| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (c) 2000-2006 Silicon Graphics, Inc. | 
 |  * All Rights Reserved. | 
 |  */ | 
 | #include <linux/iversion.h> | 
 |  | 
 | #include "xfs.h" | 
 | #include "xfs_fs.h" | 
 | #include "xfs_shared.h" | 
 | #include "xfs_format.h" | 
 | #include "xfs_log_format.h" | 
 | #include "xfs_trans_resv.h" | 
 | #include "xfs_mount.h" | 
 | #include "xfs_defer.h" | 
 | #include "xfs_inode.h" | 
 | #include "xfs_dir2.h" | 
 | #include "xfs_attr.h" | 
 | #include "xfs_trans_space.h" | 
 | #include "xfs_trans.h" | 
 | #include "xfs_buf_item.h" | 
 | #include "xfs_inode_item.h" | 
 | #include "xfs_iunlink_item.h" | 
 | #include "xfs_ialloc.h" | 
 | #include "xfs_bmap.h" | 
 | #include "xfs_bmap_util.h" | 
 | #include "xfs_errortag.h" | 
 | #include "xfs_error.h" | 
 | #include "xfs_quota.h" | 
 | #include "xfs_filestream.h" | 
 | #include "xfs_trace.h" | 
 | #include "xfs_icache.h" | 
 | #include "xfs_symlink.h" | 
 | #include "xfs_trans_priv.h" | 
 | #include "xfs_log.h" | 
 | #include "xfs_bmap_btree.h" | 
 | #include "xfs_reflink.h" | 
 | #include "xfs_ag.h" | 
 | #include "xfs_log_priv.h" | 
 |  | 
 | struct kmem_cache *xfs_inode_cache; | 
 |  | 
 | /* | 
 |  * Used in xfs_itruncate_extents().  This is the maximum number of extents | 
 |  * freed from a file in a single transaction. | 
 |  */ | 
 | #define	XFS_ITRUNC_MAX_EXTENTS	2 | 
 |  | 
 | STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); | 
 | STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag, | 
 | 	struct xfs_inode *); | 
 |  | 
 | /* | 
 |  * helper function to extract extent size hint from inode | 
 |  */ | 
 | xfs_extlen_t | 
 | xfs_get_extsz_hint( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	/* | 
 | 	 * No point in aligning allocations if we need to COW to actually | 
 | 	 * write to them. | 
 | 	 */ | 
 | 	if (xfs_is_always_cow_inode(ip)) | 
 | 		return 0; | 
 | 	if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize) | 
 | 		return ip->i_extsize; | 
 | 	if (XFS_IS_REALTIME_INODE(ip)) | 
 | 		return ip->i_mount->m_sb.sb_rextsize; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Helper function to extract CoW extent size hint from inode. | 
 |  * Between the extent size hint and the CoW extent size hint, we | 
 |  * return the greater of the two.  If the value is zero (automatic), | 
 |  * use the default size. | 
 |  */ | 
 | xfs_extlen_t | 
 | xfs_get_cowextsz_hint( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	xfs_extlen_t		a, b; | 
 |  | 
 | 	a = 0; | 
 | 	if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) | 
 | 		a = ip->i_cowextsize; | 
 | 	b = xfs_get_extsz_hint(ip); | 
 |  | 
 | 	a = max(a, b); | 
 | 	if (a == 0) | 
 | 		return XFS_DEFAULT_COWEXTSZ_HINT; | 
 | 	return a; | 
 | } | 
 |  | 
 | /* | 
 |  * These two are wrapper routines around the xfs_ilock() routine used to | 
 |  * centralize some grungy code.  They are used in places that wish to lock the | 
 |  * inode solely for reading the extents.  The reason these places can't just | 
 |  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to | 
 |  * bringing in of the extents from disk for a file in b-tree format.  If the | 
 |  * inode is in b-tree format, then we need to lock the inode exclusively until | 
 |  * the extents are read in.  Locking it exclusively all the time would limit | 
 |  * our parallelism unnecessarily, though.  What we do instead is check to see | 
 |  * if the extents have been read in yet, and only lock the inode exclusively | 
 |  * if they have not. | 
 |  * | 
 |  * The functions return a value which should be given to the corresponding | 
 |  * xfs_iunlock() call. | 
 |  */ | 
 | uint | 
 | xfs_ilock_data_map_shared( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	uint			lock_mode = XFS_ILOCK_SHARED; | 
 |  | 
 | 	if (xfs_need_iread_extents(&ip->i_df)) | 
 | 		lock_mode = XFS_ILOCK_EXCL; | 
 | 	xfs_ilock(ip, lock_mode); | 
 | 	return lock_mode; | 
 | } | 
 |  | 
 | uint | 
 | xfs_ilock_attr_map_shared( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	uint			lock_mode = XFS_ILOCK_SHARED; | 
 |  | 
 | 	if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af)) | 
 | 		lock_mode = XFS_ILOCK_EXCL; | 
 | 	xfs_ilock(ip, lock_mode); | 
 | 	return lock_mode; | 
 | } | 
 |  | 
 | /* | 
 |  * You can't set both SHARED and EXCL for the same lock, | 
 |  * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED, | 
 |  * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values | 
 |  * to set in lock_flags. | 
 |  */ | 
 | static inline void | 
 | xfs_lock_flags_assert( | 
 | 	uint		lock_flags) | 
 | { | 
 | 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != | 
 | 		(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); | 
 | 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != | 
 | 		(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); | 
 | 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != | 
 | 		(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); | 
 | 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); | 
 | 	ASSERT(lock_flags != 0); | 
 | } | 
 |  | 
 | /* | 
 |  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 | 
 |  * multi-reader locks: invalidate_lock and the i_lock.  This routine allows | 
 |  * various combinations of the locks to be obtained. | 
 |  * | 
 |  * The 3 locks should always be ordered so that the IO lock is obtained first, | 
 |  * the mmap lock second and the ilock last in order to prevent deadlock. | 
 |  * | 
 |  * Basic locking order: | 
 |  * | 
 |  * i_rwsem -> invalidate_lock -> page_lock -> i_ilock | 
 |  * | 
 |  * mmap_lock locking order: | 
 |  * | 
 |  * i_rwsem -> page lock -> mmap_lock | 
 |  * mmap_lock -> invalidate_lock -> page_lock | 
 |  * | 
 |  * The difference in mmap_lock locking order mean that we cannot hold the | 
 |  * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths | 
 |  * can fault in pages during copy in/out (for buffered IO) or require the | 
 |  * mmap_lock in get_user_pages() to map the user pages into the kernel address | 
 |  * space for direct IO. Similarly the i_rwsem cannot be taken inside a page | 
 |  * fault because page faults already hold the mmap_lock. | 
 |  * | 
 |  * Hence to serialise fully against both syscall and mmap based IO, we need to | 
 |  * take both the i_rwsem and the invalidate_lock. These locks should *only* be | 
 |  * both taken in places where we need to invalidate the page cache in a race | 
 |  * free manner (e.g. truncate, hole punch and other extent manipulation | 
 |  * functions). | 
 |  */ | 
 | void | 
 | xfs_ilock( | 
 | 	xfs_inode_t		*ip, | 
 | 	uint			lock_flags) | 
 | { | 
 | 	trace_xfs_ilock(ip, lock_flags, _RET_IP_); | 
 |  | 
 | 	xfs_lock_flags_assert(lock_flags); | 
 |  | 
 | 	if (lock_flags & XFS_IOLOCK_EXCL) { | 
 | 		down_write_nested(&VFS_I(ip)->i_rwsem, | 
 | 				  XFS_IOLOCK_DEP(lock_flags)); | 
 | 	} else if (lock_flags & XFS_IOLOCK_SHARED) { | 
 | 		down_read_nested(&VFS_I(ip)->i_rwsem, | 
 | 				 XFS_IOLOCK_DEP(lock_flags)); | 
 | 	} | 
 |  | 
 | 	if (lock_flags & XFS_MMAPLOCK_EXCL) { | 
 | 		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock, | 
 | 				  XFS_MMAPLOCK_DEP(lock_flags)); | 
 | 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) { | 
 | 		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock, | 
 | 				 XFS_MMAPLOCK_DEP(lock_flags)); | 
 | 	} | 
 |  | 
 | 	if (lock_flags & XFS_ILOCK_EXCL) | 
 | 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); | 
 | 	else if (lock_flags & XFS_ILOCK_SHARED) | 
 | 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); | 
 | } | 
 |  | 
 | /* | 
 |  * This is just like xfs_ilock(), except that the caller | 
 |  * is guaranteed not to sleep.  It returns 1 if it gets | 
 |  * the requested locks and 0 otherwise.  If the IO lock is | 
 |  * obtained but the inode lock cannot be, then the IO lock | 
 |  * is dropped before returning. | 
 |  * | 
 |  * ip -- the inode being locked | 
 |  * lock_flags -- this parameter indicates the inode's locks to be | 
 |  *       to be locked.  See the comment for xfs_ilock() for a list | 
 |  *	 of valid values. | 
 |  */ | 
 | int | 
 | xfs_ilock_nowait( | 
 | 	xfs_inode_t		*ip, | 
 | 	uint			lock_flags) | 
 | { | 
 | 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); | 
 |  | 
 | 	xfs_lock_flags_assert(lock_flags); | 
 |  | 
 | 	if (lock_flags & XFS_IOLOCK_EXCL) { | 
 | 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) | 
 | 			goto out; | 
 | 	} else if (lock_flags & XFS_IOLOCK_SHARED) { | 
 | 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	if (lock_flags & XFS_MMAPLOCK_EXCL) { | 
 | 		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) | 
 | 			goto out_undo_iolock; | 
 | 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) { | 
 | 		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) | 
 | 			goto out_undo_iolock; | 
 | 	} | 
 |  | 
 | 	if (lock_flags & XFS_ILOCK_EXCL) { | 
 | 		if (!mrtryupdate(&ip->i_lock)) | 
 | 			goto out_undo_mmaplock; | 
 | 	} else if (lock_flags & XFS_ILOCK_SHARED) { | 
 | 		if (!mrtryaccess(&ip->i_lock)) | 
 | 			goto out_undo_mmaplock; | 
 | 	} | 
 | 	return 1; | 
 |  | 
 | out_undo_mmaplock: | 
 | 	if (lock_flags & XFS_MMAPLOCK_EXCL) | 
 | 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock); | 
 | 	else if (lock_flags & XFS_MMAPLOCK_SHARED) | 
 | 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock); | 
 | out_undo_iolock: | 
 | 	if (lock_flags & XFS_IOLOCK_EXCL) | 
 | 		up_write(&VFS_I(ip)->i_rwsem); | 
 | 	else if (lock_flags & XFS_IOLOCK_SHARED) | 
 | 		up_read(&VFS_I(ip)->i_rwsem); | 
 | out: | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_iunlock() is used to drop the inode locks acquired with | 
 |  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass | 
 |  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so | 
 |  * that we know which locks to drop. | 
 |  * | 
 |  * ip -- the inode being unlocked | 
 |  * lock_flags -- this parameter indicates the inode's locks to be | 
 |  *       to be unlocked.  See the comment for xfs_ilock() for a list | 
 |  *	 of valid values for this parameter. | 
 |  * | 
 |  */ | 
 | void | 
 | xfs_iunlock( | 
 | 	xfs_inode_t		*ip, | 
 | 	uint			lock_flags) | 
 | { | 
 | 	xfs_lock_flags_assert(lock_flags); | 
 |  | 
 | 	if (lock_flags & XFS_IOLOCK_EXCL) | 
 | 		up_write(&VFS_I(ip)->i_rwsem); | 
 | 	else if (lock_flags & XFS_IOLOCK_SHARED) | 
 | 		up_read(&VFS_I(ip)->i_rwsem); | 
 |  | 
 | 	if (lock_flags & XFS_MMAPLOCK_EXCL) | 
 | 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock); | 
 | 	else if (lock_flags & XFS_MMAPLOCK_SHARED) | 
 | 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock); | 
 |  | 
 | 	if (lock_flags & XFS_ILOCK_EXCL) | 
 | 		mrunlock_excl(&ip->i_lock); | 
 | 	else if (lock_flags & XFS_ILOCK_SHARED) | 
 | 		mrunlock_shared(&ip->i_lock); | 
 |  | 
 | 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_); | 
 | } | 
 |  | 
 | /* | 
 |  * give up write locks.  the i/o lock cannot be held nested | 
 |  * if it is being demoted. | 
 |  */ | 
 | void | 
 | xfs_ilock_demote( | 
 | 	xfs_inode_t		*ip, | 
 | 	uint			lock_flags) | 
 | { | 
 | 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); | 
 | 	ASSERT((lock_flags & | 
 | 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); | 
 |  | 
 | 	if (lock_flags & XFS_ILOCK_EXCL) | 
 | 		mrdemote(&ip->i_lock); | 
 | 	if (lock_flags & XFS_MMAPLOCK_EXCL) | 
 | 		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock); | 
 | 	if (lock_flags & XFS_IOLOCK_EXCL) | 
 | 		downgrade_write(&VFS_I(ip)->i_rwsem); | 
 |  | 
 | 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); | 
 | } | 
 |  | 
 | #if defined(DEBUG) || defined(XFS_WARN) | 
 | static inline bool | 
 | __xfs_rwsem_islocked( | 
 | 	struct rw_semaphore	*rwsem, | 
 | 	bool			shared) | 
 | { | 
 | 	if (!debug_locks) | 
 | 		return rwsem_is_locked(rwsem); | 
 |  | 
 | 	if (!shared) | 
 | 		return lockdep_is_held_type(rwsem, 0); | 
 |  | 
 | 	/* | 
 | 	 * We are checking that the lock is held at least in shared | 
 | 	 * mode but don't care that it might be held exclusively | 
 | 	 * (i.e. shared | excl). Hence we check if the lock is held | 
 | 	 * in any mode rather than an explicit shared mode. | 
 | 	 */ | 
 | 	return lockdep_is_held_type(rwsem, -1); | 
 | } | 
 |  | 
 | bool | 
 | xfs_isilocked( | 
 | 	struct xfs_inode	*ip, | 
 | 	uint			lock_flags) | 
 | { | 
 | 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { | 
 | 		if (!(lock_flags & XFS_ILOCK_SHARED)) | 
 | 			return !!ip->i_lock.mr_writer; | 
 | 		return rwsem_is_locked(&ip->i_lock.mr_lock); | 
 | 	} | 
 |  | 
 | 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { | 
 | 		return __xfs_rwsem_islocked(&VFS_I(ip)->i_mapping->invalidate_lock, | 
 | 				(lock_flags & XFS_MMAPLOCK_SHARED)); | 
 | 	} | 
 |  | 
 | 	if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) { | 
 | 		return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem, | 
 | 				(lock_flags & XFS_IOLOCK_SHARED)); | 
 | 	} | 
 |  | 
 | 	ASSERT(0); | 
 | 	return false; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when | 
 |  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined | 
 |  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build | 
 |  * errors and warnings. | 
 |  */ | 
 | #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) | 
 | static bool | 
 | xfs_lockdep_subclass_ok( | 
 | 	int subclass) | 
 | { | 
 | 	return subclass < MAX_LOCKDEP_SUBCLASSES; | 
 | } | 
 | #else | 
 | #define xfs_lockdep_subclass_ok(subclass)	(true) | 
 | #endif | 
 |  | 
 | /* | 
 |  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different | 
 |  * value. This can be called for any type of inode lock combination, including | 
 |  * parent locking. Care must be taken to ensure we don't overrun the subclass | 
 |  * storage fields in the class mask we build. | 
 |  */ | 
 | static inline uint | 
 | xfs_lock_inumorder( | 
 | 	uint	lock_mode, | 
 | 	uint	subclass) | 
 | { | 
 | 	uint	class = 0; | 
 |  | 
 | 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | | 
 | 			      XFS_ILOCK_RTSUM))); | 
 | 	ASSERT(xfs_lockdep_subclass_ok(subclass)); | 
 |  | 
 | 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { | 
 | 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); | 
 | 		class += subclass << XFS_IOLOCK_SHIFT; | 
 | 	} | 
 |  | 
 | 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { | 
 | 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); | 
 | 		class += subclass << XFS_MMAPLOCK_SHIFT; | 
 | 	} | 
 |  | 
 | 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { | 
 | 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); | 
 | 		class += subclass << XFS_ILOCK_SHIFT; | 
 | 	} | 
 |  | 
 | 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; | 
 | } | 
 |  | 
 | /* | 
 |  * The following routine will lock n inodes in exclusive mode.  We assume the | 
 |  * caller calls us with the inodes in i_ino order. | 
 |  * | 
 |  * We need to detect deadlock where an inode that we lock is in the AIL and we | 
 |  * start waiting for another inode that is locked by a thread in a long running | 
 |  * transaction (such as truncate). This can result in deadlock since the long | 
 |  * running trans might need to wait for the inode we just locked in order to | 
 |  * push the tail and free space in the log. | 
 |  * | 
 |  * xfs_lock_inodes() can only be used to lock one type of lock at a time - | 
 |  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we | 
 |  * lock more than one at a time, lockdep will report false positives saying we | 
 |  * have violated locking orders. | 
 |  */ | 
 | static void | 
 | xfs_lock_inodes( | 
 | 	struct xfs_inode	**ips, | 
 | 	int			inodes, | 
 | 	uint			lock_mode) | 
 | { | 
 | 	int			attempts = 0; | 
 | 	uint			i; | 
 | 	int			j; | 
 | 	bool			try_lock; | 
 | 	struct xfs_log_item	*lp; | 
 |  | 
 | 	/* | 
 | 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We | 
 | 	 * support an arbitrary depth of locking here, but absolute limits on | 
 | 	 * inodes depend on the type of locking and the limits placed by | 
 | 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by | 
 | 	 * the asserts. | 
 | 	 */ | 
 | 	ASSERT(ips && inodes >= 2 && inodes <= 5); | 
 | 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | | 
 | 			    XFS_ILOCK_EXCL)); | 
 | 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | | 
 | 			      XFS_ILOCK_SHARED))); | 
 | 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || | 
 | 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); | 
 | 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || | 
 | 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); | 
 |  | 
 | 	if (lock_mode & XFS_IOLOCK_EXCL) { | 
 | 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); | 
 | 	} else if (lock_mode & XFS_MMAPLOCK_EXCL) | 
 | 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); | 
 |  | 
 | again: | 
 | 	try_lock = false; | 
 | 	i = 0; | 
 | 	for (; i < inodes; i++) { | 
 | 		ASSERT(ips[i]); | 
 |  | 
 | 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */ | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * If try_lock is not set yet, make sure all locked inodes are | 
 | 		 * not in the AIL.  If any are, set try_lock to be used later. | 
 | 		 */ | 
 | 		if (!try_lock) { | 
 | 			for (j = (i - 1); j >= 0 && !try_lock; j--) { | 
 | 				lp = &ips[j]->i_itemp->ili_item; | 
 | 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) | 
 | 					try_lock = true; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If any of the previous locks we have locked is in the AIL, | 
 | 		 * we must TRY to get the second and subsequent locks. If | 
 | 		 * we can't get any, we must release all we have | 
 | 		 * and try again. | 
 | 		 */ | 
 | 		if (!try_lock) { | 
 | 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* try_lock means we have an inode locked that is in the AIL. */ | 
 | 		ASSERT(i != 0); | 
 | 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Unlock all previous guys and try again.  xfs_iunlock will try | 
 | 		 * to push the tail if the inode is in the AIL. | 
 | 		 */ | 
 | 		attempts++; | 
 | 		for (j = i - 1; j >= 0; j--) { | 
 | 			/* | 
 | 			 * Check to see if we've already unlocked this one.  Not | 
 | 			 * the first one going back, and the inode ptr is the | 
 | 			 * same. | 
 | 			 */ | 
 | 			if (j != (i - 1) && ips[j] == ips[j + 1]) | 
 | 				continue; | 
 |  | 
 | 			xfs_iunlock(ips[j], lock_mode); | 
 | 		} | 
 |  | 
 | 		if ((attempts % 5) == 0) { | 
 | 			delay(1); /* Don't just spin the CPU */ | 
 | 		} | 
 | 		goto again; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and | 
 |  * mmaplock must be double-locked separately since we use i_rwsem and | 
 |  * invalidate_lock for that. We now support taking one lock EXCL and the | 
 |  * other SHARED. | 
 |  */ | 
 | void | 
 | xfs_lock_two_inodes( | 
 | 	struct xfs_inode	*ip0, | 
 | 	uint			ip0_mode, | 
 | 	struct xfs_inode	*ip1, | 
 | 	uint			ip1_mode) | 
 | { | 
 | 	int			attempts = 0; | 
 | 	struct xfs_log_item	*lp; | 
 |  | 
 | 	ASSERT(hweight32(ip0_mode) == 1); | 
 | 	ASSERT(hweight32(ip1_mode) == 1); | 
 | 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); | 
 | 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); | 
 | 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); | 
 | 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); | 
 | 	ASSERT(ip0->i_ino != ip1->i_ino); | 
 |  | 
 | 	if (ip0->i_ino > ip1->i_ino) { | 
 | 		swap(ip0, ip1); | 
 | 		swap(ip0_mode, ip1_mode); | 
 | 	} | 
 |  | 
 |  again: | 
 | 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); | 
 |  | 
 | 	/* | 
 | 	 * If the first lock we have locked is in the AIL, we must TRY to get | 
 | 	 * the second lock. If we can't get it, we must release the first one | 
 | 	 * and try again. | 
 | 	 */ | 
 | 	lp = &ip0->i_itemp->ili_item; | 
 | 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { | 
 | 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { | 
 | 			xfs_iunlock(ip0, ip0_mode); | 
 | 			if ((++attempts % 5) == 0) | 
 | 				delay(1); /* Don't just spin the CPU */ | 
 | 			goto again; | 
 | 		} | 
 | 	} else { | 
 | 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); | 
 | 	} | 
 | } | 
 |  | 
 | uint | 
 | xfs_ip2xflags( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	uint			flags = 0; | 
 |  | 
 | 	if (ip->i_diflags & XFS_DIFLAG_ANY) { | 
 | 		if (ip->i_diflags & XFS_DIFLAG_REALTIME) | 
 | 			flags |= FS_XFLAG_REALTIME; | 
 | 		if (ip->i_diflags & XFS_DIFLAG_PREALLOC) | 
 | 			flags |= FS_XFLAG_PREALLOC; | 
 | 		if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE) | 
 | 			flags |= FS_XFLAG_IMMUTABLE; | 
 | 		if (ip->i_diflags & XFS_DIFLAG_APPEND) | 
 | 			flags |= FS_XFLAG_APPEND; | 
 | 		if (ip->i_diflags & XFS_DIFLAG_SYNC) | 
 | 			flags |= FS_XFLAG_SYNC; | 
 | 		if (ip->i_diflags & XFS_DIFLAG_NOATIME) | 
 | 			flags |= FS_XFLAG_NOATIME; | 
 | 		if (ip->i_diflags & XFS_DIFLAG_NODUMP) | 
 | 			flags |= FS_XFLAG_NODUMP; | 
 | 		if (ip->i_diflags & XFS_DIFLAG_RTINHERIT) | 
 | 			flags |= FS_XFLAG_RTINHERIT; | 
 | 		if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT) | 
 | 			flags |= FS_XFLAG_PROJINHERIT; | 
 | 		if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS) | 
 | 			flags |= FS_XFLAG_NOSYMLINKS; | 
 | 		if (ip->i_diflags & XFS_DIFLAG_EXTSIZE) | 
 | 			flags |= FS_XFLAG_EXTSIZE; | 
 | 		if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) | 
 | 			flags |= FS_XFLAG_EXTSZINHERIT; | 
 | 		if (ip->i_diflags & XFS_DIFLAG_NODEFRAG) | 
 | 			flags |= FS_XFLAG_NODEFRAG; | 
 | 		if (ip->i_diflags & XFS_DIFLAG_FILESTREAM) | 
 | 			flags |= FS_XFLAG_FILESTREAM; | 
 | 	} | 
 |  | 
 | 	if (ip->i_diflags2 & XFS_DIFLAG2_ANY) { | 
 | 		if (ip->i_diflags2 & XFS_DIFLAG2_DAX) | 
 | 			flags |= FS_XFLAG_DAX; | 
 | 		if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) | 
 | 			flags |= FS_XFLAG_COWEXTSIZE; | 
 | 	} | 
 |  | 
 | 	if (xfs_inode_has_attr_fork(ip)) | 
 | 		flags |= FS_XFLAG_HASATTR; | 
 | 	return flags; | 
 | } | 
 |  | 
 | /* | 
 |  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match | 
 |  * is allowed, otherwise it has to be an exact match. If a CI match is found, | 
 |  * ci_name->name will point to a the actual name (caller must free) or | 
 |  * will be set to NULL if an exact match is found. | 
 |  */ | 
 | int | 
 | xfs_lookup( | 
 | 	struct xfs_inode	*dp, | 
 | 	const struct xfs_name	*name, | 
 | 	struct xfs_inode	**ipp, | 
 | 	struct xfs_name		*ci_name) | 
 | { | 
 | 	xfs_ino_t		inum; | 
 | 	int			error; | 
 |  | 
 | 	trace_xfs_lookup(dp, name); | 
 |  | 
 | 	if (xfs_is_shutdown(dp->i_mount)) | 
 | 		return -EIO; | 
 |  | 
 | 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); | 
 | 	if (error) | 
 | 		goto out_unlock; | 
 |  | 
 | 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); | 
 | 	if (error) | 
 | 		goto out_free_name; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_free_name: | 
 | 	if (ci_name) | 
 | 		kmem_free(ci_name->name); | 
 | out_unlock: | 
 | 	*ipp = NULL; | 
 | 	return error; | 
 | } | 
 |  | 
 | /* Propagate di_flags from a parent inode to a child inode. */ | 
 | static void | 
 | xfs_inode_inherit_flags( | 
 | 	struct xfs_inode	*ip, | 
 | 	const struct xfs_inode	*pip) | 
 | { | 
 | 	unsigned int		di_flags = 0; | 
 | 	xfs_failaddr_t		failaddr; | 
 | 	umode_t			mode = VFS_I(ip)->i_mode; | 
 |  | 
 | 	if (S_ISDIR(mode)) { | 
 | 		if (pip->i_diflags & XFS_DIFLAG_RTINHERIT) | 
 | 			di_flags |= XFS_DIFLAG_RTINHERIT; | 
 | 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { | 
 | 			di_flags |= XFS_DIFLAG_EXTSZINHERIT; | 
 | 			ip->i_extsize = pip->i_extsize; | 
 | 		} | 
 | 		if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT) | 
 | 			di_flags |= XFS_DIFLAG_PROJINHERIT; | 
 | 	} else if (S_ISREG(mode)) { | 
 | 		if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) && | 
 | 		    xfs_has_realtime(ip->i_mount)) | 
 | 			di_flags |= XFS_DIFLAG_REALTIME; | 
 | 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { | 
 | 			di_flags |= XFS_DIFLAG_EXTSIZE; | 
 | 			ip->i_extsize = pip->i_extsize; | 
 | 		} | 
 | 	} | 
 | 	if ((pip->i_diflags & XFS_DIFLAG_NOATIME) && | 
 | 	    xfs_inherit_noatime) | 
 | 		di_flags |= XFS_DIFLAG_NOATIME; | 
 | 	if ((pip->i_diflags & XFS_DIFLAG_NODUMP) && | 
 | 	    xfs_inherit_nodump) | 
 | 		di_flags |= XFS_DIFLAG_NODUMP; | 
 | 	if ((pip->i_diflags & XFS_DIFLAG_SYNC) && | 
 | 	    xfs_inherit_sync) | 
 | 		di_flags |= XFS_DIFLAG_SYNC; | 
 | 	if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) && | 
 | 	    xfs_inherit_nosymlinks) | 
 | 		di_flags |= XFS_DIFLAG_NOSYMLINKS; | 
 | 	if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) && | 
 | 	    xfs_inherit_nodefrag) | 
 | 		di_flags |= XFS_DIFLAG_NODEFRAG; | 
 | 	if (pip->i_diflags & XFS_DIFLAG_FILESTREAM) | 
 | 		di_flags |= XFS_DIFLAG_FILESTREAM; | 
 |  | 
 | 	ip->i_diflags |= di_flags; | 
 |  | 
 | 	/* | 
 | 	 * Inode verifiers on older kernels only check that the extent size | 
 | 	 * hint is an integer multiple of the rt extent size on realtime files. | 
 | 	 * They did not check the hint alignment on a directory with both | 
 | 	 * rtinherit and extszinherit flags set.  If the misaligned hint is | 
 | 	 * propagated from a directory into a new realtime file, new file | 
 | 	 * allocations will fail due to math errors in the rt allocator and/or | 
 | 	 * trip the verifiers.  Validate the hint settings in the new file so | 
 | 	 * that we don't let broken hints propagate. | 
 | 	 */ | 
 | 	failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize, | 
 | 			VFS_I(ip)->i_mode, ip->i_diflags); | 
 | 	if (failaddr) { | 
 | 		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE | | 
 | 				   XFS_DIFLAG_EXTSZINHERIT); | 
 | 		ip->i_extsize = 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* Propagate di_flags2 from a parent inode to a child inode. */ | 
 | static void | 
 | xfs_inode_inherit_flags2( | 
 | 	struct xfs_inode	*ip, | 
 | 	const struct xfs_inode	*pip) | 
 | { | 
 | 	xfs_failaddr_t		failaddr; | 
 |  | 
 | 	if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) { | 
 | 		ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE; | 
 | 		ip->i_cowextsize = pip->i_cowextsize; | 
 | 	} | 
 | 	if (pip->i_diflags2 & XFS_DIFLAG2_DAX) | 
 | 		ip->i_diflags2 |= XFS_DIFLAG2_DAX; | 
 |  | 
 | 	/* Don't let invalid cowextsize hints propagate. */ | 
 | 	failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize, | 
 | 			VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2); | 
 | 	if (failaddr) { | 
 | 		ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE; | 
 | 		ip->i_cowextsize = 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Initialise a newly allocated inode and return the in-core inode to the | 
 |  * caller locked exclusively. | 
 |  */ | 
 | int | 
 | xfs_init_new_inode( | 
 | 	struct user_namespace	*mnt_userns, | 
 | 	struct xfs_trans	*tp, | 
 | 	struct xfs_inode	*pip, | 
 | 	xfs_ino_t		ino, | 
 | 	umode_t			mode, | 
 | 	xfs_nlink_t		nlink, | 
 | 	dev_t			rdev, | 
 | 	prid_t			prid, | 
 | 	bool			init_xattrs, | 
 | 	struct xfs_inode	**ipp) | 
 | { | 
 | 	struct inode		*dir = pip ? VFS_I(pip) : NULL; | 
 | 	struct xfs_mount	*mp = tp->t_mountp; | 
 | 	struct xfs_inode	*ip; | 
 | 	unsigned int		flags; | 
 | 	int			error; | 
 | 	struct timespec64	tv; | 
 | 	struct inode		*inode; | 
 |  | 
 | 	/* | 
 | 	 * Protect against obviously corrupt allocation btree records. Later | 
 | 	 * xfs_iget checks will catch re-allocation of other active in-memory | 
 | 	 * and on-disk inodes. If we don't catch reallocating the parent inode | 
 | 	 * here we will deadlock in xfs_iget() so we have to do these checks | 
 | 	 * first. | 
 | 	 */ | 
 | 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { | 
 | 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); | 
 | 		return -EFSCORRUPTED; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Get the in-core inode with the lock held exclusively to prevent | 
 | 	 * others from looking at until we're done. | 
 | 	 */ | 
 | 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	ASSERT(ip != NULL); | 
 | 	inode = VFS_I(ip); | 
 | 	set_nlink(inode, nlink); | 
 | 	inode->i_rdev = rdev; | 
 | 	ip->i_projid = prid; | 
 |  | 
 | 	if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) { | 
 | 		inode_fsuid_set(inode, mnt_userns); | 
 | 		inode->i_gid = dir->i_gid; | 
 | 		inode->i_mode = mode; | 
 | 	} else { | 
 | 		inode_init_owner(mnt_userns, inode, dir, mode); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the group ID of the new file does not match the effective group | 
 | 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared | 
 | 	 * (and only if the irix_sgid_inherit compatibility variable is set). | 
 | 	 */ | 
 | 	if (irix_sgid_inherit && (inode->i_mode & S_ISGID) && | 
 | 	    !vfsgid_in_group_p(i_gid_into_vfsgid(mnt_userns, inode))) | 
 | 		inode->i_mode &= ~S_ISGID; | 
 |  | 
 | 	ip->i_disk_size = 0; | 
 | 	ip->i_df.if_nextents = 0; | 
 | 	ASSERT(ip->i_nblocks == 0); | 
 |  | 
 | 	tv = current_time(inode); | 
 | 	inode->i_mtime = tv; | 
 | 	inode->i_atime = tv; | 
 | 	inode->i_ctime = tv; | 
 |  | 
 | 	ip->i_extsize = 0; | 
 | 	ip->i_diflags = 0; | 
 |  | 
 | 	if (xfs_has_v3inodes(mp)) { | 
 | 		inode_set_iversion(inode, 1); | 
 | 		ip->i_cowextsize = 0; | 
 | 		ip->i_crtime = tv; | 
 | 	} | 
 |  | 
 | 	flags = XFS_ILOG_CORE; | 
 | 	switch (mode & S_IFMT) { | 
 | 	case S_IFIFO: | 
 | 	case S_IFCHR: | 
 | 	case S_IFBLK: | 
 | 	case S_IFSOCK: | 
 | 		ip->i_df.if_format = XFS_DINODE_FMT_DEV; | 
 | 		flags |= XFS_ILOG_DEV; | 
 | 		break; | 
 | 	case S_IFREG: | 
 | 	case S_IFDIR: | 
 | 		if (pip && (pip->i_diflags & XFS_DIFLAG_ANY)) | 
 | 			xfs_inode_inherit_flags(ip, pip); | 
 | 		if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY)) | 
 | 			xfs_inode_inherit_flags2(ip, pip); | 
 | 		fallthrough; | 
 | 	case S_IFLNK: | 
 | 		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; | 
 | 		ip->i_df.if_bytes = 0; | 
 | 		ip->i_df.if_u1.if_root = NULL; | 
 | 		break; | 
 | 	default: | 
 | 		ASSERT(0); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we need to create attributes immediately after allocating the | 
 | 	 * inode, initialise an empty attribute fork right now. We use the | 
 | 	 * default fork offset for attributes here as we don't know exactly what | 
 | 	 * size or how many attributes we might be adding. We can do this | 
 | 	 * safely here because we know the data fork is completely empty and | 
 | 	 * this saves us from needing to run a separate transaction to set the | 
 | 	 * fork offset in the immediate future. | 
 | 	 */ | 
 | 	if (init_xattrs && xfs_has_attr(mp)) { | 
 | 		ip->i_forkoff = xfs_default_attroffset(ip) >> 3; | 
 | 		xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Log the new values stuffed into the inode. | 
 | 	 */ | 
 | 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); | 
 | 	xfs_trans_log_inode(tp, ip, flags); | 
 |  | 
 | 	/* now that we have an i_mode we can setup the inode structure */ | 
 | 	xfs_setup_inode(ip); | 
 |  | 
 | 	*ipp = ip; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Decrement the link count on an inode & log the change.  If this causes the | 
 |  * link count to go to zero, move the inode to AGI unlinked list so that it can | 
 |  * be freed when the last active reference goes away via xfs_inactive(). | 
 |  */ | 
 | static int			/* error */ | 
 | xfs_droplink( | 
 | 	xfs_trans_t *tp, | 
 | 	xfs_inode_t *ip) | 
 | { | 
 | 	if (VFS_I(ip)->i_nlink == 0) { | 
 | 		xfs_alert(ip->i_mount, | 
 | 			  "%s: Attempt to drop inode (%llu) with nlink zero.", | 
 | 			  __func__, ip->i_ino); | 
 | 		return -EFSCORRUPTED; | 
 | 	} | 
 |  | 
 | 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); | 
 |  | 
 | 	drop_nlink(VFS_I(ip)); | 
 | 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
 |  | 
 | 	if (VFS_I(ip)->i_nlink) | 
 | 		return 0; | 
 |  | 
 | 	return xfs_iunlink(tp, ip); | 
 | } | 
 |  | 
 | /* | 
 |  * Increment the link count on an inode & log the change. | 
 |  */ | 
 | static void | 
 | xfs_bumplink( | 
 | 	xfs_trans_t *tp, | 
 | 	xfs_inode_t *ip) | 
 | { | 
 | 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); | 
 |  | 
 | 	inc_nlink(VFS_I(ip)); | 
 | 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
 | } | 
 |  | 
 | int | 
 | xfs_create( | 
 | 	struct user_namespace	*mnt_userns, | 
 | 	xfs_inode_t		*dp, | 
 | 	struct xfs_name		*name, | 
 | 	umode_t			mode, | 
 | 	dev_t			rdev, | 
 | 	bool			init_xattrs, | 
 | 	xfs_inode_t		**ipp) | 
 | { | 
 | 	int			is_dir = S_ISDIR(mode); | 
 | 	struct xfs_mount	*mp = dp->i_mount; | 
 | 	struct xfs_inode	*ip = NULL; | 
 | 	struct xfs_trans	*tp = NULL; | 
 | 	int			error; | 
 | 	bool                    unlock_dp_on_error = false; | 
 | 	prid_t			prid; | 
 | 	struct xfs_dquot	*udqp = NULL; | 
 | 	struct xfs_dquot	*gdqp = NULL; | 
 | 	struct xfs_dquot	*pdqp = NULL; | 
 | 	struct xfs_trans_res	*tres; | 
 | 	uint			resblks; | 
 | 	xfs_ino_t		ino; | 
 |  | 
 | 	trace_xfs_create(dp, name); | 
 |  | 
 | 	if (xfs_is_shutdown(mp)) | 
 | 		return -EIO; | 
 |  | 
 | 	prid = xfs_get_initial_prid(dp); | 
 |  | 
 | 	/* | 
 | 	 * Make sure that we have allocated dquot(s) on disk. | 
 | 	 */ | 
 | 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns), | 
 | 			mapped_fsgid(mnt_userns, &init_user_ns), prid, | 
 | 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, | 
 | 			&udqp, &gdqp, &pdqp); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	if (is_dir) { | 
 | 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len); | 
 | 		tres = &M_RES(mp)->tr_mkdir; | 
 | 	} else { | 
 | 		resblks = XFS_CREATE_SPACE_RES(mp, name->len); | 
 | 		tres = &M_RES(mp)->tr_create; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Initially assume that the file does not exist and | 
 | 	 * reserve the resources for that case.  If that is not | 
 | 	 * the case we'll drop the one we have and get a more | 
 | 	 * appropriate transaction later. | 
 | 	 */ | 
 | 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, | 
 | 			&tp); | 
 | 	if (error == -ENOSPC) { | 
 | 		/* flush outstanding delalloc blocks and retry */ | 
 | 		xfs_flush_inodes(mp); | 
 | 		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, | 
 | 				resblks, &tp); | 
 | 	} | 
 | 	if (error) | 
 | 		goto out_release_dquots; | 
 |  | 
 | 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); | 
 | 	unlock_dp_on_error = true; | 
 |  | 
 | 	/* | 
 | 	 * A newly created regular or special file just has one directory | 
 | 	 * entry pointing to them, but a directory also the "." entry | 
 | 	 * pointing to itself. | 
 | 	 */ | 
 | 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); | 
 | 	if (!error) | 
 | 		error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode, | 
 | 				is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip); | 
 | 	if (error) | 
 | 		goto out_trans_cancel; | 
 |  | 
 | 	/* | 
 | 	 * Now we join the directory inode to the transaction.  We do not do it | 
 | 	 * earlier because xfs_dialloc might commit the previous transaction | 
 | 	 * (and release all the locks).  An error from here on will result in | 
 | 	 * the transaction cancel unlocking dp so don't do it explicitly in the | 
 | 	 * error path. | 
 | 	 */ | 
 | 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); | 
 | 	unlock_dp_on_error = false; | 
 |  | 
 | 	error = xfs_dir_createname(tp, dp, name, ip->i_ino, | 
 | 					resblks - XFS_IALLOC_SPACE_RES(mp)); | 
 | 	if (error) { | 
 | 		ASSERT(error != -ENOSPC); | 
 | 		goto out_trans_cancel; | 
 | 	} | 
 | 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | 
 | 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); | 
 |  | 
 | 	if (is_dir) { | 
 | 		error = xfs_dir_init(tp, ip, dp); | 
 | 		if (error) | 
 | 			goto out_trans_cancel; | 
 |  | 
 | 		xfs_bumplink(tp, dp); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If this is a synchronous mount, make sure that the | 
 | 	 * create transaction goes to disk before returning to | 
 | 	 * the user. | 
 | 	 */ | 
 | 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) | 
 | 		xfs_trans_set_sync(tp); | 
 |  | 
 | 	/* | 
 | 	 * Attach the dquot(s) to the inodes and modify them incore. | 
 | 	 * These ids of the inode couldn't have changed since the new | 
 | 	 * inode has been locked ever since it was created. | 
 | 	 */ | 
 | 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); | 
 |  | 
 | 	error = xfs_trans_commit(tp); | 
 | 	if (error) | 
 | 		goto out_release_inode; | 
 |  | 
 | 	xfs_qm_dqrele(udqp); | 
 | 	xfs_qm_dqrele(gdqp); | 
 | 	xfs_qm_dqrele(pdqp); | 
 |  | 
 | 	*ipp = ip; | 
 | 	return 0; | 
 |  | 
 |  out_trans_cancel: | 
 | 	xfs_trans_cancel(tp); | 
 |  out_release_inode: | 
 | 	/* | 
 | 	 * Wait until after the current transaction is aborted to finish the | 
 | 	 * setup of the inode and release the inode.  This prevents recursive | 
 | 	 * transactions and deadlocks from xfs_inactive. | 
 | 	 */ | 
 | 	if (ip) { | 
 | 		xfs_finish_inode_setup(ip); | 
 | 		xfs_irele(ip); | 
 | 	} | 
 |  out_release_dquots: | 
 | 	xfs_qm_dqrele(udqp); | 
 | 	xfs_qm_dqrele(gdqp); | 
 | 	xfs_qm_dqrele(pdqp); | 
 |  | 
 | 	if (unlock_dp_on_error) | 
 | 		xfs_iunlock(dp, XFS_ILOCK_EXCL); | 
 | 	return error; | 
 | } | 
 |  | 
 | int | 
 | xfs_create_tmpfile( | 
 | 	struct user_namespace	*mnt_userns, | 
 | 	struct xfs_inode	*dp, | 
 | 	umode_t			mode, | 
 | 	struct xfs_inode	**ipp) | 
 | { | 
 | 	struct xfs_mount	*mp = dp->i_mount; | 
 | 	struct xfs_inode	*ip = NULL; | 
 | 	struct xfs_trans	*tp = NULL; | 
 | 	int			error; | 
 | 	prid_t                  prid; | 
 | 	struct xfs_dquot	*udqp = NULL; | 
 | 	struct xfs_dquot	*gdqp = NULL; | 
 | 	struct xfs_dquot	*pdqp = NULL; | 
 | 	struct xfs_trans_res	*tres; | 
 | 	uint			resblks; | 
 | 	xfs_ino_t		ino; | 
 |  | 
 | 	if (xfs_is_shutdown(mp)) | 
 | 		return -EIO; | 
 |  | 
 | 	prid = xfs_get_initial_prid(dp); | 
 |  | 
 | 	/* | 
 | 	 * Make sure that we have allocated dquot(s) on disk. | 
 | 	 */ | 
 | 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns), | 
 | 			mapped_fsgid(mnt_userns, &init_user_ns), prid, | 
 | 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, | 
 | 			&udqp, &gdqp, &pdqp); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	resblks = XFS_IALLOC_SPACE_RES(mp); | 
 | 	tres = &M_RES(mp)->tr_create_tmpfile; | 
 |  | 
 | 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, | 
 | 			&tp); | 
 | 	if (error) | 
 | 		goto out_release_dquots; | 
 |  | 
 | 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); | 
 | 	if (!error) | 
 | 		error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode, | 
 | 				0, 0, prid, false, &ip); | 
 | 	if (error) | 
 | 		goto out_trans_cancel; | 
 |  | 
 | 	if (xfs_has_wsync(mp)) | 
 | 		xfs_trans_set_sync(tp); | 
 |  | 
 | 	/* | 
 | 	 * Attach the dquot(s) to the inodes and modify them incore. | 
 | 	 * These ids of the inode couldn't have changed since the new | 
 | 	 * inode has been locked ever since it was created. | 
 | 	 */ | 
 | 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); | 
 |  | 
 | 	error = xfs_iunlink(tp, ip); | 
 | 	if (error) | 
 | 		goto out_trans_cancel; | 
 |  | 
 | 	error = xfs_trans_commit(tp); | 
 | 	if (error) | 
 | 		goto out_release_inode; | 
 |  | 
 | 	xfs_qm_dqrele(udqp); | 
 | 	xfs_qm_dqrele(gdqp); | 
 | 	xfs_qm_dqrele(pdqp); | 
 |  | 
 | 	*ipp = ip; | 
 | 	return 0; | 
 |  | 
 |  out_trans_cancel: | 
 | 	xfs_trans_cancel(tp); | 
 |  out_release_inode: | 
 | 	/* | 
 | 	 * Wait until after the current transaction is aborted to finish the | 
 | 	 * setup of the inode and release the inode.  This prevents recursive | 
 | 	 * transactions and deadlocks from xfs_inactive. | 
 | 	 */ | 
 | 	if (ip) { | 
 | 		xfs_finish_inode_setup(ip); | 
 | 		xfs_irele(ip); | 
 | 	} | 
 |  out_release_dquots: | 
 | 	xfs_qm_dqrele(udqp); | 
 | 	xfs_qm_dqrele(gdqp); | 
 | 	xfs_qm_dqrele(pdqp); | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | int | 
 | xfs_link( | 
 | 	xfs_inode_t		*tdp, | 
 | 	xfs_inode_t		*sip, | 
 | 	struct xfs_name		*target_name) | 
 | { | 
 | 	xfs_mount_t		*mp = tdp->i_mount; | 
 | 	xfs_trans_t		*tp; | 
 | 	int			error, nospace_error = 0; | 
 | 	int			resblks; | 
 |  | 
 | 	trace_xfs_link(tdp, target_name); | 
 |  | 
 | 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); | 
 |  | 
 | 	if (xfs_is_shutdown(mp)) | 
 | 		return -EIO; | 
 |  | 
 | 	error = xfs_qm_dqattach(sip); | 
 | 	if (error) | 
 | 		goto std_return; | 
 |  | 
 | 	error = xfs_qm_dqattach(tdp); | 
 | 	if (error) | 
 | 		goto std_return; | 
 |  | 
 | 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len); | 
 | 	error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks, | 
 | 			&tp, &nospace_error); | 
 | 	if (error) | 
 | 		goto std_return; | 
 |  | 
 | 	/* | 
 | 	 * If we are using project inheritance, we only allow hard link | 
 | 	 * creation in our tree when the project IDs are the same; else | 
 | 	 * the tree quota mechanism could be circumvented. | 
 | 	 */ | 
 | 	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) && | 
 | 		     tdp->i_projid != sip->i_projid)) { | 
 | 		error = -EXDEV; | 
 | 		goto error_return; | 
 | 	} | 
 |  | 
 | 	if (!resblks) { | 
 | 		error = xfs_dir_canenter(tp, tdp, target_name); | 
 | 		if (error) | 
 | 			goto error_return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Handle initial link state of O_TMPFILE inode | 
 | 	 */ | 
 | 	if (VFS_I(sip)->i_nlink == 0) { | 
 | 		struct xfs_perag	*pag; | 
 |  | 
 | 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino)); | 
 | 		error = xfs_iunlink_remove(tp, pag, sip); | 
 | 		xfs_perag_put(pag); | 
 | 		if (error) | 
 | 			goto error_return; | 
 | 	} | 
 |  | 
 | 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, | 
 | 				   resblks); | 
 | 	if (error) | 
 | 		goto error_return; | 
 | 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | 
 | 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); | 
 |  | 
 | 	xfs_bumplink(tp, sip); | 
 |  | 
 | 	/* | 
 | 	 * If this is a synchronous mount, make sure that the | 
 | 	 * link transaction goes to disk before returning to | 
 | 	 * the user. | 
 | 	 */ | 
 | 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) | 
 | 		xfs_trans_set_sync(tp); | 
 |  | 
 | 	return xfs_trans_commit(tp); | 
 |  | 
 |  error_return: | 
 | 	xfs_trans_cancel(tp); | 
 |  std_return: | 
 | 	if (error == -ENOSPC && nospace_error) | 
 | 		error = nospace_error; | 
 | 	return error; | 
 | } | 
 |  | 
 | /* Clear the reflink flag and the cowblocks tag if possible. */ | 
 | static void | 
 | xfs_itruncate_clear_reflink_flags( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	struct xfs_ifork	*dfork; | 
 | 	struct xfs_ifork	*cfork; | 
 |  | 
 | 	if (!xfs_is_reflink_inode(ip)) | 
 | 		return; | 
 | 	dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK); | 
 | 	cfork = xfs_ifork_ptr(ip, XFS_COW_FORK); | 
 | 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0) | 
 | 		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; | 
 | 	if (cfork->if_bytes == 0) | 
 | 		xfs_inode_clear_cowblocks_tag(ip); | 
 | } | 
 |  | 
 | /* | 
 |  * Free up the underlying blocks past new_size.  The new size must be smaller | 
 |  * than the current size.  This routine can be used both for the attribute and | 
 |  * data fork, and does not modify the inode size, which is left to the caller. | 
 |  * | 
 |  * The transaction passed to this routine must have made a permanent log | 
 |  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the | 
 |  * given transaction and start new ones, so make sure everything involved in | 
 |  * the transaction is tidy before calling here.  Some transaction will be | 
 |  * returned to the caller to be committed.  The incoming transaction must | 
 |  * already include the inode, and both inode locks must be held exclusively. | 
 |  * The inode must also be "held" within the transaction.  On return the inode | 
 |  * will be "held" within the returned transaction.  This routine does NOT | 
 |  * require any disk space to be reserved for it within the transaction. | 
 |  * | 
 |  * If we get an error, we must return with the inode locked and linked into the | 
 |  * current transaction. This keeps things simple for the higher level code, | 
 |  * because it always knows that the inode is locked and held in the transaction | 
 |  * that returns to it whether errors occur or not.  We don't mark the inode | 
 |  * dirty on error so that transactions can be easily aborted if possible. | 
 |  */ | 
 | int | 
 | xfs_itruncate_extents_flags( | 
 | 	struct xfs_trans	**tpp, | 
 | 	struct xfs_inode	*ip, | 
 | 	int			whichfork, | 
 | 	xfs_fsize_t		new_size, | 
 | 	int			flags) | 
 | { | 
 | 	struct xfs_mount	*mp = ip->i_mount; | 
 | 	struct xfs_trans	*tp = *tpp; | 
 | 	xfs_fileoff_t		first_unmap_block; | 
 | 	xfs_filblks_t		unmap_len; | 
 | 	int			error = 0; | 
 |  | 
 | 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); | 
 | 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) || | 
 | 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL)); | 
 | 	ASSERT(new_size <= XFS_ISIZE(ip)); | 
 | 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); | 
 | 	ASSERT(ip->i_itemp != NULL); | 
 | 	ASSERT(ip->i_itemp->ili_lock_flags == 0); | 
 | 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); | 
 |  | 
 | 	trace_xfs_itruncate_extents_start(ip, new_size); | 
 |  | 
 | 	flags |= xfs_bmapi_aflag(whichfork); | 
 |  | 
 | 	/* | 
 | 	 * Since it is possible for space to become allocated beyond | 
 | 	 * the end of the file (in a crash where the space is allocated | 
 | 	 * but the inode size is not yet updated), simply remove any | 
 | 	 * blocks which show up between the new EOF and the maximum | 
 | 	 * possible file size. | 
 | 	 * | 
 | 	 * We have to free all the blocks to the bmbt maximum offset, even if | 
 | 	 * the page cache can't scale that far. | 
 | 	 */ | 
 | 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); | 
 | 	if (!xfs_verify_fileoff(mp, first_unmap_block)) { | 
 | 		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1; | 
 | 	while (unmap_len > 0) { | 
 | 		ASSERT(tp->t_firstblock == NULLFSBLOCK); | 
 | 		error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len, | 
 | 				flags, XFS_ITRUNC_MAX_EXTENTS); | 
 | 		if (error) | 
 | 			goto out; | 
 |  | 
 | 		/* free the just unmapped extents */ | 
 | 		error = xfs_defer_finish(&tp); | 
 | 		if (error) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	if (whichfork == XFS_DATA_FORK) { | 
 | 		/* Remove all pending CoW reservations. */ | 
 | 		error = xfs_reflink_cancel_cow_blocks(ip, &tp, | 
 | 				first_unmap_block, XFS_MAX_FILEOFF, true); | 
 | 		if (error) | 
 | 			goto out; | 
 |  | 
 | 		xfs_itruncate_clear_reflink_flags(ip); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Always re-log the inode so that our permanent transaction can keep | 
 | 	 * on rolling it forward in the log. | 
 | 	 */ | 
 | 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
 |  | 
 | 	trace_xfs_itruncate_extents_end(ip, new_size); | 
 |  | 
 | out: | 
 | 	*tpp = tp; | 
 | 	return error; | 
 | } | 
 |  | 
 | int | 
 | xfs_release( | 
 | 	xfs_inode_t	*ip) | 
 | { | 
 | 	xfs_mount_t	*mp = ip->i_mount; | 
 | 	int		error = 0; | 
 |  | 
 | 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) | 
 | 		return 0; | 
 |  | 
 | 	/* If this is a read-only mount, don't do this (would generate I/O) */ | 
 | 	if (xfs_is_readonly(mp)) | 
 | 		return 0; | 
 |  | 
 | 	if (!xfs_is_shutdown(mp)) { | 
 | 		int truncated; | 
 |  | 
 | 		/* | 
 | 		 * If we previously truncated this file and removed old data | 
 | 		 * in the process, we want to initiate "early" writeout on | 
 | 		 * the last close.  This is an attempt to combat the notorious | 
 | 		 * NULL files problem which is particularly noticeable from a | 
 | 		 * truncate down, buffered (re-)write (delalloc), followed by | 
 | 		 * a crash.  What we are effectively doing here is | 
 | 		 * significantly reducing the time window where we'd otherwise | 
 | 		 * be exposed to that problem. | 
 | 		 */ | 
 | 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); | 
 | 		if (truncated) { | 
 | 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); | 
 | 			if (ip->i_delayed_blks > 0) { | 
 | 				error = filemap_flush(VFS_I(ip)->i_mapping); | 
 | 				if (error) | 
 | 					return error; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (VFS_I(ip)->i_nlink == 0) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * If we can't get the iolock just skip truncating the blocks past EOF | 
 | 	 * because we could deadlock with the mmap_lock otherwise. We'll get | 
 | 	 * another chance to drop them once the last reference to the inode is | 
 | 	 * dropped, so we'll never leak blocks permanently. | 
 | 	 */ | 
 | 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) | 
 | 		return 0; | 
 |  | 
 | 	if (xfs_can_free_eofblocks(ip, false)) { | 
 | 		/* | 
 | 		 * Check if the inode is being opened, written and closed | 
 | 		 * frequently and we have delayed allocation blocks outstanding | 
 | 		 * (e.g. streaming writes from the NFS server), truncating the | 
 | 		 * blocks past EOF will cause fragmentation to occur. | 
 | 		 * | 
 | 		 * In this case don't do the truncation, but we have to be | 
 | 		 * careful how we detect this case. Blocks beyond EOF show up as | 
 | 		 * i_delayed_blks even when the inode is clean, so we need to | 
 | 		 * truncate them away first before checking for a dirty release. | 
 | 		 * Hence on the first dirty close we will still remove the | 
 | 		 * speculative allocation, but after that we will leave it in | 
 | 		 * place. | 
 | 		 */ | 
 | 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) | 
 | 			goto out_unlock; | 
 |  | 
 | 		error = xfs_free_eofblocks(ip); | 
 | 		if (error) | 
 | 			goto out_unlock; | 
 |  | 
 | 		/* delalloc blocks after truncation means it really is dirty */ | 
 | 		if (ip->i_delayed_blks) | 
 | 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); | 
 | 	} | 
 |  | 
 | out_unlock: | 
 | 	xfs_iunlock(ip, XFS_IOLOCK_EXCL); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_inactive_truncate | 
 |  * | 
 |  * Called to perform a truncate when an inode becomes unlinked. | 
 |  */ | 
 | STATIC int | 
 | xfs_inactive_truncate( | 
 | 	struct xfs_inode *ip) | 
 | { | 
 | 	struct xfs_mount	*mp = ip->i_mount; | 
 | 	struct xfs_trans	*tp; | 
 | 	int			error; | 
 |  | 
 | 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); | 
 | 	if (error) { | 
 | 		ASSERT(xfs_is_shutdown(mp)); | 
 | 		return error; | 
 | 	} | 
 | 	xfs_ilock(ip, XFS_ILOCK_EXCL); | 
 | 	xfs_trans_ijoin(tp, ip, 0); | 
 |  | 
 | 	/* | 
 | 	 * Log the inode size first to prevent stale data exposure in the event | 
 | 	 * of a system crash before the truncate completes. See the related | 
 | 	 * comment in xfs_vn_setattr_size() for details. | 
 | 	 */ | 
 | 	ip->i_disk_size = 0; | 
 | 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
 |  | 
 | 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); | 
 | 	if (error) | 
 | 		goto error_trans_cancel; | 
 |  | 
 | 	ASSERT(ip->i_df.if_nextents == 0); | 
 |  | 
 | 	error = xfs_trans_commit(tp); | 
 | 	if (error) | 
 | 		goto error_unlock; | 
 |  | 
 | 	xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 	return 0; | 
 |  | 
 | error_trans_cancel: | 
 | 	xfs_trans_cancel(tp); | 
 | error_unlock: | 
 | 	xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_inactive_ifree() | 
 |  * | 
 |  * Perform the inode free when an inode is unlinked. | 
 |  */ | 
 | STATIC int | 
 | xfs_inactive_ifree( | 
 | 	struct xfs_inode *ip) | 
 | { | 
 | 	struct xfs_mount	*mp = ip->i_mount; | 
 | 	struct xfs_trans	*tp; | 
 | 	int			error; | 
 |  | 
 | 	/* | 
 | 	 * We try to use a per-AG reservation for any block needed by the finobt | 
 | 	 * tree, but as the finobt feature predates the per-AG reservation | 
 | 	 * support a degraded file system might not have enough space for the | 
 | 	 * reservation at mount time.  In that case try to dip into the reserved | 
 | 	 * pool and pray. | 
 | 	 * | 
 | 	 * Send a warning if the reservation does happen to fail, as the inode | 
 | 	 * now remains allocated and sits on the unlinked list until the fs is | 
 | 	 * repaired. | 
 | 	 */ | 
 | 	if (unlikely(mp->m_finobt_nores)) { | 
 | 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, | 
 | 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, | 
 | 				&tp); | 
 | 	} else { | 
 | 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); | 
 | 	} | 
 | 	if (error) { | 
 | 		if (error == -ENOSPC) { | 
 | 			xfs_warn_ratelimited(mp, | 
 | 			"Failed to remove inode(s) from unlinked list. " | 
 | 			"Please free space, unmount and run xfs_repair."); | 
 | 		} else { | 
 | 			ASSERT(xfs_is_shutdown(mp)); | 
 | 		} | 
 | 		return error; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We do not hold the inode locked across the entire rolling transaction | 
 | 	 * here. We only need to hold it for the first transaction that | 
 | 	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the | 
 | 	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode | 
 | 	 * here breaks the relationship between cluster buffer invalidation and | 
 | 	 * stale inode invalidation on cluster buffer item journal commit | 
 | 	 * completion, and can result in leaving dirty stale inodes hanging | 
 | 	 * around in memory. | 
 | 	 * | 
 | 	 * We have no need for serialising this inode operation against other | 
 | 	 * operations - we freed the inode and hence reallocation is required | 
 | 	 * and that will serialise on reallocating the space the deferops need | 
 | 	 * to free. Hence we can unlock the inode on the first commit of | 
 | 	 * the transaction rather than roll it right through the deferops. This | 
 | 	 * avoids relogging the XFS_ISTALE inode. | 
 | 	 * | 
 | 	 * We check that xfs_ifree() hasn't grown an internal transaction roll | 
 | 	 * by asserting that the inode is still locked when it returns. | 
 | 	 */ | 
 | 	xfs_ilock(ip, XFS_ILOCK_EXCL); | 
 | 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); | 
 |  | 
 | 	error = xfs_ifree(tp, ip); | 
 | 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); | 
 | 	if (error) { | 
 | 		/* | 
 | 		 * If we fail to free the inode, shut down.  The cancel | 
 | 		 * might do that, we need to make sure.  Otherwise the | 
 | 		 * inode might be lost for a long time or forever. | 
 | 		 */ | 
 | 		if (!xfs_is_shutdown(mp)) { | 
 | 			xfs_notice(mp, "%s: xfs_ifree returned error %d", | 
 | 				__func__, error); | 
 | 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); | 
 | 		} | 
 | 		xfs_trans_cancel(tp); | 
 | 		return error; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Credit the quota account(s). The inode is gone. | 
 | 	 */ | 
 | 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); | 
 |  | 
 | 	return xfs_trans_commit(tp); | 
 | } | 
 |  | 
 | /* | 
 |  * Returns true if we need to update the on-disk metadata before we can free | 
 |  * the memory used by this inode.  Updates include freeing post-eof | 
 |  * preallocations; freeing COW staging extents; and marking the inode free in | 
 |  * the inobt if it is on the unlinked list. | 
 |  */ | 
 | bool | 
 | xfs_inode_needs_inactive( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	struct xfs_mount	*mp = ip->i_mount; | 
 | 	struct xfs_ifork	*cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); | 
 |  | 
 | 	/* | 
 | 	 * If the inode is already free, then there can be nothing | 
 | 	 * to clean up here. | 
 | 	 */ | 
 | 	if (VFS_I(ip)->i_mode == 0) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * If this is a read-only mount, don't do this (would generate I/O) | 
 | 	 * unless we're in log recovery and cleaning the iunlinked list. | 
 | 	 */ | 
 | 	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log)) | 
 | 		return false; | 
 |  | 
 | 	/* If the log isn't running, push inodes straight to reclaim. */ | 
 | 	if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp)) | 
 | 		return false; | 
 |  | 
 | 	/* Metadata inodes require explicit resource cleanup. */ | 
 | 	if (xfs_is_metadata_inode(ip)) | 
 | 		return false; | 
 |  | 
 | 	/* Want to clean out the cow blocks if there are any. */ | 
 | 	if (cow_ifp && cow_ifp->if_bytes > 0) | 
 | 		return true; | 
 |  | 
 | 	/* Unlinked files must be freed. */ | 
 | 	if (VFS_I(ip)->i_nlink == 0) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * This file isn't being freed, so check if there are post-eof blocks | 
 | 	 * to free.  @force is true because we are evicting an inode from the | 
 | 	 * cache.  Post-eof blocks must be freed, lest we end up with broken | 
 | 	 * free space accounting. | 
 | 	 * | 
 | 	 * Note: don't bother with iolock here since lockdep complains about | 
 | 	 * acquiring it in reclaim context. We have the only reference to the | 
 | 	 * inode at this point anyways. | 
 | 	 */ | 
 | 	return xfs_can_free_eofblocks(ip, true); | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_inactive | 
 |  * | 
 |  * This is called when the vnode reference count for the vnode | 
 |  * goes to zero.  If the file has been unlinked, then it must | 
 |  * now be truncated.  Also, we clear all of the read-ahead state | 
 |  * kept for the inode here since the file is now closed. | 
 |  */ | 
 | int | 
 | xfs_inactive( | 
 | 	xfs_inode_t	*ip) | 
 | { | 
 | 	struct xfs_mount	*mp; | 
 | 	int			error = 0; | 
 | 	int			truncate = 0; | 
 |  | 
 | 	/* | 
 | 	 * If the inode is already free, then there can be nothing | 
 | 	 * to clean up here. | 
 | 	 */ | 
 | 	if (VFS_I(ip)->i_mode == 0) { | 
 | 		ASSERT(ip->i_df.if_broot_bytes == 0); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	mp = ip->i_mount; | 
 | 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); | 
 |  | 
 | 	/* | 
 | 	 * If this is a read-only mount, don't do this (would generate I/O) | 
 | 	 * unless we're in log recovery and cleaning the iunlinked list. | 
 | 	 */ | 
 | 	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log)) | 
 | 		goto out; | 
 |  | 
 | 	/* Metadata inodes require explicit resource cleanup. */ | 
 | 	if (xfs_is_metadata_inode(ip)) | 
 | 		goto out; | 
 |  | 
 | 	/* Try to clean out the cow blocks if there are any. */ | 
 | 	if (xfs_inode_has_cow_data(ip)) { | 
 | 		error = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); | 
 | 		if (error) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	if (VFS_I(ip)->i_nlink != 0) { | 
 | 		/* | 
 | 		 * force is true because we are evicting an inode from the | 
 | 		 * cache. Post-eof blocks must be freed, lest we end up with | 
 | 		 * broken free space accounting. | 
 | 		 * | 
 | 		 * Note: don't bother with iolock here since lockdep complains | 
 | 		 * about acquiring it in reclaim context. We have the only | 
 | 		 * reference to the inode at this point anyways. | 
 | 		 */ | 
 | 		if (xfs_can_free_eofblocks(ip, true)) | 
 | 			error = xfs_free_eofblocks(ip); | 
 |  | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (S_ISREG(VFS_I(ip)->i_mode) && | 
 | 	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 || | 
 | 	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) | 
 | 		truncate = 1; | 
 |  | 
 | 	if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) { | 
 | 		/* | 
 | 		 * If this inode is being inactivated during a quotacheck and | 
 | 		 * has not yet been scanned by quotacheck, we /must/ remove | 
 | 		 * the dquots from the inode before inactivation changes the | 
 | 		 * block and inode counts.  Most probably this is a result of | 
 | 		 * reloading the incore iunlinked list to purge unrecovered | 
 | 		 * unlinked inodes. | 
 | 		 */ | 
 | 		xfs_qm_dqdetach(ip); | 
 | 	} else { | 
 | 		error = xfs_qm_dqattach(ip); | 
 | 		if (error) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	if (S_ISLNK(VFS_I(ip)->i_mode)) | 
 | 		error = xfs_inactive_symlink(ip); | 
 | 	else if (truncate) | 
 | 		error = xfs_inactive_truncate(ip); | 
 | 	if (error) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * If there are attributes associated with the file then blow them away | 
 | 	 * now.  The code calls a routine that recursively deconstructs the | 
 | 	 * attribute fork. If also blows away the in-core attribute fork. | 
 | 	 */ | 
 | 	if (xfs_inode_has_attr_fork(ip)) { | 
 | 		error = xfs_attr_inactive(ip); | 
 | 		if (error) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	ASSERT(ip->i_forkoff == 0); | 
 |  | 
 | 	/* | 
 | 	 * Free the inode. | 
 | 	 */ | 
 | 	error = xfs_inactive_ifree(ip); | 
 |  | 
 | out: | 
 | 	/* | 
 | 	 * We're done making metadata updates for this inode, so we can release | 
 | 	 * the attached dquots. | 
 | 	 */ | 
 | 	xfs_qm_dqdetach(ip); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * In-Core Unlinked List Lookups | 
 |  * ============================= | 
 |  * | 
 |  * Every inode is supposed to be reachable from some other piece of metadata | 
 |  * with the exception of the root directory.  Inodes with a connection to a | 
 |  * file descriptor but not linked from anywhere in the on-disk directory tree | 
 |  * are collectively known as unlinked inodes, though the filesystem itself | 
 |  * maintains links to these inodes so that on-disk metadata are consistent. | 
 |  * | 
 |  * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI | 
 |  * header contains a number of buckets that point to an inode, and each inode | 
 |  * record has a pointer to the next inode in the hash chain.  This | 
 |  * singly-linked list causes scaling problems in the iunlink remove function | 
 |  * because we must walk that list to find the inode that points to the inode | 
 |  * being removed from the unlinked hash bucket list. | 
 |  * | 
 |  * Hence we keep an in-memory double linked list to link each inode on an | 
 |  * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer | 
 |  * based lists would require having 64 list heads in the perag, one for each | 
 |  * list. This is expensive in terms of memory (think millions of AGs) and cache | 
 |  * misses on lookups. Instead, use the fact that inodes on the unlinked list | 
 |  * must be referenced at the VFS level to keep them on the list and hence we | 
 |  * have an existence guarantee for inodes on the unlinked list. | 
 |  * | 
 |  * Given we have an existence guarantee, we can use lockless inode cache lookups | 
 |  * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode | 
 |  * for the double linked unlinked list, and we don't need any extra locking to | 
 |  * keep the list safe as all manipulations are done under the AGI buffer lock. | 
 |  * Keeping the list up to date does not require memory allocation, just finding | 
 |  * the XFS inode and updating the next/prev unlinked list aginos. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Find an inode on the unlinked list. This does not take references to the | 
 |  * inode as we have existence guarantees by holding the AGI buffer lock and that | 
 |  * only unlinked, referenced inodes can be on the unlinked inode list.  If we | 
 |  * don't find the inode in cache, then let the caller handle the situation. | 
 |  */ | 
 | static struct xfs_inode * | 
 | xfs_iunlink_lookup( | 
 | 	struct xfs_perag	*pag, | 
 | 	xfs_agino_t		agino) | 
 | { | 
 | 	struct xfs_inode	*ip; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	ip = radix_tree_lookup(&pag->pag_ici_root, agino); | 
 | 	if (!ip) { | 
 | 		/* Caller can handle inode not being in memory. */ | 
 | 		rcu_read_unlock(); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Inode in RCU freeing limbo should not happen.  Warn about this and | 
 | 	 * let the caller handle the failure. | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE(!ip->i_ino)) { | 
 | 		rcu_read_unlock(); | 
 | 		return NULL; | 
 | 	} | 
 | 	ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM)); | 
 | 	rcu_read_unlock(); | 
 | 	return ip; | 
 | } | 
 |  | 
 | /* | 
 |  * Update the prev pointer of the next agino.  Returns -ENOLINK if the inode | 
 |  * is not in cache. | 
 |  */ | 
 | static int | 
 | xfs_iunlink_update_backref( | 
 | 	struct xfs_perag	*pag, | 
 | 	xfs_agino_t		prev_agino, | 
 | 	xfs_agino_t		next_agino) | 
 | { | 
 | 	struct xfs_inode	*ip; | 
 |  | 
 | 	/* No update necessary if we are at the end of the list. */ | 
 | 	if (next_agino == NULLAGINO) | 
 | 		return 0; | 
 |  | 
 | 	ip = xfs_iunlink_lookup(pag, next_agino); | 
 | 	if (!ip) | 
 | 		return -ENOLINK; | 
 |  | 
 | 	ip->i_prev_unlinked = prev_agino; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Point the AGI unlinked bucket at an inode and log the results.  The caller | 
 |  * is responsible for validating the old value. | 
 |  */ | 
 | STATIC int | 
 | xfs_iunlink_update_bucket( | 
 | 	struct xfs_trans	*tp, | 
 | 	struct xfs_perag	*pag, | 
 | 	struct xfs_buf		*agibp, | 
 | 	unsigned int		bucket_index, | 
 | 	xfs_agino_t		new_agino) | 
 | { | 
 | 	struct xfs_agi		*agi = agibp->b_addr; | 
 | 	xfs_agino_t		old_value; | 
 | 	int			offset; | 
 |  | 
 | 	ASSERT(xfs_verify_agino_or_null(pag, new_agino)); | 
 |  | 
 | 	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); | 
 | 	trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index, | 
 | 			old_value, new_agino); | 
 |  | 
 | 	/* | 
 | 	 * We should never find the head of the list already set to the value | 
 | 	 * passed in because either we're adding or removing ourselves from the | 
 | 	 * head of the list. | 
 | 	 */ | 
 | 	if (old_value == new_agino) { | 
 | 		xfs_buf_mark_corrupt(agibp); | 
 | 		return -EFSCORRUPTED; | 
 | 	} | 
 |  | 
 | 	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); | 
 | 	offset = offsetof(struct xfs_agi, agi_unlinked) + | 
 | 			(sizeof(xfs_agino_t) * bucket_index); | 
 | 	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Load the inode @next_agino into the cache and set its prev_unlinked pointer | 
 |  * to @prev_agino.  Caller must hold the AGI to synchronize with other changes | 
 |  * to the unlinked list. | 
 |  */ | 
 | STATIC int | 
 | xfs_iunlink_reload_next( | 
 | 	struct xfs_trans	*tp, | 
 | 	struct xfs_buf		*agibp, | 
 | 	xfs_agino_t		prev_agino, | 
 | 	xfs_agino_t		next_agino) | 
 | { | 
 | 	struct xfs_perag	*pag = agibp->b_pag; | 
 | 	struct xfs_mount	*mp = pag->pag_mount; | 
 | 	struct xfs_inode	*next_ip = NULL; | 
 | 	xfs_ino_t		ino; | 
 | 	int			error; | 
 |  | 
 | 	ASSERT(next_agino != NULLAGINO); | 
 |  | 
 | #ifdef DEBUG | 
 | 	rcu_read_lock(); | 
 | 	next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino); | 
 | 	ASSERT(next_ip == NULL); | 
 | 	rcu_read_unlock(); | 
 | #endif | 
 |  | 
 | 	xfs_info_ratelimited(mp, | 
 |  "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating recovery.", | 
 | 			next_agino, pag->pag_agno); | 
 |  | 
 | 	/* | 
 | 	 * Use an untrusted lookup just to be cautious in case the AGI has been | 
 | 	 * corrupted and now points at a free inode.  That shouldn't happen, | 
 | 	 * but we'd rather shut down now since we're already running in a weird | 
 | 	 * situation. | 
 | 	 */ | 
 | 	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino); | 
 | 	error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, 0, &next_ip); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	/* If this is not an unlinked inode, something is very wrong. */ | 
 | 	if (VFS_I(next_ip)->i_nlink != 0) { | 
 | 		error = -EFSCORRUPTED; | 
 | 		goto rele; | 
 | 	} | 
 |  | 
 | 	next_ip->i_prev_unlinked = prev_agino; | 
 | 	trace_xfs_iunlink_reload_next(next_ip); | 
 | rele: | 
 | 	ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE)); | 
 | 	if (xfs_is_quotacheck_running(mp) && next_ip) | 
 | 		xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED); | 
 | 	xfs_irele(next_ip); | 
 | 	return error; | 
 | } | 
 |  | 
 | static int | 
 | xfs_iunlink_insert_inode( | 
 | 	struct xfs_trans	*tp, | 
 | 	struct xfs_perag	*pag, | 
 | 	struct xfs_buf		*agibp, | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	struct xfs_mount	*mp = tp->t_mountp; | 
 | 	struct xfs_agi		*agi = agibp->b_addr; | 
 | 	xfs_agino_t		next_agino; | 
 | 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino); | 
 | 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; | 
 | 	int			error; | 
 |  | 
 | 	/* | 
 | 	 * Get the index into the agi hash table for the list this inode will | 
 | 	 * go on.  Make sure the pointer isn't garbage and that this inode | 
 | 	 * isn't already on the list. | 
 | 	 */ | 
 | 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); | 
 | 	if (next_agino == agino || | 
 | 	    !xfs_verify_agino_or_null(pag, next_agino)) { | 
 | 		xfs_buf_mark_corrupt(agibp); | 
 | 		return -EFSCORRUPTED; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Update the prev pointer in the next inode to point back to this | 
 | 	 * inode. | 
 | 	 */ | 
 | 	error = xfs_iunlink_update_backref(pag, agino, next_agino); | 
 | 	if (error == -ENOLINK) | 
 | 		error = xfs_iunlink_reload_next(tp, agibp, agino, next_agino); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	if (next_agino != NULLAGINO) { | 
 | 		/* | 
 | 		 * There is already another inode in the bucket, so point this | 
 | 		 * inode to the current head of the list. | 
 | 		 */ | 
 | 		error = xfs_iunlink_log_inode(tp, ip, pag, next_agino); | 
 | 		if (error) | 
 | 			return error; | 
 | 		ip->i_next_unlinked = next_agino; | 
 | 	} | 
 |  | 
 | 	/* Point the head of the list to point to this inode. */ | 
 | 	ip->i_prev_unlinked = NULLAGINO; | 
 | 	return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino); | 
 | } | 
 |  | 
 | /* | 
 |  * This is called when the inode's link count has gone to 0 or we are creating | 
 |  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0. | 
 |  * | 
 |  * We place the on-disk inode on a list in the AGI.  It will be pulled from this | 
 |  * list when the inode is freed. | 
 |  */ | 
 | STATIC int | 
 | xfs_iunlink( | 
 | 	struct xfs_trans	*tp, | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	struct xfs_mount	*mp = tp->t_mountp; | 
 | 	struct xfs_perag	*pag; | 
 | 	struct xfs_buf		*agibp; | 
 | 	int			error; | 
 |  | 
 | 	ASSERT(VFS_I(ip)->i_nlink == 0); | 
 | 	ASSERT(VFS_I(ip)->i_mode != 0); | 
 | 	trace_xfs_iunlink(ip); | 
 |  | 
 | 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); | 
 |  | 
 | 	/* Get the agi buffer first.  It ensures lock ordering on the list. */ | 
 | 	error = xfs_read_agi(pag, tp, &agibp); | 
 | 	if (error) | 
 | 		goto out; | 
 |  | 
 | 	error = xfs_iunlink_insert_inode(tp, pag, agibp, ip); | 
 | out: | 
 | 	xfs_perag_put(pag); | 
 | 	return error; | 
 | } | 
 |  | 
 | static int | 
 | xfs_iunlink_remove_inode( | 
 | 	struct xfs_trans	*tp, | 
 | 	struct xfs_perag	*pag, | 
 | 	struct xfs_buf		*agibp, | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	struct xfs_mount	*mp = tp->t_mountp; | 
 | 	struct xfs_agi		*agi = agibp->b_addr; | 
 | 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino); | 
 | 	xfs_agino_t		head_agino; | 
 | 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; | 
 | 	int			error; | 
 |  | 
 | 	trace_xfs_iunlink_remove(ip); | 
 |  | 
 | 	/* | 
 | 	 * Get the index into the agi hash table for the list this inode will | 
 | 	 * go on.  Make sure the head pointer isn't garbage. | 
 | 	 */ | 
 | 	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); | 
 | 	if (!xfs_verify_agino(pag, head_agino)) { | 
 | 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, | 
 | 				agi, sizeof(*agi)); | 
 | 		return -EFSCORRUPTED; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Set our inode's next_unlinked pointer to NULL and then return | 
 | 	 * the old pointer value so that we can update whatever was previous | 
 | 	 * to us in the list to point to whatever was next in the list. | 
 | 	 */ | 
 | 	error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	/* | 
 | 	 * Update the prev pointer in the next inode to point back to previous | 
 | 	 * inode in the chain. | 
 | 	 */ | 
 | 	error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked, | 
 | 			ip->i_next_unlinked); | 
 | 	if (error == -ENOLINK) | 
 | 		error = xfs_iunlink_reload_next(tp, agibp, ip->i_prev_unlinked, | 
 | 				ip->i_next_unlinked); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	if (head_agino != agino) { | 
 | 		struct xfs_inode	*prev_ip; | 
 |  | 
 | 		prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked); | 
 | 		if (!prev_ip) | 
 | 			return -EFSCORRUPTED; | 
 |  | 
 | 		error = xfs_iunlink_log_inode(tp, prev_ip, pag, | 
 | 				ip->i_next_unlinked); | 
 | 		prev_ip->i_next_unlinked = ip->i_next_unlinked; | 
 | 	} else { | 
 | 		/* Point the head of the list to the next unlinked inode. */ | 
 | 		error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, | 
 | 				ip->i_next_unlinked); | 
 | 	} | 
 |  | 
 | 	ip->i_next_unlinked = NULLAGINO; | 
 | 	ip->i_prev_unlinked = 0; | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Pull the on-disk inode from the AGI unlinked list. | 
 |  */ | 
 | STATIC int | 
 | xfs_iunlink_remove( | 
 | 	struct xfs_trans	*tp, | 
 | 	struct xfs_perag	*pag, | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	struct xfs_buf		*agibp; | 
 | 	int			error; | 
 |  | 
 | 	trace_xfs_iunlink_remove(ip); | 
 |  | 
 | 	/* Get the agi buffer first.  It ensures lock ordering on the list. */ | 
 | 	error = xfs_read_agi(pag, tp, &agibp); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	return xfs_iunlink_remove_inode(tp, pag, agibp, ip); | 
 | } | 
 |  | 
 | /* | 
 |  * Look up the inode number specified and if it is not already marked XFS_ISTALE | 
 |  * mark it stale. We should only find clean inodes in this lookup that aren't | 
 |  * already stale. | 
 |  */ | 
 | static void | 
 | xfs_ifree_mark_inode_stale( | 
 | 	struct xfs_perag	*pag, | 
 | 	struct xfs_inode	*free_ip, | 
 | 	xfs_ino_t		inum) | 
 | { | 
 | 	struct xfs_mount	*mp = pag->pag_mount; | 
 | 	struct xfs_inode_log_item *iip; | 
 | 	struct xfs_inode	*ip; | 
 |  | 
 | retry: | 
 | 	rcu_read_lock(); | 
 | 	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); | 
 |  | 
 | 	/* Inode not in memory, nothing to do */ | 
 | 	if (!ip) { | 
 | 		rcu_read_unlock(); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * because this is an RCU protected lookup, we could find a recently | 
 | 	 * freed or even reallocated inode during the lookup. We need to check | 
 | 	 * under the i_flags_lock for a valid inode here. Skip it if it is not | 
 | 	 * valid, the wrong inode or stale. | 
 | 	 */ | 
 | 	spin_lock(&ip->i_flags_lock); | 
 | 	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) | 
 | 		goto out_iflags_unlock; | 
 |  | 
 | 	/* | 
 | 	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the | 
 | 	 * other inodes that we did not find in the list attached to the buffer | 
 | 	 * and are not already marked stale. If we can't lock it, back off and | 
 | 	 * retry. | 
 | 	 */ | 
 | 	if (ip != free_ip) { | 
 | 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { | 
 | 			spin_unlock(&ip->i_flags_lock); | 
 | 			rcu_read_unlock(); | 
 | 			delay(1); | 
 | 			goto retry; | 
 | 		} | 
 | 	} | 
 | 	ip->i_flags |= XFS_ISTALE; | 
 |  | 
 | 	/* | 
 | 	 * If the inode is flushing, it is already attached to the buffer.  All | 
 | 	 * we needed to do here is mark the inode stale so buffer IO completion | 
 | 	 * will remove it from the AIL. | 
 | 	 */ | 
 | 	iip = ip->i_itemp; | 
 | 	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { | 
 | 		ASSERT(!list_empty(&iip->ili_item.li_bio_list)); | 
 | 		ASSERT(iip->ili_last_fields); | 
 | 		goto out_iunlock; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Inodes not attached to the buffer can be released immediately. | 
 | 	 * Everything else has to go through xfs_iflush_abort() on journal | 
 | 	 * commit as the flock synchronises removal of the inode from the | 
 | 	 * cluster buffer against inode reclaim. | 
 | 	 */ | 
 | 	if (!iip || list_empty(&iip->ili_item.li_bio_list)) | 
 | 		goto out_iunlock; | 
 |  | 
 | 	__xfs_iflags_set(ip, XFS_IFLUSHING); | 
 | 	spin_unlock(&ip->i_flags_lock); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	/* we have a dirty inode in memory that has not yet been flushed. */ | 
 | 	spin_lock(&iip->ili_lock); | 
 | 	iip->ili_last_fields = iip->ili_fields; | 
 | 	iip->ili_fields = 0; | 
 | 	iip->ili_fsync_fields = 0; | 
 | 	spin_unlock(&iip->ili_lock); | 
 | 	ASSERT(iip->ili_last_fields); | 
 |  | 
 | 	if (ip != free_ip) | 
 | 		xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 	return; | 
 |  | 
 | out_iunlock: | 
 | 	if (ip != free_ip) | 
 | 		xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | out_iflags_unlock: | 
 | 	spin_unlock(&ip->i_flags_lock); | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | /* | 
 |  * A big issue when freeing the inode cluster is that we _cannot_ skip any | 
 |  * inodes that are in memory - they all must be marked stale and attached to | 
 |  * the cluster buffer. | 
 |  */ | 
 | static int | 
 | xfs_ifree_cluster( | 
 | 	struct xfs_trans	*tp, | 
 | 	struct xfs_perag	*pag, | 
 | 	struct xfs_inode	*free_ip, | 
 | 	struct xfs_icluster	*xic) | 
 | { | 
 | 	struct xfs_mount	*mp = free_ip->i_mount; | 
 | 	struct xfs_ino_geometry	*igeo = M_IGEO(mp); | 
 | 	struct xfs_buf		*bp; | 
 | 	xfs_daddr_t		blkno; | 
 | 	xfs_ino_t		inum = xic->first_ino; | 
 | 	int			nbufs; | 
 | 	int			i, j; | 
 | 	int			ioffset; | 
 | 	int			error; | 
 |  | 
 | 	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; | 
 |  | 
 | 	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { | 
 | 		/* | 
 | 		 * The allocation bitmap tells us which inodes of the chunk were | 
 | 		 * physically allocated. Skip the cluster if an inode falls into | 
 | 		 * a sparse region. | 
 | 		 */ | 
 | 		ioffset = inum - xic->first_ino; | 
 | 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { | 
 | 			ASSERT(ioffset % igeo->inodes_per_cluster == 0); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), | 
 | 					 XFS_INO_TO_AGBNO(mp, inum)); | 
 |  | 
 | 		/* | 
 | 		 * We obtain and lock the backing buffer first in the process | 
 | 		 * here to ensure dirty inodes attached to the buffer remain in | 
 | 		 * the flushing state while we mark them stale. | 
 | 		 * | 
 | 		 * If we scan the in-memory inodes first, then buffer IO can | 
 | 		 * complete before we get a lock on it, and hence we may fail | 
 | 		 * to mark all the active inodes on the buffer stale. | 
 | 		 */ | 
 | 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, | 
 | 				mp->m_bsize * igeo->blocks_per_cluster, | 
 | 				XBF_UNMAPPED, &bp); | 
 | 		if (error) | 
 | 			return error; | 
 |  | 
 | 		/* | 
 | 		 * This buffer may not have been correctly initialised as we | 
 | 		 * didn't read it from disk. That's not important because we are | 
 | 		 * only using to mark the buffer as stale in the log, and to | 
 | 		 * attach stale cached inodes on it. | 
 | 		 * | 
 | 		 * For the inode that triggered the cluster freeing, this | 
 | 		 * attachment may occur in xfs_inode_item_precommit() after we | 
 | 		 * have marked this buffer stale.  If this buffer was not in | 
 | 		 * memory before xfs_ifree_cluster() started, it will not be | 
 | 		 * marked XBF_DONE and this will cause problems later in | 
 | 		 * xfs_inode_item_precommit() when we trip over a (stale, !done) | 
 | 		 * buffer to attached to the transaction. | 
 | 		 * | 
 | 		 * Hence we have to mark the buffer as XFS_DONE here. This is | 
 | 		 * safe because we are also marking the buffer as XBF_STALE and | 
 | 		 * XFS_BLI_STALE. That means it will never be dispatched for | 
 | 		 * IO and it won't be unlocked until the cluster freeing has | 
 | 		 * been committed to the journal and the buffer unpinned. If it | 
 | 		 * is written, we want to know about it, and we want it to | 
 | 		 * fail. We can acheive this by adding a write verifier to the | 
 | 		 * buffer. | 
 | 		 */ | 
 | 		bp->b_flags |= XBF_DONE; | 
 | 		bp->b_ops = &xfs_inode_buf_ops; | 
 |  | 
 | 		/* | 
 | 		 * Now we need to set all the cached clean inodes as XFS_ISTALE, | 
 | 		 * too. This requires lookups, and will skip inodes that we've | 
 | 		 * already marked XFS_ISTALE. | 
 | 		 */ | 
 | 		for (i = 0; i < igeo->inodes_per_cluster; i++) | 
 | 			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i); | 
 |  | 
 | 		xfs_trans_stale_inode_buf(tp, bp); | 
 | 		xfs_trans_binval(tp, bp); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This is called to return an inode to the inode free list.  The inode should | 
 |  * already be truncated to 0 length and have no pages associated with it.  This | 
 |  * routine also assumes that the inode is already a part of the transaction. | 
 |  * | 
 |  * The on-disk copy of the inode will have been added to the list of unlinked | 
 |  * inodes in the AGI. We need to remove the inode from that list atomically with | 
 |  * respect to freeing it here. | 
 |  */ | 
 | int | 
 | xfs_ifree( | 
 | 	struct xfs_trans	*tp, | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	struct xfs_mount	*mp = ip->i_mount; | 
 | 	struct xfs_perag	*pag; | 
 | 	struct xfs_icluster	xic = { 0 }; | 
 | 	struct xfs_inode_log_item *iip = ip->i_itemp; | 
 | 	int			error; | 
 |  | 
 | 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); | 
 | 	ASSERT(VFS_I(ip)->i_nlink == 0); | 
 | 	ASSERT(ip->i_df.if_nextents == 0); | 
 | 	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); | 
 | 	ASSERT(ip->i_nblocks == 0); | 
 |  | 
 | 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); | 
 |  | 
 | 	/* | 
 | 	 * Free the inode first so that we guarantee that the AGI lock is going | 
 | 	 * to be taken before we remove the inode from the unlinked list. This | 
 | 	 * makes the AGI lock -> unlinked list modification order the same as | 
 | 	 * used in O_TMPFILE creation. | 
 | 	 */ | 
 | 	error = xfs_difree(tp, pag, ip->i_ino, &xic); | 
 | 	if (error) | 
 | 		goto out; | 
 |  | 
 | 	error = xfs_iunlink_remove(tp, pag, ip); | 
 | 	if (error) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Free any local-format data sitting around before we reset the | 
 | 	 * data fork to extents format.  Note that the attr fork data has | 
 | 	 * already been freed by xfs_attr_inactive. | 
 | 	 */ | 
 | 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) { | 
 | 		kmem_free(ip->i_df.if_u1.if_data); | 
 | 		ip->i_df.if_u1.if_data = NULL; | 
 | 		ip->i_df.if_bytes = 0; | 
 | 	} | 
 |  | 
 | 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */ | 
 | 	ip->i_diflags = 0; | 
 | 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2; | 
 | 	ip->i_forkoff = 0;		/* mark the attr fork not in use */ | 
 | 	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; | 
 | 	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) | 
 | 		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS); | 
 |  | 
 | 	/* Don't attempt to replay owner changes for a deleted inode */ | 
 | 	spin_lock(&iip->ili_lock); | 
 | 	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); | 
 | 	spin_unlock(&iip->ili_lock); | 
 |  | 
 | 	/* | 
 | 	 * Bump the generation count so no one will be confused | 
 | 	 * by reincarnations of this inode. | 
 | 	 */ | 
 | 	VFS_I(ip)->i_generation++; | 
 | 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
 |  | 
 | 	if (xic.deleted) | 
 | 		error = xfs_ifree_cluster(tp, pag, ip, &xic); | 
 | out: | 
 | 	xfs_perag_put(pag); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * This is called to unpin an inode.  The caller must have the inode locked | 
 |  * in at least shared mode so that the buffer cannot be subsequently pinned | 
 |  * once someone is waiting for it to be unpinned. | 
 |  */ | 
 | static void | 
 | xfs_iunpin( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); | 
 |  | 
 | 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_); | 
 |  | 
 | 	/* Give the log a push to start the unpinning I/O */ | 
 | 	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL); | 
 |  | 
 | } | 
 |  | 
 | static void | 
 | __xfs_iunpin_wait( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); | 
 | 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); | 
 |  | 
 | 	xfs_iunpin(ip); | 
 |  | 
 | 	do { | 
 | 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); | 
 | 		if (xfs_ipincount(ip)) | 
 | 			io_schedule(); | 
 | 	} while (xfs_ipincount(ip)); | 
 | 	finish_wait(wq, &wait.wq_entry); | 
 | } | 
 |  | 
 | void | 
 | xfs_iunpin_wait( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	if (xfs_ipincount(ip)) | 
 | 		__xfs_iunpin_wait(ip); | 
 | } | 
 |  | 
 | /* | 
 |  * Removing an inode from the namespace involves removing the directory entry | 
 |  * and dropping the link count on the inode. Removing the directory entry can | 
 |  * result in locking an AGF (directory blocks were freed) and removing a link | 
 |  * count can result in placing the inode on an unlinked list which results in | 
 |  * locking an AGI. | 
 |  * | 
 |  * The big problem here is that we have an ordering constraint on AGF and AGI | 
 |  * locking - inode allocation locks the AGI, then can allocate a new extent for | 
 |  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode | 
 |  * removes the inode from the unlinked list, requiring that we lock the AGI | 
 |  * first, and then freeing the inode can result in an inode chunk being freed | 
 |  * and hence freeing disk space requiring that we lock an AGF. | 
 |  * | 
 |  * Hence the ordering that is imposed by other parts of the code is AGI before | 
 |  * AGF. This means we cannot remove the directory entry before we drop the inode | 
 |  * reference count and put it on the unlinked list as this results in a lock | 
 |  * order of AGF then AGI, and this can deadlock against inode allocation and | 
 |  * freeing. Therefore we must drop the link counts before we remove the | 
 |  * directory entry. | 
 |  * | 
 |  * This is still safe from a transactional point of view - it is not until we | 
 |  * get to xfs_defer_finish() that we have the possibility of multiple | 
 |  * transactions in this operation. Hence as long as we remove the directory | 
 |  * entry and drop the link count in the first transaction of the remove | 
 |  * operation, there are no transactional constraints on the ordering here. | 
 |  */ | 
 | int | 
 | xfs_remove( | 
 | 	xfs_inode_t             *dp, | 
 | 	struct xfs_name		*name, | 
 | 	xfs_inode_t		*ip) | 
 | { | 
 | 	xfs_mount_t		*mp = dp->i_mount; | 
 | 	xfs_trans_t             *tp = NULL; | 
 | 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode); | 
 | 	int			dontcare; | 
 | 	int                     error = 0; | 
 | 	uint			resblks; | 
 |  | 
 | 	trace_xfs_remove(dp, name); | 
 |  | 
 | 	if (xfs_is_shutdown(mp)) | 
 | 		return -EIO; | 
 |  | 
 | 	error = xfs_qm_dqattach(dp); | 
 | 	if (error) | 
 | 		goto std_return; | 
 |  | 
 | 	error = xfs_qm_dqattach(ip); | 
 | 	if (error) | 
 | 		goto std_return; | 
 |  | 
 | 	/* | 
 | 	 * We try to get the real space reservation first, allowing for | 
 | 	 * directory btree deletion(s) implying possible bmap insert(s).  If we | 
 | 	 * can't get the space reservation then we use 0 instead, and avoid the | 
 | 	 * bmap btree insert(s) in the directory code by, if the bmap insert | 
 | 	 * tries to happen, instead trimming the LAST block from the directory. | 
 | 	 * | 
 | 	 * Ignore EDQUOT and ENOSPC being returned via nospace_error because | 
 | 	 * the directory code can handle a reservationless update and we don't | 
 | 	 * want to prevent a user from trying to free space by deleting things. | 
 | 	 */ | 
 | 	resblks = XFS_REMOVE_SPACE_RES(mp); | 
 | 	error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks, | 
 | 			&tp, &dontcare); | 
 | 	if (error) { | 
 | 		ASSERT(error != -ENOSPC); | 
 | 		goto std_return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we're removing a directory perform some additional validation. | 
 | 	 */ | 
 | 	if (is_dir) { | 
 | 		ASSERT(VFS_I(ip)->i_nlink >= 2); | 
 | 		if (VFS_I(ip)->i_nlink != 2) { | 
 | 			error = -ENOTEMPTY; | 
 | 			goto out_trans_cancel; | 
 | 		} | 
 | 		if (!xfs_dir_isempty(ip)) { | 
 | 			error = -ENOTEMPTY; | 
 | 			goto out_trans_cancel; | 
 | 		} | 
 |  | 
 | 		/* Drop the link from ip's "..".  */ | 
 | 		error = xfs_droplink(tp, dp); | 
 | 		if (error) | 
 | 			goto out_trans_cancel; | 
 |  | 
 | 		/* Drop the "." link from ip to self.  */ | 
 | 		error = xfs_droplink(tp, ip); | 
 | 		if (error) | 
 | 			goto out_trans_cancel; | 
 |  | 
 | 		/* | 
 | 		 * Point the unlinked child directory's ".." entry to the root | 
 | 		 * directory to eliminate back-references to inodes that may | 
 | 		 * get freed before the child directory is closed.  If the fs | 
 | 		 * gets shrunk, this can lead to dirent inode validation errors. | 
 | 		 */ | 
 | 		if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) { | 
 | 			error = xfs_dir_replace(tp, ip, &xfs_name_dotdot, | 
 | 					tp->t_mountp->m_sb.sb_rootino, 0); | 
 | 			if (error) | 
 | 				goto out_trans_cancel; | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * When removing a non-directory we need to log the parent | 
 | 		 * inode here.  For a directory this is done implicitly | 
 | 		 * by the xfs_droplink call for the ".." entry. | 
 | 		 */ | 
 | 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); | 
 | 	} | 
 | 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | 
 |  | 
 | 	/* Drop the link from dp to ip. */ | 
 | 	error = xfs_droplink(tp, ip); | 
 | 	if (error) | 
 | 		goto out_trans_cancel; | 
 |  | 
 | 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); | 
 | 	if (error) { | 
 | 		ASSERT(error != -ENOENT); | 
 | 		goto out_trans_cancel; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If this is a synchronous mount, make sure that the | 
 | 	 * remove transaction goes to disk before returning to | 
 | 	 * the user. | 
 | 	 */ | 
 | 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) | 
 | 		xfs_trans_set_sync(tp); | 
 |  | 
 | 	error = xfs_trans_commit(tp); | 
 | 	if (error) | 
 | 		goto std_return; | 
 |  | 
 | 	if (is_dir && xfs_inode_is_filestream(ip)) | 
 | 		xfs_filestream_deassociate(ip); | 
 |  | 
 | 	return 0; | 
 |  | 
 |  out_trans_cancel: | 
 | 	xfs_trans_cancel(tp); | 
 |  std_return: | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Enter all inodes for a rename transaction into a sorted array. | 
 |  */ | 
 | #define __XFS_SORT_INODES	5 | 
 | STATIC void | 
 | xfs_sort_for_rename( | 
 | 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */ | 
 | 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */ | 
 | 	struct xfs_inode	*ip1,	/* in: inode of old entry */ | 
 | 	struct xfs_inode	*ip2,	/* in: inode of new entry */ | 
 | 	struct xfs_inode	*wip,	/* in: whiteout inode */ | 
 | 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */ | 
 | 	int			*num_inodes)  /* in/out: inodes in array */ | 
 | { | 
 | 	int			i, j; | 
 |  | 
 | 	ASSERT(*num_inodes == __XFS_SORT_INODES); | 
 | 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); | 
 |  | 
 | 	/* | 
 | 	 * i_tab contains a list of pointers to inodes.  We initialize | 
 | 	 * the table here & we'll sort it.  We will then use it to | 
 | 	 * order the acquisition of the inode locks. | 
 | 	 * | 
 | 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2. | 
 | 	 */ | 
 | 	i = 0; | 
 | 	i_tab[i++] = dp1; | 
 | 	i_tab[i++] = dp2; | 
 | 	i_tab[i++] = ip1; | 
 | 	if (ip2) | 
 | 		i_tab[i++] = ip2; | 
 | 	if (wip) | 
 | 		i_tab[i++] = wip; | 
 | 	*num_inodes = i; | 
 |  | 
 | 	/* | 
 | 	 * Sort the elements via bubble sort.  (Remember, there are at | 
 | 	 * most 5 elements to sort, so this is adequate.) | 
 | 	 */ | 
 | 	for (i = 0; i < *num_inodes; i++) { | 
 | 		for (j = 1; j < *num_inodes; j++) { | 
 | 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { | 
 | 				struct xfs_inode *temp = i_tab[j]; | 
 | 				i_tab[j] = i_tab[j-1]; | 
 | 				i_tab[j-1] = temp; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int | 
 | xfs_finish_rename( | 
 | 	struct xfs_trans	*tp) | 
 | { | 
 | 	/* | 
 | 	 * If this is a synchronous mount, make sure that the rename transaction | 
 | 	 * goes to disk before returning to the user. | 
 | 	 */ | 
 | 	if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp)) | 
 | 		xfs_trans_set_sync(tp); | 
 |  | 
 | 	return xfs_trans_commit(tp); | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_cross_rename() | 
 |  * | 
 |  * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall | 
 |  */ | 
 | STATIC int | 
 | xfs_cross_rename( | 
 | 	struct xfs_trans	*tp, | 
 | 	struct xfs_inode	*dp1, | 
 | 	struct xfs_name		*name1, | 
 | 	struct xfs_inode	*ip1, | 
 | 	struct xfs_inode	*dp2, | 
 | 	struct xfs_name		*name2, | 
 | 	struct xfs_inode	*ip2, | 
 | 	int			spaceres) | 
 | { | 
 | 	int		error = 0; | 
 | 	int		ip1_flags = 0; | 
 | 	int		ip2_flags = 0; | 
 | 	int		dp2_flags = 0; | 
 |  | 
 | 	/* Swap inode number for dirent in first parent */ | 
 | 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); | 
 | 	if (error) | 
 | 		goto out_trans_abort; | 
 |  | 
 | 	/* Swap inode number for dirent in second parent */ | 
 | 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); | 
 | 	if (error) | 
 | 		goto out_trans_abort; | 
 |  | 
 | 	/* | 
 | 	 * If we're renaming one or more directories across different parents, | 
 | 	 * update the respective ".." entries (and link counts) to match the new | 
 | 	 * parents. | 
 | 	 */ | 
 | 	if (dp1 != dp2) { | 
 | 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; | 
 |  | 
 | 		if (S_ISDIR(VFS_I(ip2)->i_mode)) { | 
 | 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, | 
 | 						dp1->i_ino, spaceres); | 
 | 			if (error) | 
 | 				goto out_trans_abort; | 
 |  | 
 | 			/* transfer ip2 ".." reference to dp1 */ | 
 | 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) { | 
 | 				error = xfs_droplink(tp, dp2); | 
 | 				if (error) | 
 | 					goto out_trans_abort; | 
 | 				xfs_bumplink(tp, dp1); | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * Although ip1 isn't changed here, userspace needs | 
 | 			 * to be warned about the change, so that applications | 
 | 			 * relying on it (like backup ones), will properly | 
 | 			 * notify the change | 
 | 			 */ | 
 | 			ip1_flags |= XFS_ICHGTIME_CHG; | 
 | 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; | 
 | 		} | 
 |  | 
 | 		if (S_ISDIR(VFS_I(ip1)->i_mode)) { | 
 | 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, | 
 | 						dp2->i_ino, spaceres); | 
 | 			if (error) | 
 | 				goto out_trans_abort; | 
 |  | 
 | 			/* transfer ip1 ".." reference to dp2 */ | 
 | 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) { | 
 | 				error = xfs_droplink(tp, dp1); | 
 | 				if (error) | 
 | 					goto out_trans_abort; | 
 | 				xfs_bumplink(tp, dp2); | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * Although ip2 isn't changed here, userspace needs | 
 | 			 * to be warned about the change, so that applications | 
 | 			 * relying on it (like backup ones), will properly | 
 | 			 * notify the change | 
 | 			 */ | 
 | 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; | 
 | 			ip2_flags |= XFS_ICHGTIME_CHG; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (ip1_flags) { | 
 | 		xfs_trans_ichgtime(tp, ip1, ip1_flags); | 
 | 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); | 
 | 	} | 
 | 	if (ip2_flags) { | 
 | 		xfs_trans_ichgtime(tp, ip2, ip2_flags); | 
 | 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); | 
 | 	} | 
 | 	if (dp2_flags) { | 
 | 		xfs_trans_ichgtime(tp, dp2, dp2_flags); | 
 | 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); | 
 | 	} | 
 | 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | 
 | 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); | 
 | 	return xfs_finish_rename(tp); | 
 |  | 
 | out_trans_abort: | 
 | 	xfs_trans_cancel(tp); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_rename_alloc_whiteout() | 
 |  * | 
 |  * Return a referenced, unlinked, unlocked inode that can be used as a | 
 |  * whiteout in a rename transaction. We use a tmpfile inode here so that if we | 
 |  * crash between allocating the inode and linking it into the rename transaction | 
 |  * recovery will free the inode and we won't leak it. | 
 |  */ | 
 | static int | 
 | xfs_rename_alloc_whiteout( | 
 | 	struct user_namespace	*mnt_userns, | 
 | 	struct xfs_name		*src_name, | 
 | 	struct xfs_inode	*dp, | 
 | 	struct xfs_inode	**wip) | 
 | { | 
 | 	struct xfs_inode	*tmpfile; | 
 | 	struct qstr		name; | 
 | 	int			error; | 
 |  | 
 | 	error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE, | 
 | 				   &tmpfile); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	name.name = src_name->name; | 
 | 	name.len = src_name->len; | 
 | 	error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name); | 
 | 	if (error) { | 
 | 		xfs_finish_inode_setup(tmpfile); | 
 | 		xfs_irele(tmpfile); | 
 | 		return error; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Prepare the tmpfile inode as if it were created through the VFS. | 
 | 	 * Complete the inode setup and flag it as linkable.  nlink is already | 
 | 	 * zero, so we can skip the drop_nlink. | 
 | 	 */ | 
 | 	xfs_setup_iops(tmpfile); | 
 | 	xfs_finish_inode_setup(tmpfile); | 
 | 	VFS_I(tmpfile)->i_state |= I_LINKABLE; | 
 |  | 
 | 	*wip = tmpfile; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_rename | 
 |  */ | 
 | int | 
 | xfs_rename( | 
 | 	struct user_namespace	*mnt_userns, | 
 | 	struct xfs_inode	*src_dp, | 
 | 	struct xfs_name		*src_name, | 
 | 	struct xfs_inode	*src_ip, | 
 | 	struct xfs_inode	*target_dp, | 
 | 	struct xfs_name		*target_name, | 
 | 	struct xfs_inode	*target_ip, | 
 | 	unsigned int		flags) | 
 | { | 
 | 	struct xfs_mount	*mp = src_dp->i_mount; | 
 | 	struct xfs_trans	*tp; | 
 | 	struct xfs_inode	*wip = NULL;		/* whiteout inode */ | 
 | 	struct xfs_inode	*inodes[__XFS_SORT_INODES]; | 
 | 	int			i; | 
 | 	int			num_inodes = __XFS_SORT_INODES; | 
 | 	bool			new_parent = (src_dp != target_dp); | 
 | 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); | 
 | 	int			spaceres; | 
 | 	bool			retried = false; | 
 | 	int			error, nospace_error = 0; | 
 |  | 
 | 	trace_xfs_rename(src_dp, target_dp, src_name, target_name); | 
 |  | 
 | 	if ((flags & RENAME_EXCHANGE) && !target_ip) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * If we are doing a whiteout operation, allocate the whiteout inode | 
 | 	 * we will be placing at the target and ensure the type is set | 
 | 	 * appropriately. | 
 | 	 */ | 
 | 	if (flags & RENAME_WHITEOUT) { | 
 | 		error = xfs_rename_alloc_whiteout(mnt_userns, src_name, | 
 | 						  target_dp, &wip); | 
 | 		if (error) | 
 | 			return error; | 
 |  | 
 | 		/* setup target dirent info as whiteout */ | 
 | 		src_name->type = XFS_DIR3_FT_CHRDEV; | 
 | 	} | 
 |  | 
 | 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, | 
 | 				inodes, &num_inodes); | 
 |  | 
 | retry: | 
 | 	nospace_error = 0; | 
 | 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); | 
 | 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); | 
 | 	if (error == -ENOSPC) { | 
 | 		nospace_error = error; | 
 | 		spaceres = 0; | 
 | 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, | 
 | 				&tp); | 
 | 	} | 
 | 	if (error) | 
 | 		goto out_release_wip; | 
 |  | 
 | 	/* | 
 | 	 * Attach the dquots to the inodes | 
 | 	 */ | 
 | 	error = xfs_qm_vop_rename_dqattach(inodes); | 
 | 	if (error) | 
 | 		goto out_trans_cancel; | 
 |  | 
 | 	/* | 
 | 	 * Lock all the participating inodes. Depending upon whether | 
 | 	 * the target_name exists in the target directory, and | 
 | 	 * whether the target directory is the same as the source | 
 | 	 * directory, we can lock from 2 to 5 inodes. | 
 | 	 */ | 
 | 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); | 
 |  | 
 | 	/* | 
 | 	 * Join all the inodes to the transaction. From this point on, | 
 | 	 * we can rely on either trans_commit or trans_cancel to unlock | 
 | 	 * them. | 
 | 	 */ | 
 | 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); | 
 | 	if (new_parent) | 
 | 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); | 
 | 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); | 
 | 	if (target_ip) | 
 | 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); | 
 | 	if (wip) | 
 | 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); | 
 |  | 
 | 	/* | 
 | 	 * If we are using project inheritance, we only allow renames | 
 | 	 * into our tree when the project IDs are the same; else the | 
 | 	 * tree quota mechanism would be circumvented. | 
 | 	 */ | 
 | 	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) && | 
 | 		     target_dp->i_projid != src_ip->i_projid)) { | 
 | 		error = -EXDEV; | 
 | 		goto out_trans_cancel; | 
 | 	} | 
 |  | 
 | 	/* RENAME_EXCHANGE is unique from here on. */ | 
 | 	if (flags & RENAME_EXCHANGE) | 
 | 		return xfs_cross_rename(tp, src_dp, src_name, src_ip, | 
 | 					target_dp, target_name, target_ip, | 
 | 					spaceres); | 
 |  | 
 | 	/* | 
 | 	 * Try to reserve quota to handle an expansion of the target directory. | 
 | 	 * We'll allow the rename to continue in reservationless mode if we hit | 
 | 	 * a space usage constraint.  If we trigger reservationless mode, save | 
 | 	 * the errno if there isn't any free space in the target directory. | 
 | 	 */ | 
 | 	if (spaceres != 0) { | 
 | 		error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres, | 
 | 				0, false); | 
 | 		if (error == -EDQUOT || error == -ENOSPC) { | 
 | 			if (!retried) { | 
 | 				xfs_trans_cancel(tp); | 
 | 				xfs_blockgc_free_quota(target_dp, 0); | 
 | 				retried = true; | 
 | 				goto retry; | 
 | 			} | 
 |  | 
 | 			nospace_error = error; | 
 | 			spaceres = 0; | 
 | 			error = 0; | 
 | 		} | 
 | 		if (error) | 
 | 			goto out_trans_cancel; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check for expected errors before we dirty the transaction | 
 | 	 * so we can return an error without a transaction abort. | 
 | 	 */ | 
 | 	if (target_ip == NULL) { | 
 | 		/* | 
 | 		 * If there's no space reservation, check the entry will | 
 | 		 * fit before actually inserting it. | 
 | 		 */ | 
 | 		if (!spaceres) { | 
 | 			error = xfs_dir_canenter(tp, target_dp, target_name); | 
 | 			if (error) | 
 | 				goto out_trans_cancel; | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * If target exists and it's a directory, check that whether | 
 | 		 * it can be destroyed. | 
 | 		 */ | 
 | 		if (S_ISDIR(VFS_I(target_ip)->i_mode) && | 
 | 		    (!xfs_dir_isempty(target_ip) || | 
 | 		     (VFS_I(target_ip)->i_nlink > 2))) { | 
 | 			error = -EEXIST; | 
 | 			goto out_trans_cancel; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Lock the AGI buffers we need to handle bumping the nlink of the | 
 | 	 * whiteout inode off the unlinked list and to handle dropping the | 
 | 	 * nlink of the target inode.  Per locking order rules, do this in | 
 | 	 * increasing AG order and before directory block allocation tries to | 
 | 	 * grab AGFs because we grab AGIs before AGFs. | 
 | 	 * | 
 | 	 * The (vfs) caller must ensure that if src is a directory then | 
 | 	 * target_ip is either null or an empty directory. | 
 | 	 */ | 
 | 	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) { | 
 | 		if (inodes[i] == wip || | 
 | 		    (inodes[i] == target_ip && | 
 | 		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) { | 
 | 			struct xfs_perag	*pag; | 
 | 			struct xfs_buf		*bp; | 
 |  | 
 | 			pag = xfs_perag_get(mp, | 
 | 					XFS_INO_TO_AGNO(mp, inodes[i]->i_ino)); | 
 | 			error = xfs_read_agi(pag, tp, &bp); | 
 | 			xfs_perag_put(pag); | 
 | 			if (error) | 
 | 				goto out_trans_cancel; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Directory entry creation below may acquire the AGF. Remove | 
 | 	 * the whiteout from the unlinked list first to preserve correct | 
 | 	 * AGI/AGF locking order. This dirties the transaction so failures | 
 | 	 * after this point will abort and log recovery will clean up the | 
 | 	 * mess. | 
 | 	 * | 
 | 	 * For whiteouts, we need to bump the link count on the whiteout | 
 | 	 * inode. After this point, we have a real link, clear the tmpfile | 
 | 	 * state flag from the inode so it doesn't accidentally get misused | 
 | 	 * in future. | 
 | 	 */ | 
 | 	if (wip) { | 
 | 		struct xfs_perag	*pag; | 
 |  | 
 | 		ASSERT(VFS_I(wip)->i_nlink == 0); | 
 |  | 
 | 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino)); | 
 | 		error = xfs_iunlink_remove(tp, pag, wip); | 
 | 		xfs_perag_put(pag); | 
 | 		if (error) | 
 | 			goto out_trans_cancel; | 
 |  | 
 | 		xfs_bumplink(tp, wip); | 
 | 		VFS_I(wip)->i_state &= ~I_LINKABLE; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Set up the target. | 
 | 	 */ | 
 | 	if (target_ip == NULL) { | 
 | 		/* | 
 | 		 * If target does not exist and the rename crosses | 
 | 		 * directories, adjust the target directory link count | 
 | 		 * to account for the ".." reference from the new entry. | 
 | 		 */ | 
 | 		error = xfs_dir_createname(tp, target_dp, target_name, | 
 | 					   src_ip->i_ino, spaceres); | 
 | 		if (error) | 
 | 			goto out_trans_cancel; | 
 |  | 
 | 		xfs_trans_ichgtime(tp, target_dp, | 
 | 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | 
 |  | 
 | 		if (new_parent && src_is_directory) { | 
 | 			xfs_bumplink(tp, target_dp); | 
 | 		} | 
 | 	} else { /* target_ip != NULL */ | 
 | 		/* | 
 | 		 * Link the source inode under the target name. | 
 | 		 * If the source inode is a directory and we are moving | 
 | 		 * it across directories, its ".." entry will be | 
 | 		 * inconsistent until we replace that down below. | 
 | 		 * | 
 | 		 * In case there is already an entry with the same | 
 | 		 * name at the destination directory, remove it first. | 
 | 		 */ | 
 | 		error = xfs_dir_replace(tp, target_dp, target_name, | 
 | 					src_ip->i_ino, spaceres); | 
 | 		if (error) | 
 | 			goto out_trans_cancel; | 
 |  | 
 | 		xfs_trans_ichgtime(tp, target_dp, | 
 | 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | 
 |  | 
 | 		/* | 
 | 		 * Decrement the link count on the target since the target | 
 | 		 * dir no longer points to it. | 
 | 		 */ | 
 | 		error = xfs_droplink(tp, target_ip); | 
 | 		if (error) | 
 | 			goto out_trans_cancel; | 
 |  | 
 | 		if (src_is_directory) { | 
 | 			/* | 
 | 			 * Drop the link from the old "." entry. | 
 | 			 */ | 
 | 			error = xfs_droplink(tp, target_ip); | 
 | 			if (error) | 
 | 				goto out_trans_cancel; | 
 | 		} | 
 | 	} /* target_ip != NULL */ | 
 |  | 
 | 	/* | 
 | 	 * Remove the source. | 
 | 	 */ | 
 | 	if (new_parent && src_is_directory) { | 
 | 		/* | 
 | 		 * Rewrite the ".." entry to point to the new | 
 | 		 * directory. | 
 | 		 */ | 
 | 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, | 
 | 					target_dp->i_ino, spaceres); | 
 | 		ASSERT(error != -EEXIST); | 
 | 		if (error) | 
 | 			goto out_trans_cancel; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We always want to hit the ctime on the source inode. | 
 | 	 * | 
 | 	 * This isn't strictly required by the standards since the source | 
 | 	 * inode isn't really being changed, but old unix file systems did | 
 | 	 * it and some incremental backup programs won't work without it. | 
 | 	 */ | 
 | 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); | 
 | 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); | 
 |  | 
 | 	/* | 
 | 	 * Adjust the link count on src_dp.  This is necessary when | 
 | 	 * renaming a directory, either within one parent when | 
 | 	 * the target existed, or across two parent directories. | 
 | 	 */ | 
 | 	if (src_is_directory && (new_parent || target_ip != NULL)) { | 
 |  | 
 | 		/* | 
 | 		 * Decrement link count on src_directory since the | 
 | 		 * entry that's moved no longer points to it. | 
 | 		 */ | 
 | 		error = xfs_droplink(tp, src_dp); | 
 | 		if (error) | 
 | 			goto out_trans_cancel; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For whiteouts, we only need to update the source dirent with the | 
 | 	 * inode number of the whiteout inode rather than removing it | 
 | 	 * altogether. | 
 | 	 */ | 
 | 	if (wip) | 
 | 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, | 
 | 					spaceres); | 
 | 	else | 
 | 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, | 
 | 					   spaceres); | 
 |  | 
 | 	if (error) | 
 | 		goto out_trans_cancel; | 
 |  | 
 | 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | 
 | 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); | 
 | 	if (new_parent) | 
 | 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); | 
 |  | 
 | 	error = xfs_finish_rename(tp); | 
 | 	if (wip) | 
 | 		xfs_irele(wip); | 
 | 	return error; | 
 |  | 
 | out_trans_cancel: | 
 | 	xfs_trans_cancel(tp); | 
 | out_release_wip: | 
 | 	if (wip) | 
 | 		xfs_irele(wip); | 
 | 	if (error == -ENOSPC && nospace_error) | 
 | 		error = nospace_error; | 
 | 	return error; | 
 | } | 
 |  | 
 | static int | 
 | xfs_iflush( | 
 | 	struct xfs_inode	*ip, | 
 | 	struct xfs_buf		*bp) | 
 | { | 
 | 	struct xfs_inode_log_item *iip = ip->i_itemp; | 
 | 	struct xfs_dinode	*dip; | 
 | 	struct xfs_mount	*mp = ip->i_mount; | 
 | 	int			error; | 
 |  | 
 | 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); | 
 | 	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); | 
 | 	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || | 
 | 	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); | 
 | 	ASSERT(iip->ili_item.li_buf == bp); | 
 |  | 
 | 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); | 
 |  | 
 | 	/* | 
 | 	 * We don't flush the inode if any of the following checks fail, but we | 
 | 	 * do still update the log item and attach to the backing buffer as if | 
 | 	 * the flush happened. This is a formality to facilitate predictable | 
 | 	 * error handling as the caller will shutdown and fail the buffer. | 
 | 	 */ | 
 | 	error = -EFSCORRUPTED; | 
 | 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), | 
 | 			       mp, XFS_ERRTAG_IFLUSH_1)) { | 
 | 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH, | 
 | 			"%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT, | 
 | 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); | 
 | 		goto flush_out; | 
 | 	} | 
 | 	if (S_ISREG(VFS_I(ip)->i_mode)) { | 
 | 		if (XFS_TEST_ERROR( | 
 | 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && | 
 | 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE, | 
 | 		    mp, XFS_ERRTAG_IFLUSH_3)) { | 
 | 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH, | 
 | 				"%s: Bad regular inode %llu, ptr "PTR_FMT, | 
 | 				__func__, ip->i_ino, ip); | 
 | 			goto flush_out; | 
 | 		} | 
 | 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) { | 
 | 		if (XFS_TEST_ERROR( | 
 | 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && | 
 | 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE && | 
 | 		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, | 
 | 		    mp, XFS_ERRTAG_IFLUSH_4)) { | 
 | 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH, | 
 | 				"%s: Bad directory inode %llu, ptr "PTR_FMT, | 
 | 				__func__, ip->i_ino, ip); | 
 | 			goto flush_out; | 
 | 		} | 
 | 	} | 
 | 	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) > | 
 | 				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { | 
 | 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH, | 
 | 			"%s: detected corrupt incore inode %llu, " | 
 | 			"total extents = %llu nblocks = %lld, ptr "PTR_FMT, | 
 | 			__func__, ip->i_ino, | 
 | 			ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af), | 
 | 			ip->i_nblocks, ip); | 
 | 		goto flush_out; | 
 | 	} | 
 | 	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize, | 
 | 				mp, XFS_ERRTAG_IFLUSH_6)) { | 
 | 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH, | 
 | 			"%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT, | 
 | 			__func__, ip->i_ino, ip->i_forkoff, ip); | 
 | 		goto flush_out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Inode item log recovery for v2 inodes are dependent on the flushiter | 
 | 	 * count for correct sequencing.  We bump the flush iteration count so | 
 | 	 * we can detect flushes which postdate a log record during recovery. | 
 | 	 * This is redundant as we now log every change and hence this can't | 
 | 	 * happen but we need to still do it to ensure backwards compatibility | 
 | 	 * with old kernels that predate logging all inode changes. | 
 | 	 */ | 
 | 	if (!xfs_has_v3inodes(mp)) | 
 | 		ip->i_flushiter++; | 
 |  | 
 | 	/* | 
 | 	 * If there are inline format data / attr forks attached to this inode, | 
 | 	 * make sure they are not corrupt. | 
 | 	 */ | 
 | 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && | 
 | 	    xfs_ifork_verify_local_data(ip)) | 
 | 		goto flush_out; | 
 | 	if (xfs_inode_has_attr_fork(ip) && | 
 | 	    ip->i_af.if_format == XFS_DINODE_FMT_LOCAL && | 
 | 	    xfs_ifork_verify_local_attr(ip)) | 
 | 		goto flush_out; | 
 |  | 
 | 	/* | 
 | 	 * Copy the dirty parts of the inode into the on-disk inode.  We always | 
 | 	 * copy out the core of the inode, because if the inode is dirty at all | 
 | 	 * the core must be. | 
 | 	 */ | 
 | 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); | 
 |  | 
 | 	/* Wrap, we never let the log put out DI_MAX_FLUSH */ | 
 | 	if (!xfs_has_v3inodes(mp)) { | 
 | 		if (ip->i_flushiter == DI_MAX_FLUSH) | 
 | 			ip->i_flushiter = 0; | 
 | 	} | 
 |  | 
 | 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); | 
 | 	if (xfs_inode_has_attr_fork(ip)) | 
 | 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); | 
 |  | 
 | 	/* | 
 | 	 * We've recorded everything logged in the inode, so we'd like to clear | 
 | 	 * the ili_fields bits so we don't log and flush things unnecessarily. | 
 | 	 * However, we can't stop logging all this information until the data | 
 | 	 * we've copied into the disk buffer is written to disk.  If we did we | 
 | 	 * might overwrite the copy of the inode in the log with all the data | 
 | 	 * after re-logging only part of it, and in the face of a crash we | 
 | 	 * wouldn't have all the data we need to recover. | 
 | 	 * | 
 | 	 * What we do is move the bits to the ili_last_fields field.  When | 
 | 	 * logging the inode, these bits are moved back to the ili_fields field. | 
 | 	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since | 
 | 	 * we know that the information those bits represent is permanently on | 
 | 	 * disk.  As long as the flush completes before the inode is logged | 
 | 	 * again, then both ili_fields and ili_last_fields will be cleared. | 
 | 	 */ | 
 | 	error = 0; | 
 | flush_out: | 
 | 	spin_lock(&iip->ili_lock); | 
 | 	iip->ili_last_fields = iip->ili_fields; | 
 | 	iip->ili_fields = 0; | 
 | 	iip->ili_fsync_fields = 0; | 
 | 	spin_unlock(&iip->ili_lock); | 
 |  | 
 | 	/* | 
 | 	 * Store the current LSN of the inode so that we can tell whether the | 
 | 	 * item has moved in the AIL from xfs_buf_inode_iodone(). | 
 | 	 */ | 
 | 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, | 
 | 				&iip->ili_item.li_lsn); | 
 |  | 
 | 	/* generate the checksum. */ | 
 | 	xfs_dinode_calc_crc(mp, dip); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Non-blocking flush of dirty inode metadata into the backing buffer. | 
 |  * | 
 |  * The caller must have a reference to the inode and hold the cluster buffer | 
 |  * locked. The function will walk across all the inodes on the cluster buffer it | 
 |  * can find and lock without blocking, and flush them to the cluster buffer. | 
 |  * | 
 |  * On successful flushing of at least one inode, the caller must write out the | 
 |  * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and | 
 |  * the caller needs to release the buffer. On failure, the filesystem will be | 
 |  * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED | 
 |  * will be returned. | 
 |  */ | 
 | int | 
 | xfs_iflush_cluster( | 
 | 	struct xfs_buf		*bp) | 
 | { | 
 | 	struct xfs_mount	*mp = bp->b_mount; | 
 | 	struct xfs_log_item	*lip, *n; | 
 | 	struct xfs_inode	*ip; | 
 | 	struct xfs_inode_log_item *iip; | 
 | 	int			clcount = 0; | 
 | 	int			error = 0; | 
 |  | 
 | 	/* | 
 | 	 * We must use the safe variant here as on shutdown xfs_iflush_abort() | 
 | 	 * will remove itself from the list. | 
 | 	 */ | 
 | 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { | 
 | 		iip = (struct xfs_inode_log_item *)lip; | 
 | 		ip = iip->ili_inode; | 
 |  | 
 | 		/* | 
 | 		 * Quick and dirty check to avoid locks if possible. | 
 | 		 */ | 
 | 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) | 
 | 			continue; | 
 | 		if (xfs_ipincount(ip)) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * The inode is still attached to the buffer, which means it is | 
 | 		 * dirty but reclaim might try to grab it. Check carefully for | 
 | 		 * that, and grab the ilock while still holding the i_flags_lock | 
 | 		 * to guarantee reclaim will not be able to reclaim this inode | 
 | 		 * once we drop the i_flags_lock. | 
 | 		 */ | 
 | 		spin_lock(&ip->i_flags_lock); | 
 | 		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); | 
 | 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { | 
 | 			spin_unlock(&ip->i_flags_lock); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * ILOCK will pin the inode against reclaim and prevent | 
 | 		 * concurrent transactions modifying the inode while we are | 
 | 		 * flushing the inode. If we get the lock, set the flushing | 
 | 		 * state before we drop the i_flags_lock. | 
 | 		 */ | 
 | 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { | 
 | 			spin_unlock(&ip->i_flags_lock); | 
 | 			continue; | 
 | 		} | 
 | 		__xfs_iflags_set(ip, XFS_IFLUSHING); | 
 | 		spin_unlock(&ip->i_flags_lock); | 
 |  | 
 | 		/* | 
 | 		 * Abort flushing this inode if we are shut down because the | 
 | 		 * inode may not currently be in the AIL. This can occur when | 
 | 		 * log I/O failure unpins the inode without inserting into the | 
 | 		 * AIL, leaving a dirty/unpinned inode attached to the buffer | 
 | 		 * that otherwise looks like it should be flushed. | 
 | 		 */ | 
 | 		if (xlog_is_shutdown(mp->m_log)) { | 
 | 			xfs_iunpin_wait(ip); | 
 | 			xfs_iflush_abort(ip); | 
 | 			xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
 | 			error = -EIO; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* don't block waiting on a log force to unpin dirty inodes */ | 
 | 		if (xfs_ipincount(ip)) { | 
 | 			xfs_iflags_clear(ip, XFS_IFLUSHING); | 
 | 			xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (!xfs_inode_clean(ip)) | 
 | 			error = xfs_iflush(ip, bp); | 
 | 		else | 
 | 			xfs_iflags_clear(ip, XFS_IFLUSHING); | 
 | 		xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
 | 		if (error) | 
 | 			break; | 
 | 		clcount++; | 
 | 	} | 
 |  | 
 | 	if (error) { | 
 | 		/* | 
 | 		 * Shutdown first so we kill the log before we release this | 
 | 		 * buffer. If it is an INODE_ALLOC buffer and pins the tail | 
 | 		 * of the log, failing it before the _log_ is shut down can | 
 | 		 * result in the log tail being moved forward in the journal | 
 | 		 * on disk because log writes can still be taking place. Hence | 
 | 		 * unpinning the tail will allow the ICREATE intent to be | 
 | 		 * removed from the log an recovery will fail with uninitialised | 
 | 		 * inode cluster buffers. | 
 | 		 */ | 
 | 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); | 
 | 		bp->b_flags |= XBF_ASYNC; | 
 | 		xfs_buf_ioend_fail(bp); | 
 | 		return error; | 
 | 	} | 
 |  | 
 | 	if (!clcount) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	XFS_STATS_INC(mp, xs_icluster_flushcnt); | 
 | 	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); | 
 | 	return 0; | 
 |  | 
 | } | 
 |  | 
 | /* Release an inode. */ | 
 | void | 
 | xfs_irele( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	trace_xfs_irele(ip, _RET_IP_); | 
 | 	iput(VFS_I(ip)); | 
 | } | 
 |  | 
 | /* | 
 |  * Ensure all commited transactions touching the inode are written to the log. | 
 |  */ | 
 | int | 
 | xfs_log_force_inode( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	xfs_csn_t		seq = 0; | 
 |  | 
 | 	xfs_ilock(ip, XFS_ILOCK_SHARED); | 
 | 	if (xfs_ipincount(ip)) | 
 | 		seq = ip->i_itemp->ili_commit_seq; | 
 | 	xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
 |  | 
 | 	if (!seq) | 
 | 		return 0; | 
 | 	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * Grab the exclusive iolock for a data copy from src to dest, making sure to | 
 |  * abide vfs locking order (lowest pointer value goes first) and breaking the | 
 |  * layout leases before proceeding.  The loop is needed because we cannot call | 
 |  * the blocking break_layout() with the iolocks held, and therefore have to | 
 |  * back out both locks. | 
 |  */ | 
 | static int | 
 | xfs_iolock_two_inodes_and_break_layout( | 
 | 	struct inode		*src, | 
 | 	struct inode		*dest) | 
 | { | 
 | 	int			error; | 
 |  | 
 | 	if (src > dest) | 
 | 		swap(src, dest); | 
 |  | 
 | retry: | 
 | 	/* Wait to break both inodes' layouts before we start locking. */ | 
 | 	error = break_layout(src, true); | 
 | 	if (error) | 
 | 		return error; | 
 | 	if (src != dest) { | 
 | 		error = break_layout(dest, true); | 
 | 		if (error) | 
 | 			return error; | 
 | 	} | 
 |  | 
 | 	/* Lock one inode and make sure nobody got in and leased it. */ | 
 | 	inode_lock(src); | 
 | 	error = break_layout(src, false); | 
 | 	if (error) { | 
 | 		inode_unlock(src); | 
 | 		if (error == -EWOULDBLOCK) | 
 | 			goto retry; | 
 | 		return error; | 
 | 	} | 
 |  | 
 | 	if (src == dest) | 
 | 		return 0; | 
 |  | 
 | 	/* Lock the other inode and make sure nobody got in and leased it. */ | 
 | 	inode_lock_nested(dest, I_MUTEX_NONDIR2); | 
 | 	error = break_layout(dest, false); | 
 | 	if (error) { | 
 | 		inode_unlock(src); | 
 | 		inode_unlock(dest); | 
 | 		if (error == -EWOULDBLOCK) | 
 | 			goto retry; | 
 | 		return error; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | xfs_mmaplock_two_inodes_and_break_dax_layout( | 
 | 	struct xfs_inode	*ip1, | 
 | 	struct xfs_inode	*ip2) | 
 | { | 
 | 	int			error; | 
 | 	bool			retry; | 
 | 	struct page		*page; | 
 |  | 
 | 	if (ip1->i_ino > ip2->i_ino) | 
 | 		swap(ip1, ip2); | 
 |  | 
 | again: | 
 | 	retry = false; | 
 | 	/* Lock the first inode */ | 
 | 	xfs_ilock(ip1, XFS_MMAPLOCK_EXCL); | 
 | 	error = xfs_break_dax_layouts(VFS_I(ip1), &retry); | 
 | 	if (error || retry) { | 
 | 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); | 
 | 		if (error == 0 && retry) | 
 | 			goto again; | 
 | 		return error; | 
 | 	} | 
 |  | 
 | 	if (ip1 == ip2) | 
 | 		return 0; | 
 |  | 
 | 	/* Nested lock the second inode */ | 
 | 	xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1)); | 
 | 	/* | 
 | 	 * We cannot use xfs_break_dax_layouts() directly here because it may | 
 | 	 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable | 
 | 	 * for this nested lock case. | 
 | 	 */ | 
 | 	page = dax_layout_busy_page(VFS_I(ip2)->i_mapping); | 
 | 	if (page && page_ref_count(page) != 1) { | 
 | 		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); | 
 | 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Lock two inodes so that userspace cannot initiate I/O via file syscalls or | 
 |  * mmap activity. | 
 |  */ | 
 | int | 
 | xfs_ilock2_io_mmap( | 
 | 	struct xfs_inode	*ip1, | 
 | 	struct xfs_inode	*ip2) | 
 | { | 
 | 	int			ret; | 
 |  | 
 | 	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { | 
 | 		ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2); | 
 | 		if (ret) { | 
 | 			inode_unlock(VFS_I(ip2)); | 
 | 			if (ip1 != ip2) | 
 | 				inode_unlock(VFS_I(ip1)); | 
 | 			return ret; | 
 | 		} | 
 | 	} else | 
 | 		filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping, | 
 | 					    VFS_I(ip2)->i_mapping); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Unlock both inodes to allow IO and mmap activity. */ | 
 | void | 
 | xfs_iunlock2_io_mmap( | 
 | 	struct xfs_inode	*ip1, | 
 | 	struct xfs_inode	*ip2) | 
 | { | 
 | 	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { | 
 | 		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); | 
 | 		if (ip1 != ip2) | 
 | 			xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); | 
 | 	} else | 
 | 		filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping, | 
 | 					      VFS_I(ip2)->i_mapping); | 
 |  | 
 | 	inode_unlock(VFS_I(ip2)); | 
 | 	if (ip1 != ip2) | 
 | 		inode_unlock(VFS_I(ip1)); | 
 | } | 
 |  | 
 | /* Drop the MMAPLOCK and the IOLOCK after a remap completes. */ | 
 | void | 
 | xfs_iunlock2_remapping( | 
 | 	struct xfs_inode	*ip1, | 
 | 	struct xfs_inode	*ip2) | 
 | { | 
 | 	xfs_iflags_clear(ip1, XFS_IREMAPPING); | 
 |  | 
 | 	if (ip1 != ip2) | 
 | 		xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED); | 
 | 	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); | 
 |  | 
 | 	if (ip1 != ip2) | 
 | 		inode_unlock_shared(VFS_I(ip1)); | 
 | 	inode_unlock(VFS_I(ip2)); | 
 | } | 
 |  | 
 | /* | 
 |  * Reload the incore inode list for this inode.  Caller should ensure that | 
 |  * the link count cannot change, either by taking ILOCK_SHARED or otherwise | 
 |  * preventing other threads from executing. | 
 |  */ | 
 | int | 
 | xfs_inode_reload_unlinked_bucket( | 
 | 	struct xfs_trans	*tp, | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	struct xfs_mount	*mp = tp->t_mountp; | 
 | 	struct xfs_buf		*agibp; | 
 | 	struct xfs_agi		*agi; | 
 | 	struct xfs_perag	*pag; | 
 | 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino); | 
 | 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino); | 
 | 	xfs_agino_t		prev_agino, next_agino; | 
 | 	unsigned int		bucket; | 
 | 	bool			foundit = false; | 
 | 	int			error; | 
 |  | 
 | 	/* Grab the first inode in the list */ | 
 | 	pag = xfs_perag_get(mp, agno); | 
 | 	error = xfs_ialloc_read_agi(pag, tp, &agibp); | 
 | 	xfs_perag_put(pag); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	/* | 
 | 	 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the | 
 | 	 * incore unlinked list pointers for this inode.  Check once more to | 
 | 	 * see if we raced with anyone else to reload the unlinked list. | 
 | 	 */ | 
 | 	if (!xfs_inode_unlinked_incomplete(ip)) { | 
 | 		foundit = true; | 
 | 		goto out_agibp; | 
 | 	} | 
 |  | 
 | 	bucket = agino % XFS_AGI_UNLINKED_BUCKETS; | 
 | 	agi = agibp->b_addr; | 
 |  | 
 | 	trace_xfs_inode_reload_unlinked_bucket(ip); | 
 |  | 
 | 	xfs_info_ratelimited(mp, | 
 |  "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating list recovery.", | 
 | 			agino, agno); | 
 |  | 
 | 	prev_agino = NULLAGINO; | 
 | 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket]); | 
 | 	while (next_agino != NULLAGINO) { | 
 | 		struct xfs_inode	*next_ip = NULL; | 
 |  | 
 | 		/* Found this caller's inode, set its backlink. */ | 
 | 		if (next_agino == agino) { | 
 | 			next_ip = ip; | 
 | 			next_ip->i_prev_unlinked = prev_agino; | 
 | 			foundit = true; | 
 | 			goto next_inode; | 
 | 		} | 
 |  | 
 | 		/* Try in-memory lookup first. */ | 
 | 		next_ip = xfs_iunlink_lookup(pag, next_agino); | 
 | 		if (next_ip) | 
 | 			goto next_inode; | 
 |  | 
 | 		/* Inode not in memory, try reloading it. */ | 
 | 		error = xfs_iunlink_reload_next(tp, agibp, prev_agino, | 
 | 				next_agino); | 
 | 		if (error) | 
 | 			break; | 
 |  | 
 | 		/* Grab the reloaded inode. */ | 
 | 		next_ip = xfs_iunlink_lookup(pag, next_agino); | 
 | 		if (!next_ip) { | 
 | 			/* No incore inode at all?  We reloaded it... */ | 
 | 			ASSERT(next_ip != NULL); | 
 | 			error = -EFSCORRUPTED; | 
 | 			break; | 
 | 		} | 
 |  | 
 | next_inode: | 
 | 		prev_agino = next_agino; | 
 | 		next_agino = next_ip->i_next_unlinked; | 
 | 	} | 
 |  | 
 | out_agibp: | 
 | 	xfs_trans_brelse(tp, agibp); | 
 | 	/* Should have found this inode somewhere in the iunlinked bucket. */ | 
 | 	if (!error && !foundit) | 
 | 		error = -EFSCORRUPTED; | 
 | 	return error; | 
 | } | 
 |  | 
 | /* Decide if this inode is missing its unlinked list and reload it. */ | 
 | int | 
 | xfs_inode_reload_unlinked( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	struct xfs_trans	*tp; | 
 | 	int			error; | 
 |  | 
 | 	error = xfs_trans_alloc_empty(ip->i_mount, &tp); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	xfs_ilock(ip, XFS_ILOCK_SHARED); | 
 | 	if (xfs_inode_unlinked_incomplete(ip)) | 
 | 		error = xfs_inode_reload_unlinked_bucket(tp, ip); | 
 | 	xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
 | 	xfs_trans_cancel(tp); | 
 |  | 
 | 	return error; | 
 | } |