|  | /* ec.c -  Elliptic Curve functions | 
|  | * Copyright (C) 2007 Free Software Foundation, Inc. | 
|  | * Copyright (C) 2013 g10 Code GmbH | 
|  | * | 
|  | * This file is part of Libgcrypt. | 
|  | * | 
|  | * Libgcrypt is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU Lesser General Public License as | 
|  | * published by the Free Software Foundation; either version 2.1 of | 
|  | * the License, or (at your option) any later version. | 
|  | * | 
|  | * Libgcrypt is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this program; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  |  | 
|  | #include "mpi-internal.h" | 
|  | #include "longlong.h" | 
|  |  | 
|  | #define point_init(a)  mpi_point_init((a)) | 
|  | #define point_free(a)  mpi_point_free_parts((a)) | 
|  |  | 
|  | #define log_error(fmt, ...) pr_err(fmt, ##__VA_ARGS__) | 
|  | #define log_fatal(fmt, ...) pr_err(fmt, ##__VA_ARGS__) | 
|  |  | 
|  | #define DIM(v) (sizeof(v)/sizeof((v)[0])) | 
|  |  | 
|  |  | 
|  | /* Create a new point option.  NBITS gives the size in bits of one | 
|  | * coordinate; it is only used to pre-allocate some resources and | 
|  | * might also be passed as 0 to use a default value. | 
|  | */ | 
|  | MPI_POINT mpi_point_new(unsigned int nbits) | 
|  | { | 
|  | MPI_POINT p; | 
|  |  | 
|  | (void)nbits;  /* Currently not used.  */ | 
|  |  | 
|  | p = kmalloc(sizeof(*p), GFP_KERNEL); | 
|  | if (p) | 
|  | mpi_point_init(p); | 
|  | return p; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mpi_point_new); | 
|  |  | 
|  | /* Release the point object P.  P may be NULL. */ | 
|  | void mpi_point_release(MPI_POINT p) | 
|  | { | 
|  | if (p) { | 
|  | mpi_point_free_parts(p); | 
|  | kfree(p); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mpi_point_release); | 
|  |  | 
|  | /* Initialize the fields of a point object.  gcry_mpi_point_free_parts | 
|  | * may be used to release the fields. | 
|  | */ | 
|  | void mpi_point_init(MPI_POINT p) | 
|  | { | 
|  | p->x = mpi_new(0); | 
|  | p->y = mpi_new(0); | 
|  | p->z = mpi_new(0); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mpi_point_init); | 
|  |  | 
|  | /* Release the parts of a point object. */ | 
|  | void mpi_point_free_parts(MPI_POINT p) | 
|  | { | 
|  | mpi_free(p->x); p->x = NULL; | 
|  | mpi_free(p->y); p->y = NULL; | 
|  | mpi_free(p->z); p->z = NULL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mpi_point_free_parts); | 
|  |  | 
|  | /* Set the value from S into D.  */ | 
|  | static void point_set(MPI_POINT d, MPI_POINT s) | 
|  | { | 
|  | mpi_set(d->x, s->x); | 
|  | mpi_set(d->y, s->y); | 
|  | mpi_set(d->z, s->z); | 
|  | } | 
|  |  | 
|  | static void point_resize(MPI_POINT p, struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | size_t nlimbs = ctx->p->nlimbs; | 
|  |  | 
|  | mpi_resize(p->x, nlimbs); | 
|  | p->x->nlimbs = nlimbs; | 
|  | mpi_resize(p->z, nlimbs); | 
|  | p->z->nlimbs = nlimbs; | 
|  |  | 
|  | if (ctx->model != MPI_EC_MONTGOMERY) { | 
|  | mpi_resize(p->y, nlimbs); | 
|  | p->y->nlimbs = nlimbs; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void point_swap_cond(MPI_POINT d, MPI_POINT s, unsigned long swap, | 
|  | struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | mpi_swap_cond(d->x, s->x, swap); | 
|  | if (ctx->model != MPI_EC_MONTGOMERY) | 
|  | mpi_swap_cond(d->y, s->y, swap); | 
|  | mpi_swap_cond(d->z, s->z, swap); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* W = W mod P.  */ | 
|  | static void ec_mod(MPI w, struct mpi_ec_ctx *ec) | 
|  | { | 
|  | if (ec->t.p_barrett) | 
|  | mpi_mod_barrett(w, w, ec->t.p_barrett); | 
|  | else | 
|  | mpi_mod(w, w, ec->p); | 
|  | } | 
|  |  | 
|  | static void ec_addm(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | mpi_add(w, u, v); | 
|  | ec_mod(w, ctx); | 
|  | } | 
|  |  | 
|  | static void ec_subm(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ec) | 
|  | { | 
|  | mpi_sub(w, u, v); | 
|  | while (w->sign) | 
|  | mpi_add(w, w, ec->p); | 
|  | /*ec_mod(w, ec);*/ | 
|  | } | 
|  |  | 
|  | static void ec_mulm(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | mpi_mul(w, u, v); | 
|  | ec_mod(w, ctx); | 
|  | } | 
|  |  | 
|  | /* W = 2 * U mod P.  */ | 
|  | static void ec_mul2(MPI w, MPI u, struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | mpi_lshift(w, u, 1); | 
|  | ec_mod(w, ctx); | 
|  | } | 
|  |  | 
|  | static void ec_powm(MPI w, const MPI b, const MPI e, | 
|  | struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | mpi_powm(w, b, e, ctx->p); | 
|  | /* mpi_abs(w); */ | 
|  | } | 
|  |  | 
|  | /* Shortcut for | 
|  | * ec_powm(B, B, mpi_const(MPI_C_TWO), ctx); | 
|  | * for easier optimization. | 
|  | */ | 
|  | static void ec_pow2(MPI w, const MPI b, struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | /* Using mpi_mul is slightly faster (at least on amd64).  */ | 
|  | /* mpi_powm(w, b, mpi_const(MPI_C_TWO), ctx->p); */ | 
|  | ec_mulm(w, b, b, ctx); | 
|  | } | 
|  |  | 
|  | /* Shortcut for | 
|  | * ec_powm(B, B, mpi_const(MPI_C_THREE), ctx); | 
|  | * for easier optimization. | 
|  | */ | 
|  | static void ec_pow3(MPI w, const MPI b, struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | mpi_powm(w, b, mpi_const(MPI_C_THREE), ctx->p); | 
|  | } | 
|  |  | 
|  | static void ec_invm(MPI x, MPI a, struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | if (!mpi_invm(x, a, ctx->p)) | 
|  | log_error("ec_invm: inverse does not exist:\n"); | 
|  | } | 
|  |  | 
|  | static void mpih_set_cond(mpi_ptr_t wp, mpi_ptr_t up, | 
|  | mpi_size_t usize, unsigned long set) | 
|  | { | 
|  | mpi_size_t i; | 
|  | mpi_limb_t mask = ((mpi_limb_t)0) - set; | 
|  | mpi_limb_t x; | 
|  |  | 
|  | for (i = 0; i < usize; i++) { | 
|  | x = mask & (wp[i] ^ up[i]); | 
|  | wp[i] = wp[i] ^ x; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Routines for 2^255 - 19.  */ | 
|  |  | 
|  | #define LIMB_SIZE_25519 ((256+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB) | 
|  |  | 
|  | static void ec_addm_25519(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | mpi_ptr_t wp, up, vp; | 
|  | mpi_size_t wsize = LIMB_SIZE_25519; | 
|  | mpi_limb_t n[LIMB_SIZE_25519]; | 
|  | mpi_limb_t borrow; | 
|  |  | 
|  | if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize) | 
|  | log_bug("addm_25519: different sizes\n"); | 
|  |  | 
|  | memset(n, 0, sizeof(n)); | 
|  | up = u->d; | 
|  | vp = v->d; | 
|  | wp = w->d; | 
|  |  | 
|  | mpihelp_add_n(wp, up, vp, wsize); | 
|  | borrow = mpihelp_sub_n(wp, wp, ctx->p->d, wsize); | 
|  | mpih_set_cond(n, ctx->p->d, wsize, (borrow != 0UL)); | 
|  | mpihelp_add_n(wp, wp, n, wsize); | 
|  | wp[LIMB_SIZE_25519-1] &= ~((mpi_limb_t)1 << (255 % BITS_PER_MPI_LIMB)); | 
|  | } | 
|  |  | 
|  | static void ec_subm_25519(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | mpi_ptr_t wp, up, vp; | 
|  | mpi_size_t wsize = LIMB_SIZE_25519; | 
|  | mpi_limb_t n[LIMB_SIZE_25519]; | 
|  | mpi_limb_t borrow; | 
|  |  | 
|  | if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize) | 
|  | log_bug("subm_25519: different sizes\n"); | 
|  |  | 
|  | memset(n, 0, sizeof(n)); | 
|  | up = u->d; | 
|  | vp = v->d; | 
|  | wp = w->d; | 
|  |  | 
|  | borrow = mpihelp_sub_n(wp, up, vp, wsize); | 
|  | mpih_set_cond(n, ctx->p->d, wsize, (borrow != 0UL)); | 
|  | mpihelp_add_n(wp, wp, n, wsize); | 
|  | wp[LIMB_SIZE_25519-1] &= ~((mpi_limb_t)1 << (255 % BITS_PER_MPI_LIMB)); | 
|  | } | 
|  |  | 
|  | static void ec_mulm_25519(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | mpi_ptr_t wp, up, vp; | 
|  | mpi_size_t wsize = LIMB_SIZE_25519; | 
|  | mpi_limb_t n[LIMB_SIZE_25519*2]; | 
|  | mpi_limb_t m[LIMB_SIZE_25519+1]; | 
|  | mpi_limb_t cy; | 
|  | int msb; | 
|  |  | 
|  | (void)ctx; | 
|  | if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize) | 
|  | log_bug("mulm_25519: different sizes\n"); | 
|  |  | 
|  | up = u->d; | 
|  | vp = v->d; | 
|  | wp = w->d; | 
|  |  | 
|  | mpihelp_mul_n(n, up, vp, wsize); | 
|  | memcpy(wp, n, wsize * BYTES_PER_MPI_LIMB); | 
|  | wp[LIMB_SIZE_25519-1] &= ~((mpi_limb_t)1 << (255 % BITS_PER_MPI_LIMB)); | 
|  |  | 
|  | memcpy(m, n+LIMB_SIZE_25519-1, (wsize+1) * BYTES_PER_MPI_LIMB); | 
|  | mpihelp_rshift(m, m, LIMB_SIZE_25519+1, (255 % BITS_PER_MPI_LIMB)); | 
|  |  | 
|  | memcpy(n, m, wsize * BYTES_PER_MPI_LIMB); | 
|  | cy = mpihelp_lshift(m, m, LIMB_SIZE_25519, 4); | 
|  | m[LIMB_SIZE_25519] = cy; | 
|  | cy = mpihelp_add_n(m, m, n, wsize); | 
|  | m[LIMB_SIZE_25519] += cy; | 
|  | cy = mpihelp_add_n(m, m, n, wsize); | 
|  | m[LIMB_SIZE_25519] += cy; | 
|  | cy = mpihelp_add_n(m, m, n, wsize); | 
|  | m[LIMB_SIZE_25519] += cy; | 
|  |  | 
|  | cy = mpihelp_add_n(wp, wp, m, wsize); | 
|  | m[LIMB_SIZE_25519] += cy; | 
|  |  | 
|  | memset(m, 0, wsize * BYTES_PER_MPI_LIMB); | 
|  | msb = (wp[LIMB_SIZE_25519-1] >> (255 % BITS_PER_MPI_LIMB)); | 
|  | m[0] = (m[LIMB_SIZE_25519] * 2 + msb) * 19; | 
|  | wp[LIMB_SIZE_25519-1] &= ~((mpi_limb_t)1 << (255 % BITS_PER_MPI_LIMB)); | 
|  | mpihelp_add_n(wp, wp, m, wsize); | 
|  |  | 
|  | m[0] = 0; | 
|  | cy = mpihelp_sub_n(wp, wp, ctx->p->d, wsize); | 
|  | mpih_set_cond(m, ctx->p->d, wsize, (cy != 0UL)); | 
|  | mpihelp_add_n(wp, wp, m, wsize); | 
|  | } | 
|  |  | 
|  | static void ec_mul2_25519(MPI w, MPI u, struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | ec_addm_25519(w, u, u, ctx); | 
|  | } | 
|  |  | 
|  | static void ec_pow2_25519(MPI w, const MPI b, struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | ec_mulm_25519(w, b, b, ctx); | 
|  | } | 
|  |  | 
|  | /* Routines for 2^448 - 2^224 - 1.  */ | 
|  |  | 
|  | #define LIMB_SIZE_448 ((448+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB) | 
|  | #define LIMB_SIZE_HALF_448 ((LIMB_SIZE_448+1)/2) | 
|  |  | 
|  | static void ec_addm_448(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | mpi_ptr_t wp, up, vp; | 
|  | mpi_size_t wsize = LIMB_SIZE_448; | 
|  | mpi_limb_t n[LIMB_SIZE_448]; | 
|  | mpi_limb_t cy; | 
|  |  | 
|  | if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize) | 
|  | log_bug("addm_448: different sizes\n"); | 
|  |  | 
|  | memset(n, 0, sizeof(n)); | 
|  | up = u->d; | 
|  | vp = v->d; | 
|  | wp = w->d; | 
|  |  | 
|  | cy = mpihelp_add_n(wp, up, vp, wsize); | 
|  | mpih_set_cond(n, ctx->p->d, wsize, (cy != 0UL)); | 
|  | mpihelp_sub_n(wp, wp, n, wsize); | 
|  | } | 
|  |  | 
|  | static void ec_subm_448(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | mpi_ptr_t wp, up, vp; | 
|  | mpi_size_t wsize = LIMB_SIZE_448; | 
|  | mpi_limb_t n[LIMB_SIZE_448]; | 
|  | mpi_limb_t borrow; | 
|  |  | 
|  | if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize) | 
|  | log_bug("subm_448: different sizes\n"); | 
|  |  | 
|  | memset(n, 0, sizeof(n)); | 
|  | up = u->d; | 
|  | vp = v->d; | 
|  | wp = w->d; | 
|  |  | 
|  | borrow = mpihelp_sub_n(wp, up, vp, wsize); | 
|  | mpih_set_cond(n, ctx->p->d, wsize, (borrow != 0UL)); | 
|  | mpihelp_add_n(wp, wp, n, wsize); | 
|  | } | 
|  |  | 
|  | static void ec_mulm_448(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | mpi_ptr_t wp, up, vp; | 
|  | mpi_size_t wsize = LIMB_SIZE_448; | 
|  | mpi_limb_t n[LIMB_SIZE_448*2]; | 
|  | mpi_limb_t a2[LIMB_SIZE_HALF_448]; | 
|  | mpi_limb_t a3[LIMB_SIZE_HALF_448]; | 
|  | mpi_limb_t b0[LIMB_SIZE_HALF_448]; | 
|  | mpi_limb_t b1[LIMB_SIZE_HALF_448]; | 
|  | mpi_limb_t cy; | 
|  | int i; | 
|  | #if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2) | 
|  | mpi_limb_t b1_rest, a3_rest; | 
|  | #endif | 
|  |  | 
|  | if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize) | 
|  | log_bug("mulm_448: different sizes\n"); | 
|  |  | 
|  | up = u->d; | 
|  | vp = v->d; | 
|  | wp = w->d; | 
|  |  | 
|  | mpihelp_mul_n(n, up, vp, wsize); | 
|  |  | 
|  | for (i = 0; i < (wsize + 1) / 2; i++) { | 
|  | b0[i] = n[i]; | 
|  | b1[i] = n[i+wsize/2]; | 
|  | a2[i] = n[i+wsize]; | 
|  | a3[i] = n[i+wsize+wsize/2]; | 
|  | } | 
|  |  | 
|  | #if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2) | 
|  | b0[LIMB_SIZE_HALF_448-1] &= ((mpi_limb_t)1UL << 32)-1; | 
|  | a2[LIMB_SIZE_HALF_448-1] &= ((mpi_limb_t)1UL << 32)-1; | 
|  |  | 
|  | b1_rest = 0; | 
|  | a3_rest = 0; | 
|  |  | 
|  | for (i = (wsize + 1) / 2 - 1; i >= 0; i--) { | 
|  | mpi_limb_t b1v, a3v; | 
|  | b1v = b1[i]; | 
|  | a3v = a3[i]; | 
|  | b1[i] = (b1_rest << 32) | (b1v >> 32); | 
|  | a3[i] = (a3_rest << 32) | (a3v >> 32); | 
|  | b1_rest = b1v & (((mpi_limb_t)1UL << 32)-1); | 
|  | a3_rest = a3v & (((mpi_limb_t)1UL << 32)-1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | cy = mpihelp_add_n(b0, b0, a2, LIMB_SIZE_HALF_448); | 
|  | cy += mpihelp_add_n(b0, b0, a3, LIMB_SIZE_HALF_448); | 
|  | for (i = 0; i < (wsize + 1) / 2; i++) | 
|  | wp[i] = b0[i]; | 
|  | #if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2) | 
|  | wp[LIMB_SIZE_HALF_448-1] &= (((mpi_limb_t)1UL << 32)-1); | 
|  | #endif | 
|  |  | 
|  | #if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2) | 
|  | cy = b0[LIMB_SIZE_HALF_448-1] >> 32; | 
|  | #endif | 
|  |  | 
|  | cy = mpihelp_add_1(b1, b1, LIMB_SIZE_HALF_448, cy); | 
|  | cy += mpihelp_add_n(b1, b1, a2, LIMB_SIZE_HALF_448); | 
|  | cy += mpihelp_add_n(b1, b1, a3, LIMB_SIZE_HALF_448); | 
|  | cy += mpihelp_add_n(b1, b1, a3, LIMB_SIZE_HALF_448); | 
|  | #if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2) | 
|  | b1_rest = 0; | 
|  | for (i = (wsize + 1) / 2 - 1; i >= 0; i--) { | 
|  | mpi_limb_t b1v = b1[i]; | 
|  | b1[i] = (b1_rest << 32) | (b1v >> 32); | 
|  | b1_rest = b1v & (((mpi_limb_t)1UL << 32)-1); | 
|  | } | 
|  | wp[LIMB_SIZE_HALF_448-1] |= (b1_rest << 32); | 
|  | #endif | 
|  | for (i = 0; i < wsize / 2; i++) | 
|  | wp[i+(wsize + 1) / 2] = b1[i]; | 
|  |  | 
|  | #if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2) | 
|  | cy = b1[LIMB_SIZE_HALF_448-1]; | 
|  | #endif | 
|  |  | 
|  | memset(n, 0, wsize * BYTES_PER_MPI_LIMB); | 
|  |  | 
|  | #if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2) | 
|  | n[LIMB_SIZE_HALF_448-1] = cy << 32; | 
|  | #else | 
|  | n[LIMB_SIZE_HALF_448] = cy; | 
|  | #endif | 
|  | n[0] = cy; | 
|  | mpihelp_add_n(wp, wp, n, wsize); | 
|  |  | 
|  | memset(n, 0, wsize * BYTES_PER_MPI_LIMB); | 
|  | cy = mpihelp_sub_n(wp, wp, ctx->p->d, wsize); | 
|  | mpih_set_cond(n, ctx->p->d, wsize, (cy != 0UL)); | 
|  | mpihelp_add_n(wp, wp, n, wsize); | 
|  | } | 
|  |  | 
|  | static void ec_mul2_448(MPI w, MPI u, struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | ec_addm_448(w, u, u, ctx); | 
|  | } | 
|  |  | 
|  | static void ec_pow2_448(MPI w, const MPI b, struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | ec_mulm_448(w, b, b, ctx); | 
|  | } | 
|  |  | 
|  | struct field_table { | 
|  | const char *p; | 
|  |  | 
|  | /* computation routines for the field.  */ | 
|  | void (*addm)(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx); | 
|  | void (*subm)(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx); | 
|  | void (*mulm)(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx); | 
|  | void (*mul2)(MPI w, MPI u, struct mpi_ec_ctx *ctx); | 
|  | void (*pow2)(MPI w, const MPI b, struct mpi_ec_ctx *ctx); | 
|  | }; | 
|  |  | 
|  | static const struct field_table field_table[] = { | 
|  | { | 
|  | "0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED", | 
|  | ec_addm_25519, | 
|  | ec_subm_25519, | 
|  | ec_mulm_25519, | 
|  | ec_mul2_25519, | 
|  | ec_pow2_25519 | 
|  | }, | 
|  | { | 
|  | "0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE" | 
|  | "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", | 
|  | ec_addm_448, | 
|  | ec_subm_448, | 
|  | ec_mulm_448, | 
|  | ec_mul2_448, | 
|  | ec_pow2_448 | 
|  | }, | 
|  | { NULL, NULL, NULL, NULL, NULL, NULL }, | 
|  | }; | 
|  |  | 
|  | /* Force recomputation of all helper variables.  */ | 
|  | static void mpi_ec_get_reset(struct mpi_ec_ctx *ec) | 
|  | { | 
|  | ec->t.valid.a_is_pminus3 = 0; | 
|  | ec->t.valid.two_inv_p = 0; | 
|  | } | 
|  |  | 
|  | /* Accessor for helper variable.  */ | 
|  | static int ec_get_a_is_pminus3(struct mpi_ec_ctx *ec) | 
|  | { | 
|  | MPI tmp; | 
|  |  | 
|  | if (!ec->t.valid.a_is_pminus3) { | 
|  | ec->t.valid.a_is_pminus3 = 1; | 
|  | tmp = mpi_alloc_like(ec->p); | 
|  | mpi_sub_ui(tmp, ec->p, 3); | 
|  | ec->t.a_is_pminus3 = !mpi_cmp(ec->a, tmp); | 
|  | mpi_free(tmp); | 
|  | } | 
|  |  | 
|  | return ec->t.a_is_pminus3; | 
|  | } | 
|  |  | 
|  | /* Accessor for helper variable.  */ | 
|  | static MPI ec_get_two_inv_p(struct mpi_ec_ctx *ec) | 
|  | { | 
|  | if (!ec->t.valid.two_inv_p) { | 
|  | ec->t.valid.two_inv_p = 1; | 
|  | if (!ec->t.two_inv_p) | 
|  | ec->t.two_inv_p = mpi_alloc(0); | 
|  | ec_invm(ec->t.two_inv_p, mpi_const(MPI_C_TWO), ec); | 
|  | } | 
|  | return ec->t.two_inv_p; | 
|  | } | 
|  |  | 
|  | static const char *const curve25519_bad_points[] = { | 
|  | "0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed", | 
|  | "0x0000000000000000000000000000000000000000000000000000000000000000", | 
|  | "0x0000000000000000000000000000000000000000000000000000000000000001", | 
|  | "0x00b8495f16056286fdb1329ceb8d09da6ac49ff1fae35616aeb8413b7c7aebe0", | 
|  | "0x57119fd0dd4e22d8868e1c58c45c44045bef839c55b1d0b1248c50a3bc959c5f", | 
|  | "0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffec", | 
|  | "0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffee", | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | static const char *const curve448_bad_points[] = { | 
|  | "0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffe" | 
|  | "ffffffffffffffffffffffffffffffffffffffffffffffffffffffff", | 
|  | "0x00000000000000000000000000000000000000000000000000000000" | 
|  | "00000000000000000000000000000000000000000000000000000000", | 
|  | "0x00000000000000000000000000000000000000000000000000000000" | 
|  | "00000000000000000000000000000000000000000000000000000001", | 
|  | "0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffe" | 
|  | "fffffffffffffffffffffffffffffffffffffffffffffffffffffffe", | 
|  | "0xffffffffffffffffffffffffffffffffffffffffffffffffffffffff" | 
|  | "00000000000000000000000000000000000000000000000000000000", | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | static const char *const *bad_points_table[] = { | 
|  | curve25519_bad_points, | 
|  | curve448_bad_points, | 
|  | }; | 
|  |  | 
|  | static void mpi_ec_coefficient_normalize(MPI a, MPI p) | 
|  | { | 
|  | if (a->sign) { | 
|  | mpi_resize(a, p->nlimbs); | 
|  | mpihelp_sub_n(a->d, p->d, a->d, p->nlimbs); | 
|  | a->nlimbs = p->nlimbs; | 
|  | a->sign = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* This function initialized a context for elliptic curve based on the | 
|  | * field GF(p).  P is the prime specifying this field, A is the first | 
|  | * coefficient.  CTX is expected to be zeroized. | 
|  | */ | 
|  | void mpi_ec_init(struct mpi_ec_ctx *ctx, enum gcry_mpi_ec_models model, | 
|  | enum ecc_dialects dialect, | 
|  | int flags, MPI p, MPI a, MPI b) | 
|  | { | 
|  | int i; | 
|  | static int use_barrett = -1 /* TODO: 1 or -1 */; | 
|  |  | 
|  | mpi_ec_coefficient_normalize(a, p); | 
|  | mpi_ec_coefficient_normalize(b, p); | 
|  |  | 
|  | /* Fixme: Do we want to check some constraints? e.g.  a < p  */ | 
|  |  | 
|  | ctx->model = model; | 
|  | ctx->dialect = dialect; | 
|  | ctx->flags = flags; | 
|  | if (dialect == ECC_DIALECT_ED25519) | 
|  | ctx->nbits = 256; | 
|  | else | 
|  | ctx->nbits = mpi_get_nbits(p); | 
|  | ctx->p = mpi_copy(p); | 
|  | ctx->a = mpi_copy(a); | 
|  | ctx->b = mpi_copy(b); | 
|  |  | 
|  | ctx->t.p_barrett = use_barrett > 0 ? mpi_barrett_init(ctx->p, 0) : NULL; | 
|  |  | 
|  | mpi_ec_get_reset(ctx); | 
|  |  | 
|  | if (model == MPI_EC_MONTGOMERY) { | 
|  | for (i = 0; i < DIM(bad_points_table); i++) { | 
|  | MPI p_candidate = mpi_scanval(bad_points_table[i][0]); | 
|  | int match_p = !mpi_cmp(ctx->p, p_candidate); | 
|  | int j; | 
|  |  | 
|  | mpi_free(p_candidate); | 
|  | if (!match_p) | 
|  | continue; | 
|  |  | 
|  | for (j = 0; i < DIM(ctx->t.scratch) && bad_points_table[i][j]; j++) | 
|  | ctx->t.scratch[j] = mpi_scanval(bad_points_table[i][j]); | 
|  | } | 
|  | } else { | 
|  | /* Allocate scratch variables.  */ | 
|  | for (i = 0; i < DIM(ctx->t.scratch); i++) | 
|  | ctx->t.scratch[i] = mpi_alloc_like(ctx->p); | 
|  | } | 
|  |  | 
|  | ctx->addm = ec_addm; | 
|  | ctx->subm = ec_subm; | 
|  | ctx->mulm = ec_mulm; | 
|  | ctx->mul2 = ec_mul2; | 
|  | ctx->pow2 = ec_pow2; | 
|  |  | 
|  | for (i = 0; field_table[i].p; i++) { | 
|  | MPI f_p; | 
|  |  | 
|  | f_p = mpi_scanval(field_table[i].p); | 
|  | if (!f_p) | 
|  | break; | 
|  |  | 
|  | if (!mpi_cmp(p, f_p)) { | 
|  | ctx->addm = field_table[i].addm; | 
|  | ctx->subm = field_table[i].subm; | 
|  | ctx->mulm = field_table[i].mulm; | 
|  | ctx->mul2 = field_table[i].mul2; | 
|  | ctx->pow2 = field_table[i].pow2; | 
|  | mpi_free(f_p); | 
|  |  | 
|  | mpi_resize(ctx->a, ctx->p->nlimbs); | 
|  | ctx->a->nlimbs = ctx->p->nlimbs; | 
|  |  | 
|  | mpi_resize(ctx->b, ctx->p->nlimbs); | 
|  | ctx->b->nlimbs = ctx->p->nlimbs; | 
|  |  | 
|  | for (i = 0; i < DIM(ctx->t.scratch) && ctx->t.scratch[i]; i++) | 
|  | ctx->t.scratch[i]->nlimbs = ctx->p->nlimbs; | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | mpi_free(f_p); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mpi_ec_init); | 
|  |  | 
|  | void mpi_ec_deinit(struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | mpi_barrett_free(ctx->t.p_barrett); | 
|  |  | 
|  | /* Domain parameter.  */ | 
|  | mpi_free(ctx->p); | 
|  | mpi_free(ctx->a); | 
|  | mpi_free(ctx->b); | 
|  | mpi_point_release(ctx->G); | 
|  | mpi_free(ctx->n); | 
|  |  | 
|  | /* The key.  */ | 
|  | mpi_point_release(ctx->Q); | 
|  | mpi_free(ctx->d); | 
|  |  | 
|  | /* Private data of ec.c.  */ | 
|  | mpi_free(ctx->t.two_inv_p); | 
|  |  | 
|  | for (i = 0; i < DIM(ctx->t.scratch); i++) | 
|  | mpi_free(ctx->t.scratch[i]); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mpi_ec_deinit); | 
|  |  | 
|  | /* Compute the affine coordinates from the projective coordinates in | 
|  | * POINT.  Set them into X and Y.  If one coordinate is not required, | 
|  | * X or Y may be passed as NULL.  CTX is the usual context. Returns: 0 | 
|  | * on success or !0 if POINT is at infinity. | 
|  | */ | 
|  | int mpi_ec_get_affine(MPI x, MPI y, MPI_POINT point, struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | if (!mpi_cmp_ui(point->z, 0)) | 
|  | return -1; | 
|  |  | 
|  | switch (ctx->model) { | 
|  | case MPI_EC_WEIERSTRASS: /* Using Jacobian coordinates.  */ | 
|  | { | 
|  | MPI z1, z2, z3; | 
|  |  | 
|  | z1 = mpi_new(0); | 
|  | z2 = mpi_new(0); | 
|  | ec_invm(z1, point->z, ctx);  /* z1 = z^(-1) mod p  */ | 
|  | ec_mulm(z2, z1, z1, ctx);    /* z2 = z^(-2) mod p  */ | 
|  |  | 
|  | if (x) | 
|  | ec_mulm(x, point->x, z2, ctx); | 
|  |  | 
|  | if (y) { | 
|  | z3 = mpi_new(0); | 
|  | ec_mulm(z3, z2, z1, ctx);      /* z3 = z^(-3) mod p */ | 
|  | ec_mulm(y, point->y, z3, ctx); | 
|  | mpi_free(z3); | 
|  | } | 
|  |  | 
|  | mpi_free(z2); | 
|  | mpi_free(z1); | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | case MPI_EC_MONTGOMERY: | 
|  | { | 
|  | if (x) | 
|  | mpi_set(x, point->x); | 
|  |  | 
|  | if (y) { | 
|  | log_fatal("%s: Getting Y-coordinate on %s is not supported\n", | 
|  | "mpi_ec_get_affine", "Montgomery"); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | case MPI_EC_EDWARDS: | 
|  | { | 
|  | MPI z; | 
|  |  | 
|  | z = mpi_new(0); | 
|  | ec_invm(z, point->z, ctx); | 
|  |  | 
|  | mpi_resize(z, ctx->p->nlimbs); | 
|  | z->nlimbs = ctx->p->nlimbs; | 
|  |  | 
|  | if (x) { | 
|  | mpi_resize(x, ctx->p->nlimbs); | 
|  | x->nlimbs = ctx->p->nlimbs; | 
|  | ctx->mulm(x, point->x, z, ctx); | 
|  | } | 
|  | if (y) { | 
|  | mpi_resize(y, ctx->p->nlimbs); | 
|  | y->nlimbs = ctx->p->nlimbs; | 
|  | ctx->mulm(y, point->y, z, ctx); | 
|  | } | 
|  |  | 
|  | mpi_free(z); | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | default: | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mpi_ec_get_affine); | 
|  |  | 
|  | /*  RESULT = 2 * POINT  (Weierstrass version). */ | 
|  | static void dup_point_weierstrass(MPI_POINT result, | 
|  | MPI_POINT point, struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | #define x3 (result->x) | 
|  | #define y3 (result->y) | 
|  | #define z3 (result->z) | 
|  | #define t1 (ctx->t.scratch[0]) | 
|  | #define t2 (ctx->t.scratch[1]) | 
|  | #define t3 (ctx->t.scratch[2]) | 
|  | #define l1 (ctx->t.scratch[3]) | 
|  | #define l2 (ctx->t.scratch[4]) | 
|  | #define l3 (ctx->t.scratch[5]) | 
|  |  | 
|  | if (!mpi_cmp_ui(point->y, 0) || !mpi_cmp_ui(point->z, 0)) { | 
|  | /* P_y == 0 || P_z == 0 => [1:1:0] */ | 
|  | mpi_set_ui(x3, 1); | 
|  | mpi_set_ui(y3, 1); | 
|  | mpi_set_ui(z3, 0); | 
|  | } else { | 
|  | if (ec_get_a_is_pminus3(ctx)) { | 
|  | /* Use the faster case.  */ | 
|  | /* L1 = 3(X - Z^2)(X + Z^2) */ | 
|  | /*                          T1: used for Z^2. */ | 
|  | /*                          T2: used for the right term. */ | 
|  | ec_pow2(t1, point->z, ctx); | 
|  | ec_subm(l1, point->x, t1, ctx); | 
|  | ec_mulm(l1, l1, mpi_const(MPI_C_THREE), ctx); | 
|  | ec_addm(t2, point->x, t1, ctx); | 
|  | ec_mulm(l1, l1, t2, ctx); | 
|  | } else { | 
|  | /* Standard case. */ | 
|  | /* L1 = 3X^2 + aZ^4 */ | 
|  | /*                          T1: used for aZ^4. */ | 
|  | ec_pow2(l1, point->x, ctx); | 
|  | ec_mulm(l1, l1, mpi_const(MPI_C_THREE), ctx); | 
|  | ec_powm(t1, point->z, mpi_const(MPI_C_FOUR), ctx); | 
|  | ec_mulm(t1, t1, ctx->a, ctx); | 
|  | ec_addm(l1, l1, t1, ctx); | 
|  | } | 
|  | /* Z3 = 2YZ */ | 
|  | ec_mulm(z3, point->y, point->z, ctx); | 
|  | ec_mul2(z3, z3, ctx); | 
|  |  | 
|  | /* L2 = 4XY^2 */ | 
|  | /*                              T2: used for Y2; required later. */ | 
|  | ec_pow2(t2, point->y, ctx); | 
|  | ec_mulm(l2, t2, point->x, ctx); | 
|  | ec_mulm(l2, l2, mpi_const(MPI_C_FOUR), ctx); | 
|  |  | 
|  | /* X3 = L1^2 - 2L2 */ | 
|  | /*                              T1: used for L2^2. */ | 
|  | ec_pow2(x3, l1, ctx); | 
|  | ec_mul2(t1, l2, ctx); | 
|  | ec_subm(x3, x3, t1, ctx); | 
|  |  | 
|  | /* L3 = 8Y^4 */ | 
|  | /*                              T2: taken from above. */ | 
|  | ec_pow2(t2, t2, ctx); | 
|  | ec_mulm(l3, t2, mpi_const(MPI_C_EIGHT), ctx); | 
|  |  | 
|  | /* Y3 = L1(L2 - X3) - L3 */ | 
|  | ec_subm(y3, l2, x3, ctx); | 
|  | ec_mulm(y3, y3, l1, ctx); | 
|  | ec_subm(y3, y3, l3, ctx); | 
|  | } | 
|  |  | 
|  | #undef x3 | 
|  | #undef y3 | 
|  | #undef z3 | 
|  | #undef t1 | 
|  | #undef t2 | 
|  | #undef t3 | 
|  | #undef l1 | 
|  | #undef l2 | 
|  | #undef l3 | 
|  | } | 
|  |  | 
|  | /*  RESULT = 2 * POINT  (Montgomery version). */ | 
|  | static void dup_point_montgomery(MPI_POINT result, | 
|  | MPI_POINT point, struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | (void)result; | 
|  | (void)point; | 
|  | (void)ctx; | 
|  | log_fatal("%s: %s not yet supported\n", | 
|  | "mpi_ec_dup_point", "Montgomery"); | 
|  | } | 
|  |  | 
|  | /*  RESULT = 2 * POINT  (Twisted Edwards version). */ | 
|  | static void dup_point_edwards(MPI_POINT result, | 
|  | MPI_POINT point, struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | #define X1 (point->x) | 
|  | #define Y1 (point->y) | 
|  | #define Z1 (point->z) | 
|  | #define X3 (result->x) | 
|  | #define Y3 (result->y) | 
|  | #define Z3 (result->z) | 
|  | #define B (ctx->t.scratch[0]) | 
|  | #define C (ctx->t.scratch[1]) | 
|  | #define D (ctx->t.scratch[2]) | 
|  | #define E (ctx->t.scratch[3]) | 
|  | #define F (ctx->t.scratch[4]) | 
|  | #define H (ctx->t.scratch[5]) | 
|  | #define J (ctx->t.scratch[6]) | 
|  |  | 
|  | /* Compute: (X_3 : Y_3 : Z_3) = 2( X_1 : Y_1 : Z_1 ) */ | 
|  |  | 
|  | /* B = (X_1 + Y_1)^2  */ | 
|  | ctx->addm(B, X1, Y1, ctx); | 
|  | ctx->pow2(B, B, ctx); | 
|  |  | 
|  | /* C = X_1^2 */ | 
|  | /* D = Y_1^2 */ | 
|  | ctx->pow2(C, X1, ctx); | 
|  | ctx->pow2(D, Y1, ctx); | 
|  |  | 
|  | /* E = aC */ | 
|  | if (ctx->dialect == ECC_DIALECT_ED25519) | 
|  | ctx->subm(E, ctx->p, C, ctx); | 
|  | else | 
|  | ctx->mulm(E, ctx->a, C, ctx); | 
|  |  | 
|  | /* F = E + D */ | 
|  | ctx->addm(F, E, D, ctx); | 
|  |  | 
|  | /* H = Z_1^2 */ | 
|  | ctx->pow2(H, Z1, ctx); | 
|  |  | 
|  | /* J = F - 2H */ | 
|  | ctx->mul2(J, H, ctx); | 
|  | ctx->subm(J, F, J, ctx); | 
|  |  | 
|  | /* X_3 = (B - C - D) · J */ | 
|  | ctx->subm(X3, B, C, ctx); | 
|  | ctx->subm(X3, X3, D, ctx); | 
|  | ctx->mulm(X3, X3, J, ctx); | 
|  |  | 
|  | /* Y_3 = F · (E - D) */ | 
|  | ctx->subm(Y3, E, D, ctx); | 
|  | ctx->mulm(Y3, Y3, F, ctx); | 
|  |  | 
|  | /* Z_3 = F · J */ | 
|  | ctx->mulm(Z3, F, J, ctx); | 
|  |  | 
|  | #undef X1 | 
|  | #undef Y1 | 
|  | #undef Z1 | 
|  | #undef X3 | 
|  | #undef Y3 | 
|  | #undef Z3 | 
|  | #undef B | 
|  | #undef C | 
|  | #undef D | 
|  | #undef E | 
|  | #undef F | 
|  | #undef H | 
|  | #undef J | 
|  | } | 
|  |  | 
|  | /*  RESULT = 2 * POINT  */ | 
|  | static void | 
|  | mpi_ec_dup_point(MPI_POINT result, MPI_POINT point, struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | switch (ctx->model) { | 
|  | case MPI_EC_WEIERSTRASS: | 
|  | dup_point_weierstrass(result, point, ctx); | 
|  | break; | 
|  | case MPI_EC_MONTGOMERY: | 
|  | dup_point_montgomery(result, point, ctx); | 
|  | break; | 
|  | case MPI_EC_EDWARDS: | 
|  | dup_point_edwards(result, point, ctx); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* RESULT = P1 + P2  (Weierstrass version).*/ | 
|  | static void add_points_weierstrass(MPI_POINT result, | 
|  | MPI_POINT p1, MPI_POINT p2, | 
|  | struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | #define x1 (p1->x) | 
|  | #define y1 (p1->y) | 
|  | #define z1 (p1->z) | 
|  | #define x2 (p2->x) | 
|  | #define y2 (p2->y) | 
|  | #define z2 (p2->z) | 
|  | #define x3 (result->x) | 
|  | #define y3 (result->y) | 
|  | #define z3 (result->z) | 
|  | #define l1 (ctx->t.scratch[0]) | 
|  | #define l2 (ctx->t.scratch[1]) | 
|  | #define l3 (ctx->t.scratch[2]) | 
|  | #define l4 (ctx->t.scratch[3]) | 
|  | #define l5 (ctx->t.scratch[4]) | 
|  | #define l6 (ctx->t.scratch[5]) | 
|  | #define l7 (ctx->t.scratch[6]) | 
|  | #define l8 (ctx->t.scratch[7]) | 
|  | #define l9 (ctx->t.scratch[8]) | 
|  | #define t1 (ctx->t.scratch[9]) | 
|  | #define t2 (ctx->t.scratch[10]) | 
|  |  | 
|  | if ((!mpi_cmp(x1, x2)) && (!mpi_cmp(y1, y2)) && (!mpi_cmp(z1, z2))) { | 
|  | /* Same point; need to call the duplicate function.  */ | 
|  | mpi_ec_dup_point(result, p1, ctx); | 
|  | } else if (!mpi_cmp_ui(z1, 0)) { | 
|  | /* P1 is at infinity.  */ | 
|  | mpi_set(x3, p2->x); | 
|  | mpi_set(y3, p2->y); | 
|  | mpi_set(z3, p2->z); | 
|  | } else if (!mpi_cmp_ui(z2, 0)) { | 
|  | /* P2 is at infinity.  */ | 
|  | mpi_set(x3, p1->x); | 
|  | mpi_set(y3, p1->y); | 
|  | mpi_set(z3, p1->z); | 
|  | } else { | 
|  | int z1_is_one = !mpi_cmp_ui(z1, 1); | 
|  | int z2_is_one = !mpi_cmp_ui(z2, 1); | 
|  |  | 
|  | /* l1 = x1 z2^2  */ | 
|  | /* l2 = x2 z1^2  */ | 
|  | if (z2_is_one) | 
|  | mpi_set(l1, x1); | 
|  | else { | 
|  | ec_pow2(l1, z2, ctx); | 
|  | ec_mulm(l1, l1, x1, ctx); | 
|  | } | 
|  | if (z1_is_one) | 
|  | mpi_set(l2, x2); | 
|  | else { | 
|  | ec_pow2(l2, z1, ctx); | 
|  | ec_mulm(l2, l2, x2, ctx); | 
|  | } | 
|  | /* l3 = l1 - l2 */ | 
|  | ec_subm(l3, l1, l2, ctx); | 
|  | /* l4 = y1 z2^3  */ | 
|  | ec_powm(l4, z2, mpi_const(MPI_C_THREE), ctx); | 
|  | ec_mulm(l4, l4, y1, ctx); | 
|  | /* l5 = y2 z1^3  */ | 
|  | ec_powm(l5, z1, mpi_const(MPI_C_THREE), ctx); | 
|  | ec_mulm(l5, l5, y2, ctx); | 
|  | /* l6 = l4 - l5  */ | 
|  | ec_subm(l6, l4, l5, ctx); | 
|  |  | 
|  | if (!mpi_cmp_ui(l3, 0)) { | 
|  | if (!mpi_cmp_ui(l6, 0)) { | 
|  | /* P1 and P2 are the same - use duplicate function. */ | 
|  | mpi_ec_dup_point(result, p1, ctx); | 
|  | } else { | 
|  | /* P1 is the inverse of P2.  */ | 
|  | mpi_set_ui(x3, 1); | 
|  | mpi_set_ui(y3, 1); | 
|  | mpi_set_ui(z3, 0); | 
|  | } | 
|  | } else { | 
|  | /* l7 = l1 + l2  */ | 
|  | ec_addm(l7, l1, l2, ctx); | 
|  | /* l8 = l4 + l5  */ | 
|  | ec_addm(l8, l4, l5, ctx); | 
|  | /* z3 = z1 z2 l3  */ | 
|  | ec_mulm(z3, z1, z2, ctx); | 
|  | ec_mulm(z3, z3, l3, ctx); | 
|  | /* x3 = l6^2 - l7 l3^2  */ | 
|  | ec_pow2(t1, l6, ctx); | 
|  | ec_pow2(t2, l3, ctx); | 
|  | ec_mulm(t2, t2, l7, ctx); | 
|  | ec_subm(x3, t1, t2, ctx); | 
|  | /* l9 = l7 l3^2 - 2 x3  */ | 
|  | ec_mul2(t1, x3, ctx); | 
|  | ec_subm(l9, t2, t1, ctx); | 
|  | /* y3 = (l9 l6 - l8 l3^3)/2  */ | 
|  | ec_mulm(l9, l9, l6, ctx); | 
|  | ec_powm(t1, l3, mpi_const(MPI_C_THREE), ctx); /* fixme: Use saved value*/ | 
|  | ec_mulm(t1, t1, l8, ctx); | 
|  | ec_subm(y3, l9, t1, ctx); | 
|  | ec_mulm(y3, y3, ec_get_two_inv_p(ctx), ctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | #undef x1 | 
|  | #undef y1 | 
|  | #undef z1 | 
|  | #undef x2 | 
|  | #undef y2 | 
|  | #undef z2 | 
|  | #undef x3 | 
|  | #undef y3 | 
|  | #undef z3 | 
|  | #undef l1 | 
|  | #undef l2 | 
|  | #undef l3 | 
|  | #undef l4 | 
|  | #undef l5 | 
|  | #undef l6 | 
|  | #undef l7 | 
|  | #undef l8 | 
|  | #undef l9 | 
|  | #undef t1 | 
|  | #undef t2 | 
|  | } | 
|  |  | 
|  | /* RESULT = P1 + P2  (Montgomery version).*/ | 
|  | static void add_points_montgomery(MPI_POINT result, | 
|  | MPI_POINT p1, MPI_POINT p2, | 
|  | struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | (void)result; | 
|  | (void)p1; | 
|  | (void)p2; | 
|  | (void)ctx; | 
|  | log_fatal("%s: %s not yet supported\n", | 
|  | "mpi_ec_add_points", "Montgomery"); | 
|  | } | 
|  |  | 
|  | /* RESULT = P1 + P2  (Twisted Edwards version).*/ | 
|  | static void add_points_edwards(MPI_POINT result, | 
|  | MPI_POINT p1, MPI_POINT p2, | 
|  | struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | #define X1 (p1->x) | 
|  | #define Y1 (p1->y) | 
|  | #define Z1 (p1->z) | 
|  | #define X2 (p2->x) | 
|  | #define Y2 (p2->y) | 
|  | #define Z2 (p2->z) | 
|  | #define X3 (result->x) | 
|  | #define Y3 (result->y) | 
|  | #define Z3 (result->z) | 
|  | #define A (ctx->t.scratch[0]) | 
|  | #define B (ctx->t.scratch[1]) | 
|  | #define C (ctx->t.scratch[2]) | 
|  | #define D (ctx->t.scratch[3]) | 
|  | #define E (ctx->t.scratch[4]) | 
|  | #define F (ctx->t.scratch[5]) | 
|  | #define G (ctx->t.scratch[6]) | 
|  | #define tmp (ctx->t.scratch[7]) | 
|  |  | 
|  | point_resize(result, ctx); | 
|  |  | 
|  | /* Compute: (X_3 : Y_3 : Z_3) = (X_1 : Y_1 : Z_1) + (X_2 : Y_2 : Z_3) */ | 
|  |  | 
|  | /* A = Z1 · Z2 */ | 
|  | ctx->mulm(A, Z1, Z2, ctx); | 
|  |  | 
|  | /* B = A^2 */ | 
|  | ctx->pow2(B, A, ctx); | 
|  |  | 
|  | /* C = X1 · X2 */ | 
|  | ctx->mulm(C, X1, X2, ctx); | 
|  |  | 
|  | /* D = Y1 · Y2 */ | 
|  | ctx->mulm(D, Y1, Y2, ctx); | 
|  |  | 
|  | /* E = d · C · D */ | 
|  | ctx->mulm(E, ctx->b, C, ctx); | 
|  | ctx->mulm(E, E, D, ctx); | 
|  |  | 
|  | /* F = B - E */ | 
|  | ctx->subm(F, B, E, ctx); | 
|  |  | 
|  | /* G = B + E */ | 
|  | ctx->addm(G, B, E, ctx); | 
|  |  | 
|  | /* X_3 = A · F · ((X_1 + Y_1) · (X_2 + Y_2) - C - D) */ | 
|  | ctx->addm(tmp, X1, Y1, ctx); | 
|  | ctx->addm(X3, X2, Y2, ctx); | 
|  | ctx->mulm(X3, X3, tmp, ctx); | 
|  | ctx->subm(X3, X3, C, ctx); | 
|  | ctx->subm(X3, X3, D, ctx); | 
|  | ctx->mulm(X3, X3, F, ctx); | 
|  | ctx->mulm(X3, X3, A, ctx); | 
|  |  | 
|  | /* Y_3 = A · G · (D - aC) */ | 
|  | if (ctx->dialect == ECC_DIALECT_ED25519) { | 
|  | ctx->addm(Y3, D, C, ctx); | 
|  | } else { | 
|  | ctx->mulm(Y3, ctx->a, C, ctx); | 
|  | ctx->subm(Y3, D, Y3, ctx); | 
|  | } | 
|  | ctx->mulm(Y3, Y3, G, ctx); | 
|  | ctx->mulm(Y3, Y3, A, ctx); | 
|  |  | 
|  | /* Z_3 = F · G */ | 
|  | ctx->mulm(Z3, F, G, ctx); | 
|  |  | 
|  |  | 
|  | #undef X1 | 
|  | #undef Y1 | 
|  | #undef Z1 | 
|  | #undef X2 | 
|  | #undef Y2 | 
|  | #undef Z2 | 
|  | #undef X3 | 
|  | #undef Y3 | 
|  | #undef Z3 | 
|  | #undef A | 
|  | #undef B | 
|  | #undef C | 
|  | #undef D | 
|  | #undef E | 
|  | #undef F | 
|  | #undef G | 
|  | #undef tmp | 
|  | } | 
|  |  | 
|  | /* Compute a step of Montgomery Ladder (only use X and Z in the point). | 
|  | * Inputs:  P1, P2, and x-coordinate of DIF = P1 - P1. | 
|  | * Outputs: PRD = 2 * P1 and  SUM = P1 + P2. | 
|  | */ | 
|  | static void montgomery_ladder(MPI_POINT prd, MPI_POINT sum, | 
|  | MPI_POINT p1, MPI_POINT p2, MPI dif_x, | 
|  | struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | ctx->addm(sum->x, p2->x, p2->z, ctx); | 
|  | ctx->subm(p2->z, p2->x, p2->z, ctx); | 
|  | ctx->addm(prd->x, p1->x, p1->z, ctx); | 
|  | ctx->subm(p1->z, p1->x, p1->z, ctx); | 
|  | ctx->mulm(p2->x, p1->z, sum->x, ctx); | 
|  | ctx->mulm(p2->z, prd->x, p2->z, ctx); | 
|  | ctx->pow2(p1->x, prd->x, ctx); | 
|  | ctx->pow2(p1->z, p1->z, ctx); | 
|  | ctx->addm(sum->x, p2->x, p2->z, ctx); | 
|  | ctx->subm(p2->z, p2->x, p2->z, ctx); | 
|  | ctx->mulm(prd->x, p1->x, p1->z, ctx); | 
|  | ctx->subm(p1->z, p1->x, p1->z, ctx); | 
|  | ctx->pow2(sum->x, sum->x, ctx); | 
|  | ctx->pow2(sum->z, p2->z, ctx); | 
|  | ctx->mulm(prd->z, p1->z, ctx->a, ctx); /* CTX->A: (a-2)/4 */ | 
|  | ctx->mulm(sum->z, sum->z, dif_x, ctx); | 
|  | ctx->addm(prd->z, p1->x, prd->z, ctx); | 
|  | ctx->mulm(prd->z, prd->z, p1->z, ctx); | 
|  | } | 
|  |  | 
|  | /* RESULT = P1 + P2 */ | 
|  | void mpi_ec_add_points(MPI_POINT result, | 
|  | MPI_POINT p1, MPI_POINT p2, | 
|  | struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | switch (ctx->model) { | 
|  | case MPI_EC_WEIERSTRASS: | 
|  | add_points_weierstrass(result, p1, p2, ctx); | 
|  | break; | 
|  | case MPI_EC_MONTGOMERY: | 
|  | add_points_montgomery(result, p1, p2, ctx); | 
|  | break; | 
|  | case MPI_EC_EDWARDS: | 
|  | add_points_edwards(result, p1, p2, ctx); | 
|  | break; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mpi_ec_add_points); | 
|  |  | 
|  | /* Scalar point multiplication - the main function for ECC.  If takes | 
|  | * an integer SCALAR and a POINT as well as the usual context CTX. | 
|  | * RESULT will be set to the resulting point. | 
|  | */ | 
|  | void mpi_ec_mul_point(MPI_POINT result, | 
|  | MPI scalar, MPI_POINT point, | 
|  | struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | MPI x1, y1, z1, k, h, yy; | 
|  | unsigned int i, loops; | 
|  | struct gcry_mpi_point p1, p2, p1inv; | 
|  |  | 
|  | if (ctx->model == MPI_EC_EDWARDS) { | 
|  | /* Simple left to right binary method.  Algorithm 3.27 from | 
|  | * {author={Hankerson, Darrel and Menezes, Alfred J. and Vanstone, Scott}, | 
|  | *  title = {Guide to Elliptic Curve Cryptography}, | 
|  | *  year = {2003}, isbn = {038795273X}, | 
|  | *  url = {http://www.cacr.math.uwaterloo.ca/ecc/}, | 
|  | *  publisher = {Springer-Verlag New York, Inc.}} | 
|  | */ | 
|  | unsigned int nbits; | 
|  | int j; | 
|  |  | 
|  | if (mpi_cmp(scalar, ctx->p) >= 0) | 
|  | nbits = mpi_get_nbits(scalar); | 
|  | else | 
|  | nbits = mpi_get_nbits(ctx->p); | 
|  |  | 
|  | mpi_set_ui(result->x, 0); | 
|  | mpi_set_ui(result->y, 1); | 
|  | mpi_set_ui(result->z, 1); | 
|  | point_resize(point, ctx); | 
|  |  | 
|  | point_resize(result, ctx); | 
|  | point_resize(point, ctx); | 
|  |  | 
|  | for (j = nbits-1; j >= 0; j--) { | 
|  | mpi_ec_dup_point(result, result, ctx); | 
|  | if (mpi_test_bit(scalar, j)) | 
|  | mpi_ec_add_points(result, result, point, ctx); | 
|  | } | 
|  | return; | 
|  | } else if (ctx->model == MPI_EC_MONTGOMERY) { | 
|  | unsigned int nbits; | 
|  | int j; | 
|  | struct gcry_mpi_point p1_, p2_; | 
|  | MPI_POINT q1, q2, prd, sum; | 
|  | unsigned long sw; | 
|  | mpi_size_t rsize; | 
|  |  | 
|  | /* Compute scalar point multiplication with Montgomery Ladder. | 
|  | * Note that we don't use Y-coordinate in the points at all. | 
|  | * RESULT->Y will be filled by zero. | 
|  | */ | 
|  |  | 
|  | nbits = mpi_get_nbits(scalar); | 
|  | point_init(&p1); | 
|  | point_init(&p2); | 
|  | point_init(&p1_); | 
|  | point_init(&p2_); | 
|  | mpi_set_ui(p1.x, 1); | 
|  | mpi_free(p2.x); | 
|  | p2.x = mpi_copy(point->x); | 
|  | mpi_set_ui(p2.z, 1); | 
|  |  | 
|  | point_resize(&p1, ctx); | 
|  | point_resize(&p2, ctx); | 
|  | point_resize(&p1_, ctx); | 
|  | point_resize(&p2_, ctx); | 
|  |  | 
|  | mpi_resize(point->x, ctx->p->nlimbs); | 
|  | point->x->nlimbs = ctx->p->nlimbs; | 
|  |  | 
|  | q1 = &p1; | 
|  | q2 = &p2; | 
|  | prd = &p1_; | 
|  | sum = &p2_; | 
|  |  | 
|  | for (j = nbits-1; j >= 0; j--) { | 
|  | MPI_POINT t; | 
|  |  | 
|  | sw = mpi_test_bit(scalar, j); | 
|  | point_swap_cond(q1, q2, sw, ctx); | 
|  | montgomery_ladder(prd, sum, q1, q2, point->x, ctx); | 
|  | point_swap_cond(prd, sum, sw, ctx); | 
|  | t = q1;  q1 = prd;  prd = t; | 
|  | t = q2;  q2 = sum;  sum = t; | 
|  | } | 
|  |  | 
|  | mpi_clear(result->y); | 
|  | sw = (nbits & 1); | 
|  | point_swap_cond(&p1, &p1_, sw, ctx); | 
|  |  | 
|  | rsize = p1.z->nlimbs; | 
|  | MPN_NORMALIZE(p1.z->d, rsize); | 
|  | if (rsize == 0) { | 
|  | mpi_set_ui(result->x, 1); | 
|  | mpi_set_ui(result->z, 0); | 
|  | } else { | 
|  | z1 = mpi_new(0); | 
|  | ec_invm(z1, p1.z, ctx); | 
|  | ec_mulm(result->x, p1.x, z1, ctx); | 
|  | mpi_set_ui(result->z, 1); | 
|  | mpi_free(z1); | 
|  | } | 
|  |  | 
|  | point_free(&p1); | 
|  | point_free(&p2); | 
|  | point_free(&p1_); | 
|  | point_free(&p2_); | 
|  | return; | 
|  | } | 
|  |  | 
|  | x1 = mpi_alloc_like(ctx->p); | 
|  | y1 = mpi_alloc_like(ctx->p); | 
|  | h  = mpi_alloc_like(ctx->p); | 
|  | k  = mpi_copy(scalar); | 
|  | yy = mpi_copy(point->y); | 
|  |  | 
|  | if (mpi_has_sign(k)) { | 
|  | k->sign = 0; | 
|  | ec_invm(yy, yy, ctx); | 
|  | } | 
|  |  | 
|  | if (!mpi_cmp_ui(point->z, 1)) { | 
|  | mpi_set(x1, point->x); | 
|  | mpi_set(y1, yy); | 
|  | } else { | 
|  | MPI z2, z3; | 
|  |  | 
|  | z2 = mpi_alloc_like(ctx->p); | 
|  | z3 = mpi_alloc_like(ctx->p); | 
|  | ec_mulm(z2, point->z, point->z, ctx); | 
|  | ec_mulm(z3, point->z, z2, ctx); | 
|  | ec_invm(z2, z2, ctx); | 
|  | ec_mulm(x1, point->x, z2, ctx); | 
|  | ec_invm(z3, z3, ctx); | 
|  | ec_mulm(y1, yy, z3, ctx); | 
|  | mpi_free(z2); | 
|  | mpi_free(z3); | 
|  | } | 
|  | z1 = mpi_copy(mpi_const(MPI_C_ONE)); | 
|  |  | 
|  | mpi_mul(h, k, mpi_const(MPI_C_THREE)); /* h = 3k */ | 
|  | loops = mpi_get_nbits(h); | 
|  | if (loops < 2) { | 
|  | /* If SCALAR is zero, the above mpi_mul sets H to zero and thus | 
|  | * LOOPs will be zero.  To avoid an underflow of I in the main | 
|  | * loop we set LOOP to 2 and the result to (0,0,0). | 
|  | */ | 
|  | loops = 2; | 
|  | mpi_clear(result->x); | 
|  | mpi_clear(result->y); | 
|  | mpi_clear(result->z); | 
|  | } else { | 
|  | mpi_set(result->x, point->x); | 
|  | mpi_set(result->y, yy); | 
|  | mpi_set(result->z, point->z); | 
|  | } | 
|  | mpi_free(yy); yy = NULL; | 
|  |  | 
|  | p1.x = x1; x1 = NULL; | 
|  | p1.y = y1; y1 = NULL; | 
|  | p1.z = z1; z1 = NULL; | 
|  | point_init(&p2); | 
|  | point_init(&p1inv); | 
|  |  | 
|  | /* Invert point: y = p - y mod p  */ | 
|  | point_set(&p1inv, &p1); | 
|  | ec_subm(p1inv.y, ctx->p, p1inv.y, ctx); | 
|  |  | 
|  | for (i = loops-2; i > 0; i--) { | 
|  | mpi_ec_dup_point(result, result, ctx); | 
|  | if (mpi_test_bit(h, i) == 1 && mpi_test_bit(k, i) == 0) { | 
|  | point_set(&p2, result); | 
|  | mpi_ec_add_points(result, &p2, &p1, ctx); | 
|  | } | 
|  | if (mpi_test_bit(h, i) == 0 && mpi_test_bit(k, i) == 1) { | 
|  | point_set(&p2, result); | 
|  | mpi_ec_add_points(result, &p2, &p1inv, ctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | point_free(&p1); | 
|  | point_free(&p2); | 
|  | point_free(&p1inv); | 
|  | mpi_free(h); | 
|  | mpi_free(k); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mpi_ec_mul_point); | 
|  |  | 
|  | /* Return true if POINT is on the curve described by CTX.  */ | 
|  | int mpi_ec_curve_point(MPI_POINT point, struct mpi_ec_ctx *ctx) | 
|  | { | 
|  | int res = 0; | 
|  | MPI x, y, w; | 
|  |  | 
|  | x = mpi_new(0); | 
|  | y = mpi_new(0); | 
|  | w = mpi_new(0); | 
|  |  | 
|  | /* Check that the point is in range.  This needs to be done here and | 
|  | * not after conversion to affine coordinates. | 
|  | */ | 
|  | if (mpi_cmpabs(point->x, ctx->p) >= 0) | 
|  | goto leave; | 
|  | if (mpi_cmpabs(point->y, ctx->p) >= 0) | 
|  | goto leave; | 
|  | if (mpi_cmpabs(point->z, ctx->p) >= 0) | 
|  | goto leave; | 
|  |  | 
|  | switch (ctx->model) { | 
|  | case MPI_EC_WEIERSTRASS: | 
|  | { | 
|  | MPI xxx; | 
|  |  | 
|  | if (mpi_ec_get_affine(x, y, point, ctx)) | 
|  | goto leave; | 
|  |  | 
|  | xxx = mpi_new(0); | 
|  |  | 
|  | /* y^2 == x^3 + a·x + b */ | 
|  | ec_pow2(y, y, ctx); | 
|  |  | 
|  | ec_pow3(xxx, x, ctx); | 
|  | ec_mulm(w, ctx->a, x, ctx); | 
|  | ec_addm(w, w, ctx->b, ctx); | 
|  | ec_addm(w, w, xxx, ctx); | 
|  |  | 
|  | if (!mpi_cmp(y, w)) | 
|  | res = 1; | 
|  |  | 
|  | mpi_free(xxx); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case MPI_EC_MONTGOMERY: | 
|  | { | 
|  | #define xx y | 
|  | /* With Montgomery curve, only X-coordinate is valid. */ | 
|  | if (mpi_ec_get_affine(x, NULL, point, ctx)) | 
|  | goto leave; | 
|  |  | 
|  | /* The equation is: b * y^2 == x^3 + a · x^2 + x */ | 
|  | /* We check if right hand is quadratic residue or not by | 
|  | * Euler's criterion. | 
|  | */ | 
|  | /* CTX->A has (a-2)/4 and CTX->B has b^-1 */ | 
|  | ec_mulm(w, ctx->a, mpi_const(MPI_C_FOUR), ctx); | 
|  | ec_addm(w, w, mpi_const(MPI_C_TWO), ctx); | 
|  | ec_mulm(w, w, x, ctx); | 
|  | ec_pow2(xx, x, ctx); | 
|  | ec_addm(w, w, xx, ctx); | 
|  | ec_addm(w, w, mpi_const(MPI_C_ONE), ctx); | 
|  | ec_mulm(w, w, x, ctx); | 
|  | ec_mulm(w, w, ctx->b, ctx); | 
|  | #undef xx | 
|  | /* Compute Euler's criterion: w^(p-1)/2 */ | 
|  | #define p_minus1 y | 
|  | ec_subm(p_minus1, ctx->p, mpi_const(MPI_C_ONE), ctx); | 
|  | mpi_rshift(p_minus1, p_minus1, 1); | 
|  | ec_powm(w, w, p_minus1, ctx); | 
|  |  | 
|  | res = !mpi_cmp_ui(w, 1); | 
|  | #undef p_minus1 | 
|  | } | 
|  | break; | 
|  |  | 
|  | case MPI_EC_EDWARDS: | 
|  | { | 
|  | if (mpi_ec_get_affine(x, y, point, ctx)) | 
|  | goto leave; | 
|  |  | 
|  | mpi_resize(w, ctx->p->nlimbs); | 
|  | w->nlimbs = ctx->p->nlimbs; | 
|  |  | 
|  | /* a · x^2 + y^2 - 1 - b · x^2 · y^2 == 0 */ | 
|  | ctx->pow2(x, x, ctx); | 
|  | ctx->pow2(y, y, ctx); | 
|  | if (ctx->dialect == ECC_DIALECT_ED25519) | 
|  | ctx->subm(w, ctx->p, x, ctx); | 
|  | else | 
|  | ctx->mulm(w, ctx->a, x, ctx); | 
|  | ctx->addm(w, w, y, ctx); | 
|  | ctx->mulm(x, x, y, ctx); | 
|  | ctx->mulm(x, x, ctx->b, ctx); | 
|  | ctx->subm(w, w, x, ctx); | 
|  | if (!mpi_cmp_ui(w, 1)) | 
|  | res = 1; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | leave: | 
|  | mpi_free(w); | 
|  | mpi_free(x); | 
|  | mpi_free(y); | 
|  |  | 
|  | return res; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mpi_ec_curve_point); |