk_div = CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV), | 
|  | .max_sys_clk_div = CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV), | 
|  | .min_pix_clk_div = CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV), | 
|  | .max_pix_clk_div = CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV), | 
|  | .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_OP_SYS_CLK_FREQ_MHZ), | 
|  | .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_OP_SYS_CLK_FREQ_MHZ), | 
|  | .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PIX_CLK_FREQ_MHZ), | 
|  | .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PIX_CLK_FREQ_MHZ), | 
|  | }, | 
|  | .vt_bk = { | 
|  | .min_sys_clk_div = CCS_LIM(sensor, MIN_VT_SYS_CLK_DIV), | 
|  | .max_sys_clk_div = CCS_LIM(sensor, MAX_VT_SYS_CLK_DIV), | 
|  | .min_pix_clk_div = CCS_LIM(sensor, MIN_VT_PIX_CLK_DIV), | 
|  | .max_pix_clk_div = CCS_LIM(sensor, MAX_VT_PIX_CLK_DIV), | 
|  | .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_VT_SYS_CLK_FREQ_MHZ), | 
|  | .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_VT_SYS_CLK_FREQ_MHZ), | 
|  | .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_VT_PIX_CLK_FREQ_MHZ), | 
|  | .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_VT_PIX_CLK_FREQ_MHZ), | 
|  | }, | 
|  | .min_line_length_pck_bin = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN), | 
|  | .min_line_length_pck = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK), | 
|  | }; | 
|  |  | 
|  | return ccs_pll_calculate(&client->dev, &lim, pll); | 
|  | } | 
|  |  | 
|  | static int ccs_pll_update(struct ccs_sensor *sensor) | 
|  | { | 
|  | struct ccs_pll *pll = &sensor->pll; | 
|  | int rval; | 
|  |  | 
|  | pll->binning_horizontal = sensor->binning_horizontal; | 
|  | pll->binning_vertical = sensor->binning_vertical; | 
|  | pll->link_freq = | 
|  | sensor->link_freq->qmenu_int[sensor->link_freq->val]; | 
|  | pll->scale_m = sensor->scale_m; | 
|  | pll->bits_per_pixel = sensor->csi_format->compressed; | 
|  |  | 
|  | rval = ccs_pll_try(sensor, pll); | 
|  | if (rval < 0) | 
|  | return rval; | 
|  |  | 
|  | __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray, | 
|  | pll->pixel_rate_pixel_array); | 
|  | __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * | 
|  | * V4L2 Controls handling | 
|  | * | 
|  | */ | 
|  |  | 
|  | static void __ccs_update_exposure_limits(struct ccs_sensor *sensor) | 
|  | { | 
|  | struct v4l2_ctrl *ctrl = sensor->exposure; | 
|  | int max; | 
|  |  | 
|  | max = sensor->pixel_array->crop[CCS_PA_PAD_SRC].height | 
|  | + sensor->vblank->val | 
|  | - CCS_LIM(sensor, COARSE_INTEGRATION_TIME_MAX_MARGIN); | 
|  |  | 
|  | __v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Order matters. | 
|  | * | 
|  | * 1. Bits-per-pixel, descending. | 
|  | * 2. Bits-per-pixel compressed, descending. | 
|  | * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel | 
|  | *    orders must be defined. | 
|  | */ | 
|  | static const struct ccs_csi_data_format ccs_csi_data_formats[] = { | 
|  | { MEDIA_BUS_FMT_SGRBG16_1X16, 16, 16, CCS_PIXEL_ORDER_GRBG, }, | 
|  | { MEDIA_BUS_FMT_SRGGB16_1X16, 16, 16, CCS_PIXEL_ORDER_RGGB, }, | 
|  | { MEDIA_BUS_FMT_SBGGR16_1X16, 16, 16, CCS_PIXEL_ORDER_BGGR, }, | 
|  | { MEDIA_BUS_FMT_SGBRG16_1X16, 16, 16, CCS_PIXEL_ORDER_GBRG, }, | 
|  | { MEDIA_BUS_FMT_SGRBG14_1X14, 14, 14, CCS_PIXEL_ORDER_GRBG, }, | 
|  | { MEDIA_BUS_FMT_SRGGB14_1X14, 14, 14, CCS_PIXEL_ORDER_RGGB, }, | 
|  | { MEDIA_BUS_FMT_SBGGR14_1X14, 14, 14, CCS_PIXEL_ORDER_BGGR, }, | 
|  | { MEDIA_BUS_FMT_SGBRG14_1X14, 14, 14, CCS_PIXEL_ORDER_GBRG, }, | 
|  | { MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, CCS_PIXEL_ORDER_GRBG, }, | 
|  | { MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, CCS_PIXEL_ORDER_RGGB, }, | 
|  | { MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, CCS_PIXEL_ORDER_BGGR, }, | 
|  | { MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, CCS_PIXEL_ORDER_GBRG, }, | 
|  | { MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, CCS_PIXEL_ORDER_GRBG, }, | 
|  | { MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, CCS_PIXEL_ORDER_RGGB, }, | 
|  | { MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, CCS_PIXEL_ORDER_BGGR, }, | 
|  | { MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, CCS_PIXEL_ORDER_GBRG, }, | 
|  | { MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GRBG, }, | 
|  | { MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_RGGB, }, | 
|  | { MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_BGGR, }, | 
|  | { MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GBRG, }, | 
|  | { MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, CCS_PIXEL_ORDER_GRBG, }, | 
|  | { MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, CCS_PIXEL_ORDER_RGGB, }, | 
|  | { MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, CCS_PIXEL_ORDER_BGGR, }, | 
|  | { MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, CCS_PIXEL_ORDER_GBRG, }, | 
|  | }; | 
|  |  | 
|  | static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" }; | 
|  |  | 
|  | #define to_csi_format_idx(fmt) (((unsigned long)(fmt)			\ | 
|  | - (unsigned long)ccs_csi_data_formats) \ | 
|  | / sizeof(*ccs_csi_data_formats)) | 
|  |  | 
|  | static u32 ccs_pixel_order(struct ccs_sensor *sensor) | 
|  | { | 
|  | struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); | 
|  | int flip = 0; | 
|  |  | 
|  | if (sensor->hflip) { | 
|  | if (sensor->hflip->val) | 
|  | flip |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR; | 
|  |  | 
|  | if (sensor->vflip->val) | 
|  | flip |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP; | 
|  | } | 
|  |  | 
|  | flip ^= sensor->hvflip_inv_mask; | 
|  |  | 
|  | dev_dbg(&client->dev, "flip %d\n", flip); | 
|  | return sensor->default_pixel_order ^ flip; | 
|  | } | 
|  |  | 
|  | static void ccs_update_mbus_formats(struct ccs_sensor *sensor) | 
|  | { | 
|  | struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); | 
|  | unsigned int csi_format_idx = | 
|  | to_csi_format_idx(sensor->csi_format) & ~3; | 
|  | unsigned int internal_csi_format_idx = | 
|  | to_csi_format_idx(sensor->internal_csi_format) & ~3; | 
|  | unsigned int pixel_order = ccs_pixel_order(sensor); | 
|  |  | 
|  | if (WARN_ON_ONCE(max(internal_csi_format_idx, csi_format_idx) + | 
|  | pixel_order >= ARRAY_SIZE(ccs_csi_data_formats))) | 
|  | return; | 
|  |  | 
|  | sensor->mbus_frame_fmts = | 
|  | sensor->default_mbus_frame_fmts << pixel_order; | 
|  | sensor->csi_format = | 
|  | &ccs_csi_data_formats[csi_format_idx + pixel_order]; | 
|  | sensor->internal_csi_format = | 
|  | &ccs_csi_data_formats[internal_csi_format_idx | 
|  | + pixel_order]; | 
|  |  | 
|  | dev_dbg(&client->dev, "new pixel order %s\n", | 
|  | pixel_order_str[pixel_order]); | 
|  | } | 
|  |  | 
|  | static const char * const ccs_test_patterns[] = { | 
|  | "Disabled", | 
|  | "Solid Colour", | 
|  | "Eight Vertical Colour Bars", | 
|  | "Colour Bars With Fade to Grey", | 
|  | "Pseudorandom Sequence (PN9)", | 
|  | }; | 
|  |  | 
|  | static int ccs_set_ctrl(struct v4l2_ctrl *ctrl) | 
|  | { | 
|  | struct ccs_sensor *sensor = | 
|  | container_of(ctrl->handler, struct ccs_subdev, ctrl_handler) | 
|  | ->sensor; | 
|  | struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); | 
|  | int pm_status; | 
|  | u32 orient = 0; | 
|  | unsigned int i; | 
|  | int exposure; | 
|  | int rval; | 
|  |  | 
|  | switch (ctrl->id) { | 
|  | case V4L2_CID_HFLIP: | 
|  | case V4L2_CID_VFLIP: | 
|  | if (sensor->streaming) | 
|  | return -EBUSY; | 
|  |  | 
|  | if (sensor->hflip->val) | 
|  | orient |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR; | 
|  |  | 
|  | if (sensor->vflip->val) | 
|  | orient |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP; | 
|  |  | 
|  | orient ^= sensor->hvflip_inv_mask; | 
|  |  | 
|  | ccs_update_mbus_formats(sensor); | 
|  |  | 
|  | break; | 
|  | case V4L2_CID_VBLANK: | 
|  | exposure = sensor->exposure->val; | 
|  |  | 
|  | __ccs_update_exposure_limits(sensor); | 
|  |  | 
|  | if (exposure > sensor->exposure->maximum) { | 
|  | sensor->exposure->val =	sensor->exposure->maximum; | 
|  | rval = ccs_set_ctrl(sensor->exposure); | 
|  | if (rval < 0) | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | break; | 
|  | case V4L2_CID_LINK_FREQ: | 
|  | if (sensor->streaming) | 
|  | return -EBUSY; | 
|  |  | 
|  | rval = ccs_pll_update(sensor); | 
|  | if (rval) | 
|  | return rval; | 
|  |  | 
|  | return 0; | 
|  | case V4L2_CID_TEST_PATTERN: | 
|  | for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) | 
|  | v4l2_ctrl_activate( | 
|  | sensor->test_data[i], | 
|  | ctrl->val == | 
|  | V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR); | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | pm_status = pm_runtime_get_if_active(&client->dev, true); | 
|  | if (!pm_status) | 
|  | return 0; | 
|  |  | 
|  | switch (ctrl->id) { | 
|  | case V4L2_CID_ANALOGUE_GAIN: | 
|  | rval = ccs_write(sensor, ANALOG_GAIN_CODE_GLOBAL, ctrl->val); | 
|  |  | 
|  | break; | 
|  |  | 
|  | case V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN: | 
|  | rval = ccs_write(sensor, ANALOG_LINEAR_GAIN_GLOBAL, ctrl->val); | 
|  |  | 
|  | break; | 
|  |  | 
|  | case V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN: | 
|  | rval = ccs_write(sensor, ANALOG_EXPONENTIAL_GAIN_GLOBAL, | 
|  | ctrl->val); | 
|  |  | 
|  | break; | 
|  |  | 
|  | case V4L2_CID_DIGITAL_GAIN: | 
|  | if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) == | 
|  | CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL) { | 
|  | rval = ccs_write(sensor, DIGITAL_GAIN_GLOBAL, | 
|  | ctrl->val); | 
|  | break; | 
|  | } | 
|  |  | 
|  | rval = ccs_write_addr(sensor, | 
|  | SMIAPP_REG_U16_DIGITAL_GAIN_GREENR, | 
|  | ctrl->val); | 
|  | if (rval) | 
|  | break; | 
|  |  | 
|  | rval = ccs_write_addr(sensor, | 
|  | SMIAPP_REG_U16_DIGITAL_GAIN_RED, | 
|  | ctrl->val); | 
|  | if (rval) | 
|  | break; | 
|  |  | 
|  | rval = ccs_write_addr(sensor, | 
|  | SMIAPP_REG_U16_DIGITAL_GAIN_BLUE, | 
|  | ctrl->val); | 
|  | if (rval) | 
|  | break; | 
|  |  | 
|  | rval = ccs_write_addr(sensor, | 
|  | SMIAPP_REG_U16_DIGITAL_GAIN_GREENB, | 
|  | ctrl->val); | 
|  |  | 
|  | break; | 
|  | case V4L2_CID_EXPOSURE: | 
|  | rval = ccs_write(sensor, COARSE_INTEGRATION_TIME, ctrl->val); | 
|  |  | 
|  | break; | 
|  | case V4L2_CID_HFLIP: | 
|  | case V4L2_CID_VFLIP: | 
|  | rval = ccs_write(sensor, IMAGE_ORIENTATION, orient); | 
|  |  | 
|  | break; | 
|  | case V4L2_CID_VBLANK: | 
|  | rval = ccs_write(sensor, FRAME_LENGTH_LINES, | 
|  | sensor->pixel_array->crop[ | 
|  | CCS_PA_PAD_SRC].height | 
|  | + ctrl->val); | 
|  |  | 
|  | break; | 
|  | case V4L2_CID_HBLANK: | 
|  | rval = ccs_write(sensor, LINE_LENGTH_PCK, | 
|  | sensor->pixel_array->crop[CCS_PA_PAD_SRC].width | 
|  | + ctrl->val); | 
|  |  | 
|  | break; | 
|  | case V4L2_CID_TEST_PATTERN: | 
|  | rval = ccs_write(sensor, TEST_PATTERN_MODE, ctrl->val); | 
|  |  | 
|  | break; | 
|  | case V4L2_CID_TEST_PATTERN_RED: | 
|  | rval = ccs_write(sensor, TEST_DATA_RED, ctrl->val); | 
|  |  | 
|  | break; | 
|  | case V4L2_CID_TEST_PATTERN_GREENR: | 
|  | rval = ccs_write(sensor, TEST_DATA_GREENR, ctrl->val); | 
|  |  | 
|  | break; | 
|  | case V4L2_CID_TEST_PATTERN_BLUE: | 
|  | rval = ccs_write(sensor, TEST_DATA_BLUE, ctrl->val); | 
|  |  | 
|  | break; | 
|  | case V4L2_CID_TEST_PATTERN_GREENB: | 
|  | rval = ccs_write(sensor, TEST_DATA_GREENB, ctrl->val); | 
|  |  | 
|  | break; | 
|  | case V4L2_CID_CCS_SHADING_CORRECTION: | 
|  | rval = ccs_write(sensor, SHADING_CORRECTION_EN, | 
|  | ctrl->val ? CCS_SHADING_CORRECTION_EN_ENABLE : | 
|  | 0); | 
|  |  | 
|  | if (!rval && sensor->luminance_level) | 
|  | v4l2_ctrl_activate(sensor->luminance_level, ctrl->val); | 
|  |  | 
|  | break; | 
|  | case V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL: | 
|  | rval = ccs_write(sensor, LUMINANCE_CORRECTION_LEVEL, ctrl->val); | 
|  |  | 
|  | break; | 
|  | case V4L2_CID_PIXEL_RATE: | 
|  | /* For v4l2_ctrl_s_ctrl_int64() used internally. */ | 
|  | rval = 0; | 
|  |  | 
|  | break; | 
|  | default: | 
|  | rval = -EINVAL; | 
|  | } | 
|  |  | 
|  | if (pm_status > 0) { | 
|  | pm_runtime_mark_last_busy(&client->dev); | 
|  | pm_runtime_put_autosuspend(&client->dev); | 
|  | } | 
|  |  | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | static const struct v4l2_ctrl_ops ccs_ctrl_ops = { | 
|  | .s_ctrl = ccs_set_ctrl, | 
|  | }; | 
|  |  | 
|  | static int ccs_init_controls(struct ccs_sensor *sensor) | 
|  | { | 
|  | struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); | 
|  | int rval; | 
|  |  | 
|  | rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 17); | 
|  | if (rval) | 
|  | return rval; | 
|  |  | 
|  | sensor->pixel_array->ctrl_handler.lock = &sensor->mutex; | 
|  |  | 
|  | switch (CCS_LIM(sensor, ANALOG_GAIN_CAPABILITY)) { | 
|  | case CCS_ANALOG_GAIN_CAPABILITY_GLOBAL: { | 
|  | struct { | 
|  | const char *name; | 
|  | u32 id; | 
|  | s32 value; | 
|  | } const gain_ctrls[] = { | 
|  | { "Analogue Gain m0", V4L2_CID_CCS_ANALOGUE_GAIN_M0, | 
|  | CCS_LIM(sensor, ANALOG_GAIN_M0), }, | 
|  | { "Analogue Gain c0", V4L2_CID_CCS_ANALOGUE_GAIN_C0, | 
|  | CCS_LIM(sensor, ANALOG_GAIN_C0), }, | 
|  | { "Analogue Gain m1", V4L2_CID_CCS_ANALOGUE_GAIN_M1, | 
|  | CCS_LIM(sensor, ANALOG_GAIN_M1), }, | 
|  | { "Analogue Gain c1", V4L2_CID_CCS_ANALOGUE_GAIN_C1, | 
|  | CCS_LIM(sensor, ANALOG_GAIN_C1), }, | 
|  | }; | 
|  | struct v4l2_ctrl_config ctrl_cfg = { | 
|  | .type = V4L2_CTRL_TYPE_INTEGER, | 
|  | .ops = &ccs_ctrl_ops, | 
|  | .flags = V4L2_CTRL_FLAG_READ_ONLY, | 
|  | .step = 1, | 
|  | }; | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) { | 
|  | ctrl_cfg.name = gain_ctrls[i].name; | 
|  | ctrl_cfg.id = gain_ctrls[i].id; | 
|  | ctrl_cfg.min = ctrl_cfg.max = ctrl_cfg.def = | 
|  | gain_ctrls[i].value; | 
|  |  | 
|  | v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler, | 
|  | &ctrl_cfg, NULL); | 
|  | } | 
|  |  | 
|  | v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler, | 
|  | &ccs_ctrl_ops, V4L2_CID_ANALOGUE_GAIN, | 
|  | CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN), | 
|  | CCS_LIM(sensor, ANALOG_GAIN_CODE_MAX), | 
|  | max(CCS_LIM(sensor, ANALOG_GAIN_CODE_STEP), | 
|  | 1U), | 
|  | CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN)); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case CCS_ANALOG_GAIN_CAPABILITY_ALTERNATE_GLOBAL: { | 
|  | struct { | 
|  | const char *name; | 
|  | u32 id; | 
|  | u16 min, max, step; | 
|  | } const gain_ctrls[] = { | 
|  | { | 
|  | "Analogue Linear Gain", | 
|  | V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN, | 
|  | CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MIN), | 
|  | CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MAX), | 
|  | max(CCS_LIM(sensor, | 
|  | ANALOG_LINEAR_GAIN_STEP_SIZE), | 
|  | 1U), | 
|  | }, | 
|  | { | 
|  | "Analogue Exponential Gain", | 
|  | V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN, | 
|  | CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MIN), | 
|  | CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MAX), | 
|  | max(CCS_LIM(sensor, | 
|  | ANALOG_EXPONENTIAL_GAIN_STEP_SIZE), | 
|  | 1U), | 
|  | }, | 
|  | }; | 
|  | struct v4l2_ctrl_config ctrl_cfg = { | 
|  | .type = V4L2_CTRL_TYPE_INTEGER, | 
|  | .ops = &ccs_ctrl_ops, | 
|  | }; | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) { | 
|  | ctrl_cfg.name = gain_ctrls[i].name; | 
|  | ctrl_cfg.min = ctrl_cfg.def = gain_ctrls[i].min; | 
|  | ctrl_cfg.max = gain_ctrls[i].max; | 
|  | ctrl_cfg.step = gain_ctrls[i].step; | 
|  | ctrl_cfg.id = gain_ctrls[i].id; | 
|  |  | 
|  | v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler, | 
|  | &ctrl_cfg, NULL); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) & | 
|  | (CCS_SHADING_CORRECTION_CAPABILITY_COLOR_SHADING | | 
|  | CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION)) { | 
|  | const struct v4l2_ctrl_config ctrl_cfg = { | 
|  | .name = "Shading Correction", | 
|  | .type = V4L2_CTRL_TYPE_BOOLEAN, | 
|  | .id = V4L2_CID_CCS_SHADING_CORRECTION, | 
|  | .ops = &ccs_ctrl_ops, | 
|  | .max = 1, | 
|  | .step = 1, | 
|  | }; | 
|  |  | 
|  | v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler, | 
|  | &ctrl_cfg, NULL); | 
|  | } | 
|  |  | 
|  | if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) & | 
|  | CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION) { | 
|  | const struct v4l2_ctrl_config ctrl_cfg = { | 
|  | .name = "Luminance Correction Level", | 
|  | .type = V4L2_CTRL_TYPE_BOOLEAN, | 
|  | .id = V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL, | 
|  | .ops = &ccs_ctrl_ops, | 
|  | .max = 255, | 
|  | .step = 1, | 
|  | .def = 128, | 
|  | }; | 
|  |  | 
|  | sensor->luminance_level = | 
|  | v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler, | 
|  | &ctrl_cfg, NULL); | 
|  | } | 
|  |  | 
|  | if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) == | 
|  | CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL || | 
|  | CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) == | 
|  | SMIAPP_DIGITAL_GAIN_CAPABILITY_PER_CHANNEL) | 
|  | v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler, | 
|  | &ccs_ctrl_ops, V4L2_CID_DIGITAL_GAIN, | 
|  | CCS_LIM(sensor, DIGITAL_GAIN_MIN), | 
|  | CCS_LIM(sensor, DIGITAL_GAIN_MAX), | 
|  | max(CCS_LIM(sensor, DIGITAL_GAIN_STEP_SIZE), | 
|  | 1U), | 
|  | 0x100); | 
|  |  | 
|  | /* Exposure limits will be updated soon, use just something here. */ | 
|  | sensor->exposure = v4l2_ctrl_new_std( | 
|  | &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops, | 
|  | V4L2_CID_EXPOSURE, 0, 0, 1, 0); | 
|  |  | 
|  | sensor->hflip = v4l2_ctrl_new_std( | 
|  | &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops, | 
|  | V4L2_CID_HFLIP, 0, 1, 1, 0); | 
|  | sensor->vflip = v4l2_ctrl_new_std( | 
|  | &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops, | 
|  | V4L2_CID_VFLIP, 0, 1, 1, 0); | 
|  |  | 
|  | sensor->vblank = v4l2_ctrl_new_std( | 
|  | &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops, | 
|  | V4L2_CID_VBLANK, 0, 1, 1, 0); | 
|  |  | 
|  | if (sensor->vblank) | 
|  | sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE; | 
|  |  | 
|  | sensor->hblank = v4l2_ctrl_new_std( | 
|  | &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops, | 
|  | V4L2_CID_HBLANK, 0, 1, 1, 0); | 
|  |  | 
|  | if (sensor->hblank) | 
|  | sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE; | 
|  |  | 
|  | sensor->pixel_rate_parray = v4l2_ctrl_new_std( | 
|  | &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops, | 
|  | V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1); | 
|  |  | 
|  | v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler, | 
|  | &ccs_ctrl_ops, V4L2_CID_TEST_PATTERN, | 
|  | ARRAY_SIZE(ccs_test_patterns) - 1, | 
|  | 0, 0, ccs_test_patterns); | 
|  |  | 
|  | if (sensor->pixel_array->ctrl_handler.error) { | 
|  | dev_err(&client->dev, | 
|  | "pixel array controls initialization failed (%d)\n", | 
|  | sensor->pixel_array->ctrl_handler.error); | 
|  | return sensor->pixel_array->ctrl_handler.error; | 
|  | } | 
|  |  | 
|  | sensor->pixel_array->sd.ctrl_handler = | 
|  | &sensor->pixel_array->ctrl_handler; | 
|  |  | 
|  | v4l2_ctrl_cluster(2, &sensor->hflip); | 
|  |  | 
|  | rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0); | 
|  | if (rval) | 
|  | return rval; | 
|  |  | 
|  | sensor->src->ctrl_handler.lock = &sensor->mutex; | 
|  |  | 
|  | sensor->pixel_rate_csi = v4l2_ctrl_new_std( | 
|  | &sensor->src->ctrl_handler, &ccs_ctrl_ops, | 
|  | V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1); | 
|  |  | 
|  | if (sensor->src->ctrl_handler.error) { | 
|  | dev_err(&client->dev, | 
|  | "src controls initialization failed (%d)\n", | 
|  | sensor->src->ctrl_handler.error); | 
|  | return sensor->src->ctrl_handler.error; | 
|  | } | 
|  |  | 
|  | sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For controls that require information on available media bus codes | 
|  | * and linke frequencies. | 
|  | */ | 
|  | static int ccs_init_late_controls(struct ccs_sensor *sensor) | 
|  | { | 
|  | unsigned long *valid_link_freqs = &sensor->valid_link_freqs[ | 
|  | sensor->csi_format->compressed - sensor->compressed_min_bpp]; | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) { | 
|  | int max_value = (1 << sensor->csi_format->width) - 1; | 
|  |  | 
|  | sensor->test_data[i] = v4l2_ctrl_new_std( | 
|  | &sensor->pixel_array->ctrl_handler, | 
|  | &ccs_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i, | 
|  | 0, max_value, 1, max_value); | 
|  | } | 
|  |  | 
|  | sensor->link_freq = v4l2_ctrl_new_int_menu( | 
|  | &sensor->src->ctrl_handler, &ccs_ctrl_ops, | 
|  | V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs), | 
|  | __ffs(*valid_link_freqs), sensor->hwcfg.op_sys_clock); | 
|  |  | 
|  | return sensor->src->ctrl_handler.error; | 
|  | } | 
|  |  | 
|  | static void ccs_free_controls(struct ccs_sensor *sensor) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < sensor->ssds_used; i++) | 
|  | v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler); | 
|  | } | 
|  |  | 
|  | static int ccs_get_mbus_formats(struct ccs_sensor *sensor) | 
|  | { | 
|  | struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); | 
|  | struct ccs_pll *pll = &sensor->pll; | 
|  | u8 compressed_max_bpp = 0; | 
|  | unsigned int type, n; | 
|  | unsigned int i, pixel_order; | 
|  | int rval; | 
|  |  | 
|  | type = CCS_LIM(sensor, DATA_FORMAT_MODEL_TYPE); | 
|  |  | 
|  | dev_dbg(&client->dev, "data_format_model_type %d\n", type); | 
|  |  | 
|  | rval = ccs_read(sensor, PIXEL_ORDER, &pixel_order); | 
|  | if (rval) | 
|  | return rval; | 
|  |  | 
|  | if (pixel_order >= ARRAY_SIZE(pixel_order_str)) { | 
|  | dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order, | 
|  | pixel_order_str[pixel_order]); | 
|  |  | 
|  | switch (type) { | 
|  | case CCS_DATA_FORMAT_MODEL_TYPE_NORMAL: | 
|  | n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N; | 
|  | break; | 
|  | case CCS_DATA_FORMAT_MODEL_TYPE_EXTENDED: | 
|  | n = CCS_LIM_DATA_FORMAT_DESCRIPTOR_MAX_N + 1; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | sensor->default_pixel_order = pixel_order; | 
|  | sensor->mbus_frame_fmts = 0; | 
|  |  | 
|  | for (i = 0; i < n; i++) { | 
|  | unsigned int fmt, j; | 
|  |  | 
|  | fmt = CCS_LIM_AT(sensor, DATA_FORMAT_DESCRIPTOR, i); | 
|  |  | 
|  | dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n", | 
|  | i, fmt >> 8, (u8)fmt); | 
|  |  | 
|  | for (j = 0; j < ARRAY_SIZE(ccs_csi_data_formats); j++) { | 
|  | const struct ccs_csi_data_format *f = | 
|  | &ccs_csi_data_formats[j]; | 
|  |  | 
|  | if (f->pixel_order != CCS_PIXEL_ORDER_GRBG) | 
|  | continue; | 
|  |  | 
|  | if (f->width != fmt >> | 
|  | CCS_DATA_FORMAT_DESCRIPTOR_UNCOMPRESSED_SHIFT || | 
|  | f->compressed != | 
|  | (fmt & CCS_DATA_FORMAT_DESCRIPTOR_COMPRESSED_MASK)) | 
|  | continue; | 
|  |  | 
|  | dev_dbg(&client->dev, "jolly good! %d\n", j); | 
|  |  | 
|  | sensor->default_mbus_frame_fmts |= 1 << j; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Figure out which BPP values can be used with which formats. */ | 
|  | pll->binning_horizontal = 1; | 
|  | pll->binning_vertical = 1; | 
|  | pll->scale_m = sensor->scale_m; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) { | 
|  | sensor->compressed_min_bpp = | 
|  | min(ccs_csi_data_formats[i].compressed, | 
|  | sensor->compressed_min_bpp); | 
|  | compressed_max_bpp = | 
|  | max(ccs_csi_data_formats[i].compressed, | 
|  | compressed_max_bpp); | 
|  | } | 
|  |  | 
|  | sensor->valid_link_freqs = devm_kcalloc( | 
|  | &client->dev, | 
|  | compressed_max_bpp - sensor->compressed_min_bpp + 1, | 
|  | sizeof(*sensor->valid_link_freqs), GFP_KERNEL); | 
|  | if (!sensor->valid_link_freqs) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) { | 
|  | const struct ccs_csi_data_format *f = | 
|  | &ccs_csi_data_formats[i]; | 
|  | unsigned long *valid_link_freqs = | 
|  | &sensor->valid_link_freqs[ | 
|  | f->compressed - sensor->compressed_min_bpp]; | 
|  | unsigned int j; | 
|  |  | 
|  | if (!(sensor->default_mbus_frame_fmts & 1 << i)) | 
|  | continue; | 
|  |  | 
|  | pll->bits_per_pixel = f->compressed; | 
|  |  | 
|  | for (j = 0; sensor->hwcfg.op_sys_clock[j]; j++) { | 
|  | pll->link_freq = sensor->hwcfg.op_sys_clock[j]; | 
|  |  | 
|  | rval = ccs_pll_try(sensor, pll); | 
|  | dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n", | 
|  | pll->link_freq, pll->bits_per_pixel, | 
|  | rval ? "not ok" : "ok"); | 
|  | if (rval) | 
|  | continue; | 
|  |  | 
|  | set_bit(j, valid_link_freqs); | 
|  | } | 
|  |  | 
|  | if (!*valid_link_freqs) { | 
|  | dev_info(&client->dev, | 
|  | "no valid link frequencies for %u bpp\n", | 
|  | f->compressed); | 
|  | sensor->default_mbus_frame_fmts &= ~BIT(i); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!sensor->csi_format | 
|  | || f->width > sensor->csi_format->width | 
|  | || (f->width == sensor->csi_format->width | 
|  | && f->compressed > sensor->csi_format->compressed)) { | 
|  | sensor->csi_format = f; | 
|  | sensor->internal_csi_format = f; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!sensor->csi_format) { | 
|  | dev_err(&client->dev, "no supported mbus code found\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ccs_update_mbus_formats(sensor); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void ccs_update_blanking(struct ccs_sensor *sensor) | 
|  | { | 
|  | struct v4l2_ctrl *vblank = sensor->vblank; | 
|  | struct v4l2_ctrl *hblank = sensor->hblank; | 
|  | u16 min_fll, max_fll, min_llp, max_llp, min_lbp; | 
|  | int min, max; | 
|  |  | 
|  | if (sensor->binning_vertical > 1 || sensor->binning_horizontal > 1) { | 
|  | min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES_BIN); | 
|  | max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES_BIN); | 
|  | min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN); | 
|  | max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK_BIN); | 
|  | min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK_BIN); | 
|  | } else { | 
|  | min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES); | 
|  | max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES); | 
|  | min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK); | 
|  | max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK); | 
|  | min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK); | 
|  | } | 
|  |  | 
|  | min = max_t(int, | 
|  | CCS_LIM(sensor, MIN_FRAME_BLANKING_LINES), | 
|  | min_fll - sensor->pixel_array->crop[CCS_PA_PAD_SRC].height); | 
|  | max = max_fll -	sensor->pixel_array->crop[CCS_PA_PAD_SRC].height; | 
|  |  | 
|  | __v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min); | 
|  |  | 
|  | min = max_t(int, | 
|  | min_llp - sensor->pixel_array->crop[CCS_PA_PAD_SRC].width, | 
|  | min_lbp); | 
|  | max = max_llp - sensor->pixel_array->crop[CCS_PA_PAD_SRC].width; | 
|  |  | 
|  | __v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min); | 
|  |  | 
|  | __ccs_update_exposure_limits(sensor); | 
|  | } | 
|  |  | 
|  | static int ccs_pll_blanking_update(struct ccs_sensor *sensor) | 
|  | { | 
|  | struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); | 
|  | int rval; | 
|  |  | 
|  | rval = ccs_pll_update(sensor); | 
|  | if (rval < 0) | 
|  | return rval; | 
|  |  | 
|  | /* Output from pixel array, including blanking */ | 
|  | ccs_update_blanking(sensor); | 
|  |  | 
|  | dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val); | 
|  | dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val); | 
|  |  | 
|  | dev_dbg(&client->dev, "real timeperframe\t100/%d\n", | 
|  | sensor->pll.pixel_rate_pixel_array / | 
|  | ((sensor->pixel_array->crop[CCS_PA_PAD_SRC].width | 
|  | + sensor->hblank->val) * | 
|  | (sensor->pixel_array->crop[CCS_PA_PAD_SRC].height | 
|  | + sensor->vblank->val) / 100)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * | 
|  | * SMIA++ NVM handling | 
|  | * | 
|  | */ | 
|  |  | 
|  | static int ccs_read_nvm_page(struct ccs_sensor *sensor, u32 p, u8 *nvm, | 
|  | u8 *status) | 
|  | { | 
|  | unsigned int i; | 
|  | int rval; | 
|  | u32 s; | 
|  |  | 
|  | *status = 0; | 
|  |  | 
|  | rval = ccs_write(sensor, DATA_TRANSFER_IF_1_PAGE_SELECT, p); | 
|  | if (rval) | 
|  | return rval; | 
|  |  | 
|  | rval = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL, | 
|  | CCS_DATA_TRANSFER_IF_1_CTRL_ENABLE); | 
|  | if (rval) | 
|  | return rval; | 
|  |  | 
|  | rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s); | 
|  | if (rval) | 
|  | return rval; | 
|  |  | 
|  | if (s & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE) { | 
|  | *status = s; | 
|  | return -ENODATA; | 
|  | } | 
|  |  | 
|  | if (CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) & | 
|  | CCS_DATA_TRANSFER_IF_CAPABILITY_POLLING) { | 
|  | for (i = 1000; i > 0; i--) { | 
|  | if (s & CCS_DATA_TRANSFER_IF_1_STATUS_READ_IF_READY) | 
|  | break; | 
|  |  | 
|  | rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s); | 
|  | if (rval) | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | if (!i) | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | for (i = 0; i <= CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P; i++) { | 
|  | u32 v; | 
|  |  | 
|  | rval = ccs_read(sensor, DATA_TRANSFER_IF_1_DATA(i), &v); | 
|  | if (rval) | 
|  | return rval; | 
|  |  | 
|  | *nvm++ = v; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ccs_read_nvm(struct ccs_sensor *sensor, unsigned char *nvm, | 
|  | size_t nvm_size) | 
|  | { | 
|  | u8 status = 0; | 
|  | u32 p; | 
|  | int rval = 0, rval2; | 
|  |  | 
|  | for (p = 0; p < nvm_size / (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1) | 
|  | && !rval; p++) { | 
|  | rval = ccs_read_nvm_page(sensor, p, nvm, &status); | 
|  | nvm += CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1; | 
|  | } | 
|  |  | 
|  | if (rval == -ENODATA && | 
|  | status & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE) | 
|  | rval = 0; | 
|  |  | 
|  | rval2 = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL, 0); | 
|  | if (rval < 0) | 
|  | return rval; | 
|  | else | 
|  | return rval2 ?: p * (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * | 
|  | * SMIA++ CCI address control | 
|  | * | 
|  | */ | 
|  | static int ccs_change_cci_addr(struct ccs_sensor *sensor) | 
|  | { | 
|  | struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); | 
|  | int rval; | 
|  | u32 val; | 
|  |  | 
|  | client->addr = sensor->hwcfg.i2c_addr_dfl; | 
|  |  | 
|  | rval = ccs_write(sensor, CCI_ADDRESS_CTRL, | 
|  | sensor->hwcfg.i2c_addr_alt << 1); | 
|  | if (rval) | 
|  | return rval; | 
|  |  | 
|  | client->addr = sensor->hwcfg.i2c_addr_alt; | 
|  |  | 
|  | /* verify addr change went ok */ | 
|  | rval = ccs_read(sensor, CCI_ADDRESS_CTRL, &val); | 
|  | if (rval) | 
|  | return rval; | 
|  |  | 
|  | if (val != sensor->hwcfg.i2c_addr_alt << 1) | 
|  | return -ENODEV; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * | 
|  | * SMIA++ Mode Control | 
|  | * | 
|  | */ | 
|  | static int ccs_setup_flash_strobe(struct ccs_sensor *sensor) | 
|  | { | 
|  | struct ccs_flash_strobe_parms *strobe_setup; | 
|  | unsigned int ext_freq = sensor->hwcfg.ext_clk; | 
|  | u32 tmp; | 
|  | u32 strobe_adjustment; | 
|  | u32 strobe_width_high_rs; | 
|  | int rval; | 
|  |  | 
|  | strobe_setup = sensor->hwcfg.strobe_setup; | 
|  |  | 
|  | /* | 
|  | * How to calculate registers related to strobe length. Please | 
|  | * do not change, or if you do at least know what you're | 
|  | * doing. :-) | 
|  | * | 
|  | * Sakari Ailus <sakari.ailus@linux.intel.com> 2010-10-25 | 
|  | * | 
|  | * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl | 
|  | *	/ EXTCLK freq [Hz]) * flash_strobe_adjustment | 
|  | * | 
|  | * tFlash_strobe_width_ctrl E N, [1 - 0xffff] | 
|  | * flash_strobe_adjustment E N, [1 - 0xff] | 
|  | * | 
|  | * The formula above is written as below to keep it on one | 
|  | * line: | 
|  | * | 
|  | * l / 10^6 = w / e * a | 
|  | * | 
|  | * Let's mark w * a by x: | 
|  | * | 
|  | * x = w * a | 
|  | * | 
|  | * Thus, we get: | 
|  | * | 
|  | * x = l * e / 10^6 | 
|  | * | 
|  | * The strobe width must be at least as long as requested, | 
|  | * thus rounding upwards is needed. | 
|  | * | 
|  | * x = (l * e + 10^6 - 1) / 10^6 | 
|  | * ----------------------------- | 
|  | * | 
|  | * Maximum possible accuracy is wanted at all times. Thus keep | 
|  | * a as small as possible. | 
|  | * | 
|  | * Calculate a, assuming maximum w, with rounding upwards: | 
|  | * | 
|  | * a = (x + (2^16 - 1) - 1) / (2^16 - 1) | 
|  | * ------------------------------------- | 
|  | * | 
|  | * Thus, we also get w, with that a, with rounding upwards: | 
|  | * | 
|  | * w = (x + a - 1) / a | 
|  | * ------------------- | 
|  | * | 
|  | * To get limits: | 
|  | * | 
|  | * x E [1, (2^16 - 1) * (2^8 - 1)] | 
|  | * | 
|  | * Substituting maximum x to the original formula (with rounding), | 
|  | * the maximum l is thus | 
|  | * | 
|  | * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1 | 
|  | * | 
|  | * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e | 
|  | * -------------------------------------------------- | 
|  | * | 
|  | * flash_strobe_length must be clamped between 1 and | 
|  | * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq. | 
|  | * | 
|  | * Then, | 
|  | * | 
|  | * flash_strobe_adjustment = ((flash_strobe_length * | 
|  | *	EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1) | 
|  | * | 
|  | * tFlash_strobe_width_ctrl = ((flash_strobe_length * | 
|  | *	EXTCLK freq + 10^6 - 1) / 10^6 + | 
|  | *	flash_strobe_adjustment - 1) / flash_strobe_adjustment | 
|  | */ | 
|  | tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) - | 
|  | 1000000 + 1, ext_freq); | 
|  | strobe_setup->strobe_width_high_us = | 
|  | clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp); | 
|  |  | 
|  | tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq + | 
|  | 1000000 - 1), 1000000ULL); | 
|  | strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1); | 
|  | strobe_width_high_rs = (tmp + strobe_adjustment - 1) / | 
|  | strobe_adjustment; | 
|  |  | 
|  | rval = ccs_write(sensor, FLASH_MODE_RS, strobe_setup->mode); | 
|  | if (rval < 0) | 
|  | goto out; | 
|  |  | 
|  | rval = ccs_write(sensor, FLASH_STROBE_ADJUSTMENT, strobe_adjustment); | 
|  | if (rval < 0) | 
|  | goto out; | 
|  |  | 
|  | rval = ccs_write(sensor, TFLASH_STROBE_WIDTH_HIGH_RS_CTRL, | 
|  | strobe_width_high_rs); | 
|  | if (rval < 0) | 
|  | goto out; | 
|  |  | 
|  | rval = ccs_write(sensor, TFLASH_STROBE_DELAY_RS_CTRL, | 
|  | strobe_setup->strobe_delay); | 
|  | if (rval < 0) | 
|  | goto out; | 
|  |  | 
|  | rval = ccs_write(sensor, FLASH_STROBE_START_POINT, | 
|  | strobe_setup->stobe_start_point); | 
|  | if (rval < 0) | 
|  | goto out; | 
|  |  | 
|  | rval = ccs_write(sensor, FLASH_TRIGGER_RS, strobe_setup->trigger); | 
|  |  | 
|  | out: | 
|  | sensor->hwcfg.strobe_setup->trigger = 0; | 
|  |  | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | /* ----------------------------------------------------------------------------- | 
|  | * Power management | 
|  | */ | 
|  |  | 
|  | static int ccs_write_msr_regs(struct ccs_sensor *sensor) | 
|  | { | 
|  | int rval; | 
|  |  | 
|  | rval = ccs_write_data_regs(sensor, | 
|  | sensor->sdata.sensor_manufacturer_regs, | 
|  | sensor->sdata.num_sensor_manufacturer_regs); | 
|  | if (rval) | 
|  | return rval; | 
|  |  | 
|  | return ccs_write_data_regs(sensor, | 
|  | sensor->mdata.module_manufacturer_regs, | 
|  | sensor->mdata.num_module_manufacturer_regs); | 
|  | } | 
|  |  | 
|  | static int ccs_update_phy_ctrl(struct ccs_sensor *sensor) | 
|  | { | 
|  | struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); | 
|  | u8 val; | 
|  |  | 
|  | if (!sensor->ccs_limits) | 
|  | return 0; | 
|  |  | 
|  | if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) & | 
|  | CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL) { | 
|  | val = CCS_PHY_CTRL_AUTO; | 
|  | } else if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) & | 
|  | CCS_PHY_CTRL_CAPABILITY_UI_PHY_CTL) { | 
|  | val = CCS_PHY_CTRL_UI; | 
|  | } else { | 
|  | dev_err(&client->dev, "manual PHY control not supported\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return ccs_write(sensor, PHY_CTRL, val); | 
|  | } | 
|  |  | 
|  | static int ccs_power_on(struct device *dev) | 
|  | { | 
|  | struct v4l2_subdev *subdev = dev_get_drvdata(dev); | 
|  | struct ccs_subdev *ssd = to_ccs_subdev(subdev); | 
|  | /* | 
|  | * The sub-device related to the I2C device is always the | 
|  | * source one, i.e. ssds[0]. | 
|  | */ | 
|  | struct ccs_sensor *sensor = | 
|  | container_of(ssd, struct ccs_sensor, ssds[0]); | 
|  | const struct ccs_device *ccsdev = device_get_match_data(dev); | 
|  | int rval; | 
|  |  | 
|  | rval = regulator_bulk_enable(ARRAY_SIZE(ccs_regulators), | 
|  | sensor->regulators); | 
|  | if (rval) { | 
|  | dev_err(dev, "failed to enable vana regulator\n"); | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | if (sensor->reset || sensor->xshutdown || sensor->ext_clk) { | 
|  | unsigned int sleep; | 
|  |  | 
|  | rval = clk_prepare_enable(sensor->ext_clk); | 
|  | if (rval < 0) { | 
|  | dev_dbg(dev, "failed to enable xclk\n"); | 
|  | goto out_xclk_fail; | 
|  | } | 
|  |  | 
|  | gpiod_set_value(sensor->reset, 0); | 
|  | gpiod_set_value(sensor->xshutdown, 1); | 
|  |  | 
|  | if (ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA) | 
|  | sleep = SMIAPP_RESET_DELAY(sensor->hwcfg.ext_clk); | 
|  | else | 
|  | sleep = 5000; | 
|  |  | 
|  | usleep_range(sleep, sleep); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Failures to respond to the address change command have been noticed. | 
|  | * Those failures seem to be caused by the sensor requiring a longer | 
|  | * boot time than advertised. An additional 10ms delay seems to work | 
|  | * around the issue, but the SMIA++ I2C write retry hack makes the delay | 
|  | * unnecessary. The failures need to be investigated to find a proper | 
|  | * fix, and a delay will likely need to be added here if the I2C write | 
|  | * retry hack is reverted before the root cause of the boot time issue | 
|  | * is found. | 
|  | */ | 
|  |  | 
|  | if (!sensor->reset && !sensor->xshutdown) { | 
|  | u8 retry = 100; | 
|  | u32 reset; | 
|  |  | 
|  | rval = ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON); | 
|  | if (rval < 0) { | 
|  | dev_err(dev, "software reset failed\n"); | 
|  | goto out_cci_addr_fail; | 
|  | } | 
|  |  | 
|  | do { | 
|  | rval = ccs_read(sensor, SOFTWARE_RESET, &reset); | 
|  | reset = !rval && reset == CCS_SOFTWARE_RESET_OFF; | 
|  | if (reset) | 
|  | break; | 
|  |  | 
|  | usleep_range(1000, 2000); | 
|  | } while (--retry); | 
|  |  | 
|  | if (!reset) { | 
|  | dev_err(dev, "software reset failed\n"); | 
|  | rval = -EIO; | 
|  | goto out_cci_addr_fail; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sensor->hwcfg.i2c_addr_alt) { | 
|  | rval = ccs_change_cci_addr(sensor); | 
|  | if (rval) { | 
|  | dev_err(dev, "cci address change error\n"); | 
|  | goto out_cci_addr_fail; | 
|  | } | 
|  | } | 
|  |  | 
|  | rval = ccs_write(sensor, COMPRESSION_MODE, | 
|  | CCS_COMPRESSION_MODE_DPCM_PCM_SIMPLE); | 
|  | if (rval) { | 
|  | dev_err(dev, "compression mode set failed\n"); | 
|  | goto out_cci_addr_fail; | 
|  | } | 
|  |  | 
|  | rval = ccs_write(sensor, EXTCLK_FREQUENCY_MHZ, | 
|  | sensor->hwcfg.ext_clk / (1000000 / (1 << 8))); | 
|  | if (rval) { | 
|  | dev_err(dev, "extclk frequency set failed\n"); | 
|  | goto out_cci_addr_fail; | 
|  | } | 
|  |  | 
|  | rval = ccs_write(sensor, CSI_LANE_MODE, sensor->hwcfg.lanes - 1); | 
|  | if (rval) { | 
|  | dev_err(dev, "csi lane mode set failed\n"); | 
|  | goto out_cci_addr_fail; | 
|  | } | 
|  |  | 
|  | rval = ccs_write(sensor, FAST_STANDBY_CTRL, | 
|  | CCS_FAST_STANDBY_CTRL_FRAME_TRUNCATION); | 
|  | if (rval) { | 
|  | dev_err(dev, "fast standby set failed\n"); | 
|  | goto out_cci_addr_fail; | 
|  | } | 
|  |  | 
|  | rval = ccs_write(sensor, CSI_SIGNALING_MODE, | 
|  | sensor->hwcfg.csi_signalling_mode); | 
|  | if (rval) { | 
|  | dev_err(dev, "csi signalling mode set failed\n"); | 
|  | goto out_cci_addr_fail; | 
|  | } | 
|  |  | 
|  | rval = ccs_update_phy_ctrl(sensor); | 
|  | if (rval < 0) | 
|  | goto out_cci_addr_fail; | 
|  |  | 
|  | rval = ccs_write_msr_regs(sensor); | 
|  | if (rval) | 
|  | goto out_cci_addr_fail; | 
|  |  | 
|  | rval = ccs_call_quirk(sensor, post_poweron); | 
|  | if (rval) { | 
|  | dev_err(dev, "post_poweron quirks failed\n"); | 
|  | goto out_cci_addr_fail; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_cci_addr_fail: | 
|  | gpiod_set_value(sensor->reset, 1); | 
|  | gpiod_set_value(sensor->xshutdown, 0); | 
|  | clk_disable_unprepare(sensor->ext_clk); | 
|  |  | 
|  | out_xclk_fail: | 
|  | regulator_bulk_disable(ARRAY_SIZE(ccs_regulators), | 
|  | sensor->regulators); | 
|  |  | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | static int ccs_power_off(struct device *dev) | 
|  | { | 
|  | struct v4l2_subdev *subdev = dev_get_drvdata(dev); | 
|  | struct ccs_subdev *ssd = to_ccs_subdev(subdev); | 
|  | struct ccs_sensor *sensor = | 
|  | container_of(ssd, struct ccs_sensor, ssds[0]); | 
|  |  | 
|  | /* | 
|  | * Currently power/clock to lens are enable/disabled separately | 
|  | * but they are essentially the same signals. So if the sensor is | 
|  | * powered off while the lens is powered on the sensor does not | 
|  | * really see a power off and next time the cci address change | 
|  | * will fail. So do a soft reset explicitly here. | 
|  | */ | 
|  | if (sensor->hwcfg.i2c_addr_alt) | 
|  | ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON); | 
|  |  | 
|  | gpiod_set_value(sensor->reset, 1); | 
|  | gpiod_set_value(sensor->xshutdown, 0); | 
|  | clk_disable_unprepare(sensor->ext_clk); | 
|  | usleep_range(5000, 5000); | 
|  | regulator_bulk_disable(ARRAY_SIZE(ccs_regulators), | 
|  | sensor->regulators); | 
|  | sensor->streaming = false; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* ----------------------------------------------------------------------------- | 
|  | * Video stream management | 
|  | */ | 
|  |  | 
|  | static int ccs_start_streaming(struct ccs_sensor *sensor) | 
|  | { | 
|  | struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); | 
|  | unsigned int binning_mode; | 
|  | int rval; | 
|  |  | 
|  | mutex_lock(&sensor->mutex); | 
|  |  | 
|  | rval = ccs_write(sensor, CSI_DATA_FORMAT, | 
|  | (sensor->csi_format->width << 8) | | 
|  | sensor->csi_format->compressed); | 
|  | if (rval) | 
|  | goto out; | 
|  |  | 
|  | /* Binning configuration */ | 
|  | if (sensor->binning_horizontal == 1 && | 
|  | sensor->binning_vertical == 1) { | 
|  | binning_mode = 0; | 
|  | } else { | 
|  | u8 binning_type = | 
|  | (sensor->binning_horizontal << 4) | 
|  | | sensor->binning_vertical; | 
|  |  | 
|  | rval = ccs_write(sensor, BINNING_TYPE, binning_type); | 
|  | if (rval < 0) | 
|  | goto out; | 
|  |  | 
|  | binning_mode = 1; | 
|  | } | 
|  | rval = ccs_write(sensor, BINNING_MODE, binning_mode); | 
|  | if (rval < 0) | 
|  | goto out; | 
|  |  | 
|  | /* Set up PLL */ | 
|  | rval = ccs_pll_configure(sensor); | 
|  | if (rval) | 
|  | goto out; | 
|  |  | 
|  | /* Analog crop start coordinates */ | 
|  | rval = ccs_write(sensor, X_ADDR_START, | 
|  | sensor->pixel_array->crop[CCS_PA_PAD_SRC].left); | 
|  | if (rval < 0) | 
|  | goto out; | 
|  |  | 
|  | rval = ccs_write(sensor, Y_ADDR_START, | 
|  | sensor->pixel_array->crop[CCS_PA_PAD_SRC].top); | 
|  | if (rval < 0) | 
|  | goto out; | 
|  |  | 
|  | /* Analog crop end coordinates */ | 
|  | rval = ccs_write( | 
|  | sensor, X_ADDR_END, | 
|  | sensor->pixel_array->crop[CCS_PA_PAD_SRC].left | 
|  | + sensor->pixel_array->crop[CCS_PA_PAD_SRC].width - 1); | 
|  | if (rval < 0) | 
|  | goto out; | 
|  |  | 
|  | rval = ccs_write( | 
|  | sensor, Y_ADDR_END, | 
|  | sensor->pixel_array->crop[CCS_PA_PAD_SRC].top | 
|  | + sensor->pixel_array->crop[CCS_PA_PAD_SRC].height - 1); | 
|  | if (rval < 0) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Output from pixel array, including blanking, is set using | 
|  | * controls below. No need to set here. | 
|  | */ | 
|  |  | 
|  | /* Digital crop */ | 
|  | if (CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY) | 
|  | == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) { | 
|  | rval = ccs_write( | 
|  | sensor, DIGITAL_CROP_X_OFFSET, | 
|  | sensor->scaler->crop[CCS_PAD_SINK].left); | 
|  | if (rval < 0) | 
|  | goto out; | 
|  |  | 
|  | rval = ccs_write( | 
|  | sensor, DIGITAL_CROP_Y_OFFSET, | 
|  | sensor->scaler->crop[CCS_PAD_SINK].top); | 
|  | if (rval < 0) | 
|  | goto out; | 
|  |  | 
|  | rval = ccs_write( | 
|  | sensor, DIGITAL_CROP_IMAGE_WIDTH, | 
|  | sensor->scaler->crop[CCS_PAD_SINK].width); | 
|  | if (rval < 0) | 
|  | goto out; | 
|  |  | 
|  | rval = ccs_write( | 
|  | sensor, DIGITAL_CROP_IMAGE_HEIGHT, | 
|  | sensor->scaler->crop[CCS_PAD_SINK].height); | 
|  | if (rval < 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Scaling */ | 
|  | if (CCS_LIM(sensor, SCALING_CAPABILITY) | 
|  | != CCS_SCALING_CAPABILITY_NONE) { | 
|  | rval = ccs_write(sensor, SCALING_MODE, sensor->scaling_mode); | 
|  | if (rval < 0) | 
|  | goto out; | 
|  |  | 
|  | rval = ccs_write(sensor, SCALE_M, sensor->scale_m); | 
|  | if (rval < 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Output size from sensor */ | 
|  | rval = ccs_write(sensor, X_OUTPUT_SIZE, | 
|  | sensor->src->crop[CCS_PAD_SRC].width); | 
|  | if (rval < 0) | 
|  | goto out; | 
|  | rval = ccs_write(sensor, Y_OUTPUT_SIZE, | 
|  | sensor->src->crop[CCS_PAD_SRC].height); | 
|  | if (rval < 0) | 
|  | goto out; | 
|  |  | 
|  | if (CCS_LIM(sensor, FLASH_MODE_CAPABILITY) & | 
|  | (CCS_FLASH_MODE_CAPABILITY_SINGLE_STROBE | | 
|  | SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE) && | 
|  | sensor->hwcfg.strobe_setup != NULL && | 
|  | sensor->hwcfg.strobe_setup->trigger != 0) { | 
|  | rval = ccs_setup_flash_strobe(sensor); | 
|  | if (rval) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | rval = ccs_call_quirk(sensor, pre_streamon); | 
|  | if (rval) { | 
|  | dev_err(&client->dev, "pre_streamon quirks failed\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_STREAMING); | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&sensor->mutex); | 
|  |  | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | static int ccs_stop_streaming(struct ccs_sensor *sensor) | 
|  | { | 
|  | struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); | 
|  | int rval; | 
|  |  | 
|  | mutex_lock(&sensor->mutex); | 
|  | rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_SOFTWARE_STANDBY); | 
|  | if (rval) | 
|  | goto out; | 
|  |  | 
|  | rval = ccs_call_quirk(sensor, post_streamoff); | 
|  | if (rval) | 
|  | dev_err(&client->dev, "post_streamoff quirks failed\n"); | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&sensor->mutex); | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | /* ----------------------------------------------------------------------------- | 
|  | * V4L2 subdev video operations | 
|  | */ | 
|  |  | 
|  | static int ccs_pm_get_init(struct ccs_sensor *sensor) | 
|  | { | 
|  | struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); | 
|  | int rval; | 
|  |  | 
|  | /* | 
|  | * It can't use pm_runtime_resume_and_get() here, as the driver | 
|  | * relies at the returned value to detect if the device was already | 
|  | * active or not. | 
|  | */ | 
|  | rval = pm_runtime_get_sync(&client->dev); | 
|  | if (rval < 0) | 
|  | goto error; | 
|  |  | 
|  | /* Device was already active, so don't set controls */ | 
|  | if (rval == 1) | 
|  | return 0; | 
|  |  | 
|  | /* Restore V4L2 controls to the previously suspended device */ | 
|  | rval = v4l2_ctrl_handler_setup(&sensor->pixel_array->ctrl_handler); | 
|  | if (rval) | 
|  | goto error; | 
|  |  | 
|  | rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler); | 
|  | if (rval) | 
|  | goto error; | 
|  |  | 
|  | /* Keep PM runtime usage_count incremented on success */ | 
|  | return 0; | 
|  | error: | 
|  | pm_runtime_put(&client->dev); | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | static int ccs_set_stream(struct v4l2_subdev *subdev, int enable) | 
|  | { | 
|  | struct ccs_sensor *sensor = to_ccs_sensor(subdev); | 
|  | struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); | 
|  | int rval; | 
|  |  | 
|  | if (sensor->streaming == enable) | 
|  | return 0; | 
|  |  | 
|  | if (!enable) { | 
|  | ccs_stop_streaming(sensor); | 
|  | sensor->streaming = false; | 
|  | pm_runtime_mark_last_busy(&client->dev); | 
|  | pm_runtime_put_autosuspend(&client->dev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | rval = ccs_pm_get_init(sensor); | 
|  | if (rval) | 
|  | return rval; | 
|  |  | 
|  | sensor->streaming = true; | 
|  |  | 
|  | rval = ccs_start_streaming(sensor); | 
|  | if (rval < 0) { | 
|  | sensor->streaming = false; | 
|  | pm_runtime_mark_last_busy(&client->dev); | 
|  | pm_runtime_put_autosuspend(&client->dev); | 
|  | } | 
|  |  | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | static int ccs_pre_streamon(struct v4l2_subdev *subdev, u32 flags) | 
|  | { | 
|  | struct ccs_sensor *sensor = to_ccs_sensor(subdev); | 
|  | struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); | 
|  | int rval; | 
|  |  | 
|  | if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) { | 
|  | switch (sensor->hwcfg.csi_signalling_mode) { | 
|  | case CCS_CSI_SIGNALING_MODE_CSI_2_DPHY: | 
|  | if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) & | 
|  | CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_DPHY)) | 
|  | return -EACCES; | 
|  | break; | 
|  | case CCS_CSI_SIGNALING_MODE_CSI_2_CPHY: | 
|  | if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) & | 
|  | CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_CPHY)) | 
|  | return -EACCES; | 
|  | break; | 
|  | default: | 
|  | return -EACCES; | 
|  | } | 
|  | } | 
|  |  | 
|  | rval = ccs_pm_get_init(sensor); | 
|  | if (rval) | 
|  | return rval; | 
|  |  | 
|  | if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) { | 
|  | rval = ccs_write(sensor, MANUAL_LP_CTRL, | 
|  | CCS_MANUAL_LP_CTRL_ENABLE); | 
|  | if (rval) | 
|  | pm_runtime_put(&client->dev); | 
|  | } | 
|  |  | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | static int ccs_post_streamoff(struct v4l2_subdev *subdev) | 
|  | { | 
|  | struct ccs_sensor *sensor = to_ccs_sensor(subdev); | 
|  | struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); | 
|  |  | 
|  | return pm_runtime_put(&client->dev); | 
|  | } | 
|  |  | 
|  | static int ccs_enum_mbus_code(struct v4l2_subdev *subdev, | 
|  | struct v4l2_subdev_state *sd_state, | 
|  | struct v4l2_subdev_mbus_code_enum *code) | 
|  | { | 
|  | struct i2c_client *client = v4l2_get_subdevdata(subdev); | 
|  | struct ccs_sensor *sensor = to_ccs_sensor(subdev); | 
|  | unsigned int i; | 
|  | int idx = -1; | 
|  | int rval = -EINVAL; | 
|  |  | 
|  | mutex_lock(&sensor->mutex); | 
|  |  | 
|  | dev_err(&client->dev, "subdev %s, pad %d, index %d\n", | 
|  | subdev->name, code->pad, code->index); | 
|  |  | 
|  | if (subdev != &sensor->src->sd || code->pad != CCS_PAD_SRC) { | 
|  | if (code->index) | 
|  | goto out; | 
|  |  | 
|  | code->code = sensor->internal_csi_format->code; | 
|  | rval = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) { | 
|  | if (sensor->mbus_frame_fmts & (1 << i)) | 
|  | idx++; | 
|  |  | 
|  | if (idx == code->index) { | 
|  | code->code = ccs_csi_data_formats[i].code; | 
|  | dev_err(&client->dev, "found index %d, i %d, code %x\n", | 
|  | code->index, i, code->code); | 
|  | rval = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&sensor->mutex); | 
|  |  | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | static u32 __ccs_get_mbus_code(struct v4l2_subdev *subdev, unsigned int pad) | 
|  | { | 
|  | struct ccs_sensor *sensor = to_ccs_sensor(subdev); | 
|  |  | 
|  | if (subdev == &sensor->src->sd && pad == CCS_PAD_SRC) | 
|  | return sensor->csi_format->code; | 
|  | else | 
|  | return sensor->internal_csi_format->code; | 
|  | } | 
|  |  | 
|  | static int __ccs_get_format(struct v4l2_subdev *subdev, | 
|  | struct v4l2_subdev_state *sd_state, | 
|  | struct v4l2_subdev_format *fmt) | 
|  | { | 
|  | struct ccs_subdev *ssd = to_ccs_subdev(subdev); | 
|  |  | 
|  | if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) { | 
|  | fmt->format = *v4l2_subdev_get_try_format(subdev, sd_state, | 
|  | fmt->pad); | 
|  | } else { | 
|  | struct v4l2_rect *r; | 
|  |  | 
|  | if (fmt->pad == ssd->source_pad) | 
|  | r = &ssd->crop[ssd->source_pad]; | 
|  | else | 
|  | r = &ssd->sink_fmt; | 
|  |  | 
|  | fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad); | 
|  | fmt->format.width = r->width; | 
|  | fmt->format.height = r->height; | 
|  | fmt->format.field = V4L2_FIELD_NONE; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ccs_get_format(struct v4l2_subdev *subdev, | 
|  | struct v4l2_subdev_state *sd_state, | 
|  | struct v4l2_subdev_format *fmt) | 
|  | { | 
|  | struct ccs_sensor *sensor = to_ccs_sensor(subdev); | 
|  | int rval; | 
|  |  | 
|  | mutex_lock(&sensor->mutex); | 
|  | rval = __ccs_get_format(subdev, sd_state, fmt); | 
|  | mutex_unlock(&sensor->mutex); | 
|  |  | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | static void ccs_get_crop_compose(struct v4l2_subdev *subdev, | 
|  | struct v4l2_subdev_state *sd_state, | 
|  | struct v4l2_rect **crops, | 
|  | struct v4l2_rect **comps, int which) | 
|  | { | 
|  | struct ccs_subdev *ssd = to_ccs_subdev(subdev); | 
|  | unsigned int i; | 
|  |  | 
|  | if (which == V4L2_SUBDEV_FORMAT_ACTIVE) { | 
|  | if (crops) | 
|  | for (i = 0; i < subdev->entity.num_pads; i++) | 
|  | crops[i] = &ssd->crop[i]; | 
|  | if (comps) | 
|  | *comps = &ssd->compose; | 
|  | } else { | 
|  | if (crops) { | 
|  | for (i = 0; i < subdev->entity.num_pads; i++) | 
|  | crops[i] = v4l2_subdev_get_try_crop(subdev, | 
|  | sd_state, | 
|  | i); | 
|  | } | 
|  | if (comps) | 
|  | *comps = v4l2_subdev_get_try_compose(subdev, sd_state, | 
|  | CCS_PAD_SINK); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Changes require propagation only on sink pad. */ | 
|  | static void ccs_propagate(struct v4l2_subdev *subdev, | 
|  | struct v4l2_subdev_state *sd_state, int which, | 
|  | int target) | 
|  | { | 
|  | struct ccs_sensor *sensor = to_ccs_sensor(subdev); | 
|  | struct ccs_subdev *ssd = to_ccs_subdev(subdev); | 
|  | struct v4l2_rect *comp, *crops[CCS_PADS]; | 
|  |  | 
|  | ccs_get_crop_compose(subdev, sd_state, crops, &comp, which); | 
|  |  | 
|  | switch (target) { | 
|  | case V4L2_SEL_TGT_CROP: | 
|  | comp->width = crops[CCS_PAD_SINK]->width; | 
|  | comp->height = crops[CCS_PAD_SINK]->height; | 
|  | if (which == V4L2_SUBDEV_FORMAT_ACTIVE) { | 
|  | if (ssd == sensor->scaler) { | 
|  | sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN); | 
|  | sensor->scaling_mode = | 
|  | CCS_SCALING_MODE_NO_SCALING; | 
|  | } else if (ssd == sensor->binner) { | 
|  | sensor->binning_horizontal = 1; | 
|  | sensor->binning_vertical = 1; | 
|  | } | 
|  | } | 
|  | fallthrough; | 
|  | case V4L2_SEL_TGT_COMPOSE: | 
|  | *crops[CCS_PAD_SRC] = *comp; | 
|  | break; | 
|  | default: | 
|  | WARN_ON_ONCE(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static const struct ccs_csi_data_format | 
|  | *ccs_validate_csi_data_format(struct ccs_sensor *sensor, u32 code) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) { | 
|  | if (sensor->mbus_frame_fmts & (1 << i) && | 
|  | ccs_csi_data_formats[i].code == code) | 
|  | return &ccs_csi_data_formats[i]; | 
|  | } | 
|  |  | 
|  | return sensor->csi_format; | 
|  | } | 
|  |  | 
|  | static int ccs_set_format_source(struct v4l2_subdev *subdev, | 
|  | struct v4l2_subdev_state *sd_state, | 
|  | struct v4l2_subdev_format *fmt) | 
|  | { | 
|  | struct ccs_sensor *sensor = to_ccs_sensor(subdev); | 
|  | const struct ccs_csi_data_format *csi_format, | 
|  | *old_csi_format = sensor->csi_format; | 
|  | unsigned long *valid_link_freqs; | 
|  | u32 code = fmt->format.code; | 
|  | unsigned int i; | 
|  | int rval; | 
|  |  | 
|  | rval = __ccs_get_format(subdev, sd_state, fmt); | 
|  | if (rval) | 
|  | return rval; | 
|  |  | 
|  | /* | 
|  | * Media bus code is changeable on src subdev's source pad. On | 
|  | * other source pads we just get format here. | 
|  | */ | 
|  | if (subdev != &sensor->src->sd) | 
|  | return 0; | 
|  |  | 
|  | csi_format = ccs_validate_csi_data_format(sensor, code); | 
|  |  | 
|  | fmt->format.code = csi_format->code; | 
|  |  | 
|  | if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE) | 
|  | return 0; | 
|  |  | 
|  | sensor->csi_format = csi_format; | 
|  |  | 
|  | if (csi_format->width != old_csi_format->width) | 
|  | for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) | 
|  | __v4l2_ctrl_modify_range( | 
|  | sensor->test_data[i], 0, | 
|  | (1 << csi_format->width) - 1, 1, 0); | 
|  |  | 
|  | if (csi_format->compressed == old_csi_format->compressed) | 
|  | return 0; | 
|  |  | 
|  | valid_link_freqs = | 
|  | &sensor->valid_link_freqs[sensor->csi_format->compressed | 
|  | - sensor->compressed_min_bpp]; | 
|  |  | 
|  | __v4l2_ctrl_modify_range( | 
|  | sensor->link_freq, 0, | 
|  | __fls(*valid_link_freqs), ~*valid_link_freqs, | 
|  | __ffs(*valid_link_freqs)); | 
|  |  | 
|  | return ccs_pll_update(sensor); | 
|  | } | 
|  |  | 
|  | static int ccs_set_format(struct v4l2_subdev *subdev, | 
|  | struct v4l2_subdev_state *sd_state, | 
|  | struct v4l2_subdev_format *fmt) | 
|  | { | 
|  | struct ccs_sensor *sensor = to_ccs_sensor(subdev); | 
|  | struct ccs_subdev *ssd = to_ccs_subdev(subdev); | 
|  | struct v4l2_rect *crops[CCS_PADS]; | 
|  |  | 
|  | mutex_lock(&sensor->mutex); | 
|  |  | 
|  | if (fmt->pad == ssd->source_pad) { | 
|  | int rval; | 
|  |  | 
|  | rval = ccs_set_format_source(subdev, sd_state, fmt); | 
|  |  | 
|  | mutex_unlock(&sensor->mutex); | 
|  |  | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | /* Sink pad. Width and height are changeable here. */ | 
|  | fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad); | 
|  | fmt->format.width &= ~1; | 
|  | fmt->format.height &= ~1; | 
|  | fmt->format.field = V4L2_FIELD_NONE; | 
|  |  | 
|  | fmt->format.width = | 
|  | clamp(fmt->format.width, | 
|  | CCS_LIM(sensor, MIN_X_OUTPUT_SIZE), | 
|  | CCS_LIM(sensor, MAX_X_OUTPUT_SIZE)); | 
|  | fmt->format.height = | 
|  | clamp(fmt->format.height, | 
|  | CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE), | 
|  | CCS_LIM(sensor, MAX_Y_OUTPUT_SIZE)); | 
|  |  | 
|  | ccs_get_crop_compose(subdev, sd_state, crops, NULL, fmt->which); | 
|  |  | 
|  | crops[ssd->sink_pad]->left = 0; | 
|  | crops[ssd->sink_pad]->top = 0; | 
|  | crops[ssd->sink_pad]->width = fmt->format.width; | 
|  | crops[ssd->sink_pad]->height = fmt->format.height; | 
|  | if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE) | 
|  | ssd->sink_fmt = *crops[ssd->sink_pad]; | 
|  | ccs_propagate(subdev, sd_state, fmt->which, V4L2_SEL_TGT_CROP); | 
|  |  | 
|  | mutex_unlock(&sensor->mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate goodness of scaled image size compared to expected image | 
|  | * size and flags provided. | 
|  | */ | 
|  | #define SCALING_GOODNESS		100000 | 
|  | #define SCALING_GOODNESS_EXTREME	100000000 | 
|  | static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w, | 
|  | int h, int ask_h, u32 flags) | 
|  | { | 
|  | struct ccs_sensor *sensor = to_ccs_sensor(subdev); | 
|  | struct i2c_client *client = v4l2_get_subdevdata(subdev); | 
|  | int val = 0; | 
|  |  | 
|  | w &= ~1; | 
|  | ask_w &= ~1; | 
|  | h &= ~1; | 
|  | ask_h &= ~1; | 
|  |  | 
|  | if (flags & V4L2_SEL_FLAG_GE) { | 
|  | if (w < ask_w) | 
|  | val -= SCALING_GOODNESS; | 
|  | if (h < ask_h) | 
|  | val -= SCALING_GOODNESS; | 
|  | } | 
|  |  | 
|  | if (flags & V4L2_SEL_FLAG_LE) { | 
|  | if (w > ask_w) | 
|  | val -= SCALING_GOODNESS; | 
|  | if (h > ask_h) | 
|  | val -= SCALING_GOODNESS; | 
|  | } | 
|  |  | 
|  | val -= abs(w - ask_w); | 
|  | val -= abs(h - ask_h); | 
|  |  | 
|  | if (w < CCS_LIM(sensor, MIN_X_OUTPUT_SIZE)) | 
|  | val -= SCALING_GOODNESS_EXTREME; | 
|  |  | 
|  | dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n", | 
|  | w, ask_w, h, ask_h, val); | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static void ccs_set_compose_binner(struct v4l2_subdev *subdev, | 
|  | struct v4l2_subdev_state *sd_state, | 
|  | struct v4l2_subdev_selection *sel, | 
|  | struct v4l2_rect **crops, | 
|  | struct v4l2_rect *comp) | 
|  | { | 
|  | struct ccs_sensor *sensor = to_ccs_sensor(subdev); | 
|  | unsigned int i; | 
|  | unsigned int binh = 1, binv = 1; | 
|  | int best = scaling_goodness( | 
|  | subdev, | 
|  | crops[CCS_PAD_SINK]->width, sel->r.width, | 
|  | crops[CCS_PAD_SINK]->height, sel->r.height, sel->flags); | 
|  |  | 
|  | for (i = 0; i < sensor->nbinning_subtypes; i++) { | 
|  | int this = scaling_goodness( | 
|  | subdev, | 
|  | crops[CCS_PAD_SINK]->width | 
|  | / sensor->binning_subtypes[i].horizontal, | 
|  | sel->r.width, | 
|  | crops[CCS_PAD_SINK]->height | 
|  | / sensor->binning_subtypes[i].vertical, | 
|  | sel->r.height, sel->flags); | 
|  |  | 
|  | if (this > best) { | 
|  | binh = sensor->binning_subtypes[i].horizontal; | 
|  | binv = sensor->binning_subtypes[i].vertical; | 
|  | best = this; | 
|  | } | 
|  | } | 
|  | if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) { | 
|  | sensor->binning_vertical = binv; | 
|  | sensor->binning_horizontal = binh; | 
|  | } | 
|  |  | 
|  | sel->r.width = (crops[CCS_PAD_SINK]->width / binh) & ~1; | 
|  | sel->r.height = (crops[CCS_PAD_SINK]->height / binv) & ~1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate best scaling ratio and mode for given output resolution. | 
|  | * | 
|  | * Try all of these: horizontal ratio, vertical ratio and smallest | 
|  | * size possible (horizontally). | 
|  | * | 
|  | * Also try whether horizontal scaler or full scaler gives a better | 
|  | * result. | 
|  | */ | 
|  | static void ccs_set_compose_scaler(struct v4l2_subdev *subdev, | 
|  | struct v4l2_subdev_state *sd_state, | 
|  | struct v4l2_subdev_selection *sel, | 
|  | struct v4l2_rect **crops, | 
|  | struct v4l2_rect *comp) | 
|  | { | 
|  | struct i2c_client *client = v4l2_get_subdevdata(subdev); | 
|  | struct ccs_sensor *sensor = to_ccs_sensor(subdev); | 
|  | u32 min, max, a, b, max_m; | 
|  | u32 scale_m = CCS_LIM(sensor, SCALER_N_MIN); | 
|  | int mode = CCS_SCALING_MODE_HORIZONTAL; | 
|  | u32 try[4]; | 
|  | u32 ntry = 0; | 
|  | unsigned int i; | 
|  | int best = INT_MIN; | 
|  |  | 
|  | sel->r.width = min_t(unsigned int, sel->r.width, | 
|  | crops[CCS_PAD_SINK]->width); | 
|  | sel->r.height = min_t(unsigned int, sel->r.height, | 
|  | crops[CCS_PAD_SINK]->height); | 
|  |  | 
|  | a = crops[CCS_PAD_SINK]->width | 
|  | * CCS_LIM(sensor, SCALER_N_MIN) / sel->r.width; | 
|  | b = crops[CCS_PAD_SINK]->height | 
|  | * CCS_LIM(sensor, SCALER_N_MIN) / sel->r.height; | 
|  | max_m = crops[CCS_PAD_SINK]->width | 
|  | * CCS_LIM(sensor, SCALER_N_MIN) | 
|  | / CCS_LIM(sensor, MIN_X_OUTPUT_SIZE); | 
|  |  | 
|  | a = clamp(a, CCS_LIM(sensor, SCALER_M_MIN), | 
|  | CCS_LIM(sensor, SCALER_M_MAX)); | 
|  | b = clamp(b, CCS_LIM(sensor, SCALER_M_MIN), | 
|  | CCS_LIM(sensor, SCALER_M_MAX)); | 
|  | max_m = clamp(max_m, CCS_LIM(sensor, SCALER_M_MIN), | 
|  | CCS_LIM(sensor, SCALER_M_MAX)); | 
|  |  | 
|  | dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m); | 
|  |  | 
|  | min = min(max_m, min(a, b)); | 
|  | max = min(max_m, max(a, b)); | 
|  |  | 
|  | try[ntry] = min; | 
|  | ntry++; | 
|  | if (min != max) { | 
|  | try[ntry] = max; | 
|  | ntry++; | 
|  | } | 
|  | if (max != max_m) { | 
|  | try[ntry] = min + 1; | 
|  | ntry++; | 
|  | if (min != max) { | 
|  | try[ntry] = max + 1; | 
|  | ntry++; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < ntry; i++) { | 
|  | int this = scaling_goodness( | 
|  | subdev, | 
|  | crops[CCS_PAD_SINK]->width | 
|  | / try[i] * CCS_LIM(sensor, SCALER_N_MIN), | 
|  | sel->r.width, | 
|  | crops[CCS_PAD_SINK]->height, | 
|  | sel->r.height, | 
|  | sel->flags); | 
|  |  | 
|  | dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i); | 
|  |  | 
|  | if (this > best) { | 
|  | scale_m = try[i]; | 
|  | mode = CCS_SCALING_MODE_HORIZONTAL; | 
|  | best = this; | 
|  | } | 
|  |  | 
|  | if (CCS_LIM(sensor, SCALING_CAPABILITY) | 
|  | == CCS_SCALING_CAPABILITY_HORIZONTAL) | 
|  | continue; | 
|  |  | 
|  | this = scaling_goodness( | 
|  | subdev, crops[CCS_PAD_SINK]->width | 
|  | / try[i] | 
|  | * CCS_LIM(sensor, SCALER_N_MIN), | 
|  | sel->r.width, | 
|  | crops[CCS_PAD_SINK]->height | 
|  | / try[i] | 
|  | * CCS_LIM(sensor, SCALER_N_MIN), | 
|  | sel->r.height, | 
|  | sel->flags); | 
|  |  | 
|  | if (this > best) { | 
|  | scale_m = try[i]; | 
|  | mode = SMIAPP_SCALING_MODE_BOTH; | 
|  | best = this; | 
|  | } | 
|  | } | 
|  |  | 
|  | sel->r.width = | 
|  | (crops[CCS_PAD_SINK]->width | 
|  | / scale_m | 
|  | * CCS_LIM(sensor, SCALER_N_MIN)) & ~1; | 
|  | if (mode == SMIAPP_SCALING_MODE_BOTH) | 
|  | sel->r.height = | 
|  | (crops[CCS_PAD_SINK]->height | 
|  | / scale_m | 
|  | * CCS_LIM(sensor, SCALER_N_MIN)) | 
|  | & ~1; | 
|  | else | 
|  | sel->r.height = crops[CCS_PAD_SINK]->height; | 
|  |  | 
|  | if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) { | 
|  | sensor->scale_m = scale_m; | 
|  | sensor->scaling_mode = mode; | 
|  | } | 
|  | } | 
|  | /* We're only called on source pads. This function sets scaling. */ | 
|  | static int ccs_set_compose(struct v4l2_subdev *subdev, | 
|  | struct v4l2_subdev_state *sd_state, | 
|  | struct v4l2_subdev_selection *sel) | 
|  | { | 
|  | struct ccs_sensor *sensor = to_ccs_sensor(subdev); | 
|  | struct ccs_subdev *ssd = to_ccs_subdev(subdev); | 
|  | struct v4l2_rect *comp, *crops[CCS_PADS]; | 
|  |  | 
|  | ccs_get_crop_compose(subdev, sd_state, crops, &comp, sel->which); | 
|  |  | 
|  | sel->r.top = 0; | 
|  | sel->r.left = 0; | 
|  |  | 
|  | if (ssd == sensor->binner) | 
|  | ccs_set_compose_binner(subdev, sd_state, sel, crops, comp); | 
|  | else | 
|  | ccs_set_compose_scaler(subdev, sd_state, sel, crops, comp); | 
|  |  | 
|  | *comp = sel->r; | 
|  | ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_COMPOSE); | 
|  |  | 
|  | if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) | 
|  | return ccs_pll_blanking_update(sensor); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __ccs_sel_supported(struct v4l2_subdev *subdev, | 
|  | struct v4l2_subdev_selection *sel) | 
|  | { | 
|  | struct ccs_sensor *sensor = to_ccs_sensor(subdev); | 
|  | struct ccs_subdev *ssd = to_ccs_subdev(subdev); | 
|  |  | 
|  | /* We only implement crop in three places. */ | 
|  | switch (sel->target) { | 
|  | case V4L2_SEL_TGT_CROP: | 
|  | case V4L2_SEL_TGT_CROP_BOUNDS: | 
|  | if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC) | 
|  | return 0; | 
|  | if (ssd == sensor->src && sel->pad == CCS_PAD_SRC) | 
|  | return 0; | 
|  | if (ssd == sensor->scaler && sel->pad == CCS_PAD_SINK && | 
|  | CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY) | 
|  | == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) | 
|  | return 0; | 
|  | return -EINVAL; | 
|  | case V4L2_SEL_TGT_NATIVE_SIZE: | 
|  | if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC) | 
|  | return 0; | 
|  | return -EINVAL; | 
|  | case V4L2_SEL_TGT_COMPOSE: | 
|  | case V4L2_SEL_TGT_COMPOSE_BOUNDS: | 
|  | if (sel->pad == ssd->source_pad) | 
|  | return -EINVAL; | 
|  | if (ssd == sensor->binner) | 
|  | return 0; | 
|  | if (ssd == sensor->scaler && CCS_LIM(sensor, SCALING_CAPABILITY) | 
|  | != CCS_SCALING_CAPABILITY_NONE) | 
|  | return 0; | 
|  | fallthrough; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int ccs_set_crop(struct v4l2_subdev *subdev, | 
|  | struct v4l2_subdev_state *sd_state, | 
|  | struct v4l2_subdev_selection *sel) | 
|  | { | 
|  | struct ccs_sensor *sensor = to_ccs_sensor(subdev); | 
|  | struct ccs_subdev *ssd = to_ccs_subdev(subdev); | 
|  | struct v4l2_rect *src_size, *crops[CCS_PADS]; | 
|  | struct v4l2_rect _r; | 
|  |  | 
|  | ccs_get_crop_compose(subdev, sd_state, crops, NULL, sel->which); | 
|  |  | 
|  | if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) { | 
|  | if (sel->pad == ssd->sink_pad) | 
|  | src_size = &ssd->sink_fmt; | 
|  | else | 
|  | src_size = &ssd->compose; | 
|  | } else { | 
|  | if (sel->pad == ssd->sink_pad) { | 
|  | _r.left = 0; | 
|  | _r.top = 0; | 
|  | _r.width = v4l2_subdev_get_try_format(subdev, | 
|  | sd_state, | 
|  | sel->pad) | 
|  | ->width; | 
|  | _r.height = v4l2_subdev_get_try_format(subdev, | 
|  | sd_state, | 
|  | sel->pad) | 
|  | ->height; | 
|  | src_size = &_r; | 
|  | } else { | 
|  | src_size = v4l2_subdev_get_try_compose( | 
|  | subdev, sd_state, ssd->sink_pad); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ssd == sensor->src && sel->pad == CCS_PAD_SRC) { | 
|  | sel->r.left = 0; | 
|  | sel->r.top = 0; | 
|  | } | 
|  |  | 
|  | sel->r.width = min(sel->r.width, src_size->width); | 
|  | sel->r.height = min(sel->r.height, src_size->height); | 
|  |  | 
|  | sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width); | 
|  | sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height); | 
|  |  | 
|  | *crops[sel->pad] = sel->r; | 
|  |  | 
|  | if (ssd != sensor->pixel_array && sel->pad == CCS_PAD_SINK) | 
|  | ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_CROP); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void ccs_get_native_size(struct ccs_subdev *ssd, struct v4l2_rect *r) | 
|  | { | 
|  | r->top = 0; | 
|  | r->left = 0; | 
|  | r->width = CCS_LIM(ssd->sensor, X_ADDR_MAX) + 1; | 
|  | r->height = CCS_LIM(ssd->sensor, Y_ADDR_MAX) + 1; | 
|  | } | 
|  |  | 
|  | static int __ccs_get_selection(struct v4l2_subdev *subdev, | 
|  | struct v4l2_subdev_state *sd_state, | 
|  | struct v4l2_subdev_selection *sel) | 
|  | { | 
|  | struct ccs_sensor *sensor = to_ccs_sensor(subdev); | 
|  | struct ccs_subdev *ssd = to_ccs_subdev(subdev); | 
|  | struct v4l2_rect *comp, *crops[CCS_PADS]; | 
|  | struct v4l2_rect sink_fmt; | 
|  | int ret; | 
|  |  | 
|  | ret = __ccs_sel_supported(subdev, sel); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ccs_get_crop_compose(subdev, sd_state, crops, &comp, sel->which); | 
|  |  | 
|  | if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) { | 
|  | sink_fmt = ssd->sink_fmt; | 
|  | } else { | 
|  | struct v4l2_mbus_framefmt *fmt = | 
|  | v4l2_subdev_get_try_format(subdev, sd_state, | 
|  | ssd->sink_pad); | 
|  |  | 
|  | sink_fmt.left = 0; | 
|  | sink_fmt.top = 0; | 
|  | sink_fmt.width = fmt->width; | 
|  | sink_fmt.height = fmt->height; | 
|  | } | 
|  |  | 
|  | switch (sel->target) { | 
|  | case V4L2_SEL_TGT_CROP_BOUNDS: | 
|  | case V4L2_SEL_TGT_NATIVE_SIZE: | 
|  | if (ssd == sensor->pixel_array) | 
|  | ccs_get_native_size(ssd, &sel->r); | 
|  | else if (sel->pad == ssd->sink_pad) | 
|  | sel->r = sink_fmt; | 
|  | else | 
|  | sel->r = *comp; | 
|  | break; | 
|  | case V4L2_SEL_TGT_CROP: | 
|  | case V4L2_SEL_TGT_COMPOSE_BOUNDS: | 
|  | sel->r = *crops[sel->pad]; | 
|  | break; | 
|  | case V4L2_SEL_TGT_COMPOSE: | 
|  | sel->r = *comp; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ccs_get_selection(struct v4l2_subdev *subdev, | 
|  | struct v4l2_subdev_state *sd_state, | 
|  | struct v4l2_subdev_selection *sel) | 
|  | { | 
|  | struct ccs_sensor *sensor = to_ccs_sensor(subdev); | 
|  | int rval; | 
|  |  | 
|  | mutex_lock(&sensor->mutex); | 
|  | rval = __ccs_get_selection(subdev, sd_state, sel); | 
|  | mutex_unlock(&sensor->mutex); | 
|  |  | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | static int ccs_set_selection(struct v4l2_subdev *subdev, | 
|  | struct v4l2_subdev_state *sd_state, | 
|  | struct v4l2_subdev_selection *sel) | 
|  | { | 
|  | struct ccs_sensor *sensor = to_ccs_sensor(subdev); | 
|  | int ret; | 
|  |  | 
|  | ret = __ccs_sel_supported(subdev, sel); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | mutex_lock(&sensor->mutex); | 
|  |  | 
|  | sel->r.left = max(0, sel->r.left & ~1); | 
|  | sel->r.top = max(0, sel->r.top & ~1); | 
|  | sel->r.width = CCS_ALIGN_DIM(sel->r.width, sel->flags); | 
|  | sel->r.height =	CCS_ALIGN_DIM(sel->r.height, sel->flags); | 
|  |  | 
|  | sel->r.width = max_t(unsigned int, CCS_LIM(sensor, MIN_X_OUTPUT_SIZE), | 
|  | sel->r.width); | 
|  | sel->r.height = max_t(unsigned int, CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE), | 
|  | sel->r.height); | 
|  |  | 
|  | switch (sel->target) { | 
|  | case V4L2_SEL_TGT_CROP: | 
|  | ret = ccs_set_crop(subdev, sd_state, sel); | 
|  | break; | 
|  | case V4L2_SEL_TGT_COMPOSE: | 
|  | ret = ccs_set_compose(subdev, sd_state, sel); | 
|  | break; | 
|  | default: | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&sensor->mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ccs_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames) | 
|  | { | 
|  | struct ccs_sensor *sensor = to_ccs_sensor(subdev); | 
|  |  | 
|  | *frames = sensor->frame_skip; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ccs_get_skip_top_lines(struct v4l2_subdev *subdev, u32 *lines) | 
|  | { | 
|  | struct ccs_sensor *sensor = to_ccs_sensor(subdev); | 
|  |  | 
|  | *lines = sensor->image_start; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* ----------------------------------------------------------------------------- | 
|  | * sysfs attributes | 
|  | */ | 
|  |  | 
|  | static ssize_t | 
|  | nvm_show(struct device *dev, struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev)); | 
|  | struct i2c_client *client = v4l2_get_subdevdata(subdev); | 
|  | struct ccs_sensor *sensor = to_ccs_sensor(subdev); | 
|  | int rval; | 
|  |  | 
|  | if (!sensor->dev_init_done) | 
|  | return -EBUSY; | 
|  |  | 
|  | rval = ccs_pm_get_init(sensor); | 
|  | if (rval < 0) | 
|  | return -ENODEV; | 
|  |  | 
|  | rval = ccs_read_nvm(sensor, buf, PAGE_SIZE); | 
|  | if (rval < 0) { | 
|  | pm_runtime_put(&client->dev); | 
|  | dev_err(&client->dev, "nvm read failed\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | pm_runtime_mark_last_busy(&client->dev); | 
|  | pm_runtime_put_autosuspend(&client->dev); | 
|  |  | 
|  | /* | 
|  | * NVM is still way below a PAGE_SIZE, so we can safely | 
|  | * assume this for now. | 
|  | */ | 
|  | return rval; | 
|  | } | 
|  | static DEVICE_ATTR_RO(nvm); | 
|  |  | 
|  | static ssize_t | 
|  | ident_show(struct device *dev, struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev)); | 
|  | struct ccs_sensor *sensor = to_ccs_sensor(subdev); | 
|  | struct ccs_module_info *minfo = &sensor->minfo; | 
|  |  | 
|  | if (minfo->mipi_manufacturer_id) | 
|  | return snprintf(buf, PAGE_SIZE, "%4.4x%4.4x%2.2x\n", | 
|  | minfo->mipi_manufacturer_id, minfo->model_id, | 
|  | minfo->revision_number) + 1; | 
|  | else | 
|  | return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n", | 
|  | minfo->smia_manufacturer_id, minfo->model_id, | 
|  | minfo->revision_number) + 1; | 
|  | } | 
|  | static DEVICE_ATTR_RO(ident); | 
|  |  | 
|  | /* ----------------------------------------------------------------------------- | 
|  | * V4L2 subdev core operations | 
|  | */ | 
|  |  | 
|  | static int ccs_identify_module(struct ccs_sensor *sensor) | 
|  | { | 
|  | struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); | 
|  | struct ccs_module_info *minfo = &sensor->minfo; | 
|  | unsigned int i; | 
|  | u32 rev; | 
|  | int rval = 0; | 
|  |  | 
|  | /* Module info */ | 
|  | rval = ccs_read(sensor, MODULE_MANUFACTURER_ID, | 
|  | &minfo->mipi_manufacturer_id); | 
|  | if (!rval && !minfo->mipi_manufacturer_id) | 
|  | rval = ccs_read_addr_8only(sensor, | 
|  | SMIAPP_REG_U8_MANUFACTURER_ID, | 
|  | &minfo->smia_manufacturer_id); | 
|  | if (!rval) | 
|  | rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_MODEL_ID, | 
|  | &minfo->model_id); | 
|  | if (!rval) | 
|  | rval = ccs_read_addr_8only(sensor, | 
|  | CCS_R_MODULE_REVISION_NUMBER_MAJOR, | 
|  | &rev); | 
|  | if (!rval) { | 
|  | rval = ccs_read_addr_8only(sensor, | 
|  | CCS_R_MODULE_REVISION_NUMBER_MINOR, | 
|  | &minfo->revision_number); | 
|  | minfo->revision_number |= rev << 8; | 
|  | } | 
|  | if (!rval) | 
|  | rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_YEAR, | 
|  | &minfo->module_year); | 
|  | if (!rval) | 
|  | rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_MONTH, | 
|  | &minfo->module_month); | 
|  | if (!rval) | 
|  | rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_DAY, | 
|  | &minfo->module_day); | 
|  |  | 
|  | /* Sensor info */ | 
|  | if (!rval) | 
|  | rval = ccs_read(sensor, SENSOR_MANUFACTURER_ID, | 
|  | &minfo->sensor_mipi_manufacturer_id); | 
|  | if (!rval && !minfo->sensor_mipi_manufacturer_id) | 
|  | rval = ccs_read_addr_8only(sensor, | 
|  | CCS_R_SENSOR_MANUFACTURER_ID, | 
|  | &minfo->sensor_smia_manufacturer_id); | 
|  | if (!rval) | 
|  | rval = ccs_read_addr_8only(sensor, | 
|  | CCS_R_SENSOR_MODEL_ID, | 
|  | &minfo->sensor_model_id); | 
|  | if (!rval) | 
|  | rval = ccs_read_addr_8only(sensor, | 
|  | CCS_R_SENSOR_REVISION_NUMBER, | 
|  | &minfo->sensor_revision_number); | 
|  | if (!rval) | 
|  | rval = ccs_read_addr_8only(sensor, | 
|  | CCS_R_SENSOR_FIRMWARE_VERSION, | 
|  | &minfo->sensor_firmware_version); | 
|  |  | 
|  | /* SMIA */ | 
|  | if (!rval) | 
|  | rval = ccs_read(sensor, MIPI_CCS_VERSION, &minfo->ccs_version); | 
|  | if (!rval && !minfo->ccs_version) | 
|  | rval = ccs_read_addr_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION, | 
|  | &minfo->smia_version); | 
|  | if (!rval && !minfo->ccs_version) | 
|  | rval = ccs_read_addr_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION, | 
|  | &minfo->smiapp_version); | 
|  |  | 
|  | if (rval) { | 
|  | dev_err(&client->dev, "sensor detection failed\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | if (minfo->mipi_manufacturer_id) | 
|  | dev_dbg(&client->dev, "MIPI CCS module 0x%4.4x-0x%4.4x\n", | 
|  | minfo->mipi_manufacturer_id, minfo->model_id); | 
|  | else | 
|  | dev_dbg(&client->dev, "SMIA module 0x%2.2x-0x%4.4x\n", | 
|  | minfo->smia_manufacturer_id, minfo->model_id); | 
|  |  | 
|  | dev_dbg(&client->dev, | 
|  | "module revision 0x%4.4x date %2.2d-%2.2d-%2.2d\n", | 
|  | minfo->revision_number, minfo->module_year, minfo->module_month, | 
|  | minfo->module_day); | 
|  |  | 
|  | if (minfo->sensor_mipi_manufacturer_id) | 
|  | dev_dbg(&client->dev, "MIPI CCS sensor 0x%4.4x-0x%4.4x\n", | 
|  | minfo->sensor_mipi_manufacturer_id, | 
|  | minfo->sensor_model_id); | 
|  | else | 
|  | dev_dbg(&client->dev, "SMIA sensor 0x%2.2x-0x%4.4x\n", | 
|  | minfo->sensor_smia_manufacturer_id, | 
|  | minfo->sensor_model_id); | 
|  |  | 
|  | dev_dbg(&client->dev, | 
|  | "sensor revision 0x%2.2x firmware version 0x%2.2x\n", | 
|  | minfo->sensor_revision_number, minfo->sensor_firmware_version); | 
|  |  | 
|  | if (minfo->ccs_version) { | 
|  | dev_dbg(&client->dev, "MIPI CCS version %u.%u", | 
|  | (minfo->ccs_version & CCS_MIPI_CCS_VERSION_MAJOR_MASK) | 
|  | >> CCS_MIPI_CCS_VERSION_MAJOR_SHIFT, | 
|  | (minfo->ccs_version & CCS_MIPI_CCS_VERSION_MINOR_MASK)); | 
|  | minfo->name = CCS_NAME; | 
|  | } else { | 
|  | dev_dbg(&client->dev, | 
|  | "smia version %2.2d smiapp version %2.2d\n", | 
|  | minfo->smia_version, minfo->smiapp_version); | 
|  | minfo->name = SMIAPP_NAME; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some modules have bad data in the lvalues below. Hope the | 
|  | * rvalues have better stuff. The lvalues are module | 
|  | * parameters whereas the rvalues are sensor parameters. | 
|  | */ | 
|  | if (minfo->sensor_smia_manufacturer_id && | 
|  | !minfo->smia_manufacturer_id && !minfo->model_id) { | 
|  | minfo->smia_manufacturer_id = | 
|  | minfo->sensor_smia_manufacturer_id; | 
|  | minfo->model_id = minfo->sensor_model_id; | 
|  | minfo->revision_number = minfo->sensor_revision_number; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(ccs_module_idents); i++) { | 
|  | if (ccs_module_idents[i].mipi_manufacturer_id && | 
|  | ccs_module_idents[i].mipi_manufacturer_id | 
|  | != minfo->mipi_manufacturer_id) | 
|  | continue; | 
|  | if (ccs_module_idents[i].smia_manufacturer_id && | 
|  | ccs_module_idents[i].smia_manufacturer_id | 
|  | != minfo->smia_manufacturer_id) | 
|  | continue; | 
|  | if (ccs_module_idents[i].model_id != minfo->model_id) | 
|  | continue; | 
|  | if (ccs_module_idents[i].flags | 
|  | & CCS_MODULE_IDENT_FLAG_REV_LE) { | 
|  | if (ccs_module_idents[i].revision_number_major | 
|  | < (minfo->revision_number >> 8)) | 
|  | continue; | 
|  | } else { | 
|  | if (ccs_module_idents[i].revision_number_major | 
|  | != (minfo->revision_number >> 8)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | minfo->name = ccs_module_idents[i].name; | 
|  | minfo->quirk = ccs_module_idents[i].quirk; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (i >= ARRAY_SIZE(ccs_module_idents)) | 
|  | dev_warn(&client->dev, | 
|  | "no quirks for this module; let's hope it's fully compliant\n"); | 
|  |  | 
|  | dev_dbg(&client->dev, "the sensor is called %s\n", minfo->name); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct v4l2_subdev_ops ccs_ops; | 
|  | static const struct v4l2_subdev_internal_ops ccs_internal_ops; | 
|  | static const struct media_entity_operations ccs_entity_ops; | 
|  |  | 
|  | static int ccs_register_subdev(struct ccs_sensor *sensor, | 
|  | struct ccs_subdev *ssd, | 
|  | struct ccs_subdev *sink_ssd, | 
|  | u16 source_pad, u16 sink_pad, u32 link_flags) | 
|  | { | 
|  | struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); | 
|  | int rval; | 
|  |  | 
|  | if (!sink_ssd) | 
|  | return 0; | 
|  |  | 
|  | rval = media_entity_pads_init(&ssd->sd.entity, ssd->npads, ssd->pads); | 
|  | if (rval) { | 
|  | dev_err(&client->dev, "media_entity_pads_init failed\n"); | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev, &ssd->sd); | 
|  | if (rval) { | 
|  | dev_err(&client->dev, "v4l2_device_register_subdev failed\n"); | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | rval = media_create_pad_link(&ssd->sd.entity, source_pad, | 
|  | &sink_ssd->sd.entity, sink_pad, | 
|  | link_flags); | 
|  | if (rval) { | 
|  | dev_err(&client->dev, "media_create_pad_link failed\n"); | 
|  | v4l2_device_unregister_subdev(&ssd->sd); | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void ccs_unregistered(struct v4l2_subdev *subdev) | 
|  | { | 
|  | struct ccs_sensor *sensor = to_ccs_sensor(subdev); | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 1; i < sensor->ssds_used; i++) | 
|  | v4l2_device_unregister_subdev(&sensor->ssds[i].sd); | 
|  | } | 
|  |  | 
|  | static int ccs_registered(struct v4l2_subdev *subdev) | 
|  | { | 
|  | struct ccs_sensor *sensor = to_ccs_sensor(subdev); | 
|  | int rval; | 
|  |  | 
|  | if (sensor->scaler) { | 
|  | rval = ccs_register_subdev(sensor, sensor->binner, | 
|  | sensor->scaler, | 
|  | CCS_PAD_SRC, CCS_PAD_SINK, | 
|  | MEDIA_LNK_FL_ENABLED | | 
|  | MEDIA_LNK_FL_IMMUTABLE); | 
|  | if (rval < 0) | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | rval = ccs_register_subdev(sensor, sensor->pixel_array, sensor->binner, | 
|  | CCS_PA_PAD_SRC, CCS_PAD_SINK, | 
|  | MEDIA_LNK_FL_ENABLED | | 
|  | MEDIA_LNK_FL_IMMUTABLE); | 
|  | if (rval) | 
|  | goto out_err; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_err: | 
|  | ccs_unregistered(subdev); | 
|  |  | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | static void ccs_cleanup(struct ccs_sensor *sensor) | 
|  | { | 
|  | struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); | 
|  |  | 
|  | device_remove_file(&client->dev, &dev_attr_nvm); | 
|  | device_remove_file(&client->dev, &dev_attr_ident); | 
|  |  | 
|  | ccs_free_controls(sensor); | 
|  | } | 
|  |  | 
|  | static void ccs_create_subdev(struct ccs_sensor *sensor, | 
|  | struct ccs_subdev *ssd, const char *name, | 
|  | unsigned short num_pads, u32 function) | 
|  | { | 
|  | struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); | 
|  |  | 
|  | if (!ssd) | 
|  | return; | 
|  |  | 
|  | if (ssd != sensor->src) | 
|  | v4l2_subdev_init(&ssd->sd, &ccs_ops); | 
|  |  | 
|  | ssd->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; | 
|  | ssd->sd.entity.function = function; | 
|  | ssd->sensor = sensor; | 
|  |  | 
|  | ssd->npads = num_pads; | 
|  | ssd->source_pad = num_pads - 1; | 
|  |  | 
|  | v4l2_i2c_subdev_set_name(&ssd->sd, client, sensor->minfo.name, name); | 
|  |  | 
|  | ccs_get_native_size(ssd, &ssd->sink_fmt); | 
|  |  | 
|  | ssd->compose.width = ssd->sink_fmt.width; | 
|  | ssd->compose.height = ssd->sink_fmt.height; | 
|  | ssd->crop[ssd->source_pad] = ssd->compose; | 
|  | ssd->pads[ssd->source_pad].flags = MEDIA_PAD_FL_SOURCE; | 
|  | if (ssd != sensor->pixel_array) { | 
|  | ssd->crop[ssd->sink_pad] = ssd->compose; | 
|  | ssd->pads[ssd->sink_pad].flags = MEDIA_PAD_FL_SINK; | 
|  | } | 
|  |  | 
|  | ssd->sd.entity.ops = &ccs_entity_ops; | 
|  |  | 
|  | if (ssd == sensor->src) | 
|  | return; | 
|  |  | 
|  | ssd->sd.internal_ops = &ccs_internal_ops; | 
|  | ssd->sd.owner = THIS_MODULE; | 
|  | ssd->sd.dev = &client->dev; | 
|  | v4l2_set_subdevdata(&ssd->sd, client); | 
|  | } | 
|  |  | 
|  | static int ccs_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh) | 
|  | { | 
|  | struct ccs_subdev *ssd = to_ccs_subdev(sd); | 
|  | struct ccs_sensor *sensor = ssd->sensor; | 
|  | unsigned int i; | 
|  |  | 
|  | mutex_lock(&sensor->mutex); | 
|  |  | 
|  | for (i = 0; i < ssd->npads; i++) { | 
|  | struct v4l2_mbus_framefmt *try_fmt = | 
|  | v4l2_subdev_get_try_format(sd, fh->state, i); | 
|  | struct v4l2_rect *try_crop = | 
|  | v4l2_subdev_get_try_crop(sd, fh->state, i); | 
|  | struct v4l2_rect *try_comp; | 
|  |  | 
|  | ccs_get_native_size(ssd, try_crop); | 
|  |  | 
|  | try_fmt->width = try_crop->width; | 
|  | try_fmt->height = try_crop->height; | 
|  | try_fmt->code = sensor->internal_csi_format->code; | 
|  | try_fmt->field = V4L2_FIELD_NONE; | 
|  |  | 
|  | if (ssd == sensor->pixel_array) | 
|  | continue; | 
|  |  | 
|  | try_comp = v4l2_subdev_get_try_compose(sd, fh->state, i); | 
|  | *try_comp = *try_crop; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&sensor->mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct v4l2_subdev_video_ops ccs_video_ops = { | 
|  | .s_stream = ccs_set_stream, | 
|  | .pre_streamon = ccs_pre_streamon, | 
|  | .post_streamoff = ccs_post_streamoff, | 
|  | }; | 
|  |  | 
|  | static const struct v4l2_subdev_pad_ops ccs_pad_ops = { | 
|  | .enum_mbus_code = ccs_enum_mbus_code, | 
|  | .get_fmt = ccs_get_format, | 
|  | .set_fmt = ccs_set_format, | 
|  | .get_selection = ccs_get_selection, | 
|  | .set_selection = ccs_set_selection, | 
|  | }; | 
|  |  | 
|  | static const struct v4l2_subdev_sensor_ops ccs_sensor_ops = { | 
|  | .g_skip_frames = ccs_get_skip_frames, | 
|  | .g_skip_top_lines = ccs_get_skip_top_lines, | 
|  | }; | 
|  |  | 
|  | static const struct v4l2_subdev_ops ccs_ops = { | 
|  | .video = &ccs_video_ops, | 
|  | .pad = &ccs_pad_ops, | 
|  | .sensor = &ccs_sensor_ops, | 
|  | }; | 
|  |  | 
|  | static const struct media_entity_operations ccs_entity_ops = { | 
|  | .link_validate = v4l2_subdev_link_validate, | 
|  | }; | 
|  |  | 
|  | static const struct v4l2_subdev_internal_ops ccs_internal_src_ops = { | 
|  | .registered = ccs_registered, | 
|  | .unregistered = ccs_unregistered, | 
|  | .open = ccs_open, | 
|  | }; | 
|  |  | 
|  | static const struct v4l2_subdev_internal_ops ccs_internal_ops = { | 
|  | .open = ccs_open, | 
|  | }; | 
|  |  | 
|  | /* ----------------------------------------------------------------------------- | 
|  | * I2C Driver | 
|  | */ | 
|  |  | 
|  | static int __maybe_unused ccs_suspend(struct device *dev) | 
|  | { | 
|  | struct i2c_client *client = to_i2c_client(dev); | 
|  | struct v4l2_subdev *subdev = i2c_get_clientdata(client); | 
|  | struct ccs_sensor *sensor = to_ccs_sensor(subdev); | 
|  | bool streaming = sensor->streaming; | 
|  | int rval; | 
|  |  | 
|  | rval = pm_runtime_resume_and_get(dev); | 
|  | if (rval < 0) | 
|  | return rval; | 
|  |  | 
|  | if (sensor->streaming) | 
|  | ccs_stop_streaming(sensor); | 
|  |  | 
|  | /* save state for resume */ | 
|  | sensor->streaming = streaming; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __maybe_unused ccs_resume(struct device *dev) | 
|  | { | 
|  | struct i2c_client *client = to_i2c_client(dev); | 
|  | struct v4l2_subdev *subdev = i2c_get_clientdata(client); | 
|  | struct ccs_sensor *sensor = to_ccs_sensor(subdev); | 
|  | int rval = 0; | 
|  |  | 
|  | pm_runtime_put(dev); | 
|  |  | 
|  | if (sensor->streaming) | 
|  | rval = ccs_start_streaming(sensor); | 
|  |  | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | static int ccs_get_hwconfig(struct ccs_sensor *sensor, struct device *dev) | 
|  | { | 
|  | struct ccs_hwconfig *hwcfg = &sensor->hwcfg; | 
|  | struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = V4L2_MBUS_UNKNOWN }; | 
|  | struct fwnode_handle *ep; | 
|  | struct fwnode_handle *fwnode = dev_fwnode(dev); | 
|  | u32 rotation; | 
|  | int i; | 
|  | int rval; | 
|  |  | 
|  | ep = fwnode_graph_get_endpoint_by_id(fwnode, 0, 0, | 
|  | FWNODE_GRAPH_ENDPOINT_NEXT); | 
|  | if (!ep) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* | 
|  | * Note that we do need to rely on detecting the bus type between CSI-2 | 
|  | * D-PHY and CCP2 as the old bindings did not require it. | 
|  | */ | 
|  | rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg); | 
|  | if (rval) | 
|  | goto out_err; | 
|  |  | 
|  | switch (bus_cfg.bus_type) { | 
|  | case V4L2_MBUS_CSI2_DPHY: | 
|  | hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_DPHY; | 
|  | hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes; | 
|  | break; | 
|  | case V4L2_MBUS_CSI2_CPHY: | 
|  | hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_CPHY; | 
|  | hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes; | 
|  | break; | 
|  | case V4L2_MBUS_CSI1: | 
|  | case V4L2_MBUS_CCP2: | 
|  | hwcfg->csi_signalling_mode = (bus_cfg.bus.mipi_csi1.strobe) ? | 
|  | SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_STROBE : | 
|  | SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_CLOCK; | 
|  | hwcfg->lanes = 1; | 
|  | break; | 
|  | default: | 
|  | dev_err(dev, "unsupported bus %u\n", bus_cfg.bus_type); | 
|  | rval = -EINVAL; | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | dev_dbg(dev, "lanes %u\n", hwcfg->lanes); | 
|  |  | 
|  | rval = fwnode_property_read_u32(fwnode, "rotation", &rotation); | 
|  | if (!rval) { | 
|  | switch (rotation) { | 
|  | case 180: | 
|  | hwcfg->module_board_orient = | 
|  | CCS_MODULE_BOARD_ORIENT_180; | 
|  | fallthrough; | 
|  | case 0: | 
|  | break; | 
|  | default: | 
|  | dev_err(dev, "invalid rotation %u\n", rotation); | 
|  | rval = -EINVAL; | 
|  | goto out_err; | 
|  | } | 
|  | } | 
|  |  | 
|  | rval = fwnode_property_read_u32(dev_fwnode(dev), "clock-frequency", | 
|  | &hwcfg->ext_clk); | 
|  | if (rval) | 
|  | dev_info(dev, "can't get clock-frequency\n"); | 
|  |  | 
|  | dev_dbg(dev, "clk %d, mode %d\n", hwcfg->ext_clk, | 
|  | hwcfg->csi_signalling_mode); | 
|  |  | 
|  | if (!bus_cfg.nr_of_link_frequencies) { | 
|  | dev_warn(dev, "no link frequencies defined\n"); | 
|  | rval = -EINVAL; | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | hwcfg->op_sys_clock = devm_kcalloc( | 
|  | dev, bus_cfg.nr_of_link_frequencies + 1 /* guardian */, | 
|  | sizeof(*hwcfg->op_sys_clock), GFP_KERNEL); | 
|  | if (!hwcfg->op_sys_clock) { | 
|  | rval = -ENOMEM; | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < bus_cfg.nr_of_link_frequencies; i++) { | 
|  | hwcfg->op_sys_clock[i] = bus_cfg.link_frequencies[i]; | 
|  | dev_dbg(dev, "freq %d: %lld\n", i, hwcfg->op_sys_clock[i]); | 
|  | } | 
|  |  | 
|  | v4l2_fwnode_endpoint_free(&bus_cfg); | 
|  | fwnode_handle_put(ep); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_err: | 
|  | v4l2_fwnode_endpoint_free(&bus_cfg); | 
|  | fwnode_handle_put(ep); | 
|  |  | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | static int ccs_probe(struct i2c_client *client) | 
|  | { | 
|  | struct ccs_sensor *sensor; | 
|  | const struct firmware *fw; | 
|  | char filename[40]; | 
|  | unsigned int i; | 
|  | int rval; | 
|  |  | 
|  | sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL); | 
|  | if (sensor == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | rval = ccs_get_hwconfig(sensor, &client->dev); | 
|  | if (rval) | 
|  | return rval; | 
|  |  | 
|  | sensor->src = &sensor->ssds[sensor->ssds_used]; | 
|  |  | 
|  | v4l2_i2c_subdev_init(&sensor->src->sd, client, &ccs_ops); | 
|  | sensor->src->sd.internal_ops = &ccs_internal_src_ops; | 
|  |  | 
|  | sensor->regulators = devm_kcalloc(&client->dev, | 
|  | ARRAY_SIZE(ccs_regulators), | 
|  | sizeof(*sensor->regulators), | 
|  | GFP_KERNEL); | 
|  | if (!sensor->regulators) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(ccs_regulators); i++) | 
|  | sensor->regulators[i].supply = ccs_regulators[i]; | 
|  |  | 
|  | rval = devm_regulator_bulk_get(&client->dev, ARRAY_SIZE(ccs_regulators), | 
|  | sensor->regulators); | 
|  | if (rval) { | 
|  | dev_err(&client->dev, "could not get regulators\n"); | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | sensor->ext_clk = devm_clk_get(&client->dev, NULL); | 
|  | if (PTR_ERR(sensor->ext_clk) == -ENOENT) { | 
|  | dev_info(&client->dev, "no clock defined, continuing...\n"); | 
|  | sensor->ext_clk = NULL; | 
|  | } else if (IS_ERR(sensor->ext_clk)) { | 
|  | dev_err(&client->dev, "could not get clock (%ld)\n", | 
|  | PTR_ERR(sensor->ext_clk)); | 
|  | return -EPROBE_DEFER; | 
|  | } | 
|  |  | 
|  | if (sensor->ext_clk) { | 
|  | if (sensor->hwcfg.ext_clk) { | 
|  | unsigned long rate; | 
|  |  | 
|  | rval = clk_set_rate(sensor->ext_clk, | 
|  | sensor->hwcfg.ext_clk); | 
|  | if (rval < 0) { | 
|  | dev_err(&client->dev, | 
|  | "unable to set clock freq to %u\n", | 
|  | sensor->hwcfg.ext_clk); | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | rate = clk_get_rate(sensor->ext_clk); | 
|  | if (rate != sensor->hwcfg.ext_clk) { | 
|  | dev_err(&client->dev, | 
|  | "can't set clock freq, asked for %u but got %lu\n", | 
|  | sensor->hwcfg.ext_clk, rate); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else { | 
|  | sensor->hwcfg.ext_clk = clk_get_rate(sensor->ext_clk); | 
|  | dev_dbg(&client->dev, "obtained clock freq %u\n", | 
|  | sensor->hwcfg.ext_clk); | 
|  | } | 
|  | } else if (sensor->hwcfg.ext_clk) { | 
|  | dev_dbg(&client->dev, "assuming clock freq %u\n", | 
|  | sensor->hwcfg.ext_clk); | 
|  | } else { | 
|  | dev_err(&client->dev, "unable to obtain clock freq\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!sensor->hwcfg.ext_clk) { | 
|  | dev_err(&client->dev, "cannot work with xclk frequency 0\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | sensor->reset = devm_gpiod_get_optional(&client->dev, "reset", | 
|  | GPIOD_OUT_HIGH); | 
|  | if (IS_ERR(sensor->reset)) | 
|  | return PTR_ERR(sensor->reset); | 
|  | /* Support old users that may have used "xshutdown" property. */ | 
|  | if (!sensor->reset) | 
|  | sensor->xshutdown = devm_gpiod_get_optional(&client->dev, | 
|  | "xshutdown", | 
|  | GPIOD_OUT_LOW); | 
|  | if (IS_ERR(sensor->xshutdown)) | 
|  | return PTR_ERR(sensor->xshutdown); | 
|  |  | 
|  | rval = ccs_power_on(&client->dev); | 
|  | if (rval < 0) | 
|  | return rval; | 
|  |  | 
|  | mutex_init(&sensor->mutex); | 
|  |  | 
|  | rval = ccs_identify_module(sensor); | 
|  | if (rval) { | 
|  | rval = -ENODEV; | 
|  | goto out_power_off; | 
|  | } | 
|  |  | 
|  | rval = snprintf(filename, sizeof(filename), | 
|  | "ccs/ccs-sensor-%4.4x-%4.4x-%4.4x.fw", | 
|  | sensor->minfo.sensor_mipi_manufacturer_id, | 
|  | sensor->minfo.sensor_model_id, | 
|  | sensor->minfo.sensor_revision_number); | 
|  | if (rval >= sizeof(filename)) { | 
|  | rval = -ENOMEM; | 
|  | goto out_power_off; | 
|  | } | 
|  |  | 
|  | rval = request_firmware(&fw, filename, &client->dev); | 
|  | if (!rval) { | 
|  | ccs_data_parse(&sensor->sdata, fw->data, fw->size, &client->dev, | 
|  | true); | 
|  | release_firmware(fw); | 
|  | } | 
|  |  | 
|  | rval = snprintf(filename, sizeof(filename), | 
|  | "ccs/ccs-module-%4.4x-%4.4x-%4.4x.fw", | 
|  | sensor->minfo.mipi_manufacturer_id, | 
|  | sensor->minfo.model_id, | 
|  | sensor->minfo.revision_number); | 
|  | if (rval >= sizeof(filename)) { | 
|  | rval = -ENOMEM; | 
|  | goto out_release_sdata; | 
|  | } | 
|  |  | 
|  | rval = request_firmware(&fw, filename, &client->dev); | 
|  | if (!rval) { | 
|  | ccs_data_parse(&sensor->mdata, fw->data, fw->size, &client->dev, | 
|  | true); | 
|  | release_firmware(fw); | 
|  | } | 
|  |  | 
|  | rval = ccs_read_all_limits(sensor); | 
|  | if (rval) | 
|  | goto out_release_mdata; | 
|  |  | 
|  | rval = ccs_read_frame_fmt(sensor); | 
|  | if (rval) { | 
|  | rval = -ENODEV; | 
|  | goto out_free_ccs_limits; | 
|  | } | 
|  |  | 
|  | rval = ccs_update_phy_ctrl(sensor); | 
|  | if (rval < 0) | 
|  | goto out_free_ccs_limits; | 
|  |  | 
|  | /* | 
|  | * Handle Sensor Module orientation on the board. | 
|  | * | 
|  | * The application of H-FLIP and V-FLIP on the sensor is modified by | 
|  | * the sensor orientation on the board. | 
|  | * | 
|  | * For CCS_BOARD_SENSOR_ORIENT_180 the default behaviour is to set | 
|  | * both H-FLIP and V-FLIP for normal operation which also implies | 
|  | * that a set/unset operation for user space HFLIP and VFLIP v4l2 | 
|  | * controls will need to be internally inverted. | 
|  | * | 
|  | * Rotation also changes the bayer pattern. | 
|  | */ | 
|  | if (sensor->hwcfg.module_board_orient == | 
|  | CCS_MODULE_BOARD_ORIENT_180) | 
|  | sensor->hvflip_inv_mask = | 
|  | CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR | | 
|  | CCS_IMAGE_ORIENTATION_VERTICAL_FLIP; | 
|  |  | 
|  | rval = ccs_call_quirk(sensor, limits); | 
|  | if (rval) { | 
|  | dev_err(&client->dev, "limits quirks failed\n"); | 
|  | goto out_free_ccs_limits; | 
|  | } | 
|  |  | 
|  | if (CCS_LIM(sensor, BINNING_CAPABILITY)) { | 
|  | sensor->nbinning_subtypes = | 
|  | min_t(u8, CCS_LIM(sensor, BINNING_SUB_TYPES), | 
|  | CCS_LIM_BINNING_SUB_TYPE_MAX_N); | 
|  |  | 
|  | for (i = 0; i < sensor->nbinning_subtypes; i++) { | 
|  | sensor->binning_subtypes[i].horizontal = | 
|  | CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) >> | 
|  | CCS_BINNING_SUB_TYPE_COLUMN_SHIFT; | 
|  | sensor->binning_subtypes[i].vertical = | 
|  | CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) & | 
|  | CCS_BINNING_SUB_TYPE_ROW_MASK; | 
|  |  | 
|  | dev_dbg(&client->dev, "binning %xx%x\n", | 
|  | sensor->binning_subtypes[i].horizontal, | 
|  | sensor->binning_subtypes[i].vertical); | 
|  | } | 
|  | } | 
|  | sensor->binning_horizontal = 1; | 
|  | sensor->binning_vertical = 1; | 
|  |  | 
|  | if (device_create_file(&client->dev, &dev_attr_ident) != 0) { | 
|  | dev_err(&client->dev, "sysfs ident entry creation failed\n"); | 
|  | rval = -ENOENT; | 
|  | goto out_free_ccs_limits; | 
|  | } | 
|  |  | 
|  | if (sensor->minfo.smiapp_version && | 
|  | CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) & | 
|  | CCS_DATA_TRANSFER_IF_CAPABILITY_SUPPORTED) { | 
|  | if (device_create_file(&client->dev, &dev_attr_nvm) != 0) { | 
|  | dev_err(&client->dev, "sysfs nvm entry failed\n"); | 
|  | rval = -EBUSY; | 
|  | goto out_cleanup; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV) || | 
|  | !CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV) || | 
|  | !CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV) || | 
|  | !CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV)) { | 
|  | /* No OP clock branch */ | 
|  | sensor->pll.flags |= CCS_PLL_FLAG_NO_OP_CLOCKS; | 
|  | } else if (CCS_LIM(sensor, SCALING_CAPABILITY) | 
|  | != CCS_SCALING_CAPABILITY_NONE || | 
|  | CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY) | 
|  | == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) { | 
|  | /* We have a scaler or digital crop. */ | 
|  | sensor->scaler = &sensor->ssds[sensor->ssds_used]; | 
|  | sensor->ssds_used++; | 
|  | } | 
|  | sensor->binner = &sensor->ssds[sensor->ssds_used]; | 
|  | sensor->ssds_used++; | 
|  | sensor->pixel_array = &sensor->ssds[sensor->ssds_used]; | 
|  | sensor->ssds_used++; | 
|  |  | 
|  | sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN); | 
|  |  | 
|  | /* prepare PLL configuration input values */ | 
|  | sensor->pll.bus_type = CCS_PLL_BUS_TYPE_CSI2_DPHY; | 
|  | sensor->pll.csi2.lanes = sensor->hwcfg.lanes; | 
|  | if (CCS_LIM(sensor, CLOCK_CALCULATION) & | 
|  | CCS_CLOCK_CALCULATION_LANE_SPEED) { | 
|  | sensor->pll.flags |= CCS_PLL_FLAG_LANE_SPEED_MODEL; | 
|  | if (CCS_LIM(sensor, CLOCK_CALCULATION) & | 
|  | CCS_CLOCK_CALCULATION_LINK_DECOUPLED) { | 
|  | sensor->pll.vt_lanes = | 
|  | CCS_LIM(sensor, NUM_OF_VT_LANES) + 1; | 
|  | sensor->pll.op_lanes = | 
|  | CCS_LIM(sensor, NUM_OF_OP_LANES) + 1; | 
|  | sensor->pll.flags |= CCS_PLL_FLAG_LINK_DECOUPLED; | 
|  | } else { | 
|  | sensor->pll.vt_lanes = sensor->pll.csi2.lanes; | 
|  | sensor->pll.op_lanes = sensor->pll.csi2.lanes; | 
|  | } | 
|  | } | 
|  | if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) & | 
|  | CCS_CLOCK_TREE_PLL_CAPABILITY_EXT_DIVIDER) | 
|  | sensor->pll.flags |= CCS_PLL_FLAG_EXT_IP_PLL_DIVIDER; | 
|  | if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) & | 
|  | CCS_CLOCK_TREE_PLL_CAPABILITY_FLEXIBLE_OP_PIX_CLK_DIV) | 
|  | sensor->pll.flags |= CCS_PLL_FLAG_FLEXIBLE_OP_PIX_CLK_DIV; | 
|  | if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) & | 
|  | CCS_FIFO_SUPPORT_CAPABILITY_DERATING) | 
|  | sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING; | 
|  | if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) & | 
|  | CCS_FIFO_SUPPORT_CAPABILITY_DERATING_OVERRATING) | 
|  | sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING | | 
|  | CCS_PLL_FLAG_FIFO_OVERRATING; | 
|  | if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) & | 
|  | CCS_CLOCK_TREE_PLL_CAPABILITY_DUAL_PLL) { | 
|  | if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) & | 
|  | CCS_CLOCK_TREE_PLL_CAPABILITY_SINGLE_PLL) { | 
|  | u32 v; | 
|  |  | 
|  | /* Use sensor default in PLL mode selection */ | 
|  | rval = ccs_read(sensor, PLL_MODE, &v); | 
|  | if (rval) | 
|  | goto out_cleanup; | 
|  |  | 
|  | if (v == CCS_PLL_MODE_DUAL) | 
|  | sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL; | 
|  | } else { | 
|  | sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL; | 
|  | } | 
|  | if (CCS_LIM(sensor, CLOCK_CALCULATION) & | 
|  | CCS_CLOCK_CALCULATION_DUAL_PLL_OP_SYS_DDR) | 
|  | sensor->pll.flags |= CCS_PLL_FLAG_OP_SYS_DDR; | 
|  | if (CCS_LIM(sensor, CLOCK_CALCULATION) & | 
|  | CCS_CLOCK_CALCULATION_DUAL_PLL_OP_PIX_DDR) | 
|  | sensor->pll.flags |= CCS_PLL_FLAG_OP_PIX_DDR; | 
|  | } | 
|  | sensor->pll.op_bits_per_lane = CCS_LIM(sensor, OP_BITS_PER_LANE); | 
|  | sensor->pll.ext_clk_freq_hz = sensor->hwcfg.ext_clk; | 
|  | sensor->pll.scale_n = CCS_LIM(sensor, SCALER_N_MIN); | 
|  |  | 
|  | ccs_create_subdev(sensor, sensor->scaler, " scaler", 2, | 
|  | MEDIA_ENT_F_PROC_VIDEO_SCALER); | 
|  | ccs_create_subdev(sensor, sensor->binner, " binner", 2, | 
|  | MEDIA_ENT_F_PROC_VIDEO_SCALER); | 
|  | ccs_create_subdev(sensor, sensor->pixel_array, " pixel_array", 1, | 
|  | MEDIA_ENT_F_CAM_SENSOR); | 
|  |  | 
|  | rval = ccs_init_controls(sensor); | 
|  | if (rval < 0) | 
|  | goto out_cleanup; | 
|  |  | 
|  | rval = ccs_call_quirk(sensor, init); | 
|  | if (rval) | 
|  | goto out_cleanup; | 
|  |  | 
|  | rval = ccs_get_mbus_formats(sensor); | 
|  | if (rval) { | 
|  | rval = -ENODEV; | 
|  | goto out_cleanup; | 
|  | } | 
|  |  | 
|  | rval = ccs_init_late_controls(sensor); | 
|  | if (rval) { | 
|  | rval = -ENODEV; | 
|  | goto out_cleanup; | 
|  | } | 
|  |  | 
|  | mutex_lock(&sensor->mutex); | 
|  | rval = ccs_pll_blanking_update(sensor); | 
|  | mutex_unlock(&sensor->mutex); | 
|  | if (rval) { | 
|  | dev_err(&client->dev, "update mode failed\n"); | 
|  | goto out_cleanup; | 
|  | } | 
|  |  | 
|  | sensor->streaming = false; | 
|  | sensor->dev_init_done = true; | 
|  |  | 
|  | rval = media_entity_pads_init(&sensor->src->sd.entity, 2, | 
|  | sensor->src->pads); | 
|  | if (rval < 0) | 
|  | goto out_media_entity_cleanup; | 
|  |  | 
|  | rval = ccs_write_msr_regs(sensor); | 
|  | if (rval) | 
|  | goto out_media_entity_cleanup; | 
|  |  | 
|  | pm_runtime_set_active(&client->dev); | 
|  | pm_runtime_get_noresume(&client->dev); | 
|  | pm_runtime_enable(&client->dev); | 
|  |  | 
|  | rval = v4l2_async_register_subdev_sensor(&sensor->src->sd); | 
|  | if (rval < 0) | 
|  | goto out_disable_runtime_pm; | 
|  |  | 
|  | pm_runtime_set_autosuspend_delay(&client->dev, 1000); | 
|  | pm_runtime_use_autosuspend(&client->dev); | 
|  | pm_runtime_put_autosuspend(&client->dev); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_disable_runtime_pm: | 
|  | pm_runtime_put_noidle(&client->dev); | 
|  | pm_runtime_disable(&client->dev); | 
|  |  | 
|  | out_media_entity_cleanup: | 
|  | media_entity_cleanup(&sensor->src->sd.entity); | 
|  |  | 
|  | out_cleanup: | 
|  | ccs_cleanup(sensor); | 
|  |  | 
|  | out_release_mdata: | 
|  | kvfree(sensor->mdata.backing); | 
|  |  | 
|  | out_release_sdata: | 
|  | kvfree(sensor->sdata.backing); | 
|  |  | 
|  | out_free_ccs_limits: | 
|  | kfree(sensor->ccs_limits); | 
|  |  | 
|  | out_power_off: | 
|  | ccs_power_off(&client->dev); | 
|  | mutex_destroy(&sensor->mutex); | 
|  |  | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | static int ccs_remove(struct i2c_client *client) | 
|  | { | 
|  | struct v4l2_subdev *subdev = i2c_get_clientdata(client); | 
|  | struct ccs_sensor *sensor = to_ccs_sensor(subdev); | 
|  | unsigned int i; | 
|  |  | 
|  | v4l2_async_unregister_subdev(subdev); | 
|  |  | 
|  | pm_runtime_disable(&client->dev); | 
|  | if (!pm_runtime_status_suspended(&client->dev)) | 
|  | ccs_power_off(&client->dev); | 
|  | pm_runtime_set_suspended(&client->dev); | 
|  |  | 
|  | for (i = 0; i < sensor->ssds_used; i++) { | 
|  | v4l2_device_unregister_subdev(&sensor->ssds[i].sd); | 
|  | media_entity_cleanup(&sensor->ssds[i].sd.entity); | 
|  | } | 
|  | ccs_cleanup(sensor); | 
|  | mutex_destroy(&sensor->mutex); | 
|  | kfree(sensor->ccs_limits); | 
|  | kvfree(sensor->sdata.backing); | 
|  | kvfree(sensor->mdata.backing); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct ccs_device smia_device = { | 
|  | .flags = CCS_DEVICE_FLAG_IS_SMIA, | 
|  | }; | 
|  |  | 
|  | static const struct ccs_device ccs_device = {}; | 
|  |  | 
|  | static const struct acpi_device_id ccs_acpi_table[] = { | 
|  | { .id = "MIPI0200", .driver_data = (unsigned long)&ccs_device }, | 
|  | { }, | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(acpi, ccs_acpi_table); | 
|  |  | 
|  | static const struct of_device_id ccs_of_table[] = { | 
|  | { .compatible = "mipi-ccs-1.1", .data = &ccs_device }, | 
|  | { .compatible = "mipi-ccs-1.0", .data = &ccs_device }, | 
|  | { .compatible = "mipi-ccs", .data = &ccs_device }, | 
|  | { .compatible = "nokia,smia", .data = &smia_device }, | 
|  | { }, | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, ccs_of_table); | 
|  |  | 
|  | static const struct dev_pm_ops ccs_pm_ops = { | 
|  | SET_SYSTEM_SLEEP_PM_OPS(ccs_suspend, ccs_resume) | 
|  | SET_RUNTIME_PM_OPS(ccs_power_off, ccs_power_on, NULL) | 
|  | }; | 
|  |  | 
|  | static struct i2c_driver ccs_i2c_driver = { | 
|  | .driver	= { | 
|  | .acpi_match_table = ccs_acpi_table, | 
|  | .of_match_table = ccs_of_table, | 
|  | .name = CCS_NAME, | 
|  | .pm = &ccs_pm_ops, | 
|  | }, | 
|  | .probe_new = ccs_probe, | 
|  | .remove	= ccs_remove, | 
|  | }; | 
|  |  | 
|  | static int ccs_module_init(void) | 
|  | { | 
|  | unsigned int i, l; | 
|  |  | 
|  | for (i = 0, l = 0; ccs_limits[i].size && l < CCS_L_LAST; i++) { | 
|  | if (!(ccs_limits[i].flags & CCS_L_FL_SAME_REG)) { | 
|  | ccs_limit_offsets[l + 1].lim = | 
|  | ALIGN(ccs_limit_offsets[l].lim + | 
|  | ccs_limits[i].size, | 
|  | ccs_reg_width(ccs_limits[i + 1].reg)); | 
|  | ccs_limit_offsets[l].info = i; | 
|  | l++; | 
|  | } else { | 
|  | ccs_limit_offsets[l].lim += ccs_limits[i].size; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (WARN_ON(ccs_limits[i].size)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (WARN_ON(l != CCS_L_LAST)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return i2c_register_driver(THIS_MODULE, &ccs_i2c_driver); | 
|  | } | 
|  |  | 
|  | static void ccs_module_cleanup(void) | 
|  | { | 
|  | i2c_del_driver(&ccs_i2c_driver); | 
|  | } | 
|  |  | 
|  | module_init(ccs_module_init); | 
|  | module_exit(ccs_module_cleanup); | 
|  |  | 
|  | MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>"); | 
|  | MODULE_DESCRIPTION("Generic MIPI CCS/SMIA/SMIA++ camera sensor driver"); | 
|  | MODULE_LICENSE("GPL v2"); | 
|  | MODULE_ALIAS("smiapp"); |