| // SPDX-License-Identifier: GPL-2.0-or-later | 
 | /* | 
 |  * Broadcom Starfighter 2 DSA switch CFP support | 
 |  * | 
 |  * Copyright (C) 2016, Broadcom | 
 |  */ | 
 |  | 
 | #include <linux/list.h> | 
 | #include <linux/ethtool.h> | 
 | #include <linux/if_ether.h> | 
 | #include <linux/in.h> | 
 | #include <linux/netdevice.h> | 
 | #include <net/dsa.h> | 
 | #include <linux/bitmap.h> | 
 | #include <net/flow_offload.h> | 
 | #include <net/switchdev.h> | 
 | #include <uapi/linux/if_bridge.h> | 
 |  | 
 | #include "bcm_sf2.h" | 
 | #include "bcm_sf2_regs.h" | 
 |  | 
 | struct cfp_rule { | 
 | 	int port; | 
 | 	struct ethtool_rx_flow_spec fs; | 
 | 	struct list_head next; | 
 | }; | 
 |  | 
 | struct cfp_udf_slice_layout { | 
 | 	u8 slices[UDFS_PER_SLICE]; | 
 | 	u32 mask_value; | 
 | 	u32 base_offset; | 
 | }; | 
 |  | 
 | struct cfp_udf_layout { | 
 | 	struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES]; | 
 | }; | 
 |  | 
 | static const u8 zero_slice[UDFS_PER_SLICE] = { }; | 
 |  | 
 | /* UDF slices layout for a TCPv4/UDPv4 specification */ | 
 | static const struct cfp_udf_layout udf_tcpip4_layout = { | 
 | 	.udfs = { | 
 | 		[1] = { | 
 | 			.slices = { | 
 | 				/* End of L2, byte offset 12, src IP[0:15] */ | 
 | 				CFG_UDF_EOL2 | 6, | 
 | 				/* End of L2, byte offset 14, src IP[16:31] */ | 
 | 				CFG_UDF_EOL2 | 7, | 
 | 				/* End of L2, byte offset 16, dst IP[0:15] */ | 
 | 				CFG_UDF_EOL2 | 8, | 
 | 				/* End of L2, byte offset 18, dst IP[16:31] */ | 
 | 				CFG_UDF_EOL2 | 9, | 
 | 				/* End of L3, byte offset 0, src port */ | 
 | 				CFG_UDF_EOL3 | 0, | 
 | 				/* End of L3, byte offset 2, dst port */ | 
 | 				CFG_UDF_EOL3 | 1, | 
 | 				0, 0, 0 | 
 | 			}, | 
 | 			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG, | 
 | 			.base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET, | 
 | 		}, | 
 | 	}, | 
 | }; | 
 |  | 
 | /* UDF slices layout for a TCPv6/UDPv6 specification */ | 
 | static const struct cfp_udf_layout udf_tcpip6_layout = { | 
 | 	.udfs = { | 
 | 		[0] = { | 
 | 			.slices = { | 
 | 				/* End of L2, byte offset 8, src IP[0:15] */ | 
 | 				CFG_UDF_EOL2 | 4, | 
 | 				/* End of L2, byte offset 10, src IP[16:31] */ | 
 | 				CFG_UDF_EOL2 | 5, | 
 | 				/* End of L2, byte offset 12, src IP[32:47] */ | 
 | 				CFG_UDF_EOL2 | 6, | 
 | 				/* End of L2, byte offset 14, src IP[48:63] */ | 
 | 				CFG_UDF_EOL2 | 7, | 
 | 				/* End of L2, byte offset 16, src IP[64:79] */ | 
 | 				CFG_UDF_EOL2 | 8, | 
 | 				/* End of L2, byte offset 18, src IP[80:95] */ | 
 | 				CFG_UDF_EOL2 | 9, | 
 | 				/* End of L2, byte offset 20, src IP[96:111] */ | 
 | 				CFG_UDF_EOL2 | 10, | 
 | 				/* End of L2, byte offset 22, src IP[112:127] */ | 
 | 				CFG_UDF_EOL2 | 11, | 
 | 				/* End of L3, byte offset 0, src port */ | 
 | 				CFG_UDF_EOL3 | 0, | 
 | 			}, | 
 | 			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG, | 
 | 			.base_offset = CORE_UDF_0_B_0_8_PORT_0, | 
 | 		}, | 
 | 		[3] = { | 
 | 			.slices = { | 
 | 				/* End of L2, byte offset 24, dst IP[0:15] */ | 
 | 				CFG_UDF_EOL2 | 12, | 
 | 				/* End of L2, byte offset 26, dst IP[16:31] */ | 
 | 				CFG_UDF_EOL2 | 13, | 
 | 				/* End of L2, byte offset 28, dst IP[32:47] */ | 
 | 				CFG_UDF_EOL2 | 14, | 
 | 				/* End of L2, byte offset 30, dst IP[48:63] */ | 
 | 				CFG_UDF_EOL2 | 15, | 
 | 				/* End of L2, byte offset 32, dst IP[64:79] */ | 
 | 				CFG_UDF_EOL2 | 16, | 
 | 				/* End of L2, byte offset 34, dst IP[80:95] */ | 
 | 				CFG_UDF_EOL2 | 17, | 
 | 				/* End of L2, byte offset 36, dst IP[96:111] */ | 
 | 				CFG_UDF_EOL2 | 18, | 
 | 				/* End of L2, byte offset 38, dst IP[112:127] */ | 
 | 				CFG_UDF_EOL2 | 19, | 
 | 				/* End of L3, byte offset 2, dst port */ | 
 | 				CFG_UDF_EOL3 | 1, | 
 | 			}, | 
 | 			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG, | 
 | 			.base_offset = CORE_UDF_0_D_0_11_PORT_0, | 
 | 		}, | 
 | 	}, | 
 | }; | 
 |  | 
 | static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout) | 
 | { | 
 | 	unsigned int i, count = 0; | 
 |  | 
 | 	for (i = 0; i < UDFS_PER_SLICE; i++) { | 
 | 		if (layout[i] != 0) | 
 | 			count++; | 
 | 	} | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static inline u32 udf_upper_bits(int num_udf) | 
 | { | 
 | 	return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1); | 
 | } | 
 |  | 
 | static inline u32 udf_lower_bits(int num_udf) | 
 | { | 
 | 	return (u8)GENMASK(num_udf - 1, 0); | 
 | } | 
 |  | 
 | static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l, | 
 | 					     unsigned int start) | 
 | { | 
 | 	const struct cfp_udf_slice_layout *slice_layout; | 
 | 	unsigned int slice_idx; | 
 |  | 
 | 	for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) { | 
 | 		slice_layout = &l->udfs[slice_idx]; | 
 | 		if (memcmp(slice_layout->slices, zero_slice, | 
 | 			   sizeof(zero_slice))) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return slice_idx; | 
 | } | 
 |  | 
 | static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv, | 
 | 				const struct cfp_udf_layout *layout, | 
 | 				unsigned int slice_num) | 
 | { | 
 | 	u32 offset = layout->udfs[slice_num].base_offset; | 
 | 	unsigned int i; | 
 |  | 
 | 	for (i = 0; i < UDFS_PER_SLICE; i++) | 
 | 		core_writel(priv, layout->udfs[slice_num].slices[i], | 
 | 			    offset + i * 4); | 
 | } | 
 |  | 
 | static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op) | 
 | { | 
 | 	unsigned int timeout = 1000; | 
 | 	u32 reg; | 
 |  | 
 | 	reg = core_readl(priv, CORE_CFP_ACC); | 
 | 	reg &= ~(OP_SEL_MASK | RAM_SEL_MASK); | 
 | 	reg |= OP_STR_DONE | op; | 
 | 	core_writel(priv, reg, CORE_CFP_ACC); | 
 |  | 
 | 	do { | 
 | 		reg = core_readl(priv, CORE_CFP_ACC); | 
 | 		if (!(reg & OP_STR_DONE)) | 
 | 			break; | 
 |  | 
 | 		cpu_relax(); | 
 | 	} while (timeout--); | 
 |  | 
 | 	if (!timeout) | 
 | 		return -ETIMEDOUT; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv, | 
 | 					     unsigned int addr) | 
 | { | 
 | 	u32 reg; | 
 |  | 
 | 	WARN_ON(addr >= priv->num_cfp_rules); | 
 |  | 
 | 	reg = core_readl(priv, CORE_CFP_ACC); | 
 | 	reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT); | 
 | 	reg |= addr << XCESS_ADDR_SHIFT; | 
 | 	core_writel(priv, reg, CORE_CFP_ACC); | 
 | } | 
 |  | 
 | static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv) | 
 | { | 
 | 	/* Entry #0 is reserved */ | 
 | 	return priv->num_cfp_rules - 1; | 
 | } | 
 |  | 
 | static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv, | 
 | 				   unsigned int rule_index, | 
 | 				   int src_port, | 
 | 				   unsigned int port_num, | 
 | 				   unsigned int queue_num, | 
 | 				   bool fwd_map_change) | 
 | { | 
 | 	int ret; | 
 | 	u32 reg; | 
 |  | 
 | 	/* Replace ARL derived destination with DST_MAP derived, define | 
 | 	 * which port and queue this should be forwarded to. | 
 | 	 */ | 
 | 	if (fwd_map_change) | 
 | 		reg = CHANGE_FWRD_MAP_IB_REP_ARL | | 
 | 		      BIT(port_num + DST_MAP_IB_SHIFT) | | 
 | 		      CHANGE_TC | queue_num << NEW_TC_SHIFT; | 
 | 	else | 
 | 		reg = 0; | 
 |  | 
 | 	/* Enable looping back to the original port */ | 
 | 	if (src_port == port_num) | 
 | 		reg |= LOOP_BK_EN; | 
 |  | 
 | 	core_writel(priv, reg, CORE_ACT_POL_DATA0); | 
 |  | 
 | 	/* Set classification ID that needs to be put in Broadcom tag */ | 
 | 	core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1); | 
 |  | 
 | 	core_writel(priv, 0, CORE_ACT_POL_DATA2); | 
 |  | 
 | 	/* Configure policer RAM now */ | 
 | 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM); | 
 | 	if (ret) { | 
 | 		pr_err("Policer entry at %d failed\n", rule_index); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* Disable the policer */ | 
 | 	core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0); | 
 |  | 
 | 	/* Now the rate meter */ | 
 | 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM); | 
 | 	if (ret) { | 
 | 		pr_err("Meter entry at %d failed\n", rule_index); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv, | 
 | 				   struct flow_dissector_key_ipv4_addrs *addrs, | 
 | 				   struct flow_dissector_key_ports *ports, | 
 | 				   const __be16 vlan_tci, | 
 | 				   unsigned int slice_num, u8 num_udf, | 
 | 				   bool mask) | 
 | { | 
 | 	u32 reg, offset; | 
 |  | 
 | 	/* UDF_Valid[7:0]	[31:24] | 
 | 	 * S-Tag		[23:8] | 
 | 	 * C-Tag		[7:0] | 
 | 	 */ | 
 | 	reg = udf_lower_bits(num_udf) << 24 | be16_to_cpu(vlan_tci) >> 8; | 
 | 	if (mask) | 
 | 		core_writel(priv, reg, CORE_CFP_MASK_PORT(5)); | 
 | 	else | 
 | 		core_writel(priv, reg, CORE_CFP_DATA_PORT(5)); | 
 |  | 
 | 	/* C-Tag		[31:24] | 
 | 	 * UDF_n_A8		[23:8] | 
 | 	 * UDF_n_A7		[7:0] | 
 | 	 */ | 
 | 	reg = (u32)(be16_to_cpu(vlan_tci) & 0xff) << 24; | 
 | 	if (mask) | 
 | 		offset = CORE_CFP_MASK_PORT(4); | 
 | 	else | 
 | 		offset = CORE_CFP_DATA_PORT(4); | 
 | 	core_writel(priv, reg, offset); | 
 |  | 
 | 	/* UDF_n_A7		[31:24] | 
 | 	 * UDF_n_A6		[23:8] | 
 | 	 * UDF_n_A5		[7:0] | 
 | 	 */ | 
 | 	reg = be16_to_cpu(ports->dst) >> 8; | 
 | 	if (mask) | 
 | 		offset = CORE_CFP_MASK_PORT(3); | 
 | 	else | 
 | 		offset = CORE_CFP_DATA_PORT(3); | 
 | 	core_writel(priv, reg, offset); | 
 |  | 
 | 	/* UDF_n_A5		[31:24] | 
 | 	 * UDF_n_A4		[23:8] | 
 | 	 * UDF_n_A3		[7:0] | 
 | 	 */ | 
 | 	reg = (be16_to_cpu(ports->dst) & 0xff) << 24 | | 
 | 	      (u32)be16_to_cpu(ports->src) << 8 | | 
 | 	      (be32_to_cpu(addrs->dst) & 0x0000ff00) >> 8; | 
 | 	if (mask) | 
 | 		offset = CORE_CFP_MASK_PORT(2); | 
 | 	else | 
 | 		offset = CORE_CFP_DATA_PORT(2); | 
 | 	core_writel(priv, reg, offset); | 
 |  | 
 | 	/* UDF_n_A3		[31:24] | 
 | 	 * UDF_n_A2		[23:8] | 
 | 	 * UDF_n_A1		[7:0] | 
 | 	 */ | 
 | 	reg = (u32)(be32_to_cpu(addrs->dst) & 0xff) << 24 | | 
 | 	      (u32)(be32_to_cpu(addrs->dst) >> 16) << 8 | | 
 | 	      (be32_to_cpu(addrs->src) & 0x0000ff00) >> 8; | 
 | 	if (mask) | 
 | 		offset = CORE_CFP_MASK_PORT(1); | 
 | 	else | 
 | 		offset = CORE_CFP_DATA_PORT(1); | 
 | 	core_writel(priv, reg, offset); | 
 |  | 
 | 	/* UDF_n_A1		[31:24] | 
 | 	 * UDF_n_A0		[23:8] | 
 | 	 * Reserved		[7:4] | 
 | 	 * Slice ID		[3:2] | 
 | 	 * Slice valid		[1:0] | 
 | 	 */ | 
 | 	reg = (u32)(be32_to_cpu(addrs->src) & 0xff) << 24 | | 
 | 	      (u32)(be32_to_cpu(addrs->src) >> 16) << 8 | | 
 | 	      SLICE_NUM(slice_num) | SLICE_VALID; | 
 | 	if (mask) | 
 | 		offset = CORE_CFP_MASK_PORT(0); | 
 | 	else | 
 | 		offset = CORE_CFP_DATA_PORT(0); | 
 | 	core_writel(priv, reg, offset); | 
 | } | 
 |  | 
 | static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port, | 
 | 				     unsigned int port_num, | 
 | 				     unsigned int queue_num, | 
 | 				     struct ethtool_rx_flow_spec *fs) | 
 | { | 
 | 	__be16 vlan_tci = 0, vlan_m_tci = htons(0xffff); | 
 | 	struct ethtool_rx_flow_spec_input input = {}; | 
 | 	const struct cfp_udf_layout *layout; | 
 | 	unsigned int slice_num, rule_index; | 
 | 	struct ethtool_rx_flow_rule *flow; | 
 | 	struct flow_match_ipv4_addrs ipv4; | 
 | 	struct flow_match_ports ports; | 
 | 	struct flow_match_ip ip; | 
 | 	u8 ip_proto, ip_frag; | 
 | 	u8 num_udf; | 
 | 	u32 reg; | 
 | 	int ret; | 
 |  | 
 | 	switch (fs->flow_type & ~FLOW_EXT) { | 
 | 	case TCP_V4_FLOW: | 
 | 		ip_proto = IPPROTO_TCP; | 
 | 		break; | 
 | 	case UDP_V4_FLOW: | 
 | 		ip_proto = IPPROTO_UDP; | 
 | 		break; | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1); | 
 |  | 
 | 	/* Extract VLAN TCI */ | 
 | 	if (fs->flow_type & FLOW_EXT) { | 
 | 		vlan_tci = fs->h_ext.vlan_tci; | 
 | 		vlan_m_tci = fs->m_ext.vlan_tci; | 
 | 	} | 
 |  | 
 | 	/* Locate the first rule available */ | 
 | 	if (fs->location == RX_CLS_LOC_ANY) | 
 | 		rule_index = find_first_zero_bit(priv->cfp.used, | 
 | 						 priv->num_cfp_rules); | 
 | 	else | 
 | 		rule_index = fs->location; | 
 |  | 
 | 	if (rule_index > bcm_sf2_cfp_rule_size(priv)) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	input.fs = fs; | 
 | 	flow = ethtool_rx_flow_rule_create(&input); | 
 | 	if (IS_ERR(flow)) | 
 | 		return PTR_ERR(flow); | 
 |  | 
 | 	flow_rule_match_ipv4_addrs(flow->rule, &ipv4); | 
 | 	flow_rule_match_ports(flow->rule, &ports); | 
 | 	flow_rule_match_ip(flow->rule, &ip); | 
 |  | 
 | 	layout = &udf_tcpip4_layout; | 
 | 	/* We only use one UDF slice for now */ | 
 | 	slice_num = bcm_sf2_get_slice_number(layout, 0); | 
 | 	if (slice_num == UDF_NUM_SLICES) { | 
 | 		ret = -EINVAL; | 
 | 		goto out_err_flow_rule; | 
 | 	} | 
 |  | 
 | 	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices); | 
 |  | 
 | 	/* Apply the UDF layout for this filter */ | 
 | 	bcm_sf2_cfp_udf_set(priv, layout, slice_num); | 
 |  | 
 | 	/* Apply to all packets received through this port */ | 
 | 	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7)); | 
 |  | 
 | 	/* Source port map match */ | 
 | 	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7)); | 
 |  | 
 | 	/* S-Tag status		[31:30] | 
 | 	 * C-Tag status		[29:28] | 
 | 	 * L2 framing		[27:26] | 
 | 	 * L3 framing		[25:24] | 
 | 	 * IP ToS		[23:16] | 
 | 	 * IP proto		[15:08] | 
 | 	 * IP Fragm		[7] | 
 | 	 * Non 1st frag		[6] | 
 | 	 * IP Authen		[5] | 
 | 	 * TTL range		[4:3] | 
 | 	 * PPPoE session	[2] | 
 | 	 * Reserved		[1] | 
 | 	 * UDF_Valid[8]		[0] | 
 | 	 */ | 
 | 	core_writel(priv, ip.key->tos << IPTOS_SHIFT | | 
 | 		    ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT | | 
 | 		    udf_upper_bits(num_udf), | 
 | 		    CORE_CFP_DATA_PORT(6)); | 
 |  | 
 | 	/* Mask with the specific layout for IPv4 packets */ | 
 | 	core_writel(priv, layout->udfs[slice_num].mask_value | | 
 | 		    udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6)); | 
 |  | 
 | 	/* Program the match and the mask */ | 
 | 	bcm_sf2_cfp_slice_ipv4(priv, ipv4.key, ports.key, vlan_tci, | 
 | 			       slice_num, num_udf, false); | 
 | 	bcm_sf2_cfp_slice_ipv4(priv, ipv4.mask, ports.mask, vlan_m_tci, | 
 | 			       SLICE_NUM_MASK, num_udf, true); | 
 |  | 
 | 	/* Insert into TCAM now */ | 
 | 	bcm_sf2_cfp_rule_addr_set(priv, rule_index); | 
 |  | 
 | 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); | 
 | 	if (ret) { | 
 | 		pr_err("TCAM entry at addr %d failed\n", rule_index); | 
 | 		goto out_err_flow_rule; | 
 | 	} | 
 |  | 
 | 	/* Insert into Action and policer RAMs now */ | 
 | 	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port, port_num, | 
 | 				      queue_num, true); | 
 | 	if (ret) | 
 | 		goto out_err_flow_rule; | 
 |  | 
 | 	/* Turn on CFP for this rule now */ | 
 | 	reg = core_readl(priv, CORE_CFP_CTL_REG); | 
 | 	reg |= BIT(port); | 
 | 	core_writel(priv, reg, CORE_CFP_CTL_REG); | 
 |  | 
 | 	/* Flag the rule as being used and return it */ | 
 | 	set_bit(rule_index, priv->cfp.used); | 
 | 	set_bit(rule_index, priv->cfp.unique); | 
 | 	fs->location = rule_index; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_err_flow_rule: | 
 | 	ethtool_rx_flow_rule_destroy(flow); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv, | 
 | 				   const __be32 *ip6_addr, const __be16 port, | 
 | 				   const __be16 vlan_tci, | 
 | 				   unsigned int slice_num, u32 udf_bits, | 
 | 				   bool mask) | 
 | { | 
 | 	u32 reg, tmp, val, offset; | 
 |  | 
 | 	/* UDF_Valid[7:0]	[31:24] | 
 | 	 * S-Tag		[23:8] | 
 | 	 * C-Tag		[7:0] | 
 | 	 */ | 
 | 	reg = udf_bits << 24 | be16_to_cpu(vlan_tci) >> 8; | 
 | 	if (mask) | 
 | 		core_writel(priv, reg, CORE_CFP_MASK_PORT(5)); | 
 | 	else | 
 | 		core_writel(priv, reg, CORE_CFP_DATA_PORT(5)); | 
 |  | 
 | 	/* C-Tag		[31:24] | 
 | 	 * UDF_n_B8		[23:8]	(port) | 
 | 	 * UDF_n_B7 (upper)	[7:0]	(addr[15:8]) | 
 | 	 */ | 
 | 	reg = be32_to_cpu(ip6_addr[3]); | 
 | 	val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff); | 
 | 	val |= (u32)(be16_to_cpu(vlan_tci) & 0xff) << 24; | 
 | 	if (mask) | 
 | 		offset = CORE_CFP_MASK_PORT(4); | 
 | 	else | 
 | 		offset = CORE_CFP_DATA_PORT(4); | 
 | 	core_writel(priv, val, offset); | 
 |  | 
 | 	/* UDF_n_B7 (lower)	[31:24]	(addr[7:0]) | 
 | 	 * UDF_n_B6		[23:8] (addr[31:16]) | 
 | 	 * UDF_n_B5 (upper)	[7:0] (addr[47:40]) | 
 | 	 */ | 
 | 	tmp = be32_to_cpu(ip6_addr[2]); | 
 | 	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 | | 
 | 	      ((tmp >> 8) & 0xff); | 
 | 	if (mask) | 
 | 		offset = CORE_CFP_MASK_PORT(3); | 
 | 	else | 
 | 		offset = CORE_CFP_DATA_PORT(3); | 
 | 	core_writel(priv, val, offset); | 
 |  | 
 | 	/* UDF_n_B5 (lower)	[31:24] (addr[39:32]) | 
 | 	 * UDF_n_B4		[23:8] (addr[63:48]) | 
 | 	 * UDF_n_B3 (upper)	[7:0] (addr[79:72]) | 
 | 	 */ | 
 | 	reg = be32_to_cpu(ip6_addr[1]); | 
 | 	val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 | | 
 | 	      ((reg >> 8) & 0xff); | 
 | 	if (mask) | 
 | 		offset = CORE_CFP_MASK_PORT(2); | 
 | 	else | 
 | 		offset = CORE_CFP_DATA_PORT(2); | 
 | 	core_writel(priv, val, offset); | 
 |  | 
 | 	/* UDF_n_B3 (lower)	[31:24] (addr[71:64]) | 
 | 	 * UDF_n_B2		[23:8] (addr[95:80]) | 
 | 	 * UDF_n_B1 (upper)	[7:0] (addr[111:104]) | 
 | 	 */ | 
 | 	tmp = be32_to_cpu(ip6_addr[0]); | 
 | 	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 | | 
 | 	      ((tmp >> 8) & 0xff); | 
 | 	if (mask) | 
 | 		offset = CORE_CFP_MASK_PORT(1); | 
 | 	else | 
 | 		offset = CORE_CFP_DATA_PORT(1); | 
 | 	core_writel(priv, val, offset); | 
 |  | 
 | 	/* UDF_n_B1 (lower)	[31:24] (addr[103:96]) | 
 | 	 * UDF_n_B0		[23:8] (addr[127:112]) | 
 | 	 * Reserved		[7:4] | 
 | 	 * Slice ID		[3:2] | 
 | 	 * Slice valid		[1:0] | 
 | 	 */ | 
 | 	reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 | | 
 | 	       SLICE_NUM(slice_num) | SLICE_VALID; | 
 | 	if (mask) | 
 | 		offset = CORE_CFP_MASK_PORT(0); | 
 | 	else | 
 | 		offset = CORE_CFP_DATA_PORT(0); | 
 | 	core_writel(priv, reg, offset); | 
 | } | 
 |  | 
 | static struct cfp_rule *bcm_sf2_cfp_rule_find(struct bcm_sf2_priv *priv, | 
 | 					      int port, u32 location) | 
 | { | 
 | 	struct cfp_rule *rule; | 
 |  | 
 | 	list_for_each_entry(rule, &priv->cfp.rules_list, next) { | 
 | 		if (rule->port == port && rule->fs.location == location) | 
 | 			return rule; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int bcm_sf2_cfp_rule_cmp(struct bcm_sf2_priv *priv, int port, | 
 | 				struct ethtool_rx_flow_spec *fs) | 
 | { | 
 | 	struct cfp_rule *rule = NULL; | 
 | 	size_t fs_size = 0; | 
 | 	int ret = 1; | 
 |  | 
 | 	if (list_empty(&priv->cfp.rules_list)) | 
 | 		return ret; | 
 |  | 
 | 	list_for_each_entry(rule, &priv->cfp.rules_list, next) { | 
 | 		ret = 1; | 
 | 		if (rule->port != port) | 
 | 			continue; | 
 |  | 
 | 		if (rule->fs.flow_type != fs->flow_type || | 
 | 		    rule->fs.ring_cookie != fs->ring_cookie || | 
 | 		    rule->fs.h_ext.data[0] != fs->h_ext.data[0]) | 
 | 			continue; | 
 |  | 
 | 		switch (fs->flow_type & ~FLOW_EXT) { | 
 | 		case TCP_V6_FLOW: | 
 | 		case UDP_V6_FLOW: | 
 | 			fs_size = sizeof(struct ethtool_tcpip6_spec); | 
 | 			break; | 
 | 		case TCP_V4_FLOW: | 
 | 		case UDP_V4_FLOW: | 
 | 			fs_size = sizeof(struct ethtool_tcpip4_spec); | 
 | 			break; | 
 | 		default: | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		ret = memcmp(&rule->fs.h_u, &fs->h_u, fs_size); | 
 | 		ret |= memcmp(&rule->fs.m_u, &fs->m_u, fs_size); | 
 | 		/* Compare VLAN TCI values as well */ | 
 | 		if (rule->fs.flow_type & FLOW_EXT) { | 
 | 			ret |= rule->fs.h_ext.vlan_tci != fs->h_ext.vlan_tci; | 
 | 			ret |= rule->fs.m_ext.vlan_tci != fs->m_ext.vlan_tci; | 
 | 		} | 
 | 		if (ret == 0) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port, | 
 | 				     unsigned int port_num, | 
 | 				     unsigned int queue_num, | 
 | 				     struct ethtool_rx_flow_spec *fs) | 
 | { | 
 | 	__be16 vlan_tci = 0, vlan_m_tci = htons(0xffff); | 
 | 	struct ethtool_rx_flow_spec_input input = {}; | 
 | 	unsigned int slice_num, rule_index[2]; | 
 | 	const struct cfp_udf_layout *layout; | 
 | 	struct ethtool_rx_flow_rule *flow; | 
 | 	struct flow_match_ipv6_addrs ipv6; | 
 | 	struct flow_match_ports ports; | 
 | 	u8 ip_proto, ip_frag; | 
 | 	int ret = 0; | 
 | 	u8 num_udf; | 
 | 	u32 reg; | 
 |  | 
 | 	switch (fs->flow_type & ~FLOW_EXT) { | 
 | 	case TCP_V6_FLOW: | 
 | 		ip_proto = IPPROTO_TCP; | 
 | 		break; | 
 | 	case UDP_V6_FLOW: | 
 | 		ip_proto = IPPROTO_UDP; | 
 | 		break; | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1); | 
 |  | 
 | 	/* Extract VLAN TCI */ | 
 | 	if (fs->flow_type & FLOW_EXT) { | 
 | 		vlan_tci = fs->h_ext.vlan_tci; | 
 | 		vlan_m_tci = fs->m_ext.vlan_tci; | 
 | 	} | 
 |  | 
 | 	layout = &udf_tcpip6_layout; | 
 | 	slice_num = bcm_sf2_get_slice_number(layout, 0); | 
 | 	if (slice_num == UDF_NUM_SLICES) | 
 | 		return -EINVAL; | 
 |  | 
 | 	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices); | 
 |  | 
 | 	/* Negotiate two indexes, one for the second half which we are chained | 
 | 	 * from, which is what we will return to user-space, and a second one | 
 | 	 * which is used to store its first half. That first half does not | 
 | 	 * allow any choice of placement, so it just needs to find the next | 
 | 	 * available bit. We return the second half as fs->location because | 
 | 	 * that helps with the rule lookup later on since the second half is | 
 | 	 * chained from its first half, we can easily identify IPv6 CFP rules | 
 | 	 * by looking whether they carry a CHAIN_ID. | 
 | 	 * | 
 | 	 * We also want the second half to have a lower rule_index than its | 
 | 	 * first half because the HW search is by incrementing addresses. | 
 | 	 */ | 
 | 	if (fs->location == RX_CLS_LOC_ANY) | 
 | 		rule_index[1] = find_first_zero_bit(priv->cfp.used, | 
 | 						    priv->num_cfp_rules); | 
 | 	else | 
 | 		rule_index[1] = fs->location; | 
 | 	if (rule_index[1] > bcm_sf2_cfp_rule_size(priv)) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	/* Flag it as used (cleared on error path) such that we can immediately | 
 | 	 * obtain a second one to chain from. | 
 | 	 */ | 
 | 	set_bit(rule_index[1], priv->cfp.used); | 
 |  | 
 | 	rule_index[0] = find_first_zero_bit(priv->cfp.used, | 
 | 					    priv->num_cfp_rules); | 
 | 	if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) { | 
 | 		ret = -ENOSPC; | 
 | 		goto out_err; | 
 | 	} | 
 |  | 
 | 	input.fs = fs; | 
 | 	flow = ethtool_rx_flow_rule_create(&input); | 
 | 	if (IS_ERR(flow)) { | 
 | 		ret = PTR_ERR(flow); | 
 | 		goto out_err; | 
 | 	} | 
 | 	flow_rule_match_ipv6_addrs(flow->rule, &ipv6); | 
 | 	flow_rule_match_ports(flow->rule, &ports); | 
 |  | 
 | 	/* Apply the UDF layout for this filter */ | 
 | 	bcm_sf2_cfp_udf_set(priv, layout, slice_num); | 
 |  | 
 | 	/* Apply to all packets received through this port */ | 
 | 	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7)); | 
 |  | 
 | 	/* Source port map match */ | 
 | 	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7)); | 
 |  | 
 | 	/* S-Tag status		[31:30] | 
 | 	 * C-Tag status		[29:28] | 
 | 	 * L2 framing		[27:26] | 
 | 	 * L3 framing		[25:24] | 
 | 	 * IP ToS		[23:16] | 
 | 	 * IP proto		[15:08] | 
 | 	 * IP Fragm		[7] | 
 | 	 * Non 1st frag		[6] | 
 | 	 * IP Authen		[5] | 
 | 	 * TTL range		[4:3] | 
 | 	 * PPPoE session	[2] | 
 | 	 * Reserved		[1] | 
 | 	 * UDF_Valid[8]		[0] | 
 | 	 */ | 
 | 	reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT | | 
 | 		ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf); | 
 | 	core_writel(priv, reg, CORE_CFP_DATA_PORT(6)); | 
 |  | 
 | 	/* Mask with the specific layout for IPv6 packets including | 
 | 	 * UDF_Valid[8] | 
 | 	 */ | 
 | 	reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf); | 
 | 	core_writel(priv, reg, CORE_CFP_MASK_PORT(6)); | 
 |  | 
 | 	/* Slice the IPv6 source address and port */ | 
 | 	bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->src.in6_u.u6_addr32, | 
 | 			       ports.key->src, vlan_tci, slice_num, | 
 | 			       udf_lower_bits(num_udf), false); | 
 | 	bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->src.in6_u.u6_addr32, | 
 | 			       ports.mask->src, vlan_m_tci, SLICE_NUM_MASK, | 
 | 			       udf_lower_bits(num_udf), true); | 
 |  | 
 | 	/* Insert into TCAM now because we need to insert a second rule */ | 
 | 	bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]); | 
 |  | 
 | 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); | 
 | 	if (ret) { | 
 | 		pr_err("TCAM entry at addr %d failed\n", rule_index[0]); | 
 | 		goto out_err_flow_rule; | 
 | 	} | 
 |  | 
 | 	/* Insert into Action and policer RAMs now */ | 
 | 	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port, port_num, | 
 | 				      queue_num, false); | 
 | 	if (ret) | 
 | 		goto out_err_flow_rule; | 
 |  | 
 | 	/* Now deal with the second slice to chain this rule */ | 
 | 	slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1); | 
 | 	if (slice_num == UDF_NUM_SLICES) { | 
 | 		ret = -EINVAL; | 
 | 		goto out_err_flow_rule; | 
 | 	} | 
 |  | 
 | 	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices); | 
 |  | 
 | 	/* Apply the UDF layout for this filter */ | 
 | 	bcm_sf2_cfp_udf_set(priv, layout, slice_num); | 
 |  | 
 | 	/* Chained rule, source port match is coming from the rule we are | 
 | 	 * chained from. | 
 | 	 */ | 
 | 	core_writel(priv, 0, CORE_CFP_DATA_PORT(7)); | 
 | 	core_writel(priv, 0, CORE_CFP_MASK_PORT(7)); | 
 |  | 
 | 	/* | 
 | 	 * CHAIN ID		[31:24] chain to previous slice | 
 | 	 * Reserved		[23:20] | 
 | 	 * UDF_Valid[11:8]	[19:16] | 
 | 	 * UDF_Valid[7:0]	[15:8] | 
 | 	 * UDF_n_D11		[7:0] | 
 | 	 */ | 
 | 	reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 | | 
 | 		udf_lower_bits(num_udf) << 8; | 
 | 	core_writel(priv, reg, CORE_CFP_DATA_PORT(6)); | 
 |  | 
 | 	/* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */ | 
 | 	reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 | | 
 | 		udf_lower_bits(num_udf) << 8; | 
 | 	core_writel(priv, reg, CORE_CFP_MASK_PORT(6)); | 
 |  | 
 | 	bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->dst.in6_u.u6_addr32, | 
 | 			       ports.key->dst, 0, slice_num, | 
 | 			       0, false); | 
 | 	bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->dst.in6_u.u6_addr32, | 
 | 			       ports.key->dst, 0, SLICE_NUM_MASK, | 
 | 			       0, true); | 
 |  | 
 | 	/* Insert into TCAM now */ | 
 | 	bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]); | 
 |  | 
 | 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); | 
 | 	if (ret) { | 
 | 		pr_err("TCAM entry at addr %d failed\n", rule_index[1]); | 
 | 		goto out_err_flow_rule; | 
 | 	} | 
 |  | 
 | 	/* Insert into Action and policer RAMs now, set chain ID to | 
 | 	 * the one we are chained to | 
 | 	 */ | 
 | 	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port, port_num, | 
 | 				      queue_num, true); | 
 | 	if (ret) | 
 | 		goto out_err_flow_rule; | 
 |  | 
 | 	/* Turn on CFP for this rule now */ | 
 | 	reg = core_readl(priv, CORE_CFP_CTL_REG); | 
 | 	reg |= BIT(port); | 
 | 	core_writel(priv, reg, CORE_CFP_CTL_REG); | 
 |  | 
 | 	/* Flag the second half rule as being used now, return it as the | 
 | 	 * location, and flag it as unique while dumping rules | 
 | 	 */ | 
 | 	set_bit(rule_index[0], priv->cfp.used); | 
 | 	set_bit(rule_index[1], priv->cfp.unique); | 
 | 	fs->location = rule_index[1]; | 
 |  | 
 | 	return ret; | 
 |  | 
 | out_err_flow_rule: | 
 | 	ethtool_rx_flow_rule_destroy(flow); | 
 | out_err: | 
 | 	clear_bit(rule_index[1], priv->cfp.used); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int bcm_sf2_cfp_rule_insert(struct dsa_switch *ds, int port, | 
 | 				   struct ethtool_rx_flow_spec *fs) | 
 | { | 
 | 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); | 
 | 	s8 cpu_port = dsa_to_port(ds, port)->cpu_dp->index; | 
 | 	__u64 ring_cookie = fs->ring_cookie; | 
 | 	struct switchdev_obj_port_vlan vlan; | 
 | 	unsigned int queue_num, port_num; | 
 | 	u16 vid; | 
 | 	int ret; | 
 |  | 
 | 	/* This rule is a Wake-on-LAN filter and we must specifically | 
 | 	 * target the CPU port in order for it to be working. | 
 | 	 */ | 
 | 	if (ring_cookie == RX_CLS_FLOW_WAKE) | 
 | 		ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES; | 
 |  | 
 | 	/* We do not support discarding packets, check that the | 
 | 	 * destination port is enabled and that we are within the | 
 | 	 * number of ports supported by the switch | 
 | 	 */ | 
 | 	port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES; | 
 |  | 
 | 	if (ring_cookie == RX_CLS_FLOW_DISC || | 
 | 	    !(dsa_is_user_port(ds, port_num) || | 
 | 	      dsa_is_cpu_port(ds, port_num)) || | 
 | 	    port_num >= priv->hw_params.num_ports) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* If the rule is matching a particular VLAN, make sure that we honor | 
 | 	 * the matching and have it tagged or untagged on the destination port, | 
 | 	 * we do this on egress with a VLAN entry. The egress tagging attribute | 
 | 	 * is expected to be provided in h_ext.data[1] bit 0. A 1 means untagged, | 
 | 	 * a 0 means tagged. | 
 | 	 */ | 
 | 	if (fs->flow_type & FLOW_EXT) { | 
 | 		/* We cannot support matching multiple VLAN IDs yet */ | 
 | 		if ((be16_to_cpu(fs->m_ext.vlan_tci) & VLAN_VID_MASK) != | 
 | 		    VLAN_VID_MASK) | 
 | 			return -EINVAL; | 
 |  | 
 | 		vid = be16_to_cpu(fs->h_ext.vlan_tci) & VLAN_VID_MASK; | 
 | 		vlan.vid = vid; | 
 | 		if (be32_to_cpu(fs->h_ext.data[1]) & 1) | 
 | 			vlan.flags = BRIDGE_VLAN_INFO_UNTAGGED; | 
 | 		else | 
 | 			vlan.flags = 0; | 
 |  | 
 | 		ret = ds->ops->port_vlan_add(ds, port_num, &vlan, NULL); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We have a small oddity where Port 6 just does not have a | 
 | 	 * valid bit here (so we substract by one). | 
 | 	 */ | 
 | 	queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES; | 
 | 	if (port_num >= 7) | 
 | 		port_num -= 1; | 
 |  | 
 | 	switch (fs->flow_type & ~FLOW_EXT) { | 
 | 	case TCP_V4_FLOW: | 
 | 	case UDP_V4_FLOW: | 
 | 		ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num, | 
 | 						queue_num, fs); | 
 | 		break; | 
 | 	case TCP_V6_FLOW: | 
 | 	case UDP_V6_FLOW: | 
 | 		ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num, | 
 | 						queue_num, fs); | 
 | 		break; | 
 | 	default: | 
 | 		ret = -EINVAL; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port, | 
 | 				struct ethtool_rx_flow_spec *fs) | 
 | { | 
 | 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); | 
 | 	struct cfp_rule *rule = NULL; | 
 | 	int ret = -EINVAL; | 
 |  | 
 | 	/* Check for unsupported extensions */ | 
 | 	if (fs->flow_type & FLOW_MAC_EXT) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (fs->location != RX_CLS_LOC_ANY && | 
 | 	    fs->location > bcm_sf2_cfp_rule_size(priv)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if ((fs->flow_type & FLOW_EXT) && | 
 | 	    !(ds->ops->port_vlan_add || ds->ops->port_vlan_del)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	if (fs->location != RX_CLS_LOC_ANY && | 
 | 	    test_bit(fs->location, priv->cfp.used)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	ret = bcm_sf2_cfp_rule_cmp(priv, port, fs); | 
 | 	if (ret == 0) | 
 | 		return -EEXIST; | 
 |  | 
 | 	rule = kzalloc(sizeof(*rule), GFP_KERNEL); | 
 | 	if (!rule) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = bcm_sf2_cfp_rule_insert(ds, port, fs); | 
 | 	if (ret) { | 
 | 		kfree(rule); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	rule->port = port; | 
 | 	memcpy(&rule->fs, fs, sizeof(*fs)); | 
 | 	list_add_tail(&rule->next, &priv->cfp.rules_list); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port, | 
 | 				    u32 loc, u32 *next_loc) | 
 | { | 
 | 	int ret; | 
 | 	u32 reg; | 
 |  | 
 | 	/* Indicate which rule we want to read */ | 
 | 	bcm_sf2_cfp_rule_addr_set(priv, loc); | 
 |  | 
 | 	ret =  bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* Check if this is possibly an IPv6 rule that would | 
 | 	 * indicate we need to delete its companion rule | 
 | 	 * as well | 
 | 	 */ | 
 | 	reg = core_readl(priv, CORE_CFP_DATA_PORT(6)); | 
 | 	if (next_loc) | 
 | 		*next_loc = (reg >> 24) & CHAIN_ID_MASK; | 
 |  | 
 | 	/* Clear its valid bits */ | 
 | 	reg = core_readl(priv, CORE_CFP_DATA_PORT(0)); | 
 | 	reg &= ~SLICE_VALID; | 
 | 	core_writel(priv, reg, CORE_CFP_DATA_PORT(0)); | 
 |  | 
 | 	/* Write back this entry into the TCAM now */ | 
 | 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	clear_bit(loc, priv->cfp.used); | 
 | 	clear_bit(loc, priv->cfp.unique); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int bcm_sf2_cfp_rule_remove(struct bcm_sf2_priv *priv, int port, | 
 | 				   u32 loc) | 
 | { | 
 | 	u32 next_loc = 0; | 
 | 	int ret; | 
 |  | 
 | 	ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* If this was an IPv6 rule, delete is companion rule too */ | 
 | 	if (next_loc) | 
 | 		ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, u32 loc) | 
 | { | 
 | 	struct cfp_rule *rule; | 
 | 	int ret; | 
 |  | 
 | 	if (loc > bcm_sf2_cfp_rule_size(priv)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Refuse deleting unused rules, and those that are not unique since | 
 | 	 * that could leave IPv6 rules with one of the chained rule in the | 
 | 	 * table. | 
 | 	 */ | 
 | 	if (!test_bit(loc, priv->cfp.unique) || loc == 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	rule = bcm_sf2_cfp_rule_find(priv, port, loc); | 
 | 	if (!rule) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ret = bcm_sf2_cfp_rule_remove(priv, port, loc); | 
 |  | 
 | 	list_del(&rule->next); | 
 | 	kfree(rule); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow) | 
 | { | 
 | 	unsigned int i; | 
 |  | 
 | 	for (i = 0; i < sizeof(flow->m_u); i++) | 
 | 		flow->m_u.hdata[i] ^= 0xff; | 
 |  | 
 | 	flow->m_ext.vlan_etype ^= cpu_to_be16(~0); | 
 | 	flow->m_ext.vlan_tci ^= cpu_to_be16(~0); | 
 | 	flow->m_ext.data[0] ^= cpu_to_be32(~0); | 
 | 	flow->m_ext.data[1] ^= cpu_to_be32(~0); | 
 | } | 
 |  | 
 | static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port, | 
 | 				struct ethtool_rxnfc *nfc) | 
 | { | 
 | 	struct cfp_rule *rule; | 
 |  | 
 | 	rule = bcm_sf2_cfp_rule_find(priv, port, nfc->fs.location); | 
 | 	if (!rule) | 
 | 		return -EINVAL; | 
 |  | 
 | 	memcpy(&nfc->fs, &rule->fs, sizeof(rule->fs)); | 
 |  | 
 | 	bcm_sf2_invert_masks(&nfc->fs); | 
 |  | 
 | 	/* Put the TCAM size here */ | 
 | 	nfc->data = bcm_sf2_cfp_rule_size(priv); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* We implement the search doing a TCAM search operation */ | 
 | static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv, | 
 | 				    int port, struct ethtool_rxnfc *nfc, | 
 | 				    u32 *rule_locs) | 
 | { | 
 | 	unsigned int index = 1, rules_cnt = 0; | 
 |  | 
 | 	for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) { | 
 | 		rule_locs[rules_cnt] = index; | 
 | 		rules_cnt++; | 
 | 	} | 
 |  | 
 | 	/* Put the TCAM size here */ | 
 | 	nfc->data = bcm_sf2_cfp_rule_size(priv); | 
 | 	nfc->rule_cnt = rules_cnt; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port, | 
 | 		      struct ethtool_rxnfc *nfc, u32 *rule_locs) | 
 | { | 
 | 	struct net_device *p = dsa_port_to_conduit(dsa_to_port(ds, port)); | 
 | 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); | 
 | 	int ret = 0; | 
 |  | 
 | 	mutex_lock(&priv->cfp.lock); | 
 |  | 
 | 	switch (nfc->cmd) { | 
 | 	case ETHTOOL_GRXCLSRLCNT: | 
 | 		/* Subtract the default, unusable rule */ | 
 | 		nfc->rule_cnt = bitmap_weight(priv->cfp.unique, | 
 | 					      priv->num_cfp_rules) - 1; | 
 | 		/* We support specifying rule locations */ | 
 | 		nfc->data |= RX_CLS_LOC_SPECIAL; | 
 | 		break; | 
 | 	case ETHTOOL_GRXCLSRULE: | 
 | 		ret = bcm_sf2_cfp_rule_get(priv, port, nfc); | 
 | 		break; | 
 | 	case ETHTOOL_GRXCLSRLALL: | 
 | 		ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs); | 
 | 		break; | 
 | 	default: | 
 | 		ret = -EOPNOTSUPP; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&priv->cfp.lock); | 
 |  | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* Pass up the commands to the attached master network device */ | 
 | 	if (p->ethtool_ops->get_rxnfc) { | 
 | 		ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs); | 
 | 		if (ret == -EOPNOTSUPP) | 
 | 			ret = 0; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port, | 
 | 		      struct ethtool_rxnfc *nfc) | 
 | { | 
 | 	struct net_device *p = dsa_port_to_conduit(dsa_to_port(ds, port)); | 
 | 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); | 
 | 	int ret = 0; | 
 |  | 
 | 	mutex_lock(&priv->cfp.lock); | 
 |  | 
 | 	switch (nfc->cmd) { | 
 | 	case ETHTOOL_SRXCLSRLINS: | 
 | 		ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs); | 
 | 		break; | 
 |  | 
 | 	case ETHTOOL_SRXCLSRLDEL: | 
 | 		ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location); | 
 | 		break; | 
 | 	default: | 
 | 		ret = -EOPNOTSUPP; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&priv->cfp.lock); | 
 |  | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* Pass up the commands to the attached master network device. | 
 | 	 * This can fail, so rollback the operation if we need to. | 
 | 	 */ | 
 | 	if (p->ethtool_ops->set_rxnfc) { | 
 | 		ret = p->ethtool_ops->set_rxnfc(p, nfc); | 
 | 		if (ret && ret != -EOPNOTSUPP) { | 
 | 			mutex_lock(&priv->cfp.lock); | 
 | 			bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location); | 
 | 			mutex_unlock(&priv->cfp.lock); | 
 | 		} else { | 
 | 			ret = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv) | 
 | { | 
 | 	unsigned int timeout = 1000; | 
 | 	u32 reg; | 
 |  | 
 | 	reg = core_readl(priv, CORE_CFP_ACC); | 
 | 	reg |= TCAM_RESET; | 
 | 	core_writel(priv, reg, CORE_CFP_ACC); | 
 |  | 
 | 	do { | 
 | 		reg = core_readl(priv, CORE_CFP_ACC); | 
 | 		if (!(reg & TCAM_RESET)) | 
 | 			break; | 
 |  | 
 | 		cpu_relax(); | 
 | 	} while (timeout--); | 
 |  | 
 | 	if (!timeout) | 
 | 		return -ETIMEDOUT; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void bcm_sf2_cfp_exit(struct dsa_switch *ds) | 
 | { | 
 | 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); | 
 | 	struct cfp_rule *rule, *n; | 
 |  | 
 | 	if (list_empty(&priv->cfp.rules_list)) | 
 | 		return; | 
 |  | 
 | 	list_for_each_entry_safe_reverse(rule, n, &priv->cfp.rules_list, next) | 
 | 		bcm_sf2_cfp_rule_del(priv, rule->port, rule->fs.location); | 
 | } | 
 |  | 
 | int bcm_sf2_cfp_resume(struct dsa_switch *ds) | 
 | { | 
 | 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); | 
 | 	struct cfp_rule *rule; | 
 | 	int ret = 0; | 
 | 	u32 reg; | 
 |  | 
 | 	if (list_empty(&priv->cfp.rules_list)) | 
 | 		return ret; | 
 |  | 
 | 	reg = core_readl(priv, CORE_CFP_CTL_REG); | 
 | 	reg &= ~CFP_EN_MAP_MASK; | 
 | 	core_writel(priv, reg, CORE_CFP_CTL_REG); | 
 |  | 
 | 	ret = bcm_sf2_cfp_rst(priv); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	list_for_each_entry(rule, &priv->cfp.rules_list, next) { | 
 | 		ret = bcm_sf2_cfp_rule_remove(priv, rule->port, | 
 | 					      rule->fs.location); | 
 | 		if (ret) { | 
 | 			dev_err(ds->dev, "failed to remove rule\n"); | 
 | 			return ret; | 
 | 		} | 
 |  | 
 | 		ret = bcm_sf2_cfp_rule_insert(ds, rule->port, &rule->fs); | 
 | 		if (ret) { | 
 | 			dev_err(ds->dev, "failed to restore rule\n"); | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static const struct bcm_sf2_cfp_stat { | 
 | 	unsigned int offset; | 
 | 	unsigned int ram_loc; | 
 | 	const char *name; | 
 | } bcm_sf2_cfp_stats[] = { | 
 | 	{ | 
 | 		.offset = CORE_STAT_GREEN_CNTR, | 
 | 		.ram_loc = GREEN_STAT_RAM, | 
 | 		.name = "Green" | 
 | 	}, | 
 | 	{ | 
 | 		.offset = CORE_STAT_YELLOW_CNTR, | 
 | 		.ram_loc = YELLOW_STAT_RAM, | 
 | 		.name = "Yellow" | 
 | 	}, | 
 | 	{ | 
 | 		.offset = CORE_STAT_RED_CNTR, | 
 | 		.ram_loc = RED_STAT_RAM, | 
 | 		.name = "Red" | 
 | 	}, | 
 | }; | 
 |  | 
 | void bcm_sf2_cfp_get_strings(struct dsa_switch *ds, int port, | 
 | 			     u32 stringset, uint8_t *data) | 
 | { | 
 | 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); | 
 | 	unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats); | 
 | 	char buf[ETH_GSTRING_LEN]; | 
 | 	unsigned int i, j, iter; | 
 |  | 
 | 	if (stringset != ETH_SS_STATS) | 
 | 		return; | 
 |  | 
 | 	for (i = 1; i < priv->num_cfp_rules; i++) { | 
 | 		for (j = 0; j < s; j++) { | 
 | 			snprintf(buf, sizeof(buf), | 
 | 				 "CFP%03d_%sCntr", | 
 | 				 i, bcm_sf2_cfp_stats[j].name); | 
 | 			iter = (i - 1) * s + j; | 
 | 			strscpy(data + iter * ETH_GSTRING_LEN, | 
 | 				buf, ETH_GSTRING_LEN); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | void bcm_sf2_cfp_get_ethtool_stats(struct dsa_switch *ds, int port, | 
 | 				   uint64_t *data) | 
 | { | 
 | 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); | 
 | 	unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats); | 
 | 	const struct bcm_sf2_cfp_stat *stat; | 
 | 	unsigned int i, j, iter; | 
 | 	struct cfp_rule *rule; | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&priv->cfp.lock); | 
 | 	for (i = 1; i < priv->num_cfp_rules; i++) { | 
 | 		rule = bcm_sf2_cfp_rule_find(priv, port, i); | 
 | 		if (!rule) | 
 | 			continue; | 
 |  | 
 | 		for (j = 0; j < s; j++) { | 
 | 			stat = &bcm_sf2_cfp_stats[j]; | 
 |  | 
 | 			bcm_sf2_cfp_rule_addr_set(priv, i); | 
 | 			ret = bcm_sf2_cfp_op(priv, stat->ram_loc | OP_SEL_READ); | 
 | 			if (ret) | 
 | 				continue; | 
 |  | 
 | 			iter = (i - 1) * s + j; | 
 | 			data[iter] = core_readl(priv, stat->offset); | 
 | 		} | 
 |  | 
 | 	} | 
 | 	mutex_unlock(&priv->cfp.lock); | 
 | } | 
 |  | 
 | int bcm_sf2_cfp_get_sset_count(struct dsa_switch *ds, int port, int sset) | 
 | { | 
 | 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); | 
 |  | 
 | 	if (sset != ETH_SS_STATS) | 
 | 		return 0; | 
 |  | 
 | 	/* 3 counters per CFP rules */ | 
 | 	return (priv->num_cfp_rules - 1) * ARRAY_SIZE(bcm_sf2_cfp_stats); | 
 | } |