| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * xHCI host controller driver | 
 |  * | 
 |  * Copyright (C) 2008 Intel Corp. | 
 |  * | 
 |  * Author: Sarah Sharp | 
 |  * Some code borrowed from the Linux EHCI driver. | 
 |  */ | 
 |  | 
 | #include <linux/pci.h> | 
 | #include <linux/iommu.h> | 
 | #include <linux/iopoll.h> | 
 | #include <linux/irq.h> | 
 | #include <linux/log2.h> | 
 | #include <linux/module.h> | 
 | #include <linux/moduleparam.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/dmi.h> | 
 | #include <linux/dma-mapping.h> | 
 |  | 
 | #include "xhci.h" | 
 | #include "xhci-trace.h" | 
 | #include "xhci-debugfs.h" | 
 | #include "xhci-dbgcap.h" | 
 |  | 
 | #define DRIVER_AUTHOR "Sarah Sharp" | 
 | #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" | 
 |  | 
 | #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) | 
 |  | 
 | /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ | 
 | static int link_quirk; | 
 | module_param(link_quirk, int, S_IRUGO | S_IWUSR); | 
 | MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); | 
 |  | 
 | static unsigned long long quirks; | 
 | module_param(quirks, ullong, S_IRUGO); | 
 | MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); | 
 |  | 
 | static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) | 
 | { | 
 | 	struct xhci_segment *seg = ring->first_seg; | 
 |  | 
 | 	if (!td || !td->start_seg) | 
 | 		return false; | 
 | 	do { | 
 | 		if (seg == td->start_seg) | 
 | 			return true; | 
 | 		seg = seg->next; | 
 | 	} while (seg && seg != ring->first_seg); | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * xhci_handshake - spin reading hc until handshake completes or fails | 
 |  * @ptr: address of hc register to be read | 
 |  * @mask: bits to look at in result of read | 
 |  * @done: value of those bits when handshake succeeds | 
 |  * @usec: timeout in microseconds | 
 |  * | 
 |  * Returns negative errno, or zero on success | 
 |  * | 
 |  * Success happens when the "mask" bits have the specified value (hardware | 
 |  * handshake done).  There are two failure modes:  "usec" have passed (major | 
 |  * hardware flakeout), or the register reads as all-ones (hardware removed). | 
 |  */ | 
 | int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us) | 
 | { | 
 | 	u32	result; | 
 | 	int	ret; | 
 |  | 
 | 	ret = readl_poll_timeout_atomic(ptr, result, | 
 | 					(result & mask) == done || | 
 | 					result == U32_MAX, | 
 | 					1, timeout_us); | 
 | 	if (result == U32_MAX)		/* card removed */ | 
 | 		return -ENODEV; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Disable interrupts and begin the xHCI halting process. | 
 |  */ | 
 | void xhci_quiesce(struct xhci_hcd *xhci) | 
 | { | 
 | 	u32 halted; | 
 | 	u32 cmd; | 
 | 	u32 mask; | 
 |  | 
 | 	mask = ~(XHCI_IRQS); | 
 | 	halted = readl(&xhci->op_regs->status) & STS_HALT; | 
 | 	if (!halted) | 
 | 		mask &= ~CMD_RUN; | 
 |  | 
 | 	cmd = readl(&xhci->op_regs->command); | 
 | 	cmd &= mask; | 
 | 	writel(cmd, &xhci->op_regs->command); | 
 | } | 
 |  | 
 | /* | 
 |  * Force HC into halt state. | 
 |  * | 
 |  * Disable any IRQs and clear the run/stop bit. | 
 |  * HC will complete any current and actively pipelined transactions, and | 
 |  * should halt within 16 ms of the run/stop bit being cleared. | 
 |  * Read HC Halted bit in the status register to see when the HC is finished. | 
 |  */ | 
 | int xhci_halt(struct xhci_hcd *xhci) | 
 | { | 
 | 	int ret; | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); | 
 | 	xhci_quiesce(xhci); | 
 |  | 
 | 	ret = xhci_handshake(&xhci->op_regs->status, | 
 | 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); | 
 | 	if (ret) { | 
 | 		xhci_warn(xhci, "Host halt failed, %d\n", ret); | 
 | 		return ret; | 
 | 	} | 
 | 	xhci->xhc_state |= XHCI_STATE_HALTED; | 
 | 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Set the run bit and wait for the host to be running. | 
 |  */ | 
 | int xhci_start(struct xhci_hcd *xhci) | 
 | { | 
 | 	u32 temp; | 
 | 	int ret; | 
 |  | 
 | 	temp = readl(&xhci->op_regs->command); | 
 | 	temp |= (CMD_RUN); | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", | 
 | 			temp); | 
 | 	writel(temp, &xhci->op_regs->command); | 
 |  | 
 | 	/* | 
 | 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is | 
 | 	 * running. | 
 | 	 */ | 
 | 	ret = xhci_handshake(&xhci->op_regs->status, | 
 | 			STS_HALT, 0, XHCI_MAX_HALT_USEC); | 
 | 	if (ret == -ETIMEDOUT) | 
 | 		xhci_err(xhci, "Host took too long to start, " | 
 | 				"waited %u microseconds.\n", | 
 | 				XHCI_MAX_HALT_USEC); | 
 | 	if (!ret) { | 
 | 		/* clear state flags. Including dying, halted or removing */ | 
 | 		xhci->xhc_state = 0; | 
 | 		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Reset a halted HC. | 
 |  * | 
 |  * This resets pipelines, timers, counters, state machines, etc. | 
 |  * Transactions will be terminated immediately, and operational registers | 
 |  * will be set to their defaults. | 
 |  */ | 
 | int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us) | 
 | { | 
 | 	u32 command; | 
 | 	u32 state; | 
 | 	int ret; | 
 |  | 
 | 	state = readl(&xhci->op_regs->status); | 
 |  | 
 | 	if (state == ~(u32)0) { | 
 | 		xhci_warn(xhci, "Host not accessible, reset failed.\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	if ((state & STS_HALT) == 0) { | 
 | 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); | 
 | 	command = readl(&xhci->op_regs->command); | 
 | 	command |= CMD_RESET; | 
 | 	writel(command, &xhci->op_regs->command); | 
 |  | 
 | 	/* Existing Intel xHCI controllers require a delay of 1 mS, | 
 | 	 * after setting the CMD_RESET bit, and before accessing any | 
 | 	 * HC registers. This allows the HC to complete the | 
 | 	 * reset operation and be ready for HC register access. | 
 | 	 * Without this delay, the subsequent HC register access, | 
 | 	 * may result in a system hang very rarely. | 
 | 	 */ | 
 | 	if (xhci->quirks & XHCI_INTEL_HOST) | 
 | 		udelay(1000); | 
 |  | 
 | 	ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) | 
 | 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); | 
 |  | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 			 "Wait for controller to be ready for doorbell rings"); | 
 | 	/* | 
 | 	 * xHCI cannot write to any doorbells or operational registers other | 
 | 	 * than status until the "Controller Not Ready" flag is cleared. | 
 | 	 */ | 
 | 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us); | 
 |  | 
 | 	xhci->usb2_rhub.bus_state.port_c_suspend = 0; | 
 | 	xhci->usb2_rhub.bus_state.suspended_ports = 0; | 
 | 	xhci->usb2_rhub.bus_state.resuming_ports = 0; | 
 | 	xhci->usb3_rhub.bus_state.port_c_suspend = 0; | 
 | 	xhci->usb3_rhub.bus_state.suspended_ports = 0; | 
 | 	xhci->usb3_rhub.bus_state.resuming_ports = 0; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void xhci_zero_64b_regs(struct xhci_hcd *xhci) | 
 | { | 
 | 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
 | 	struct iommu_domain *domain; | 
 | 	int err, i; | 
 | 	u64 val; | 
 | 	u32 intrs; | 
 |  | 
 | 	/* | 
 | 	 * Some Renesas controllers get into a weird state if they are | 
 | 	 * reset while programmed with 64bit addresses (they will preserve | 
 | 	 * the top half of the address in internal, non visible | 
 | 	 * registers). You end up with half the address coming from the | 
 | 	 * kernel, and the other half coming from the firmware. Also, | 
 | 	 * changing the programming leads to extra accesses even if the | 
 | 	 * controller is supposed to be halted. The controller ends up with | 
 | 	 * a fatal fault, and is then ripe for being properly reset. | 
 | 	 * | 
 | 	 * Special care is taken to only apply this if the device is behind | 
 | 	 * an iommu. Doing anything when there is no iommu is definitely | 
 | 	 * unsafe... | 
 | 	 */ | 
 | 	domain = iommu_get_domain_for_dev(dev); | 
 | 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain || | 
 | 	    domain->type == IOMMU_DOMAIN_IDENTITY) | 
 | 		return; | 
 |  | 
 | 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); | 
 |  | 
 | 	/* Clear HSEIE so that faults do not get signaled */ | 
 | 	val = readl(&xhci->op_regs->command); | 
 | 	val &= ~CMD_HSEIE; | 
 | 	writel(val, &xhci->op_regs->command); | 
 |  | 
 | 	/* Clear HSE (aka FATAL) */ | 
 | 	val = readl(&xhci->op_regs->status); | 
 | 	val |= STS_FATAL; | 
 | 	writel(val, &xhci->op_regs->status); | 
 |  | 
 | 	/* Now zero the registers, and brace for impact */ | 
 | 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); | 
 | 	if (upper_32_bits(val)) | 
 | 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); | 
 | 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); | 
 | 	if (upper_32_bits(val)) | 
 | 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); | 
 |  | 
 | 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), | 
 | 		      ARRAY_SIZE(xhci->run_regs->ir_set)); | 
 |  | 
 | 	for (i = 0; i < intrs; i++) { | 
 | 		struct xhci_intr_reg __iomem *ir; | 
 |  | 
 | 		ir = &xhci->run_regs->ir_set[i]; | 
 | 		val = xhci_read_64(xhci, &ir->erst_base); | 
 | 		if (upper_32_bits(val)) | 
 | 			xhci_write_64(xhci, 0, &ir->erst_base); | 
 | 		val= xhci_read_64(xhci, &ir->erst_dequeue); | 
 | 		if (upper_32_bits(val)) | 
 | 			xhci_write_64(xhci, 0, &ir->erst_dequeue); | 
 | 	} | 
 |  | 
 | 	/* Wait for the fault to appear. It will be cleared on reset */ | 
 | 	err = xhci_handshake(&xhci->op_regs->status, | 
 | 			     STS_FATAL, STS_FATAL, | 
 | 			     XHCI_MAX_HALT_USEC); | 
 | 	if (!err) | 
 | 		xhci_info(xhci, "Fault detected\n"); | 
 | } | 
 |  | 
 | #ifdef CONFIG_USB_PCI | 
 | /* | 
 |  * Set up MSI | 
 |  */ | 
 | static int xhci_setup_msi(struct xhci_hcd *xhci) | 
 | { | 
 | 	int ret; | 
 | 	/* | 
 | 	 * TODO:Check with MSI Soc for sysdev | 
 | 	 */ | 
 | 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); | 
 |  | 
 | 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); | 
 | 	if (ret < 0) { | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 				"failed to allocate MSI entry"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	ret = request_irq(pdev->irq, xhci_msi_irq, | 
 | 				0, "xhci_hcd", xhci_to_hcd(xhci)); | 
 | 	if (ret) { | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 				"disable MSI interrupt"); | 
 | 		pci_free_irq_vectors(pdev); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Set up MSI-X | 
 |  */ | 
 | static int xhci_setup_msix(struct xhci_hcd *xhci) | 
 | { | 
 | 	int i, ret = 0; | 
 | 	struct usb_hcd *hcd = xhci_to_hcd(xhci); | 
 | 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller); | 
 |  | 
 | 	/* | 
 | 	 * calculate number of msi-x vectors supported. | 
 | 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, | 
 | 	 *   with max number of interrupters based on the xhci HCSPARAMS1. | 
 | 	 * - num_online_cpus: maximum msi-x vectors per CPUs core. | 
 | 	 *   Add additional 1 vector to ensure always available interrupt. | 
 | 	 */ | 
 | 	xhci->msix_count = min(num_online_cpus() + 1, | 
 | 				HCS_MAX_INTRS(xhci->hcs_params1)); | 
 |  | 
 | 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, | 
 | 			PCI_IRQ_MSIX); | 
 | 	if (ret < 0) { | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 				"Failed to enable MSI-X"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < xhci->msix_count; i++) { | 
 | 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, | 
 | 				"xhci_hcd", xhci_to_hcd(xhci)); | 
 | 		if (ret) | 
 | 			goto disable_msix; | 
 | 	} | 
 |  | 
 | 	hcd->msix_enabled = 1; | 
 | 	return ret; | 
 |  | 
 | disable_msix: | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); | 
 | 	while (--i >= 0) | 
 | 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); | 
 | 	pci_free_irq_vectors(pdev); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Free any IRQs and disable MSI-X */ | 
 | static void xhci_cleanup_msix(struct xhci_hcd *xhci) | 
 | { | 
 | 	struct usb_hcd *hcd = xhci_to_hcd(xhci); | 
 | 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller); | 
 |  | 
 | 	if (xhci->quirks & XHCI_PLAT) | 
 | 		return; | 
 |  | 
 | 	/* return if using legacy interrupt */ | 
 | 	if (hcd->irq > 0) | 
 | 		return; | 
 |  | 
 | 	if (hcd->msix_enabled) { | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < xhci->msix_count; i++) | 
 | 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); | 
 | 	} else { | 
 | 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); | 
 | 	} | 
 |  | 
 | 	pci_free_irq_vectors(pdev); | 
 | 	hcd->msix_enabled = 0; | 
 | } | 
 |  | 
 | static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) | 
 | { | 
 | 	struct usb_hcd *hcd = xhci_to_hcd(xhci); | 
 |  | 
 | 	if (hcd->msix_enabled) { | 
 | 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller); | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < xhci->msix_count; i++) | 
 | 			synchronize_irq(pci_irq_vector(pdev, i)); | 
 | 	} | 
 | } | 
 |  | 
 | static int xhci_try_enable_msi(struct usb_hcd *hcd) | 
 | { | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 | 	struct pci_dev  *pdev; | 
 | 	int ret; | 
 |  | 
 | 	/* The xhci platform device has set up IRQs through usb_add_hcd. */ | 
 | 	if (xhci->quirks & XHCI_PLAT) | 
 | 		return 0; | 
 |  | 
 | 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); | 
 | 	/* | 
 | 	 * Some Fresco Logic host controllers advertise MSI, but fail to | 
 | 	 * generate interrupts.  Don't even try to enable MSI. | 
 | 	 */ | 
 | 	if (xhci->quirks & XHCI_BROKEN_MSI) | 
 | 		goto legacy_irq; | 
 |  | 
 | 	/* unregister the legacy interrupt */ | 
 | 	if (hcd->irq) | 
 | 		free_irq(hcd->irq, hcd); | 
 | 	hcd->irq = 0; | 
 |  | 
 | 	ret = xhci_setup_msix(xhci); | 
 | 	if (ret) | 
 | 		/* fall back to msi*/ | 
 | 		ret = xhci_setup_msi(xhci); | 
 |  | 
 | 	if (!ret) { | 
 | 		hcd->msi_enabled = 1; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!pdev->irq) { | 
 | 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 |  legacy_irq: | 
 | 	if (!strlen(hcd->irq_descr)) | 
 | 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", | 
 | 			 hcd->driver->description, hcd->self.busnum); | 
 |  | 
 | 	/* fall back to legacy interrupt*/ | 
 | 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, | 
 | 			hcd->irq_descr, hcd); | 
 | 	if (ret) { | 
 | 		xhci_err(xhci, "request interrupt %d failed\n", | 
 | 				pdev->irq); | 
 | 		return ret; | 
 | 	} | 
 | 	hcd->irq = pdev->irq; | 
 | 	return 0; | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static inline int xhci_try_enable_msi(struct usb_hcd *hcd) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) | 
 | { | 
 | } | 
 |  | 
 | static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) | 
 | { | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | static void compliance_mode_recovery(struct timer_list *t) | 
 | { | 
 | 	struct xhci_hcd *xhci; | 
 | 	struct usb_hcd *hcd; | 
 | 	struct xhci_hub *rhub; | 
 | 	u32 temp; | 
 | 	int i; | 
 |  | 
 | 	xhci = from_timer(xhci, t, comp_mode_recovery_timer); | 
 | 	rhub = &xhci->usb3_rhub; | 
 |  | 
 | 	for (i = 0; i < rhub->num_ports; i++) { | 
 | 		temp = readl(rhub->ports[i]->addr); | 
 | 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { | 
 | 			/* | 
 | 			 * Compliance Mode Detected. Letting USB Core | 
 | 			 * handle the Warm Reset | 
 | 			 */ | 
 | 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, | 
 | 					"Compliance mode detected->port %d", | 
 | 					i + 1); | 
 | 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, | 
 | 					"Attempting compliance mode recovery"); | 
 | 			hcd = xhci->shared_hcd; | 
 |  | 
 | 			if (hcd->state == HC_STATE_SUSPENDED) | 
 | 				usb_hcd_resume_root_hub(hcd); | 
 |  | 
 | 			usb_hcd_poll_rh_status(hcd); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) | 
 | 		mod_timer(&xhci->comp_mode_recovery_timer, | 
 | 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); | 
 | } | 
 |  | 
 | /* | 
 |  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver | 
 |  * that causes ports behind that hardware to enter compliance mode sometimes. | 
 |  * The quirk creates a timer that polls every 2 seconds the link state of | 
 |  * each host controller's port and recovers it by issuing a Warm reset | 
 |  * if Compliance mode is detected, otherwise the port will become "dead" (no | 
 |  * device connections or disconnections will be detected anymore). Becasue no | 
 |  * status event is generated when entering compliance mode (per xhci spec), | 
 |  * this quirk is needed on systems that have the failing hardware installed. | 
 |  */ | 
 | static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) | 
 | { | 
 | 	xhci->port_status_u0 = 0; | 
 | 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, | 
 | 		    0); | 
 | 	xhci->comp_mode_recovery_timer.expires = jiffies + | 
 | 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); | 
 |  | 
 | 	add_timer(&xhci->comp_mode_recovery_timer); | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, | 
 | 			"Compliance mode recovery timer initialized"); | 
 | } | 
 |  | 
 | /* | 
 |  * This function identifies the systems that have installed the SN65LVPE502CP | 
 |  * USB3.0 re-driver and that need the Compliance Mode Quirk. | 
 |  * Systems: | 
 |  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 | 
 |  */ | 
 | static bool xhci_compliance_mode_recovery_timer_quirk_check(void) | 
 | { | 
 | 	const char *dmi_product_name, *dmi_sys_vendor; | 
 |  | 
 | 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); | 
 | 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); | 
 | 	if (!dmi_product_name || !dmi_sys_vendor) | 
 | 		return false; | 
 |  | 
 | 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) | 
 | 		return false; | 
 |  | 
 | 	if (strstr(dmi_product_name, "Z420") || | 
 | 			strstr(dmi_product_name, "Z620") || | 
 | 			strstr(dmi_product_name, "Z820") || | 
 | 			strstr(dmi_product_name, "Z1 Workstation")) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) | 
 | { | 
 | 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Initialize memory for HCD and xHC (one-time init). | 
 |  * | 
 |  * Program the PAGESIZE register, initialize the device context array, create | 
 |  * device contexts (?), set up a command ring segment (or two?), create event | 
 |  * ring (one for now). | 
 |  */ | 
 | static int xhci_init(struct usb_hcd *hcd) | 
 | { | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 | 	int retval = 0; | 
 |  | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); | 
 | 	spin_lock_init(&xhci->lock); | 
 | 	if (xhci->hci_version == 0x95 && link_quirk) { | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, | 
 | 				"QUIRK: Not clearing Link TRB chain bits."); | 
 | 		xhci->quirks |= XHCI_LINK_TRB_QUIRK; | 
 | 	} else { | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 				"xHCI doesn't need link TRB QUIRK"); | 
 | 	} | 
 | 	retval = xhci_mem_init(xhci, GFP_KERNEL); | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); | 
 |  | 
 | 	/* Initializing Compliance Mode Recovery Data If Needed */ | 
 | 	if (xhci_compliance_mode_recovery_timer_quirk_check()) { | 
 | 		xhci->quirks |= XHCI_COMP_MODE_QUIRK; | 
 | 		compliance_mode_recovery_timer_init(xhci); | 
 | 	} | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 |  | 
 | static int xhci_run_finished(struct xhci_hcd *xhci) | 
 | { | 
 | 	if (xhci_start(xhci)) { | 
 | 		xhci_halt(xhci); | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	xhci->shared_hcd->state = HC_STATE_RUNNING; | 
 | 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; | 
 |  | 
 | 	if (xhci->quirks & XHCI_NEC_HOST) | 
 | 		xhci_ring_cmd_db(xhci); | 
 |  | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 			"Finished xhci_run for USB3 roothub"); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Start the HC after it was halted. | 
 |  * | 
 |  * This function is called by the USB core when the HC driver is added. | 
 |  * Its opposite is xhci_stop(). | 
 |  * | 
 |  * xhci_init() must be called once before this function can be called. | 
 |  * Reset the HC, enable device slot contexts, program DCBAAP, and | 
 |  * set command ring pointer and event ring pointer. | 
 |  * | 
 |  * Setup MSI-X vectors and enable interrupts. | 
 |  */ | 
 | int xhci_run(struct usb_hcd *hcd) | 
 | { | 
 | 	u32 temp; | 
 | 	u64 temp_64; | 
 | 	int ret; | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 |  | 
 | 	/* Start the xHCI host controller running only after the USB 2.0 roothub | 
 | 	 * is setup. | 
 | 	 */ | 
 |  | 
 | 	hcd->uses_new_polling = 1; | 
 | 	if (!usb_hcd_is_primary_hcd(hcd)) | 
 | 		return xhci_run_finished(xhci); | 
 |  | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); | 
 |  | 
 | 	ret = xhci_try_enable_msi(hcd); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); | 
 | 	temp_64 &= ~ERST_PTR_MASK; | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64); | 
 |  | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 			"// Set the interrupt modulation register"); | 
 | 	temp = readl(&xhci->ir_set->irq_control); | 
 | 	temp &= ~ER_IRQ_INTERVAL_MASK; | 
 | 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; | 
 | 	writel(temp, &xhci->ir_set->irq_control); | 
 |  | 
 | 	/* Set the HCD state before we enable the irqs */ | 
 | 	temp = readl(&xhci->op_regs->command); | 
 | 	temp |= (CMD_EIE); | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 			"// Enable interrupts, cmd = 0x%x.", temp); | 
 | 	writel(temp, &xhci->op_regs->command); | 
 |  | 
 | 	temp = readl(&xhci->ir_set->irq_pending); | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending", | 
 | 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); | 
 | 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); | 
 |  | 
 | 	if (xhci->quirks & XHCI_NEC_HOST) { | 
 | 		struct xhci_command *command; | 
 |  | 
 | 		command = xhci_alloc_command(xhci, false, GFP_KERNEL); | 
 | 		if (!command) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, | 
 | 				TRB_TYPE(TRB_NEC_GET_FW)); | 
 | 		if (ret) | 
 | 			xhci_free_command(xhci, command); | 
 | 	} | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 			"Finished xhci_run for USB2 roothub"); | 
 |  | 
 | 	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags); | 
 |  | 
 | 	xhci_create_dbc_dev(xhci); | 
 |  | 
 | 	xhci_debugfs_init(xhci); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(xhci_run); | 
 |  | 
 | /* | 
 |  * Stop xHCI driver. | 
 |  * | 
 |  * This function is called by the USB core when the HC driver is removed. | 
 |  * Its opposite is xhci_run(). | 
 |  * | 
 |  * Disable device contexts, disable IRQs, and quiesce the HC. | 
 |  * Reset the HC, finish any completed transactions, and cleanup memory. | 
 |  */ | 
 | static void xhci_stop(struct usb_hcd *hcd) | 
 | { | 
 | 	u32 temp; | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 |  | 
 | 	mutex_lock(&xhci->mutex); | 
 |  | 
 | 	/* Only halt host and free memory after both hcds are removed */ | 
 | 	if (!usb_hcd_is_primary_hcd(hcd)) { | 
 | 		mutex_unlock(&xhci->mutex); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	xhci_remove_dbc_dev(xhci); | 
 |  | 
 | 	spin_lock_irq(&xhci->lock); | 
 | 	xhci->xhc_state |= XHCI_STATE_HALTED; | 
 | 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; | 
 | 	xhci_halt(xhci); | 
 | 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC); | 
 | 	spin_unlock_irq(&xhci->lock); | 
 |  | 
 | 	xhci_cleanup_msix(xhci); | 
 |  | 
 | 	/* Deleting Compliance Mode Recovery Timer */ | 
 | 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && | 
 | 			(!(xhci_all_ports_seen_u0(xhci)))) { | 
 | 		del_timer_sync(&xhci->comp_mode_recovery_timer); | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, | 
 | 				"%s: compliance mode recovery timer deleted", | 
 | 				__func__); | 
 | 	} | 
 |  | 
 | 	if (xhci->quirks & XHCI_AMD_PLL_FIX) | 
 | 		usb_amd_dev_put(); | 
 |  | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 			"// Disabling event ring interrupts"); | 
 | 	temp = readl(&xhci->op_regs->status); | 
 | 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); | 
 | 	temp = readl(&xhci->ir_set->irq_pending); | 
 | 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); | 
 |  | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); | 
 | 	xhci_mem_cleanup(xhci); | 
 | 	xhci_debugfs_exit(xhci); | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 			"xhci_stop completed - status = %x", | 
 | 			readl(&xhci->op_regs->status)); | 
 | 	mutex_unlock(&xhci->mutex); | 
 | } | 
 |  | 
 | /* | 
 |  * Shutdown HC (not bus-specific) | 
 |  * | 
 |  * This is called when the machine is rebooting or halting.  We assume that the | 
 |  * machine will be powered off, and the HC's internal state will be reset. | 
 |  * Don't bother to free memory. | 
 |  * | 
 |  * This will only ever be called with the main usb_hcd (the USB3 roothub). | 
 |  */ | 
 | void xhci_shutdown(struct usb_hcd *hcd) | 
 | { | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 |  | 
 | 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT) | 
 | 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); | 
 |  | 
 | 	/* Don't poll the roothubs after shutdown. */ | 
 | 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", | 
 | 			__func__, hcd->self.busnum); | 
 | 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); | 
 | 	del_timer_sync(&hcd->rh_timer); | 
 |  | 
 | 	if (xhci->shared_hcd) { | 
 | 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); | 
 | 		del_timer_sync(&xhci->shared_hcd->rh_timer); | 
 | 	} | 
 |  | 
 | 	spin_lock_irq(&xhci->lock); | 
 | 	xhci_halt(xhci); | 
 |  | 
 | 	/* | 
 | 	 * Workaround for spurious wakeps at shutdown with HSW, and for boot | 
 | 	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown | 
 | 	 */ | 
 | 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP || | 
 | 	    xhci->quirks & XHCI_RESET_TO_DEFAULT) | 
 | 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC); | 
 |  | 
 | 	spin_unlock_irq(&xhci->lock); | 
 |  | 
 | 	xhci_cleanup_msix(xhci); | 
 |  | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 			"xhci_shutdown completed - status = %x", | 
 | 			readl(&xhci->op_regs->status)); | 
 | } | 
 | EXPORT_SYMBOL_GPL(xhci_shutdown); | 
 |  | 
 | #ifdef CONFIG_PM | 
 | static void xhci_save_registers(struct xhci_hcd *xhci) | 
 | { | 
 | 	xhci->s3.command = readl(&xhci->op_regs->command); | 
 | 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); | 
 | 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); | 
 | 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); | 
 | 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); | 
 | 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); | 
 | 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); | 
 | 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); | 
 | 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); | 
 | } | 
 |  | 
 | static void xhci_restore_registers(struct xhci_hcd *xhci) | 
 | { | 
 | 	writel(xhci->s3.command, &xhci->op_regs->command); | 
 | 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); | 
 | 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); | 
 | 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); | 
 | 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); | 
 | 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); | 
 | 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); | 
 | 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); | 
 | 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); | 
 | } | 
 |  | 
 | static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) | 
 | { | 
 | 	u64	val_64; | 
 |  | 
 | 	/* step 2: initialize command ring buffer */ | 
 | 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); | 
 | 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | | 
 | 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, | 
 | 				      xhci->cmd_ring->dequeue) & | 
 | 		 (u64) ~CMD_RING_RSVD_BITS) | | 
 | 		xhci->cmd_ring->cycle_state; | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, | 
 | 			"// Setting command ring address to 0x%llx", | 
 | 			(long unsigned long) val_64); | 
 | 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); | 
 | } | 
 |  | 
 | /* | 
 |  * The whole command ring must be cleared to zero when we suspend the host. | 
 |  * | 
 |  * The host doesn't save the command ring pointer in the suspend well, so we | 
 |  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte | 
 |  * aligned, because of the reserved bits in the command ring dequeue pointer | 
 |  * register.  Therefore, we can't just set the dequeue pointer back in the | 
 |  * middle of the ring (TRBs are 16-byte aligned). | 
 |  */ | 
 | static void xhci_clear_command_ring(struct xhci_hcd *xhci) | 
 | { | 
 | 	struct xhci_ring *ring; | 
 | 	struct xhci_segment *seg; | 
 |  | 
 | 	ring = xhci->cmd_ring; | 
 | 	seg = ring->deq_seg; | 
 | 	do { | 
 | 		memset(seg->trbs, 0, | 
 | 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); | 
 | 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= | 
 | 			cpu_to_le32(~TRB_CYCLE); | 
 | 		seg = seg->next; | 
 | 	} while (seg != ring->deq_seg); | 
 |  | 
 | 	/* Reset the software enqueue and dequeue pointers */ | 
 | 	ring->deq_seg = ring->first_seg; | 
 | 	ring->dequeue = ring->first_seg->trbs; | 
 | 	ring->enq_seg = ring->deq_seg; | 
 | 	ring->enqueue = ring->dequeue; | 
 |  | 
 | 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; | 
 | 	/* | 
 | 	 * Ring is now zeroed, so the HW should look for change of ownership | 
 | 	 * when the cycle bit is set to 1. | 
 | 	 */ | 
 | 	ring->cycle_state = 1; | 
 |  | 
 | 	/* | 
 | 	 * Reset the hardware dequeue pointer. | 
 | 	 * Yes, this will need to be re-written after resume, but we're paranoid | 
 | 	 * and want to make sure the hardware doesn't access bogus memory | 
 | 	 * because, say, the BIOS or an SMI started the host without changing | 
 | 	 * the command ring pointers. | 
 | 	 */ | 
 | 	xhci_set_cmd_ring_deq(xhci); | 
 | } | 
 |  | 
 | /* | 
 |  * Disable port wake bits if do_wakeup is not set. | 
 |  * | 
 |  * Also clear a possible internal port wake state left hanging for ports that | 
 |  * detected termination but never successfully enumerated (trained to 0U). | 
 |  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done | 
 |  * at enumeration clears this wake, force one here as well for unconnected ports | 
 |  */ | 
 |  | 
 | static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, | 
 | 				       struct xhci_hub *rhub, | 
 | 				       bool do_wakeup) | 
 | { | 
 | 	unsigned long flags; | 
 | 	u32 t1, t2, portsc; | 
 | 	int i; | 
 |  | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 |  | 
 | 	for (i = 0; i < rhub->num_ports; i++) { | 
 | 		portsc = readl(rhub->ports[i]->addr); | 
 | 		t1 = xhci_port_state_to_neutral(portsc); | 
 | 		t2 = t1; | 
 |  | 
 | 		/* clear wake bits if do_wake is not set */ | 
 | 		if (!do_wakeup) | 
 | 			t2 &= ~PORT_WAKE_BITS; | 
 |  | 
 | 		/* Don't touch csc bit if connected or connect change is set */ | 
 | 		if (!(portsc & (PORT_CSC | PORT_CONNECT))) | 
 | 			t2 |= PORT_CSC; | 
 |  | 
 | 		if (t1 != t2) { | 
 | 			writel(t2, rhub->ports[i]->addr); | 
 | 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", | 
 | 				 rhub->hcd->self.busnum, i + 1, portsc, t2); | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 | } | 
 |  | 
 | static bool xhci_pending_portevent(struct xhci_hcd *xhci) | 
 | { | 
 | 	struct xhci_port	**ports; | 
 | 	int			port_index; | 
 | 	u32			status; | 
 | 	u32			portsc; | 
 |  | 
 | 	status = readl(&xhci->op_regs->status); | 
 | 	if (status & STS_EINT) | 
 | 		return true; | 
 | 	/* | 
 | 	 * Checking STS_EINT is not enough as there is a lag between a change | 
 | 	 * bit being set and the Port Status Change Event that it generated | 
 | 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. | 
 | 	 */ | 
 |  | 
 | 	port_index = xhci->usb2_rhub.num_ports; | 
 | 	ports = xhci->usb2_rhub.ports; | 
 | 	while (port_index--) { | 
 | 		portsc = readl(ports[port_index]->addr); | 
 | 		if (portsc & PORT_CHANGE_MASK || | 
 | 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME) | 
 | 			return true; | 
 | 	} | 
 | 	port_index = xhci->usb3_rhub.num_ports; | 
 | 	ports = xhci->usb3_rhub.ports; | 
 | 	while (port_index--) { | 
 | 		portsc = readl(ports[port_index]->addr); | 
 | 		if (portsc & PORT_CHANGE_MASK || | 
 | 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME) | 
 | 			return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Stop HC (not bus-specific) | 
 |  * | 
 |  * This is called when the machine transition into S3/S4 mode. | 
 |  * | 
 |  */ | 
 | int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) | 
 | { | 
 | 	int			rc = 0; | 
 | 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2; | 
 | 	struct usb_hcd		*hcd = xhci_to_hcd(xhci); | 
 | 	u32			command; | 
 | 	u32			res; | 
 |  | 
 | 	if (!hcd->state) | 
 | 		return 0; | 
 |  | 
 | 	if (hcd->state != HC_STATE_SUSPENDED || | 
 | 			xhci->shared_hcd->state != HC_STATE_SUSPENDED) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Clear root port wake on bits if wakeup not allowed. */ | 
 | 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); | 
 | 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); | 
 |  | 
 | 	if (!HCD_HW_ACCESSIBLE(hcd)) | 
 | 		return 0; | 
 |  | 
 | 	xhci_dbc_suspend(xhci); | 
 |  | 
 | 	/* Don't poll the roothubs on bus suspend. */ | 
 | 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", | 
 | 		 __func__, hcd->self.busnum); | 
 | 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); | 
 | 	del_timer_sync(&hcd->rh_timer); | 
 | 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); | 
 | 	del_timer_sync(&xhci->shared_hcd->rh_timer); | 
 |  | 
 | 	if (xhci->quirks & XHCI_SUSPEND_DELAY) | 
 | 		usleep_range(1000, 1500); | 
 |  | 
 | 	spin_lock_irq(&xhci->lock); | 
 | 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); | 
 | 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); | 
 | 	/* step 1: stop endpoint */ | 
 | 	/* skipped assuming that port suspend has done */ | 
 |  | 
 | 	/* step 2: clear Run/Stop bit */ | 
 | 	command = readl(&xhci->op_regs->command); | 
 | 	command &= ~CMD_RUN; | 
 | 	writel(command, &xhci->op_regs->command); | 
 |  | 
 | 	/* Some chips from Fresco Logic need an extraordinary delay */ | 
 | 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; | 
 |  | 
 | 	if (xhci_handshake(&xhci->op_regs->status, | 
 | 		      STS_HALT, STS_HALT, delay)) { | 
 | 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); | 
 | 		spin_unlock_irq(&xhci->lock); | 
 | 		return -ETIMEDOUT; | 
 | 	} | 
 | 	xhci_clear_command_ring(xhci); | 
 |  | 
 | 	/* step 3: save registers */ | 
 | 	xhci_save_registers(xhci); | 
 |  | 
 | 	/* step 4: set CSS flag */ | 
 | 	command = readl(&xhci->op_regs->command); | 
 | 	command |= CMD_CSS; | 
 | 	writel(command, &xhci->op_regs->command); | 
 | 	xhci->broken_suspend = 0; | 
 | 	if (xhci_handshake(&xhci->op_regs->status, | 
 | 				STS_SAVE, 0, 20 * 1000)) { | 
 | 	/* | 
 | 	 * AMD SNPS xHC 3.0 occasionally does not clear the | 
 | 	 * SSS bit of USBSTS and when driver tries to poll | 
 | 	 * to see if the xHC clears BIT(8) which never happens | 
 | 	 * and driver assumes that controller is not responding | 
 | 	 * and times out. To workaround this, its good to check | 
 | 	 * if SRE and HCE bits are not set (as per xhci | 
 | 	 * Section 5.4.2) and bypass the timeout. | 
 | 	 */ | 
 | 		res = readl(&xhci->op_regs->status); | 
 | 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && | 
 | 		    (((res & STS_SRE) == 0) && | 
 | 				((res & STS_HCE) == 0))) { | 
 | 			xhci->broken_suspend = 1; | 
 | 		} else { | 
 | 			xhci_warn(xhci, "WARN: xHC save state timeout\n"); | 
 | 			spin_unlock_irq(&xhci->lock); | 
 | 			return -ETIMEDOUT; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irq(&xhci->lock); | 
 |  | 
 | 	/* | 
 | 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host | 
 | 	 * is about to be suspended. | 
 | 	 */ | 
 | 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && | 
 | 			(!(xhci_all_ports_seen_u0(xhci)))) { | 
 | 		del_timer_sync(&xhci->comp_mode_recovery_timer); | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, | 
 | 				"%s: compliance mode recovery timer deleted", | 
 | 				__func__); | 
 | 	} | 
 |  | 
 | 	/* step 5: remove core well power */ | 
 | 	/* synchronize irq when using MSI-X */ | 
 | 	xhci_msix_sync_irqs(xhci); | 
 |  | 
 | 	return rc; | 
 | } | 
 | EXPORT_SYMBOL_GPL(xhci_suspend); | 
 |  | 
 | /* | 
 |  * start xHC (not bus-specific) | 
 |  * | 
 |  * This is called when the machine transition from S3/S4 mode. | 
 |  * | 
 |  */ | 
 | int xhci_resume(struct xhci_hcd *xhci, bool hibernated) | 
 | { | 
 | 	u32			command, temp = 0; | 
 | 	struct usb_hcd		*hcd = xhci_to_hcd(xhci); | 
 | 	struct usb_hcd		*secondary_hcd; | 
 | 	int			retval = 0; | 
 | 	bool			comp_timer_running = false; | 
 | 	bool			pending_portevent = false; | 
 | 	bool			reinit_xhc = false; | 
 |  | 
 | 	if (!hcd->state) | 
 | 		return 0; | 
 |  | 
 | 	/* Wait a bit if either of the roothubs need to settle from the | 
 | 	 * transition into bus suspend. | 
 | 	 */ | 
 |  | 
 | 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || | 
 | 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) | 
 | 		msleep(100); | 
 |  | 
 | 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); | 
 | 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); | 
 |  | 
 | 	spin_lock_irq(&xhci->lock); | 
 |  | 
 | 	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) | 
 | 		reinit_xhc = true; | 
 |  | 
 | 	if (!reinit_xhc) { | 
 | 		/* | 
 | 		 * Some controllers might lose power during suspend, so wait | 
 | 		 * for controller not ready bit to clear, just as in xHC init. | 
 | 		 */ | 
 | 		retval = xhci_handshake(&xhci->op_regs->status, | 
 | 					STS_CNR, 0, 10 * 1000 * 1000); | 
 | 		if (retval) { | 
 | 			xhci_warn(xhci, "Controller not ready at resume %d\n", | 
 | 				  retval); | 
 | 			spin_unlock_irq(&xhci->lock); | 
 | 			return retval; | 
 | 		} | 
 | 		/* step 1: restore register */ | 
 | 		xhci_restore_registers(xhci); | 
 | 		/* step 2: initialize command ring buffer */ | 
 | 		xhci_set_cmd_ring_deq(xhci); | 
 | 		/* step 3: restore state and start state*/ | 
 | 		/* step 3: set CRS flag */ | 
 | 		command = readl(&xhci->op_regs->command); | 
 | 		command |= CMD_CRS; | 
 | 		writel(command, &xhci->op_regs->command); | 
 | 		/* | 
 | 		 * Some controllers take up to 55+ ms to complete the controller | 
 | 		 * restore so setting the timeout to 100ms. Xhci specification | 
 | 		 * doesn't mention any timeout value. | 
 | 		 */ | 
 | 		if (xhci_handshake(&xhci->op_regs->status, | 
 | 			      STS_RESTORE, 0, 100 * 1000)) { | 
 | 			xhci_warn(xhci, "WARN: xHC restore state timeout\n"); | 
 | 			spin_unlock_irq(&xhci->lock); | 
 | 			return -ETIMEDOUT; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	temp = readl(&xhci->op_regs->status); | 
 |  | 
 | 	/* re-initialize the HC on Restore Error, or Host Controller Error */ | 
 | 	if (temp & (STS_SRE | STS_HCE)) { | 
 | 		reinit_xhc = true; | 
 | 		if (!xhci->broken_suspend) | 
 | 			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); | 
 | 	} | 
 |  | 
 | 	if (reinit_xhc) { | 
 | 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && | 
 | 				!(xhci_all_ports_seen_u0(xhci))) { | 
 | 			del_timer_sync(&xhci->comp_mode_recovery_timer); | 
 | 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, | 
 | 				"Compliance Mode Recovery Timer deleted!"); | 
 | 		} | 
 |  | 
 | 		/* Let the USB core know _both_ roothubs lost power. */ | 
 | 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); | 
 | 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); | 
 |  | 
 | 		xhci_dbg(xhci, "Stop HCD\n"); | 
 | 		xhci_halt(xhci); | 
 | 		xhci_zero_64b_regs(xhci); | 
 | 		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); | 
 | 		spin_unlock_irq(&xhci->lock); | 
 | 		if (retval) | 
 | 			return retval; | 
 | 		xhci_cleanup_msix(xhci); | 
 |  | 
 | 		xhci_dbg(xhci, "// Disabling event ring interrupts\n"); | 
 | 		temp = readl(&xhci->op_regs->status); | 
 | 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); | 
 | 		temp = readl(&xhci->ir_set->irq_pending); | 
 | 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); | 
 |  | 
 | 		xhci_dbg(xhci, "cleaning up memory\n"); | 
 | 		xhci_mem_cleanup(xhci); | 
 | 		xhci_debugfs_exit(xhci); | 
 | 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n", | 
 | 			    readl(&xhci->op_regs->status)); | 
 |  | 
 | 		/* USB core calls the PCI reinit and start functions twice: | 
 | 		 * first with the primary HCD, and then with the secondary HCD. | 
 | 		 * If we don't do the same, the host will never be started. | 
 | 		 */ | 
 | 		if (!usb_hcd_is_primary_hcd(hcd)) | 
 | 			secondary_hcd = hcd; | 
 | 		else | 
 | 			secondary_hcd = xhci->shared_hcd; | 
 |  | 
 | 		xhci_dbg(xhci, "Initialize the xhci_hcd\n"); | 
 | 		retval = xhci_init(hcd->primary_hcd); | 
 | 		if (retval) | 
 | 			return retval; | 
 | 		comp_timer_running = true; | 
 |  | 
 | 		xhci_dbg(xhci, "Start the primary HCD\n"); | 
 | 		retval = xhci_run(hcd->primary_hcd); | 
 | 		if (!retval) { | 
 | 			xhci_dbg(xhci, "Start the secondary HCD\n"); | 
 | 			retval = xhci_run(secondary_hcd); | 
 | 		} | 
 | 		hcd->state = HC_STATE_SUSPENDED; | 
 | 		xhci->shared_hcd->state = HC_STATE_SUSPENDED; | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	/* step 4: set Run/Stop bit */ | 
 | 	command = readl(&xhci->op_regs->command); | 
 | 	command |= CMD_RUN; | 
 | 	writel(command, &xhci->op_regs->command); | 
 | 	xhci_handshake(&xhci->op_regs->status, STS_HALT, | 
 | 		  0, 250 * 1000); | 
 |  | 
 | 	/* step 5: walk topology and initialize portsc, | 
 | 	 * portpmsc and portli | 
 | 	 */ | 
 | 	/* this is done in bus_resume */ | 
 |  | 
 | 	/* step 6: restart each of the previously | 
 | 	 * Running endpoints by ringing their doorbells | 
 | 	 */ | 
 |  | 
 | 	spin_unlock_irq(&xhci->lock); | 
 |  | 
 | 	xhci_dbc_resume(xhci); | 
 |  | 
 |  done: | 
 | 	if (retval == 0) { | 
 | 		/* | 
 | 		 * Resume roothubs only if there are pending events. | 
 | 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if | 
 | 		 * the first wake signalling failed, give it that chance. | 
 | 		 */ | 
 | 		pending_portevent = xhci_pending_portevent(xhci); | 
 | 		if (!pending_portevent) { | 
 | 			msleep(120); | 
 | 			pending_portevent = xhci_pending_portevent(xhci); | 
 | 		} | 
 |  | 
 | 		if (pending_portevent) { | 
 | 			usb_hcd_resume_root_hub(xhci->shared_hcd); | 
 | 			usb_hcd_resume_root_hub(hcd); | 
 | 		} | 
 | 	} | 
 | 	/* | 
 | 	 * If system is subject to the Quirk, Compliance Mode Timer needs to | 
 | 	 * be re-initialized Always after a system resume. Ports are subject | 
 | 	 * to suffer the Compliance Mode issue again. It doesn't matter if | 
 | 	 * ports have entered previously to U0 before system's suspension. | 
 | 	 */ | 
 | 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) | 
 | 		compliance_mode_recovery_timer_init(xhci); | 
 |  | 
 | 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) | 
 | 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); | 
 |  | 
 | 	/* Re-enable port polling. */ | 
 | 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n", | 
 | 		 __func__, hcd->self.busnum); | 
 | 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); | 
 | 	usb_hcd_poll_rh_status(xhci->shared_hcd); | 
 | 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags); | 
 | 	usb_hcd_poll_rh_status(hcd); | 
 |  | 
 | 	return retval; | 
 | } | 
 | EXPORT_SYMBOL_GPL(xhci_resume); | 
 | #endif	/* CONFIG_PM */ | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) | 
 | { | 
 | 	void *temp; | 
 | 	int ret = 0; | 
 | 	unsigned int buf_len; | 
 | 	enum dma_data_direction dir; | 
 |  | 
 | 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; | 
 | 	buf_len = urb->transfer_buffer_length; | 
 |  | 
 | 	temp = kzalloc_node(buf_len, GFP_ATOMIC, | 
 | 			    dev_to_node(hcd->self.sysdev)); | 
 |  | 
 | 	if (usb_urb_dir_out(urb)) | 
 | 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs, | 
 | 				   temp, buf_len, 0); | 
 |  | 
 | 	urb->transfer_buffer = temp; | 
 | 	urb->transfer_dma = dma_map_single(hcd->self.sysdev, | 
 | 					   urb->transfer_buffer, | 
 | 					   urb->transfer_buffer_length, | 
 | 					   dir); | 
 |  | 
 | 	if (dma_mapping_error(hcd->self.sysdev, | 
 | 			      urb->transfer_dma)) { | 
 | 		ret = -EAGAIN; | 
 | 		kfree(temp); | 
 | 	} else { | 
 | 		urb->transfer_flags |= URB_DMA_MAP_SINGLE; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, | 
 | 					  struct urb *urb) | 
 | { | 
 | 	bool ret = false; | 
 | 	unsigned int i; | 
 | 	unsigned int len = 0; | 
 | 	unsigned int trb_size; | 
 | 	unsigned int max_pkt; | 
 | 	struct scatterlist *sg; | 
 | 	struct scatterlist *tail_sg; | 
 |  | 
 | 	tail_sg = urb->sg; | 
 | 	max_pkt = usb_endpoint_maxp(&urb->ep->desc); | 
 |  | 
 | 	if (!urb->num_sgs) | 
 | 		return ret; | 
 |  | 
 | 	if (urb->dev->speed >= USB_SPEED_SUPER) | 
 | 		trb_size = TRB_CACHE_SIZE_SS; | 
 | 	else | 
 | 		trb_size = TRB_CACHE_SIZE_HS; | 
 |  | 
 | 	if (urb->transfer_buffer_length != 0 && | 
 | 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { | 
 | 		for_each_sg(urb->sg, sg, urb->num_sgs, i) { | 
 | 			len = len + sg->length; | 
 | 			if (i > trb_size - 2) { | 
 | 				len = len - tail_sg->length; | 
 | 				if (len < max_pkt) { | 
 | 					ret = true; | 
 | 					break; | 
 | 				} | 
 |  | 
 | 				tail_sg = sg_next(tail_sg); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) | 
 | { | 
 | 	unsigned int len; | 
 | 	unsigned int buf_len; | 
 | 	enum dma_data_direction dir; | 
 |  | 
 | 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; | 
 |  | 
 | 	buf_len = urb->transfer_buffer_length; | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_HAS_DMA) && | 
 | 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE)) | 
 | 		dma_unmap_single(hcd->self.sysdev, | 
 | 				 urb->transfer_dma, | 
 | 				 urb->transfer_buffer_length, | 
 | 				 dir); | 
 |  | 
 | 	if (usb_urb_dir_in(urb)) { | 
 | 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, | 
 | 					   urb->transfer_buffer, | 
 | 					   buf_len, | 
 | 					   0); | 
 | 		if (len != buf_len) { | 
 | 			xhci_dbg(hcd_to_xhci(hcd), | 
 | 				 "Copy from tmp buf to urb sg list failed\n"); | 
 | 			urb->actual_length = len; | 
 | 		} | 
 | 	} | 
 | 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; | 
 | 	kfree(urb->transfer_buffer); | 
 | 	urb->transfer_buffer = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), | 
 |  * we'll copy the actual data into the TRB address register. This is limited to | 
 |  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize | 
 |  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. | 
 |  */ | 
 | static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, | 
 | 				gfp_t mem_flags) | 
 | { | 
 | 	struct xhci_hcd *xhci; | 
 |  | 
 | 	xhci = hcd_to_xhci(hcd); | 
 |  | 
 | 	if (xhci_urb_suitable_for_idt(urb)) | 
 | 		return 0; | 
 |  | 
 | 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { | 
 | 		if (xhci_urb_temp_buffer_required(hcd, urb)) | 
 | 			return xhci_map_temp_buffer(hcd, urb); | 
 | 	} | 
 | 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); | 
 | } | 
 |  | 
 | static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) | 
 | { | 
 | 	struct xhci_hcd *xhci; | 
 | 	bool unmap_temp_buf = false; | 
 |  | 
 | 	xhci = hcd_to_xhci(hcd); | 
 |  | 
 | 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) | 
 | 		unmap_temp_buf = true; | 
 |  | 
 | 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) | 
 | 		xhci_unmap_temp_buf(hcd, urb); | 
 | 	else | 
 | 		usb_hcd_unmap_urb_for_dma(hcd, urb); | 
 | } | 
 |  | 
 | /** | 
 |  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and | 
 |  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return | 
 |  * value to right shift 1 for the bitmask. | 
 |  * | 
 |  * Index  = (epnum * 2) + direction - 1, | 
 |  * where direction = 0 for OUT, 1 for IN. | 
 |  * For control endpoints, the IN index is used (OUT index is unused), so | 
 |  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) | 
 |  */ | 
 | unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) | 
 | { | 
 | 	unsigned int index; | 
 | 	if (usb_endpoint_xfer_control(desc)) | 
 | 		index = (unsigned int) (usb_endpoint_num(desc)*2); | 
 | 	else | 
 | 		index = (unsigned int) (usb_endpoint_num(desc)*2) + | 
 | 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1; | 
 | 	return index; | 
 | } | 
 | EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); | 
 |  | 
 | /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint | 
 |  * address from the XHCI endpoint index. | 
 |  */ | 
 | unsigned int xhci_get_endpoint_address(unsigned int ep_index) | 
 | { | 
 | 	unsigned int number = DIV_ROUND_UP(ep_index, 2); | 
 | 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; | 
 | 	return direction | number; | 
 | } | 
 |  | 
 | /* Find the flag for this endpoint (for use in the control context).  Use the | 
 |  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is | 
 |  * bit 1, etc. | 
 |  */ | 
 | static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) | 
 | { | 
 | 	return 1 << (xhci_get_endpoint_index(desc) + 1); | 
 | } | 
 |  | 
 | /* Compute the last valid endpoint context index.  Basically, this is the | 
 |  * endpoint index plus one.  For slot contexts with more than valid endpoint, | 
 |  * we find the most significant bit set in the added contexts flags. | 
 |  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 | 
 |  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. | 
 |  */ | 
 | unsigned int xhci_last_valid_endpoint(u32 added_ctxs) | 
 | { | 
 | 	return fls(added_ctxs) - 1; | 
 | } | 
 |  | 
 | /* Returns 1 if the arguments are OK; | 
 |  * returns 0 this is a root hub; returns -EINVAL for NULL pointers. | 
 |  */ | 
 | static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, | 
 | 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, | 
 | 		const char *func) { | 
 | 	struct xhci_hcd	*xhci; | 
 | 	struct xhci_virt_device	*virt_dev; | 
 |  | 
 | 	if (!hcd || (check_ep && !ep) || !udev) { | 
 | 		pr_debug("xHCI %s called with invalid args\n", func); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if (!udev->parent) { | 
 | 		pr_debug("xHCI %s called for root hub\n", func); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	xhci = hcd_to_xhci(hcd); | 
 | 	if (check_virt_dev) { | 
 | 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) { | 
 | 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", | 
 | 					func); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		virt_dev = xhci->devs[udev->slot_id]; | 
 | 		if (virt_dev->udev != udev) { | 
 | 			xhci_dbg(xhci, "xHCI %s called with udev and " | 
 | 					  "virt_dev does not match\n", func); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (xhci->xhc_state & XHCI_STATE_HALTED) | 
 | 		return -ENODEV; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int xhci_configure_endpoint(struct xhci_hcd *xhci, | 
 | 		struct usb_device *udev, struct xhci_command *command, | 
 | 		bool ctx_change, bool must_succeed); | 
 |  | 
 | /* | 
 |  * Full speed devices may have a max packet size greater than 8 bytes, but the | 
 |  * USB core doesn't know that until it reads the first 8 bytes of the | 
 |  * descriptor.  If the usb_device's max packet size changes after that point, | 
 |  * we need to issue an evaluate context command and wait on it. | 
 |  */ | 
 | static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, | 
 | 		unsigned int ep_index, struct urb *urb, gfp_t mem_flags) | 
 | { | 
 | 	struct xhci_container_ctx *out_ctx; | 
 | 	struct xhci_input_control_ctx *ctrl_ctx; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	struct xhci_command *command; | 
 | 	int max_packet_size; | 
 | 	int hw_max_packet_size; | 
 | 	int ret = 0; | 
 |  | 
 | 	out_ctx = xhci->devs[slot_id]->out_ctx; | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); | 
 | 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); | 
 | 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); | 
 | 	if (hw_max_packet_size != max_packet_size) { | 
 | 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change, | 
 | 				"Max Packet Size for ep 0 changed."); | 
 | 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change, | 
 | 				"Max packet size in usb_device = %d", | 
 | 				max_packet_size); | 
 | 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change, | 
 | 				"Max packet size in xHCI HW = %d", | 
 | 				hw_max_packet_size); | 
 | 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change, | 
 | 				"Issuing evaluate context command."); | 
 |  | 
 | 		/* Set up the input context flags for the command */ | 
 | 		/* FIXME: This won't work if a non-default control endpoint | 
 | 		 * changes max packet sizes. | 
 | 		 */ | 
 |  | 
 | 		command = xhci_alloc_command(xhci, true, mem_flags); | 
 | 		if (!command) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		command->in_ctx = xhci->devs[slot_id]->in_ctx; | 
 | 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); | 
 | 		if (!ctrl_ctx) { | 
 | 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n", | 
 | 					__func__); | 
 | 			ret = -ENOMEM; | 
 | 			goto command_cleanup; | 
 | 		} | 
 | 		/* Set up the modified control endpoint 0 */ | 
 | 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, | 
 | 				xhci->devs[slot_id]->out_ctx, ep_index); | 
 |  | 
 | 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); | 
 | 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ | 
 | 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); | 
 | 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); | 
 |  | 
 | 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); | 
 | 		ctrl_ctx->drop_flags = 0; | 
 |  | 
 | 		ret = xhci_configure_endpoint(xhci, urb->dev, command, | 
 | 				true, false); | 
 |  | 
 | 		/* Clean up the input context for later use by bandwidth | 
 | 		 * functions. | 
 | 		 */ | 
 | 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); | 
 | command_cleanup: | 
 | 		kfree(command->completion); | 
 | 		kfree(command); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * non-error returns are a promise to giveback() the urb later | 
 |  * we drop ownership so next owner (or urb unlink) can get it | 
 |  */ | 
 | static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) | 
 | { | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 | 	unsigned long flags; | 
 | 	int ret = 0; | 
 | 	unsigned int slot_id, ep_index; | 
 | 	unsigned int *ep_state; | 
 | 	struct urb_priv	*urb_priv; | 
 | 	int num_tds; | 
 |  | 
 | 	if (!urb) | 
 | 		return -EINVAL; | 
 | 	ret = xhci_check_args(hcd, urb->dev, urb->ep, | 
 | 					true, true, __func__); | 
 | 	if (ret <= 0) | 
 | 		return ret ? ret : -EINVAL; | 
 |  | 
 | 	slot_id = urb->dev->slot_id; | 
 | 	ep_index = xhci_get_endpoint_index(&urb->ep->desc); | 
 | 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; | 
 |  | 
 | 	if (!HCD_HW_ACCESSIBLE(hcd)) | 
 | 		return -ESHUTDOWN; | 
 |  | 
 | 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { | 
 | 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	if (usb_endpoint_xfer_isoc(&urb->ep->desc)) | 
 | 		num_tds = urb->number_of_packets; | 
 | 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && | 
 | 	    urb->transfer_buffer_length > 0 && | 
 | 	    urb->transfer_flags & URB_ZERO_PACKET && | 
 | 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) | 
 | 		num_tds = 2; | 
 | 	else | 
 | 		num_tds = 1; | 
 |  | 
 | 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); | 
 | 	if (!urb_priv) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	urb_priv->num_tds = num_tds; | 
 | 	urb_priv->num_tds_done = 0; | 
 | 	urb->hcpriv = urb_priv; | 
 |  | 
 | 	trace_xhci_urb_enqueue(urb); | 
 |  | 
 | 	if (usb_endpoint_xfer_control(&urb->ep->desc)) { | 
 | 		/* Check to see if the max packet size for the default control | 
 | 		 * endpoint changed during FS device enumeration | 
 | 		 */ | 
 | 		if (urb->dev->speed == USB_SPEED_FULL) { | 
 | 			ret = xhci_check_maxpacket(xhci, slot_id, | 
 | 					ep_index, urb, mem_flags); | 
 | 			if (ret < 0) { | 
 | 				xhci_urb_free_priv(urb_priv); | 
 | 				urb->hcpriv = NULL; | 
 | 				return ret; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 |  | 
 | 	if (xhci->xhc_state & XHCI_STATE_DYING) { | 
 | 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", | 
 | 			 urb->ep->desc.bEndpointAddress, urb); | 
 | 		ret = -ESHUTDOWN; | 
 | 		goto free_priv; | 
 | 	} | 
 | 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { | 
 | 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", | 
 | 			  *ep_state); | 
 | 		ret = -EINVAL; | 
 | 		goto free_priv; | 
 | 	} | 
 | 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { | 
 | 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); | 
 | 		ret = -EINVAL; | 
 | 		goto free_priv; | 
 | 	} | 
 |  | 
 | 	switch (usb_endpoint_type(&urb->ep->desc)) { | 
 |  | 
 | 	case USB_ENDPOINT_XFER_CONTROL: | 
 | 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, | 
 | 					 slot_id, ep_index); | 
 | 		break; | 
 | 	case USB_ENDPOINT_XFER_BULK: | 
 | 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, | 
 | 					 slot_id, ep_index); | 
 | 		break; | 
 | 	case USB_ENDPOINT_XFER_INT: | 
 | 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, | 
 | 				slot_id, ep_index); | 
 | 		break; | 
 | 	case USB_ENDPOINT_XFER_ISOC: | 
 | 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, | 
 | 				slot_id, ep_index); | 
 | 	} | 
 |  | 
 | 	if (ret) { | 
 | free_priv: | 
 | 		xhci_urb_free_priv(urb_priv); | 
 | 		urb->hcpriv = NULL; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop | 
 |  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC | 
 |  * should pick up where it left off in the TD, unless a Set Transfer Ring | 
 |  * Dequeue Pointer is issued. | 
 |  * | 
 |  * The TRBs that make up the buffers for the canceled URB will be "removed" from | 
 |  * the ring.  Since the ring is a contiguous structure, they can't be physically | 
 |  * removed.  Instead, there are two options: | 
 |  * | 
 |  *  1) If the HC is in the middle of processing the URB to be canceled, we | 
 |  *     simply move the ring's dequeue pointer past those TRBs using the Set | 
 |  *     Transfer Ring Dequeue Pointer command.  This will be the common case, | 
 |  *     when drivers timeout on the last submitted URB and attempt to cancel. | 
 |  * | 
 |  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a | 
 |  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The | 
 |  *     HC will need to invalidate the any TRBs it has cached after the stop | 
 |  *     endpoint command, as noted in the xHCI 0.95 errata. | 
 |  * | 
 |  *  3) The TD may have completed by the time the Stop Endpoint Command | 
 |  *     completes, so software needs to handle that case too. | 
 |  * | 
 |  * This function should protect against the TD enqueueing code ringing the | 
 |  * doorbell while this code is waiting for a Stop Endpoint command to complete. | 
 |  * It also needs to account for multiple cancellations on happening at the same | 
 |  * time for the same endpoint. | 
 |  * | 
 |  * Note that this function can be called in any context, or so says | 
 |  * usb_hcd_unlink_urb() | 
 |  */ | 
 | static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int ret, i; | 
 | 	u32 temp; | 
 | 	struct xhci_hcd *xhci; | 
 | 	struct urb_priv	*urb_priv; | 
 | 	struct xhci_td *td; | 
 | 	unsigned int ep_index; | 
 | 	struct xhci_ring *ep_ring; | 
 | 	struct xhci_virt_ep *ep; | 
 | 	struct xhci_command *command; | 
 | 	struct xhci_virt_device *vdev; | 
 |  | 
 | 	xhci = hcd_to_xhci(hcd); | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 |  | 
 | 	trace_xhci_urb_dequeue(urb); | 
 |  | 
 | 	/* Make sure the URB hasn't completed or been unlinked already */ | 
 | 	ret = usb_hcd_check_unlink_urb(hcd, urb, status); | 
 | 	if (ret) | 
 | 		goto done; | 
 |  | 
 | 	/* give back URB now if we can't queue it for cancel */ | 
 | 	vdev = xhci->devs[urb->dev->slot_id]; | 
 | 	urb_priv = urb->hcpriv; | 
 | 	if (!vdev || !urb_priv) | 
 | 		goto err_giveback; | 
 |  | 
 | 	ep_index = xhci_get_endpoint_index(&urb->ep->desc); | 
 | 	ep = &vdev->eps[ep_index]; | 
 | 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb); | 
 | 	if (!ep || !ep_ring) | 
 | 		goto err_giveback; | 
 |  | 
 | 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ | 
 | 	temp = readl(&xhci->op_regs->status); | 
 | 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { | 
 | 		xhci_hc_died(xhci); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * check ring is not re-allocated since URB was enqueued. If it is, then | 
 | 	 * make sure none of the ring related pointers in this URB private data | 
 | 	 * are touched, such as td_list, otherwise we overwrite freed data | 
 | 	 */ | 
 | 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) { | 
 | 		xhci_err(xhci, "Canceled URB td not found on endpoint ring"); | 
 | 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { | 
 | 			td = &urb_priv->td[i]; | 
 | 			if (!list_empty(&td->cancelled_td_list)) | 
 | 				list_del_init(&td->cancelled_td_list); | 
 | 		} | 
 | 		goto err_giveback; | 
 | 	} | 
 |  | 
 | 	if (xhci->xhc_state & XHCI_STATE_HALTED) { | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, | 
 | 				"HC halted, freeing TD manually."); | 
 | 		for (i = urb_priv->num_tds_done; | 
 | 		     i < urb_priv->num_tds; | 
 | 		     i++) { | 
 | 			td = &urb_priv->td[i]; | 
 | 			if (!list_empty(&td->td_list)) | 
 | 				list_del_init(&td->td_list); | 
 | 			if (!list_empty(&td->cancelled_td_list)) | 
 | 				list_del_init(&td->cancelled_td_list); | 
 | 		} | 
 | 		goto err_giveback; | 
 | 	} | 
 |  | 
 | 	i = urb_priv->num_tds_done; | 
 | 	if (i < urb_priv->num_tds) | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, | 
 | 				"Cancel URB %p, dev %s, ep 0x%x, " | 
 | 				"starting at offset 0x%llx", | 
 | 				urb, urb->dev->devpath, | 
 | 				urb->ep->desc.bEndpointAddress, | 
 | 				(unsigned long long) xhci_trb_virt_to_dma( | 
 | 					urb_priv->td[i].start_seg, | 
 | 					urb_priv->td[i].first_trb)); | 
 |  | 
 | 	for (; i < urb_priv->num_tds; i++) { | 
 | 		td = &urb_priv->td[i]; | 
 | 		/* TD can already be on cancelled list if ep halted on it */ | 
 | 		if (list_empty(&td->cancelled_td_list)) { | 
 | 			td->cancel_status = TD_DIRTY; | 
 | 			list_add_tail(&td->cancelled_td_list, | 
 | 				      &ep->cancelled_td_list); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Queue a stop endpoint command, but only if this is | 
 | 	 * the first cancellation to be handled. | 
 | 	 */ | 
 | 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { | 
 | 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC); | 
 | 		if (!command) { | 
 | 			ret = -ENOMEM; | 
 | 			goto done; | 
 | 		} | 
 | 		ep->ep_state |= EP_STOP_CMD_PENDING; | 
 | 		ep->stop_cmd_timer.expires = jiffies + | 
 | 			XHCI_STOP_EP_CMD_TIMEOUT * HZ; | 
 | 		add_timer(&ep->stop_cmd_timer); | 
 | 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, | 
 | 					 ep_index, 0); | 
 | 		xhci_ring_cmd_db(xhci); | 
 | 	} | 
 | done: | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 	return ret; | 
 |  | 
 | err_giveback: | 
 | 	if (urb_priv) | 
 | 		xhci_urb_free_priv(urb_priv); | 
 | 	usb_hcd_unlink_urb_from_ep(hcd, urb); | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Drop an endpoint from a new bandwidth configuration for this device. | 
 |  * Only one call to this function is allowed per endpoint before | 
 |  * check_bandwidth() or reset_bandwidth() must be called. | 
 |  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will | 
 |  * add the endpoint to the schedule with possibly new parameters denoted by a | 
 |  * different endpoint descriptor in usb_host_endpoint. | 
 |  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is | 
 |  * not allowed. | 
 |  * | 
 |  * The USB core will not allow URBs to be queued to an endpoint that is being | 
 |  * disabled, so there's no need for mutual exclusion to protect | 
 |  * the xhci->devs[slot_id] structure. | 
 |  */ | 
 | int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, | 
 | 		       struct usb_host_endpoint *ep) | 
 | { | 
 | 	struct xhci_hcd *xhci; | 
 | 	struct xhci_container_ctx *in_ctx, *out_ctx; | 
 | 	struct xhci_input_control_ctx *ctrl_ctx; | 
 | 	unsigned int ep_index; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	u32 drop_flag; | 
 | 	u32 new_add_flags, new_drop_flags; | 
 | 	int ret; | 
 |  | 
 | 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); | 
 | 	if (ret <= 0) | 
 | 		return ret; | 
 | 	xhci = hcd_to_xhci(hcd); | 
 | 	if (xhci->xhc_state & XHCI_STATE_DYING) | 
 | 		return -ENODEV; | 
 |  | 
 | 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); | 
 | 	drop_flag = xhci_get_endpoint_flag(&ep->desc); | 
 | 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { | 
 | 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", | 
 | 				__func__, drop_flag); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	in_ctx = xhci->devs[udev->slot_id]->in_ctx; | 
 | 	out_ctx = xhci->devs[udev->slot_id]->out_ctx; | 
 | 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx); | 
 | 	if (!ctrl_ctx) { | 
 | 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n", | 
 | 				__func__); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	ep_index = xhci_get_endpoint_index(&ep->desc); | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); | 
 | 	/* If the HC already knows the endpoint is disabled, | 
 | 	 * or the HCD has noted it is disabled, ignore this request | 
 | 	 */ | 
 | 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || | 
 | 	    le32_to_cpu(ctrl_ctx->drop_flags) & | 
 | 	    xhci_get_endpoint_flag(&ep->desc)) { | 
 | 		/* Do not warn when called after a usb_device_reset */ | 
 | 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) | 
 | 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", | 
 | 				  __func__, ep); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); | 
 | 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); | 
 |  | 
 | 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); | 
 | 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); | 
 |  | 
 | 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); | 
 |  | 
 | 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); | 
 |  | 
 | 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", | 
 | 			(unsigned int) ep->desc.bEndpointAddress, | 
 | 			udev->slot_id, | 
 | 			(unsigned int) new_drop_flags, | 
 | 			(unsigned int) new_add_flags); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(xhci_drop_endpoint); | 
 |  | 
 | /* Add an endpoint to a new possible bandwidth configuration for this device. | 
 |  * Only one call to this function is allowed per endpoint before | 
 |  * check_bandwidth() or reset_bandwidth() must be called. | 
 |  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will | 
 |  * add the endpoint to the schedule with possibly new parameters denoted by a | 
 |  * different endpoint descriptor in usb_host_endpoint. | 
 |  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is | 
 |  * not allowed. | 
 |  * | 
 |  * The USB core will not allow URBs to be queued to an endpoint until the | 
 |  * configuration or alt setting is installed in the device, so there's no need | 
 |  * for mutual exclusion to protect the xhci->devs[slot_id] structure. | 
 |  */ | 
 | int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, | 
 | 		      struct usb_host_endpoint *ep) | 
 | { | 
 | 	struct xhci_hcd *xhci; | 
 | 	struct xhci_container_ctx *in_ctx; | 
 | 	unsigned int ep_index; | 
 | 	struct xhci_input_control_ctx *ctrl_ctx; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	u32 added_ctxs; | 
 | 	u32 new_add_flags, new_drop_flags; | 
 | 	struct xhci_virt_device *virt_dev; | 
 | 	int ret = 0; | 
 |  | 
 | 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); | 
 | 	if (ret <= 0) { | 
 | 		/* So we won't queue a reset ep command for a root hub */ | 
 | 		ep->hcpriv = NULL; | 
 | 		return ret; | 
 | 	} | 
 | 	xhci = hcd_to_xhci(hcd); | 
 | 	if (xhci->xhc_state & XHCI_STATE_DYING) | 
 | 		return -ENODEV; | 
 |  | 
 | 	added_ctxs = xhci_get_endpoint_flag(&ep->desc); | 
 | 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { | 
 | 		/* FIXME when we have to issue an evaluate endpoint command to | 
 | 		 * deal with ep0 max packet size changing once we get the | 
 | 		 * descriptors | 
 | 		 */ | 
 | 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", | 
 | 				__func__, added_ctxs); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	virt_dev = xhci->devs[udev->slot_id]; | 
 | 	in_ctx = virt_dev->in_ctx; | 
 | 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx); | 
 | 	if (!ctrl_ctx) { | 
 | 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n", | 
 | 				__func__); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	ep_index = xhci_get_endpoint_index(&ep->desc); | 
 | 	/* If this endpoint is already in use, and the upper layers are trying | 
 | 	 * to add it again without dropping it, reject the addition. | 
 | 	 */ | 
 | 	if (virt_dev->eps[ep_index].ring && | 
 | 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { | 
 | 		xhci_warn(xhci, "Trying to add endpoint 0x%x " | 
 | 				"without dropping it.\n", | 
 | 				(unsigned int) ep->desc.bEndpointAddress); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* If the HCD has already noted the endpoint is enabled, | 
 | 	 * ignore this request. | 
 | 	 */ | 
 | 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { | 
 | 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", | 
 | 				__func__, ep); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Configuration and alternate setting changes must be done in | 
 | 	 * process context, not interrupt context (or so documenation | 
 | 	 * for usb_set_interface() and usb_set_configuration() claim). | 
 | 	 */ | 
 | 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { | 
 | 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", | 
 | 				__func__, ep->desc.bEndpointAddress); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); | 
 | 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); | 
 |  | 
 | 	/* If xhci_endpoint_disable() was called for this endpoint, but the | 
 | 	 * xHC hasn't been notified yet through the check_bandwidth() call, | 
 | 	 * this re-adds a new state for the endpoint from the new endpoint | 
 | 	 * descriptors.  We must drop and re-add this endpoint, so we leave the | 
 | 	 * drop flags alone. | 
 | 	 */ | 
 | 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); | 
 |  | 
 | 	/* Store the usb_device pointer for later use */ | 
 | 	ep->hcpriv = udev; | 
 |  | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); | 
 | 	trace_xhci_add_endpoint(ep_ctx); | 
 |  | 
 | 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", | 
 | 			(unsigned int) ep->desc.bEndpointAddress, | 
 | 			udev->slot_id, | 
 | 			(unsigned int) new_drop_flags, | 
 | 			(unsigned int) new_add_flags); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(xhci_add_endpoint); | 
 |  | 
 | static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) | 
 | { | 
 | 	struct xhci_input_control_ctx *ctrl_ctx; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	struct xhci_slot_ctx *slot_ctx; | 
 | 	int i; | 
 |  | 
 | 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); | 
 | 	if (!ctrl_ctx) { | 
 | 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n", | 
 | 				__func__); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* When a device's add flag and drop flag are zero, any subsequent | 
 | 	 * configure endpoint command will leave that endpoint's state | 
 | 	 * untouched.  Make sure we don't leave any old state in the input | 
 | 	 * endpoint contexts. | 
 | 	 */ | 
 | 	ctrl_ctx->drop_flags = 0; | 
 | 	ctrl_ctx->add_flags = 0; | 
 | 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); | 
 | 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); | 
 | 	/* Endpoint 0 is always valid */ | 
 | 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); | 
 | 	for (i = 1; i < 31; i++) { | 
 | 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); | 
 | 		ep_ctx->ep_info = 0; | 
 | 		ep_ctx->ep_info2 = 0; | 
 | 		ep_ctx->deq = 0; | 
 | 		ep_ctx->tx_info = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, | 
 | 		struct usb_device *udev, u32 *cmd_status) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	switch (*cmd_status) { | 
 | 	case COMP_COMMAND_ABORTED: | 
 | 	case COMP_COMMAND_RING_STOPPED: | 
 | 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); | 
 | 		ret = -ETIME; | 
 | 		break; | 
 | 	case COMP_RESOURCE_ERROR: | 
 | 		dev_warn(&udev->dev, | 
 | 			 "Not enough host controller resources for new device state.\n"); | 
 | 		ret = -ENOMEM; | 
 | 		/* FIXME: can we allocate more resources for the HC? */ | 
 | 		break; | 
 | 	case COMP_BANDWIDTH_ERROR: | 
 | 	case COMP_SECONDARY_BANDWIDTH_ERROR: | 
 | 		dev_warn(&udev->dev, | 
 | 			 "Not enough bandwidth for new device state.\n"); | 
 | 		ret = -ENOSPC; | 
 | 		/* FIXME: can we go back to the old state? */ | 
 | 		break; | 
 | 	case COMP_TRB_ERROR: | 
 | 		/* the HCD set up something wrong */ | 
 | 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " | 
 | 				"add flag = 1, " | 
 | 				"and endpoint is not disabled.\n"); | 
 | 		ret = -EINVAL; | 
 | 		break; | 
 | 	case COMP_INCOMPATIBLE_DEVICE_ERROR: | 
 | 		dev_warn(&udev->dev, | 
 | 			 "ERROR: Incompatible device for endpoint configure command.\n"); | 
 | 		ret = -ENODEV; | 
 | 		break; | 
 | 	case COMP_SUCCESS: | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, | 
 | 				"Successful Endpoint Configure command"); | 
 | 		ret = 0; | 
 | 		break; | 
 | 	default: | 
 | 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", | 
 | 				*cmd_status); | 
 | 		ret = -EINVAL; | 
 | 		break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int xhci_evaluate_context_result(struct xhci_hcd *xhci, | 
 | 		struct usb_device *udev, u32 *cmd_status) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	switch (*cmd_status) { | 
 | 	case COMP_COMMAND_ABORTED: | 
 | 	case COMP_COMMAND_RING_STOPPED: | 
 | 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); | 
 | 		ret = -ETIME; | 
 | 		break; | 
 | 	case COMP_PARAMETER_ERROR: | 
 | 		dev_warn(&udev->dev, | 
 | 			 "WARN: xHCI driver setup invalid evaluate context command.\n"); | 
 | 		ret = -EINVAL; | 
 | 		break; | 
 | 	case COMP_SLOT_NOT_ENABLED_ERROR: | 
 | 		dev_warn(&udev->dev, | 
 | 			"WARN: slot not enabled for evaluate context command.\n"); | 
 | 		ret = -EINVAL; | 
 | 		break; | 
 | 	case COMP_CONTEXT_STATE_ERROR: | 
 | 		dev_warn(&udev->dev, | 
 | 			"WARN: invalid context state for evaluate context command.\n"); | 
 | 		ret = -EINVAL; | 
 | 		break; | 
 | 	case COMP_INCOMPATIBLE_DEVICE_ERROR: | 
 | 		dev_warn(&udev->dev, | 
 | 			"ERROR: Incompatible device for evaluate context command.\n"); | 
 | 		ret = -ENODEV; | 
 | 		break; | 
 | 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: | 
 | 		/* Max Exit Latency too large error */ | 
 | 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); | 
 | 		ret = -EINVAL; | 
 | 		break; | 
 | 	case COMP_SUCCESS: | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, | 
 | 				"Successful evaluate context command"); | 
 | 		ret = 0; | 
 | 		break; | 
 | 	default: | 
 | 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", | 
 | 			*cmd_status); | 
 | 		ret = -EINVAL; | 
 | 		break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, | 
 | 		struct xhci_input_control_ctx *ctrl_ctx) | 
 | { | 
 | 	u32 valid_add_flags; | 
 | 	u32 valid_drop_flags; | 
 |  | 
 | 	/* Ignore the slot flag (bit 0), and the default control endpoint flag | 
 | 	 * (bit 1).  The default control endpoint is added during the Address | 
 | 	 * Device command and is never removed until the slot is disabled. | 
 | 	 */ | 
 | 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; | 
 | 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; | 
 |  | 
 | 	/* Use hweight32 to count the number of ones in the add flags, or | 
 | 	 * number of endpoints added.  Don't count endpoints that are changed | 
 | 	 * (both added and dropped). | 
 | 	 */ | 
 | 	return hweight32(valid_add_flags) - | 
 | 		hweight32(valid_add_flags & valid_drop_flags); | 
 | } | 
 |  | 
 | static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, | 
 | 		struct xhci_input_control_ctx *ctrl_ctx) | 
 | { | 
 | 	u32 valid_add_flags; | 
 | 	u32 valid_drop_flags; | 
 |  | 
 | 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; | 
 | 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; | 
 |  | 
 | 	return hweight32(valid_drop_flags) - | 
 | 		hweight32(valid_add_flags & valid_drop_flags); | 
 | } | 
 |  | 
 | /* | 
 |  * We need to reserve the new number of endpoints before the configure endpoint | 
 |  * command completes.  We can't subtract the dropped endpoints from the number | 
 |  * of active endpoints until the command completes because we can oversubscribe | 
 |  * the host in this case: | 
 |  * | 
 |  *  - the first configure endpoint command drops more endpoints than it adds | 
 |  *  - a second configure endpoint command that adds more endpoints is queued | 
 |  *  - the first configure endpoint command fails, so the config is unchanged | 
 |  *  - the second command may succeed, even though there isn't enough resources | 
 |  * | 
 |  * Must be called with xhci->lock held. | 
 |  */ | 
 | static int xhci_reserve_host_resources(struct xhci_hcd *xhci, | 
 | 		struct xhci_input_control_ctx *ctrl_ctx) | 
 | { | 
 | 	u32 added_eps; | 
 |  | 
 | 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); | 
 | 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, | 
 | 				"Not enough ep ctxs: " | 
 | 				"%u active, need to add %u, limit is %u.", | 
 | 				xhci->num_active_eps, added_eps, | 
 | 				xhci->limit_active_eps); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	xhci->num_active_eps += added_eps; | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, | 
 | 			"Adding %u ep ctxs, %u now active.", added_eps, | 
 | 			xhci->num_active_eps); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * The configure endpoint was failed by the xHC for some other reason, so we | 
 |  * need to revert the resources that failed configuration would have used. | 
 |  * | 
 |  * Must be called with xhci->lock held. | 
 |  */ | 
 | static void xhci_free_host_resources(struct xhci_hcd *xhci, | 
 | 		struct xhci_input_control_ctx *ctrl_ctx) | 
 | { | 
 | 	u32 num_failed_eps; | 
 |  | 
 | 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); | 
 | 	xhci->num_active_eps -= num_failed_eps; | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, | 
 | 			"Removing %u failed ep ctxs, %u now active.", | 
 | 			num_failed_eps, | 
 | 			xhci->num_active_eps); | 
 | } | 
 |  | 
 | /* | 
 |  * Now that the command has completed, clean up the active endpoint count by | 
 |  * subtracting out the endpoints that were dropped (but not changed). | 
 |  * | 
 |  * Must be called with xhci->lock held. | 
 |  */ | 
 | static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, | 
 | 		struct xhci_input_control_ctx *ctrl_ctx) | 
 | { | 
 | 	u32 num_dropped_eps; | 
 |  | 
 | 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); | 
 | 	xhci->num_active_eps -= num_dropped_eps; | 
 | 	if (num_dropped_eps) | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, | 
 | 				"Removing %u dropped ep ctxs, %u now active.", | 
 | 				num_dropped_eps, | 
 | 				xhci->num_active_eps); | 
 | } | 
 |  | 
 | static unsigned int xhci_get_block_size(struct usb_device *udev) | 
 | { | 
 | 	switch (udev->speed) { | 
 | 	case USB_SPEED_LOW: | 
 | 	case USB_SPEED_FULL: | 
 | 		return FS_BLOCK; | 
 | 	case USB_SPEED_HIGH: | 
 | 		return HS_BLOCK; | 
 | 	case USB_SPEED_SUPER: | 
 | 	case USB_SPEED_SUPER_PLUS: | 
 | 		return SS_BLOCK; | 
 | 	case USB_SPEED_UNKNOWN: | 
 | 	case USB_SPEED_WIRELESS: | 
 | 	default: | 
 | 		/* Should never happen */ | 
 | 		return 1; | 
 | 	} | 
 | } | 
 |  | 
 | static unsigned int | 
 | xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) | 
 | { | 
 | 	if (interval_bw->overhead[LS_OVERHEAD_TYPE]) | 
 | 		return LS_OVERHEAD; | 
 | 	if (interval_bw->overhead[FS_OVERHEAD_TYPE]) | 
 | 		return FS_OVERHEAD; | 
 | 	return HS_OVERHEAD; | 
 | } | 
 |  | 
 | /* If we are changing a LS/FS device under a HS hub, | 
 |  * make sure (if we are activating a new TT) that the HS bus has enough | 
 |  * bandwidth for this new TT. | 
 |  */ | 
 | static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, | 
 | 		struct xhci_virt_device *virt_dev, | 
 | 		int old_active_eps) | 
 | { | 
 | 	struct xhci_interval_bw_table *bw_table; | 
 | 	struct xhci_tt_bw_info *tt_info; | 
 |  | 
 | 	/* Find the bandwidth table for the root port this TT is attached to. */ | 
 | 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; | 
 | 	tt_info = virt_dev->tt_info; | 
 | 	/* If this TT already had active endpoints, the bandwidth for this TT | 
 | 	 * has already been added.  Removing all periodic endpoints (and thus | 
 | 	 * making the TT enactive) will only decrease the bandwidth used. | 
 | 	 */ | 
 | 	if (old_active_eps) | 
 | 		return 0; | 
 | 	if (old_active_eps == 0 && tt_info->active_eps != 0) { | 
 | 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) | 
 | 			return -ENOMEM; | 
 | 		return 0; | 
 | 	} | 
 | 	/* Not sure why we would have no new active endpoints... | 
 | 	 * | 
 | 	 * Maybe because of an Evaluate Context change for a hub update or a | 
 | 	 * control endpoint 0 max packet size change? | 
 | 	 * FIXME: skip the bandwidth calculation in that case. | 
 | 	 */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int xhci_check_ss_bw(struct xhci_hcd *xhci, | 
 | 		struct xhci_virt_device *virt_dev) | 
 | { | 
 | 	unsigned int bw_reserved; | 
 |  | 
 | 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); | 
 | 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); | 
 | 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This algorithm is a very conservative estimate of the worst-case scheduling | 
 |  * scenario for any one interval.  The hardware dynamically schedules the | 
 |  * packets, so we can't tell which microframe could be the limiting factor in | 
 |  * the bandwidth scheduling.  This only takes into account periodic endpoints. | 
 |  * | 
 |  * Obviously, we can't solve an NP complete problem to find the minimum worst | 
 |  * case scenario.  Instead, we come up with an estimate that is no less than | 
 |  * the worst case bandwidth used for any one microframe, but may be an | 
 |  * over-estimate. | 
 |  * | 
 |  * We walk the requirements for each endpoint by interval, starting with the | 
 |  * smallest interval, and place packets in the schedule where there is only one | 
 |  * possible way to schedule packets for that interval.  In order to simplify | 
 |  * this algorithm, we record the largest max packet size for each interval, and | 
 |  * assume all packets will be that size. | 
 |  * | 
 |  * For interval 0, we obviously must schedule all packets for each interval. | 
 |  * The bandwidth for interval 0 is just the amount of data to be transmitted | 
 |  * (the sum of all max ESIT payload sizes, plus any overhead per packet times | 
 |  * the number of packets). | 
 |  * | 
 |  * For interval 1, we have two possible microframes to schedule those packets | 
 |  * in.  For this algorithm, if we can schedule the same number of packets for | 
 |  * each possible scheduling opportunity (each microframe), we will do so.  The | 
 |  * remaining number of packets will be saved to be transmitted in the gaps in | 
 |  * the next interval's scheduling sequence. | 
 |  * | 
 |  * As we move those remaining packets to be scheduled with interval 2 packets, | 
 |  * we have to double the number of remaining packets to transmit.  This is | 
 |  * because the intervals are actually powers of 2, and we would be transmitting | 
 |  * the previous interval's packets twice in this interval.  We also have to be | 
 |  * sure that when we look at the largest max packet size for this interval, we | 
 |  * also look at the largest max packet size for the remaining packets and take | 
 |  * the greater of the two. | 
 |  * | 
 |  * The algorithm continues to evenly distribute packets in each scheduling | 
 |  * opportunity, and push the remaining packets out, until we get to the last | 
 |  * interval.  Then those packets and their associated overhead are just added | 
 |  * to the bandwidth used. | 
 |  */ | 
 | static int xhci_check_bw_table(struct xhci_hcd *xhci, | 
 | 		struct xhci_virt_device *virt_dev, | 
 | 		int old_active_eps) | 
 | { | 
 | 	unsigned int bw_reserved; | 
 | 	unsigned int max_bandwidth; | 
 | 	unsigned int bw_used; | 
 | 	unsigned int block_size; | 
 | 	struct xhci_interval_bw_table *bw_table; | 
 | 	unsigned int packet_size = 0; | 
 | 	unsigned int overhead = 0; | 
 | 	unsigned int packets_transmitted = 0; | 
 | 	unsigned int packets_remaining = 0; | 
 | 	unsigned int i; | 
 |  | 
 | 	if (virt_dev->udev->speed >= USB_SPEED_SUPER) | 
 | 		return xhci_check_ss_bw(xhci, virt_dev); | 
 |  | 
 | 	if (virt_dev->udev->speed == USB_SPEED_HIGH) { | 
 | 		max_bandwidth = HS_BW_LIMIT; | 
 | 		/* Convert percent of bus BW reserved to blocks reserved */ | 
 | 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); | 
 | 	} else { | 
 | 		max_bandwidth = FS_BW_LIMIT; | 
 | 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); | 
 | 	} | 
 |  | 
 | 	bw_table = virt_dev->bw_table; | 
 | 	/* We need to translate the max packet size and max ESIT payloads into | 
 | 	 * the units the hardware uses. | 
 | 	 */ | 
 | 	block_size = xhci_get_block_size(virt_dev->udev); | 
 |  | 
 | 	/* If we are manipulating a LS/FS device under a HS hub, double check | 
 | 	 * that the HS bus has enough bandwidth if we are activing a new TT. | 
 | 	 */ | 
 | 	if (virt_dev->tt_info) { | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, | 
 | 				"Recalculating BW for rootport %u", | 
 | 				virt_dev->real_port); | 
 | 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { | 
 | 			xhci_warn(xhci, "Not enough bandwidth on HS bus for " | 
 | 					"newly activated TT.\n"); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, | 
 | 				"Recalculating BW for TT slot %u port %u", | 
 | 				virt_dev->tt_info->slot_id, | 
 | 				virt_dev->tt_info->ttport); | 
 | 	} else { | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, | 
 | 				"Recalculating BW for rootport %u", | 
 | 				virt_dev->real_port); | 
 | 	} | 
 |  | 
 | 	/* Add in how much bandwidth will be used for interval zero, or the | 
 | 	 * rounded max ESIT payload + number of packets * largest overhead. | 
 | 	 */ | 
 | 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + | 
 | 		bw_table->interval_bw[0].num_packets * | 
 | 		xhci_get_largest_overhead(&bw_table->interval_bw[0]); | 
 |  | 
 | 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) { | 
 | 		unsigned int bw_added; | 
 | 		unsigned int largest_mps; | 
 | 		unsigned int interval_overhead; | 
 |  | 
 | 		/* | 
 | 		 * How many packets could we transmit in this interval? | 
 | 		 * If packets didn't fit in the previous interval, we will need | 
 | 		 * to transmit that many packets twice within this interval. | 
 | 		 */ | 
 | 		packets_remaining = 2 * packets_remaining + | 
 | 			bw_table->interval_bw[i].num_packets; | 
 |  | 
 | 		/* Find the largest max packet size of this or the previous | 
 | 		 * interval. | 
 | 		 */ | 
 | 		if (list_empty(&bw_table->interval_bw[i].endpoints)) | 
 | 			largest_mps = 0; | 
 | 		else { | 
 | 			struct xhci_virt_ep *virt_ep; | 
 | 			struct list_head *ep_entry; | 
 |  | 
 | 			ep_entry = bw_table->interval_bw[i].endpoints.next; | 
 | 			virt_ep = list_entry(ep_entry, | 
 | 					struct xhci_virt_ep, bw_endpoint_list); | 
 | 			/* Convert to blocks, rounding up */ | 
 | 			largest_mps = DIV_ROUND_UP( | 
 | 					virt_ep->bw_info.max_packet_size, | 
 | 					block_size); | 
 | 		} | 
 | 		if (largest_mps > packet_size) | 
 | 			packet_size = largest_mps; | 
 |  | 
 | 		/* Use the larger overhead of this or the previous interval. */ | 
 | 		interval_overhead = xhci_get_largest_overhead( | 
 | 				&bw_table->interval_bw[i]); | 
 | 		if (interval_overhead > overhead) | 
 | 			overhead = interval_overhead; | 
 |  | 
 | 		/* How many packets can we evenly distribute across | 
 | 		 * (1 << (i + 1)) possible scheduling opportunities? | 
 | 		 */ | 
 | 		packets_transmitted = packets_remaining >> (i + 1); | 
 |  | 
 | 		/* Add in the bandwidth used for those scheduled packets */ | 
 | 		bw_added = packets_transmitted * (overhead + packet_size); | 
 |  | 
 | 		/* How many packets do we have remaining to transmit? */ | 
 | 		packets_remaining = packets_remaining % (1 << (i + 1)); | 
 |  | 
 | 		/* What largest max packet size should those packets have? */ | 
 | 		/* If we've transmitted all packets, don't carry over the | 
 | 		 * largest packet size. | 
 | 		 */ | 
 | 		if (packets_remaining == 0) { | 
 | 			packet_size = 0; | 
 | 			overhead = 0; | 
 | 		} else if (packets_transmitted > 0) { | 
 | 			/* Otherwise if we do have remaining packets, and we've | 
 | 			 * scheduled some packets in this interval, take the | 
 | 			 * largest max packet size from endpoints with this | 
 | 			 * interval. | 
 | 			 */ | 
 | 			packet_size = largest_mps; | 
 | 			overhead = interval_overhead; | 
 | 		} | 
 | 		/* Otherwise carry over packet_size and overhead from the last | 
 | 		 * time we had a remainder. | 
 | 		 */ | 
 | 		bw_used += bw_added; | 
 | 		if (bw_used > max_bandwidth) { | 
 | 			xhci_warn(xhci, "Not enough bandwidth. " | 
 | 					"Proposed: %u, Max: %u\n", | 
 | 				bw_used, max_bandwidth); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 	} | 
 | 	/* | 
 | 	 * Ok, we know we have some packets left over after even-handedly | 
 | 	 * scheduling interval 15.  We don't know which microframes they will | 
 | 	 * fit into, so we over-schedule and say they will be scheduled every | 
 | 	 * microframe. | 
 | 	 */ | 
 | 	if (packets_remaining > 0) | 
 | 		bw_used += overhead + packet_size; | 
 |  | 
 | 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { | 
 | 		unsigned int port_index = virt_dev->real_port - 1; | 
 |  | 
 | 		/* OK, we're manipulating a HS device attached to a | 
 | 		 * root port bandwidth domain.  Include the number of active TTs | 
 | 		 * in the bandwidth used. | 
 | 		 */ | 
 | 		bw_used += TT_HS_OVERHEAD * | 
 | 			xhci->rh_bw[port_index].num_active_tts; | 
 | 	} | 
 |  | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, | 
 | 		"Final bandwidth: %u, Limit: %u, Reserved: %u, " | 
 | 		"Available: %u " "percent", | 
 | 		bw_used, max_bandwidth, bw_reserved, | 
 | 		(max_bandwidth - bw_used - bw_reserved) * 100 / | 
 | 		max_bandwidth); | 
 |  | 
 | 	bw_used += bw_reserved; | 
 | 	if (bw_used > max_bandwidth) { | 
 | 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", | 
 | 				bw_used, max_bandwidth); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	bw_table->bw_used = bw_used; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool xhci_is_async_ep(unsigned int ep_type) | 
 | { | 
 | 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && | 
 | 					ep_type != ISOC_IN_EP && | 
 | 					ep_type != INT_IN_EP); | 
 | } | 
 |  | 
 | static bool xhci_is_sync_in_ep(unsigned int ep_type) | 
 | { | 
 | 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); | 
 | } | 
 |  | 
 | static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) | 
 | { | 
 | 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); | 
 |  | 
 | 	if (ep_bw->ep_interval == 0) | 
 | 		return SS_OVERHEAD_BURST + | 
 | 			(ep_bw->mult * ep_bw->num_packets * | 
 | 					(SS_OVERHEAD + mps)); | 
 | 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * | 
 | 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST), | 
 | 				1 << ep_bw->ep_interval); | 
 |  | 
 | } | 
 |  | 
 | static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, | 
 | 		struct xhci_bw_info *ep_bw, | 
 | 		struct xhci_interval_bw_table *bw_table, | 
 | 		struct usb_device *udev, | 
 | 		struct xhci_virt_ep *virt_ep, | 
 | 		struct xhci_tt_bw_info *tt_info) | 
 | { | 
 | 	struct xhci_interval_bw	*interval_bw; | 
 | 	int normalized_interval; | 
 |  | 
 | 	if (xhci_is_async_ep(ep_bw->type)) | 
 | 		return; | 
 |  | 
 | 	if (udev->speed >= USB_SPEED_SUPER) { | 
 | 		if (xhci_is_sync_in_ep(ep_bw->type)) | 
 | 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= | 
 | 				xhci_get_ss_bw_consumed(ep_bw); | 
 | 		else | 
 | 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= | 
 | 				xhci_get_ss_bw_consumed(ep_bw); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* SuperSpeed endpoints never get added to intervals in the table, so | 
 | 	 * this check is only valid for HS/FS/LS devices. | 
 | 	 */ | 
 | 	if (list_empty(&virt_ep->bw_endpoint_list)) | 
 | 		return; | 
 | 	/* For LS/FS devices, we need to translate the interval expressed in | 
 | 	 * microframes to frames. | 
 | 	 */ | 
 | 	if (udev->speed == USB_SPEED_HIGH) | 
 | 		normalized_interval = ep_bw->ep_interval; | 
 | 	else | 
 | 		normalized_interval = ep_bw->ep_interval - 3; | 
 |  | 
 | 	if (normalized_interval == 0) | 
 | 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; | 
 | 	interval_bw = &bw_table->interval_bw[normalized_interval]; | 
 | 	interval_bw->num_packets -= ep_bw->num_packets; | 
 | 	switch (udev->speed) { | 
 | 	case USB_SPEED_LOW: | 
 | 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; | 
 | 		break; | 
 | 	case USB_SPEED_FULL: | 
 | 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; | 
 | 		break; | 
 | 	case USB_SPEED_HIGH: | 
 | 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; | 
 | 		break; | 
 | 	case USB_SPEED_SUPER: | 
 | 	case USB_SPEED_SUPER_PLUS: | 
 | 	case USB_SPEED_UNKNOWN: | 
 | 	case USB_SPEED_WIRELESS: | 
 | 		/* Should never happen because only LS/FS/HS endpoints will get | 
 | 		 * added to the endpoint list. | 
 | 		 */ | 
 | 		return; | 
 | 	} | 
 | 	if (tt_info) | 
 | 		tt_info->active_eps -= 1; | 
 | 	list_del_init(&virt_ep->bw_endpoint_list); | 
 | } | 
 |  | 
 | static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, | 
 | 		struct xhci_bw_info *ep_bw, | 
 | 		struct xhci_interval_bw_table *bw_table, | 
 | 		struct usb_device *udev, | 
 | 		struct xhci_virt_ep *virt_ep, | 
 | 		struct xhci_tt_bw_info *tt_info) | 
 | { | 
 | 	struct xhci_interval_bw	*interval_bw; | 
 | 	struct xhci_virt_ep *smaller_ep; | 
 | 	int normalized_interval; | 
 |  | 
 | 	if (xhci_is_async_ep(ep_bw->type)) | 
 | 		return; | 
 |  | 
 | 	if (udev->speed == USB_SPEED_SUPER) { | 
 | 		if (xhci_is_sync_in_ep(ep_bw->type)) | 
 | 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in += | 
 | 				xhci_get_ss_bw_consumed(ep_bw); | 
 | 		else | 
 | 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out += | 
 | 				xhci_get_ss_bw_consumed(ep_bw); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* For LS/FS devices, we need to translate the interval expressed in | 
 | 	 * microframes to frames. | 
 | 	 */ | 
 | 	if (udev->speed == USB_SPEED_HIGH) | 
 | 		normalized_interval = ep_bw->ep_interval; | 
 | 	else | 
 | 		normalized_interval = ep_bw->ep_interval - 3; | 
 |  | 
 | 	if (normalized_interval == 0) | 
 | 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload; | 
 | 	interval_bw = &bw_table->interval_bw[normalized_interval]; | 
 | 	interval_bw->num_packets += ep_bw->num_packets; | 
 | 	switch (udev->speed) { | 
 | 	case USB_SPEED_LOW: | 
 | 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; | 
 | 		break; | 
 | 	case USB_SPEED_FULL: | 
 | 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; | 
 | 		break; | 
 | 	case USB_SPEED_HIGH: | 
 | 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; | 
 | 		break; | 
 | 	case USB_SPEED_SUPER: | 
 | 	case USB_SPEED_SUPER_PLUS: | 
 | 	case USB_SPEED_UNKNOWN: | 
 | 	case USB_SPEED_WIRELESS: | 
 | 		/* Should never happen because only LS/FS/HS endpoints will get | 
 | 		 * added to the endpoint list. | 
 | 		 */ | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (tt_info) | 
 | 		tt_info->active_eps += 1; | 
 | 	/* Insert the endpoint into the list, largest max packet size first. */ | 
 | 	list_for_each_entry(smaller_ep, &interval_bw->endpoints, | 
 | 			bw_endpoint_list) { | 
 | 		if (ep_bw->max_packet_size >= | 
 | 				smaller_ep->bw_info.max_packet_size) { | 
 | 			/* Add the new ep before the smaller endpoint */ | 
 | 			list_add_tail(&virt_ep->bw_endpoint_list, | 
 | 					&smaller_ep->bw_endpoint_list); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | 	/* Add the new endpoint at the end of the list. */ | 
 | 	list_add_tail(&virt_ep->bw_endpoint_list, | 
 | 			&interval_bw->endpoints); | 
 | } | 
 |  | 
 | void xhci_update_tt_active_eps(struct xhci_hcd *xhci, | 
 | 		struct xhci_virt_device *virt_dev, | 
 | 		int old_active_eps) | 
 | { | 
 | 	struct xhci_root_port_bw_info *rh_bw_info; | 
 | 	if (!virt_dev->tt_info) | 
 | 		return; | 
 |  | 
 | 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; | 
 | 	if (old_active_eps == 0 && | 
 | 				virt_dev->tt_info->active_eps != 0) { | 
 | 		rh_bw_info->num_active_tts += 1; | 
 | 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; | 
 | 	} else if (old_active_eps != 0 && | 
 | 				virt_dev->tt_info->active_eps == 0) { | 
 | 		rh_bw_info->num_active_tts -= 1; | 
 | 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; | 
 | 	} | 
 | } | 
 |  | 
 | static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, | 
 | 		struct xhci_virt_device *virt_dev, | 
 | 		struct xhci_container_ctx *in_ctx) | 
 | { | 
 | 	struct xhci_bw_info ep_bw_info[31]; | 
 | 	int i; | 
 | 	struct xhci_input_control_ctx *ctrl_ctx; | 
 | 	int old_active_eps = 0; | 
 |  | 
 | 	if (virt_dev->tt_info) | 
 | 		old_active_eps = virt_dev->tt_info->active_eps; | 
 |  | 
 | 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx); | 
 | 	if (!ctrl_ctx) { | 
 | 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n", | 
 | 				__func__); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < 31; i++) { | 
 | 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) | 
 | 			continue; | 
 |  | 
 | 		/* Make a copy of the BW info in case we need to revert this */ | 
 | 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, | 
 | 				sizeof(ep_bw_info[i])); | 
 | 		/* Drop the endpoint from the interval table if the endpoint is | 
 | 		 * being dropped or changed. | 
 | 		 */ | 
 | 		if (EP_IS_DROPPED(ctrl_ctx, i)) | 
 | 			xhci_drop_ep_from_interval_table(xhci, | 
 | 					&virt_dev->eps[i].bw_info, | 
 | 					virt_dev->bw_table, | 
 | 					virt_dev->udev, | 
 | 					&virt_dev->eps[i], | 
 | 					virt_dev->tt_info); | 
 | 	} | 
 | 	/* Overwrite the information stored in the endpoints' bw_info */ | 
 | 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); | 
 | 	for (i = 0; i < 31; i++) { | 
 | 		/* Add any changed or added endpoints to the interval table */ | 
 | 		if (EP_IS_ADDED(ctrl_ctx, i)) | 
 | 			xhci_add_ep_to_interval_table(xhci, | 
 | 					&virt_dev->eps[i].bw_info, | 
 | 					virt_dev->bw_table, | 
 | 					virt_dev->udev, | 
 | 					&virt_dev->eps[i], | 
 | 					virt_dev->tt_info); | 
 | 	} | 
 |  | 
 | 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { | 
 | 		/* Ok, this fits in the bandwidth we have. | 
 | 		 * Update the number of active TTs. | 
 | 		 */ | 
 | 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* We don't have enough bandwidth for this, revert the stored info. */ | 
 | 	for (i = 0; i < 31; i++) { | 
 | 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) | 
 | 			continue; | 
 |  | 
 | 		/* Drop the new copies of any added or changed endpoints from | 
 | 		 * the interval table. | 
 | 		 */ | 
 | 		if (EP_IS_ADDED(ctrl_ctx, i)) { | 
 | 			xhci_drop_ep_from_interval_table(xhci, | 
 | 					&virt_dev->eps[i].bw_info, | 
 | 					virt_dev->bw_table, | 
 | 					virt_dev->udev, | 
 | 					&virt_dev->eps[i], | 
 | 					virt_dev->tt_info); | 
 | 		} | 
 | 		/* Revert the endpoint back to its old information */ | 
 | 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], | 
 | 				sizeof(ep_bw_info[i])); | 
 | 		/* Add any changed or dropped endpoints back into the table */ | 
 | 		if (EP_IS_DROPPED(ctrl_ctx, i)) | 
 | 			xhci_add_ep_to_interval_table(xhci, | 
 | 					&virt_dev->eps[i].bw_info, | 
 | 					virt_dev->bw_table, | 
 | 					virt_dev->udev, | 
 | 					&virt_dev->eps[i], | 
 | 					virt_dev->tt_info); | 
 | 	} | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 |  | 
 | /* Issue a configure endpoint command or evaluate context command | 
 |  * and wait for it to finish. | 
 |  */ | 
 | static int xhci_configure_endpoint(struct xhci_hcd *xhci, | 
 | 		struct usb_device *udev, | 
 | 		struct xhci_command *command, | 
 | 		bool ctx_change, bool must_succeed) | 
 | { | 
 | 	int ret; | 
 | 	unsigned long flags; | 
 | 	struct xhci_input_control_ctx *ctrl_ctx; | 
 | 	struct xhci_virt_device *virt_dev; | 
 | 	struct xhci_slot_ctx *slot_ctx; | 
 |  | 
 | 	if (!command) | 
 | 		return -EINVAL; | 
 |  | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 |  | 
 | 	if (xhci->xhc_state & XHCI_STATE_DYING) { | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		return -ESHUTDOWN; | 
 | 	} | 
 |  | 
 | 	virt_dev = xhci->devs[udev->slot_id]; | 
 |  | 
 | 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); | 
 | 	if (!ctrl_ctx) { | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n", | 
 | 				__func__); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && | 
 | 			xhci_reserve_host_resources(xhci, ctrl_ctx)) { | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		xhci_warn(xhci, "Not enough host resources, " | 
 | 				"active endpoint contexts = %u\n", | 
 | 				xhci->num_active_eps); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) && | 
 | 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { | 
 | 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) | 
 | 			xhci_free_host_resources(xhci, ctrl_ctx); | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		xhci_warn(xhci, "Not enough bandwidth\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); | 
 |  | 
 | 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); | 
 | 	trace_xhci_configure_endpoint(slot_ctx); | 
 |  | 
 | 	if (!ctx_change) | 
 | 		ret = xhci_queue_configure_endpoint(xhci, command, | 
 | 				command->in_ctx->dma, | 
 | 				udev->slot_id, must_succeed); | 
 | 	else | 
 | 		ret = xhci_queue_evaluate_context(xhci, command, | 
 | 				command->in_ctx->dma, | 
 | 				udev->slot_id, must_succeed); | 
 | 	if (ret < 0) { | 
 | 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) | 
 | 			xhci_free_host_resources(xhci, ctrl_ctx); | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change, | 
 | 				"FIXME allocate a new ring segment"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	xhci_ring_cmd_db(xhci); | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 |  | 
 | 	/* Wait for the configure endpoint command to complete */ | 
 | 	wait_for_completion(command->completion); | 
 |  | 
 | 	if (!ctx_change) | 
 | 		ret = xhci_configure_endpoint_result(xhci, udev, | 
 | 						     &command->status); | 
 | 	else | 
 | 		ret = xhci_evaluate_context_result(xhci, udev, | 
 | 						   &command->status); | 
 |  | 
 | 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { | 
 | 		spin_lock_irqsave(&xhci->lock, flags); | 
 | 		/* If the command failed, remove the reserved resources. | 
 | 		 * Otherwise, clean up the estimate to include dropped eps. | 
 | 		 */ | 
 | 		if (ret) | 
 | 			xhci_free_host_resources(xhci, ctrl_ctx); | 
 | 		else | 
 | 			xhci_finish_resource_reservation(xhci, ctrl_ctx); | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, | 
 | 	struct xhci_virt_device *vdev, int i) | 
 | { | 
 | 	struct xhci_virt_ep *ep = &vdev->eps[i]; | 
 |  | 
 | 	if (ep->ep_state & EP_HAS_STREAMS) { | 
 | 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", | 
 | 				xhci_get_endpoint_address(i)); | 
 | 		xhci_free_stream_info(xhci, ep->stream_info); | 
 | 		ep->stream_info = NULL; | 
 | 		ep->ep_state &= ~EP_HAS_STREAMS; | 
 | 	} | 
 | } | 
 |  | 
 | /* Called after one or more calls to xhci_add_endpoint() or | 
 |  * xhci_drop_endpoint().  If this call fails, the USB core is expected | 
 |  * to call xhci_reset_bandwidth(). | 
 |  * | 
 |  * Since we are in the middle of changing either configuration or | 
 |  * installing a new alt setting, the USB core won't allow URBs to be | 
 |  * enqueued for any endpoint on the old config or interface.  Nothing | 
 |  * else should be touching the xhci->devs[slot_id] structure, so we | 
 |  * don't need to take the xhci->lock for manipulating that. | 
 |  */ | 
 | int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) | 
 | { | 
 | 	int i; | 
 | 	int ret = 0; | 
 | 	struct xhci_hcd *xhci; | 
 | 	struct xhci_virt_device	*virt_dev; | 
 | 	struct xhci_input_control_ctx *ctrl_ctx; | 
 | 	struct xhci_slot_ctx *slot_ctx; | 
 | 	struct xhci_command *command; | 
 |  | 
 | 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); | 
 | 	if (ret <= 0) | 
 | 		return ret; | 
 | 	xhci = hcd_to_xhci(hcd); | 
 | 	if ((xhci->xhc_state & XHCI_STATE_DYING) || | 
 | 		(xhci->xhc_state & XHCI_STATE_REMOVING)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); | 
 | 	virt_dev = xhci->devs[udev->slot_id]; | 
 |  | 
 | 	command = xhci_alloc_command(xhci, true, GFP_KERNEL); | 
 | 	if (!command) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	command->in_ctx = virt_dev->in_ctx; | 
 |  | 
 | 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ | 
 | 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); | 
 | 	if (!ctrl_ctx) { | 
 | 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n", | 
 | 				__func__); | 
 | 		ret = -ENOMEM; | 
 | 		goto command_cleanup; | 
 | 	} | 
 | 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); | 
 | 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); | 
 | 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); | 
 |  | 
 | 	/* Don't issue the command if there's no endpoints to update. */ | 
 | 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && | 
 | 	    ctrl_ctx->drop_flags == 0) { | 
 | 		ret = 0; | 
 | 		goto command_cleanup; | 
 | 	} | 
 | 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ | 
 | 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); | 
 | 	for (i = 31; i >= 1; i--) { | 
 | 		__le32 le32 = cpu_to_le32(BIT(i)); | 
 |  | 
 | 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) | 
 | 		    || (ctrl_ctx->add_flags & le32) || i == 1) { | 
 | 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); | 
 | 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = xhci_configure_endpoint(xhci, udev, command, | 
 | 			false, false); | 
 | 	if (ret) | 
 | 		/* Callee should call reset_bandwidth() */ | 
 | 		goto command_cleanup; | 
 |  | 
 | 	/* Free any rings that were dropped, but not changed. */ | 
 | 	for (i = 1; i < 31; i++) { | 
 | 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && | 
 | 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { | 
 | 			xhci_free_endpoint_ring(xhci, virt_dev, i); | 
 | 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); | 
 | 		} | 
 | 	} | 
 | 	xhci_zero_in_ctx(xhci, virt_dev); | 
 | 	/* | 
 | 	 * Install any rings for completely new endpoints or changed endpoints, | 
 | 	 * and free any old rings from changed endpoints. | 
 | 	 */ | 
 | 	for (i = 1; i < 31; i++) { | 
 | 		if (!virt_dev->eps[i].new_ring) | 
 | 			continue; | 
 | 		/* Only free the old ring if it exists. | 
 | 		 * It may not if this is the first add of an endpoint. | 
 | 		 */ | 
 | 		if (virt_dev->eps[i].ring) { | 
 | 			xhci_free_endpoint_ring(xhci, virt_dev, i); | 
 | 		} | 
 | 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); | 
 | 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; | 
 | 		virt_dev->eps[i].new_ring = NULL; | 
 | 		xhci_debugfs_create_endpoint(xhci, virt_dev, i); | 
 | 	} | 
 | command_cleanup: | 
 | 	kfree(command->completion); | 
 | 	kfree(command); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(xhci_check_bandwidth); | 
 |  | 
 | void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) | 
 | { | 
 | 	struct xhci_hcd *xhci; | 
 | 	struct xhci_virt_device	*virt_dev; | 
 | 	int i, ret; | 
 |  | 
 | 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); | 
 | 	if (ret <= 0) | 
 | 		return; | 
 | 	xhci = hcd_to_xhci(hcd); | 
 |  | 
 | 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); | 
 | 	virt_dev = xhci->devs[udev->slot_id]; | 
 | 	/* Free any rings allocated for added endpoints */ | 
 | 	for (i = 0; i < 31; i++) { | 
 | 		if (virt_dev->eps[i].new_ring) { | 
 | 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i); | 
 | 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring); | 
 | 			virt_dev->eps[i].new_ring = NULL; | 
 | 		} | 
 | 	} | 
 | 	xhci_zero_in_ctx(xhci, virt_dev); | 
 | } | 
 | EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); | 
 |  | 
 | static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, | 
 | 		struct xhci_container_ctx *in_ctx, | 
 | 		struct xhci_container_ctx *out_ctx, | 
 | 		struct xhci_input_control_ctx *ctrl_ctx, | 
 | 		u32 add_flags, u32 drop_flags) | 
 | { | 
 | 	ctrl_ctx->add_flags = cpu_to_le32(add_flags); | 
 | 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); | 
 | 	xhci_slot_copy(xhci, in_ctx, out_ctx); | 
 | 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); | 
 | } | 
 |  | 
 | static void xhci_endpoint_disable(struct usb_hcd *hcd, | 
 | 				  struct usb_host_endpoint *host_ep) | 
 | { | 
 | 	struct xhci_hcd		*xhci; | 
 | 	struct xhci_virt_device	*vdev; | 
 | 	struct xhci_virt_ep	*ep; | 
 | 	struct usb_device	*udev; | 
 | 	unsigned long		flags; | 
 | 	unsigned int		ep_index; | 
 |  | 
 | 	xhci = hcd_to_xhci(hcd); | 
 | rescan: | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 |  | 
 | 	udev = (struct usb_device *)host_ep->hcpriv; | 
 | 	if (!udev || !udev->slot_id) | 
 | 		goto done; | 
 |  | 
 | 	vdev = xhci->devs[udev->slot_id]; | 
 | 	if (!vdev) | 
 | 		goto done; | 
 |  | 
 | 	ep_index = xhci_get_endpoint_index(&host_ep->desc); | 
 | 	ep = &vdev->eps[ep_index]; | 
 | 	if (!ep) | 
 | 		goto done; | 
 |  | 
 | 	/* wait for hub_tt_work to finish clearing hub TT */ | 
 | 	if (ep->ep_state & EP_CLEARING_TT) { | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		schedule_timeout_uninterruptible(1); | 
 | 		goto rescan; | 
 | 	} | 
 |  | 
 | 	if (ep->ep_state) | 
 | 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", | 
 | 			 ep->ep_state); | 
 | done: | 
 | 	host_ep->hcpriv = NULL; | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Called after usb core issues a clear halt control message. | 
 |  * The host side of the halt should already be cleared by a reset endpoint | 
 |  * command issued when the STALL event was received. | 
 |  * | 
 |  * The reset endpoint command may only be issued to endpoints in the halted | 
 |  * state. For software that wishes to reset the data toggle or sequence number | 
 |  * of an endpoint that isn't in the halted state this function will issue a | 
 |  * configure endpoint command with the Drop and Add bits set for the target | 
 |  * endpoint. Refer to the additional note in xhci spcification section 4.6.8. | 
 |  */ | 
 |  | 
 | static void xhci_endpoint_reset(struct usb_hcd *hcd, | 
 | 		struct usb_host_endpoint *host_ep) | 
 | { | 
 | 	struct xhci_hcd *xhci; | 
 | 	struct usb_device *udev; | 
 | 	struct xhci_virt_device *vdev; | 
 | 	struct xhci_virt_ep *ep; | 
 | 	struct xhci_input_control_ctx *ctrl_ctx; | 
 | 	struct xhci_command *stop_cmd, *cfg_cmd; | 
 | 	unsigned int ep_index; | 
 | 	unsigned long flags; | 
 | 	u32 ep_flag; | 
 | 	int err; | 
 |  | 
 | 	xhci = hcd_to_xhci(hcd); | 
 | 	if (!host_ep->hcpriv) | 
 | 		return; | 
 | 	udev = (struct usb_device *) host_ep->hcpriv; | 
 | 	vdev = xhci->devs[udev->slot_id]; | 
 |  | 
 | 	/* | 
 | 	 * vdev may be lost due to xHC restore error and re-initialization | 
 | 	 * during S3/S4 resume. A new vdev will be allocated later by | 
 | 	 * xhci_discover_or_reset_device() | 
 | 	 */ | 
 | 	if (!udev->slot_id || !vdev) | 
 | 		return; | 
 | 	ep_index = xhci_get_endpoint_index(&host_ep->desc); | 
 | 	ep = &vdev->eps[ep_index]; | 
 | 	if (!ep) | 
 | 		return; | 
 |  | 
 | 	/* Bail out if toggle is already being cleared by a endpoint reset */ | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 | 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { | 
 | 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		return; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ | 
 | 	if (usb_endpoint_xfer_control(&host_ep->desc) || | 
 | 	    usb_endpoint_xfer_isoc(&host_ep->desc)) | 
 | 		return; | 
 |  | 
 | 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc); | 
 |  | 
 | 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) | 
 | 		return; | 
 |  | 
 | 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); | 
 | 	if (!stop_cmd) | 
 | 		return; | 
 |  | 
 | 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); | 
 | 	if (!cfg_cmd) | 
 | 		goto cleanup; | 
 |  | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 |  | 
 | 	/* block queuing new trbs and ringing ep doorbell */ | 
 | 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; | 
 |  | 
 | 	/* | 
 | 	 * Make sure endpoint ring is empty before resetting the toggle/seq. | 
 | 	 * Driver is required to synchronously cancel all transfer request. | 
 | 	 * Stop the endpoint to force xHC to update the output context | 
 | 	 */ | 
 |  | 
 | 	if (!list_empty(&ep->ring->td_list)) { | 
 | 		dev_err(&udev->dev, "EP not empty, refuse reset\n"); | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		xhci_free_command(xhci, cfg_cmd); | 
 | 		goto cleanup; | 
 | 	} | 
 |  | 
 | 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, | 
 | 					ep_index, 0); | 
 | 	if (err < 0) { | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		xhci_free_command(xhci, cfg_cmd); | 
 | 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", | 
 | 				__func__, err); | 
 | 		goto cleanup; | 
 | 	} | 
 |  | 
 | 	xhci_ring_cmd_db(xhci); | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 |  | 
 | 	wait_for_completion(stop_cmd->completion); | 
 |  | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 |  | 
 | 	/* config ep command clears toggle if add and drop ep flags are set */ | 
 | 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); | 
 | 	if (!ctrl_ctx) { | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		xhci_free_command(xhci, cfg_cmd); | 
 | 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n", | 
 | 				__func__); | 
 | 		goto cleanup; | 
 | 	} | 
 |  | 
 | 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, | 
 | 					   ctrl_ctx, ep_flag, ep_flag); | 
 | 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); | 
 |  | 
 | 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, | 
 | 				      udev->slot_id, false); | 
 | 	if (err < 0) { | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		xhci_free_command(xhci, cfg_cmd); | 
 | 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", | 
 | 				__func__, err); | 
 | 		goto cleanup; | 
 | 	} | 
 |  | 
 | 	xhci_ring_cmd_db(xhci); | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 |  | 
 | 	wait_for_completion(cfg_cmd->completion); | 
 |  | 
 | 	xhci_free_command(xhci, cfg_cmd); | 
 | cleanup: | 
 | 	xhci_free_command(xhci, stop_cmd); | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 | 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) | 
 | 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 | } | 
 |  | 
 | static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, | 
 | 		struct usb_device *udev, struct usb_host_endpoint *ep, | 
 | 		unsigned int slot_id) | 
 | { | 
 | 	int ret; | 
 | 	unsigned int ep_index; | 
 | 	unsigned int ep_state; | 
 |  | 
 | 	if (!ep) | 
 | 		return -EINVAL; | 
 | 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); | 
 | 	if (ret <= 0) | 
 | 		return ret ? ret : -EINVAL; | 
 | 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { | 
 | 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" | 
 | 				" descriptor for ep 0x%x does not support streams\n", | 
 | 				ep->desc.bEndpointAddress); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ep_index = xhci_get_endpoint_index(&ep->desc); | 
 | 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; | 
 | 	if (ep_state & EP_HAS_STREAMS || | 
 | 			ep_state & EP_GETTING_STREAMS) { | 
 | 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " | 
 | 				"already has streams set up.\n", | 
 | 				ep->desc.bEndpointAddress); | 
 | 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for " | 
 | 				"dynamic stream context array reallocation.\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { | 
 | 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " | 
 | 				"endpoint 0x%x; URBs are pending.\n", | 
 | 				ep->desc.bEndpointAddress); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, | 
 | 		unsigned int *num_streams, unsigned int *num_stream_ctxs) | 
 | { | 
 | 	unsigned int max_streams; | 
 |  | 
 | 	/* The stream context array size must be a power of two */ | 
 | 	*num_stream_ctxs = roundup_pow_of_two(*num_streams); | 
 | 	/* | 
 | 	 * Find out how many primary stream array entries the host controller | 
 | 	 * supports.  Later we may use secondary stream arrays (similar to 2nd | 
 | 	 * level page entries), but that's an optional feature for xHCI host | 
 | 	 * controllers. xHCs must support at least 4 stream IDs. | 
 | 	 */ | 
 | 	max_streams = HCC_MAX_PSA(xhci->hcc_params); | 
 | 	if (*num_stream_ctxs > max_streams) { | 
 | 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", | 
 | 				max_streams); | 
 | 		*num_stream_ctxs = max_streams; | 
 | 		*num_streams = max_streams; | 
 | 	} | 
 | } | 
 |  | 
 | /* Returns an error code if one of the endpoint already has streams. | 
 |  * This does not change any data structures, it only checks and gathers | 
 |  * information. | 
 |  */ | 
 | static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, | 
 | 		struct usb_device *udev, | 
 | 		struct usb_host_endpoint **eps, unsigned int num_eps, | 
 | 		unsigned int *num_streams, u32 *changed_ep_bitmask) | 
 | { | 
 | 	unsigned int max_streams; | 
 | 	unsigned int endpoint_flag; | 
 | 	int i; | 
 | 	int ret; | 
 |  | 
 | 	for (i = 0; i < num_eps; i++) { | 
 | 		ret = xhci_check_streams_endpoint(xhci, udev, | 
 | 				eps[i], udev->slot_id); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 |  | 
 | 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); | 
 | 		if (max_streams < (*num_streams - 1)) { | 
 | 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", | 
 | 					eps[i]->desc.bEndpointAddress, | 
 | 					max_streams); | 
 | 			*num_streams = max_streams+1; | 
 | 		} | 
 |  | 
 | 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); | 
 | 		if (*changed_ep_bitmask & endpoint_flag) | 
 | 			return -EINVAL; | 
 | 		*changed_ep_bitmask |= endpoint_flag; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, | 
 | 		struct usb_device *udev, | 
 | 		struct usb_host_endpoint **eps, unsigned int num_eps) | 
 | { | 
 | 	u32 changed_ep_bitmask = 0; | 
 | 	unsigned int slot_id; | 
 | 	unsigned int ep_index; | 
 | 	unsigned int ep_state; | 
 | 	int i; | 
 |  | 
 | 	slot_id = udev->slot_id; | 
 | 	if (!xhci->devs[slot_id]) | 
 | 		return 0; | 
 |  | 
 | 	for (i = 0; i < num_eps; i++) { | 
 | 		ep_index = xhci_get_endpoint_index(&eps[i]->desc); | 
 | 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; | 
 | 		/* Are streams already being freed for the endpoint? */ | 
 | 		if (ep_state & EP_GETTING_NO_STREAMS) { | 
 | 			xhci_warn(xhci, "WARN Can't disable streams for " | 
 | 					"endpoint 0x%x, " | 
 | 					"streams are being disabled already\n", | 
 | 					eps[i]->desc.bEndpointAddress); | 
 | 			return 0; | 
 | 		} | 
 | 		/* Are there actually any streams to free? */ | 
 | 		if (!(ep_state & EP_HAS_STREAMS) && | 
 | 				!(ep_state & EP_GETTING_STREAMS)) { | 
 | 			xhci_warn(xhci, "WARN Can't disable streams for " | 
 | 					"endpoint 0x%x, " | 
 | 					"streams are already disabled!\n", | 
 | 					eps[i]->desc.bEndpointAddress); | 
 | 			xhci_warn(xhci, "WARN xhci_free_streams() called " | 
 | 					"with non-streams endpoint\n"); | 
 | 			return 0; | 
 | 		} | 
 | 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); | 
 | 	} | 
 | 	return changed_ep_bitmask; | 
 | } | 
 |  | 
 | /* | 
 |  * The USB device drivers use this function (through the HCD interface in USB | 
 |  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to | 
 |  * coordinate mass storage command queueing across multiple endpoints (basically | 
 |  * a stream ID == a task ID). | 
 |  * | 
 |  * Setting up streams involves allocating the same size stream context array | 
 |  * for each endpoint and issuing a configure endpoint command for all endpoints. | 
 |  * | 
 |  * Don't allow the call to succeed if one endpoint only supports one stream | 
 |  * (which means it doesn't support streams at all). | 
 |  * | 
 |  * Drivers may get less stream IDs than they asked for, if the host controller | 
 |  * hardware or endpoints claim they can't support the number of requested | 
 |  * stream IDs. | 
 |  */ | 
 | static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, | 
 | 		struct usb_host_endpoint **eps, unsigned int num_eps, | 
 | 		unsigned int num_streams, gfp_t mem_flags) | 
 | { | 
 | 	int i, ret; | 
 | 	struct xhci_hcd *xhci; | 
 | 	struct xhci_virt_device *vdev; | 
 | 	struct xhci_command *config_cmd; | 
 | 	struct xhci_input_control_ctx *ctrl_ctx; | 
 | 	unsigned int ep_index; | 
 | 	unsigned int num_stream_ctxs; | 
 | 	unsigned int max_packet; | 
 | 	unsigned long flags; | 
 | 	u32 changed_ep_bitmask = 0; | 
 |  | 
 | 	if (!eps) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Add one to the number of streams requested to account for | 
 | 	 * stream 0 that is reserved for xHCI usage. | 
 | 	 */ | 
 | 	num_streams += 1; | 
 | 	xhci = hcd_to_xhci(hcd); | 
 | 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", | 
 | 			num_streams); | 
 |  | 
 | 	/* MaxPSASize value 0 (2 streams) means streams are not supported */ | 
 | 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) || | 
 | 			HCC_MAX_PSA(xhci->hcc_params) < 4) { | 
 | 		xhci_dbg(xhci, "xHCI controller does not support streams.\n"); | 
 | 		return -ENOSYS; | 
 | 	} | 
 |  | 
 | 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); | 
 | 	if (!config_cmd) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); | 
 | 	if (!ctrl_ctx) { | 
 | 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n", | 
 | 				__func__); | 
 | 		xhci_free_command(xhci, config_cmd); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* Check to make sure all endpoints are not already configured for | 
 | 	 * streams.  While we're at it, find the maximum number of streams that | 
 | 	 * all the endpoints will support and check for duplicate endpoints. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 | 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, | 
 | 			num_eps, &num_streams, &changed_ep_bitmask); | 
 | 	if (ret < 0) { | 
 | 		xhci_free_command(xhci, config_cmd); | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		return ret; | 
 | 	} | 
 | 	if (num_streams <= 1) { | 
 | 		xhci_warn(xhci, "WARN: endpoints can't handle " | 
 | 				"more than one stream.\n"); | 
 | 		xhci_free_command(xhci, config_cmd); | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	vdev = xhci->devs[udev->slot_id]; | 
 | 	/* Mark each endpoint as being in transition, so | 
 | 	 * xhci_urb_enqueue() will reject all URBs. | 
 | 	 */ | 
 | 	for (i = 0; i < num_eps; i++) { | 
 | 		ep_index = xhci_get_endpoint_index(&eps[i]->desc); | 
 | 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 |  | 
 | 	/* Setup internal data structures and allocate HW data structures for | 
 | 	 * streams (but don't install the HW structures in the input context | 
 | 	 * until we're sure all memory allocation succeeded). | 
 | 	 */ | 
 | 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); | 
 | 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", | 
 | 			num_stream_ctxs, num_streams); | 
 |  | 
 | 	for (i = 0; i < num_eps; i++) { | 
 | 		ep_index = xhci_get_endpoint_index(&eps[i]->desc); | 
 | 		max_packet = usb_endpoint_maxp(&eps[i]->desc); | 
 | 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, | 
 | 				num_stream_ctxs, | 
 | 				num_streams, | 
 | 				max_packet, mem_flags); | 
 | 		if (!vdev->eps[ep_index].stream_info) | 
 | 			goto cleanup; | 
 | 		/* Set maxPstreams in endpoint context and update deq ptr to | 
 | 		 * point to stream context array. FIXME | 
 | 		 */ | 
 | 	} | 
 |  | 
 | 	/* Set up the input context for a configure endpoint command. */ | 
 | 	for (i = 0; i < num_eps; i++) { | 
 | 		struct xhci_ep_ctx *ep_ctx; | 
 |  | 
 | 		ep_index = xhci_get_endpoint_index(&eps[i]->desc); | 
 | 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); | 
 |  | 
 | 		xhci_endpoint_copy(xhci, config_cmd->in_ctx, | 
 | 				vdev->out_ctx, ep_index); | 
 | 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, | 
 | 				vdev->eps[ep_index].stream_info); | 
 | 	} | 
 | 	/* Tell the HW to drop its old copy of the endpoint context info | 
 | 	 * and add the updated copy from the input context. | 
 | 	 */ | 
 | 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, | 
 | 			vdev->out_ctx, ctrl_ctx, | 
 | 			changed_ep_bitmask, changed_ep_bitmask); | 
 |  | 
 | 	/* Issue and wait for the configure endpoint command */ | 
 | 	ret = xhci_configure_endpoint(xhci, udev, config_cmd, | 
 | 			false, false); | 
 |  | 
 | 	/* xHC rejected the configure endpoint command for some reason, so we | 
 | 	 * leave the old ring intact and free our internal streams data | 
 | 	 * structure. | 
 | 	 */ | 
 | 	if (ret < 0) | 
 | 		goto cleanup; | 
 |  | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 | 	for (i = 0; i < num_eps; i++) { | 
 | 		ep_index = xhci_get_endpoint_index(&eps[i]->desc); | 
 | 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; | 
 | 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", | 
 | 			 udev->slot_id, ep_index); | 
 | 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; | 
 | 	} | 
 | 	xhci_free_command(xhci, config_cmd); | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 |  | 
 | 	for (i = 0; i < num_eps; i++) { | 
 | 		ep_index = xhci_get_endpoint_index(&eps[i]->desc); | 
 | 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index); | 
 | 	} | 
 | 	/* Subtract 1 for stream 0, which drivers can't use */ | 
 | 	return num_streams - 1; | 
 |  | 
 | cleanup: | 
 | 	/* If it didn't work, free the streams! */ | 
 | 	for (i = 0; i < num_eps; i++) { | 
 | 		ep_index = xhci_get_endpoint_index(&eps[i]->desc); | 
 | 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); | 
 | 		vdev->eps[ep_index].stream_info = NULL; | 
 | 		/* FIXME Unset maxPstreams in endpoint context and | 
 | 		 * update deq ptr to point to normal string ring. | 
 | 		 */ | 
 | 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; | 
 | 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; | 
 | 		xhci_endpoint_zero(xhci, vdev, eps[i]); | 
 | 	} | 
 | 	xhci_free_command(xhci, config_cmd); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | /* Transition the endpoint from using streams to being a "normal" endpoint | 
 |  * without streams. | 
 |  * | 
 |  * Modify the endpoint context state, submit a configure endpoint command, | 
 |  * and free all endpoint rings for streams if that completes successfully. | 
 |  */ | 
 | static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, | 
 | 		struct usb_host_endpoint **eps, unsigned int num_eps, | 
 | 		gfp_t mem_flags) | 
 | { | 
 | 	int i, ret; | 
 | 	struct xhci_hcd *xhci; | 
 | 	struct xhci_virt_device *vdev; | 
 | 	struct xhci_command *command; | 
 | 	struct xhci_input_control_ctx *ctrl_ctx; | 
 | 	unsigned int ep_index; | 
 | 	unsigned long flags; | 
 | 	u32 changed_ep_bitmask; | 
 |  | 
 | 	xhci = hcd_to_xhci(hcd); | 
 | 	vdev = xhci->devs[udev->slot_id]; | 
 |  | 
 | 	/* Set up a configure endpoint command to remove the streams rings */ | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 | 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, | 
 | 			udev, eps, num_eps); | 
 | 	if (changed_ep_bitmask == 0) { | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Use the xhci_command structure from the first endpoint.  We may have | 
 | 	 * allocated too many, but the driver may call xhci_free_streams() for | 
 | 	 * each endpoint it grouped into one call to xhci_alloc_streams(). | 
 | 	 */ | 
 | 	ep_index = xhci_get_endpoint_index(&eps[0]->desc); | 
 | 	command = vdev->eps[ep_index].stream_info->free_streams_command; | 
 | 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); | 
 | 	if (!ctrl_ctx) { | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n", | 
 | 				__func__); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < num_eps; i++) { | 
 | 		struct xhci_ep_ctx *ep_ctx; | 
 |  | 
 | 		ep_index = xhci_get_endpoint_index(&eps[i]->desc); | 
 | 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); | 
 | 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= | 
 | 			EP_GETTING_NO_STREAMS; | 
 |  | 
 | 		xhci_endpoint_copy(xhci, command->in_ctx, | 
 | 				vdev->out_ctx, ep_index); | 
 | 		xhci_setup_no_streams_ep_input_ctx(ep_ctx, | 
 | 				&vdev->eps[ep_index]); | 
 | 	} | 
 | 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, | 
 | 			vdev->out_ctx, ctrl_ctx, | 
 | 			changed_ep_bitmask, changed_ep_bitmask); | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 |  | 
 | 	/* Issue and wait for the configure endpoint command, | 
 | 	 * which must succeed. | 
 | 	 */ | 
 | 	ret = xhci_configure_endpoint(xhci, udev, command, | 
 | 			false, true); | 
 |  | 
 | 	/* xHC rejected the configure endpoint command for some reason, so we | 
 | 	 * leave the streams rings intact. | 
 | 	 */ | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 | 	for (i = 0; i < num_eps; i++) { | 
 | 		ep_index = xhci_get_endpoint_index(&eps[i]->desc); | 
 | 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); | 
 | 		vdev->eps[ep_index].stream_info = NULL; | 
 | 		/* FIXME Unset maxPstreams in endpoint context and | 
 | 		 * update deq ptr to point to normal string ring. | 
 | 		 */ | 
 | 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; | 
 | 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Deletes endpoint resources for endpoints that were active before a Reset | 
 |  * Device command, or a Disable Slot command.  The Reset Device command leaves | 
 |  * the control endpoint intact, whereas the Disable Slot command deletes it. | 
 |  * | 
 |  * Must be called with xhci->lock held. | 
 |  */ | 
 | void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, | 
 | 	struct xhci_virt_device *virt_dev, bool drop_control_ep) | 
 | { | 
 | 	int i; | 
 | 	unsigned int num_dropped_eps = 0; | 
 | 	unsigned int drop_flags = 0; | 
 |  | 
 | 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { | 
 | 		if (virt_dev->eps[i].ring) { | 
 | 			drop_flags |= 1 << i; | 
 | 			num_dropped_eps++; | 
 | 		} | 
 | 	} | 
 | 	xhci->num_active_eps -= num_dropped_eps; | 
 | 	if (num_dropped_eps) | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, | 
 | 				"Dropped %u ep ctxs, flags = 0x%x, " | 
 | 				"%u now active.", | 
 | 				num_dropped_eps, drop_flags, | 
 | 				xhci->num_active_eps); | 
 | } | 
 |  | 
 | /* | 
 |  * This submits a Reset Device Command, which will set the device state to 0, | 
 |  * set the device address to 0, and disable all the endpoints except the default | 
 |  * control endpoint.  The USB core should come back and call | 
 |  * xhci_address_device(), and then re-set up the configuration.  If this is | 
 |  * called because of a usb_reset_and_verify_device(), then the old alternate | 
 |  * settings will be re-installed through the normal bandwidth allocation | 
 |  * functions. | 
 |  * | 
 |  * Wait for the Reset Device command to finish.  Remove all structures | 
 |  * associated with the endpoints that were disabled.  Clear the input device | 
 |  * structure? Reset the control endpoint 0 max packet size? | 
 |  * | 
 |  * If the virt_dev to be reset does not exist or does not match the udev, | 
 |  * it means the device is lost, possibly due to the xHC restore error and | 
 |  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to | 
 |  * re-allocate the device. | 
 |  */ | 
 | static int xhci_discover_or_reset_device(struct usb_hcd *hcd, | 
 | 		struct usb_device *udev) | 
 | { | 
 | 	int ret, i; | 
 | 	unsigned long flags; | 
 | 	struct xhci_hcd *xhci; | 
 | 	unsigned int slot_id; | 
 | 	struct xhci_virt_device *virt_dev; | 
 | 	struct xhci_command *reset_device_cmd; | 
 | 	struct xhci_slot_ctx *slot_ctx; | 
 | 	int old_active_eps = 0; | 
 |  | 
 | 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); | 
 | 	if (ret <= 0) | 
 | 		return ret; | 
 | 	xhci = hcd_to_xhci(hcd); | 
 | 	slot_id = udev->slot_id; | 
 | 	virt_dev = xhci->devs[slot_id]; | 
 | 	if (!virt_dev) { | 
 | 		xhci_dbg(xhci, "The device to be reset with slot ID %u does " | 
 | 				"not exist. Re-allocate the device\n", slot_id); | 
 | 		ret = xhci_alloc_dev(hcd, udev); | 
 | 		if (ret == 1) | 
 | 			return 0; | 
 | 		else | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (virt_dev->tt_info) | 
 | 		old_active_eps = virt_dev->tt_info->active_eps; | 
 |  | 
 | 	if (virt_dev->udev != udev) { | 
 | 		/* If the virt_dev and the udev does not match, this virt_dev | 
 | 		 * may belong to another udev. | 
 | 		 * Re-allocate the device. | 
 | 		 */ | 
 | 		xhci_dbg(xhci, "The device to be reset with slot ID %u does " | 
 | 				"not match the udev. Re-allocate the device\n", | 
 | 				slot_id); | 
 | 		ret = xhci_alloc_dev(hcd, udev); | 
 | 		if (ret == 1) | 
 | 			return 0; | 
 | 		else | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* If device is not setup, there is no point in resetting it */ | 
 | 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); | 
 | 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == | 
 | 						SLOT_STATE_DISABLED) | 
 | 		return 0; | 
 |  | 
 | 	trace_xhci_discover_or_reset_device(slot_ctx); | 
 |  | 
 | 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); | 
 | 	/* Allocate the command structure that holds the struct completion. | 
 | 	 * Assume we're in process context, since the normal device reset | 
 | 	 * process has to wait for the device anyway.  Storage devices are | 
 | 	 * reset as part of error handling, so use GFP_NOIO instead of | 
 | 	 * GFP_KERNEL. | 
 | 	 */ | 
 | 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); | 
 | 	if (!reset_device_cmd) { | 
 | 		xhci_dbg(xhci, "Couldn't allocate command structure.\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* Attempt to submit the Reset Device command to the command ring */ | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 |  | 
 | 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); | 
 | 	if (ret) { | 
 | 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		goto command_cleanup; | 
 | 	} | 
 | 	xhci_ring_cmd_db(xhci); | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 |  | 
 | 	/* Wait for the Reset Device command to finish */ | 
 | 	wait_for_completion(reset_device_cmd->completion); | 
 |  | 
 | 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec, | 
 | 	 * unless we tried to reset a slot ID that wasn't enabled, | 
 | 	 * or the device wasn't in the addressed or configured state. | 
 | 	 */ | 
 | 	ret = reset_device_cmd->status; | 
 | 	switch (ret) { | 
 | 	case COMP_COMMAND_ABORTED: | 
 | 	case COMP_COMMAND_RING_STOPPED: | 
 | 		xhci_warn(xhci, "Timeout waiting for reset device command\n"); | 
 | 		ret = -ETIME; | 
 | 		goto command_cleanup; | 
 | 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ | 
 | 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ | 
 | 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", | 
 | 				slot_id, | 
 | 				xhci_get_slot_state(xhci, virt_dev->out_ctx)); | 
 | 		xhci_dbg(xhci, "Not freeing device rings.\n"); | 
 | 		/* Don't treat this as an error.  May change my mind later. */ | 
 | 		ret = 0; | 
 | 		goto command_cleanup; | 
 | 	case COMP_SUCCESS: | 
 | 		xhci_dbg(xhci, "Successful reset device command.\n"); | 
 | 		break; | 
 | 	default: | 
 | 		if (xhci_is_vendor_info_code(xhci, ret)) | 
 | 			break; | 
 | 		xhci_warn(xhci, "Unknown completion code %u for " | 
 | 				"reset device command.\n", ret); | 
 | 		ret = -EINVAL; | 
 | 		goto command_cleanup; | 
 | 	} | 
 |  | 
 | 	/* Free up host controller endpoint resources */ | 
 | 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { | 
 | 		spin_lock_irqsave(&xhci->lock, flags); | 
 | 		/* Don't delete the default control endpoint resources */ | 
 | 		xhci_free_device_endpoint_resources(xhci, virt_dev, false); | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 	} | 
 |  | 
 | 	/* Everything but endpoint 0 is disabled, so free the rings. */ | 
 | 	for (i = 1; i < 31; i++) { | 
 | 		struct xhci_virt_ep *ep = &virt_dev->eps[i]; | 
 |  | 
 | 		if (ep->ep_state & EP_HAS_STREAMS) { | 
 | 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", | 
 | 					xhci_get_endpoint_address(i)); | 
 | 			xhci_free_stream_info(xhci, ep->stream_info); | 
 | 			ep->stream_info = NULL; | 
 | 			ep->ep_state &= ~EP_HAS_STREAMS; | 
 | 		} | 
 |  | 
 | 		if (ep->ring) { | 
 | 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i); | 
 | 			xhci_free_endpoint_ring(xhci, virt_dev, i); | 
 | 		} | 
 | 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) | 
 | 			xhci_drop_ep_from_interval_table(xhci, | 
 | 					&virt_dev->eps[i].bw_info, | 
 | 					virt_dev->bw_table, | 
 | 					udev, | 
 | 					&virt_dev->eps[i], | 
 | 					virt_dev->tt_info); | 
 | 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); | 
 | 	} | 
 | 	/* If necessary, update the number of active TTs on this root port */ | 
 | 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); | 
 | 	virt_dev->flags = 0; | 
 | 	ret = 0; | 
 |  | 
 | command_cleanup: | 
 | 	xhci_free_command(xhci, reset_device_cmd); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * At this point, the struct usb_device is about to go away, the device has | 
 |  * disconnected, and all traffic has been stopped and the endpoints have been | 
 |  * disabled.  Free any HC data structures associated with that device. | 
 |  */ | 
 | static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) | 
 | { | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 | 	struct xhci_virt_device *virt_dev; | 
 | 	struct xhci_slot_ctx *slot_ctx; | 
 | 	unsigned long flags; | 
 | 	int i, ret; | 
 |  | 
 | 	/* | 
 | 	 * We called pm_runtime_get_noresume when the device was attached. | 
 | 	 * Decrement the counter here to allow controller to runtime suspend | 
 | 	 * if no devices remain. | 
 | 	 */ | 
 | 	if (xhci->quirks & XHCI_RESET_ON_RESUME) | 
 | 		pm_runtime_put_noidle(hcd->self.controller); | 
 |  | 
 | 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); | 
 | 	/* If the host is halted due to driver unload, we still need to free the | 
 | 	 * device. | 
 | 	 */ | 
 | 	if (ret <= 0 && ret != -ENODEV) | 
 | 		return; | 
 |  | 
 | 	virt_dev = xhci->devs[udev->slot_id]; | 
 | 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); | 
 | 	trace_xhci_free_dev(slot_ctx); | 
 |  | 
 | 	/* Stop any wayward timer functions (which may grab the lock) */ | 
 | 	for (i = 0; i < 31; i++) { | 
 | 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; | 
 | 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); | 
 | 	} | 
 | 	virt_dev->udev = NULL; | 
 | 	xhci_disable_slot(xhci, udev->slot_id); | 
 |  | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 | 	xhci_free_virt_device(xhci, udev->slot_id); | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 |  | 
 | } | 
 |  | 
 | int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) | 
 | { | 
 | 	struct xhci_command *command; | 
 | 	unsigned long flags; | 
 | 	u32 state; | 
 | 	int ret = 0; | 
 |  | 
 | 	command = xhci_alloc_command(xhci, true, GFP_KERNEL); | 
 | 	if (!command) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	xhci_debugfs_remove_slot(xhci, slot_id); | 
 |  | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 | 	/* Don't disable the slot if the host controller is dead. */ | 
 | 	state = readl(&xhci->op_regs->status); | 
 | 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || | 
 | 			(xhci->xhc_state & XHCI_STATE_HALTED)) { | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		kfree(command); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, | 
 | 				slot_id); | 
 | 	if (ret) { | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		kfree(command); | 
 | 		return ret; | 
 | 	} | 
 | 	xhci_ring_cmd_db(xhci); | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 |  | 
 | 	wait_for_completion(command->completion); | 
 |  | 
 | 	if (command->status != COMP_SUCCESS) | 
 | 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", | 
 | 			  slot_id, command->status); | 
 |  | 
 | 	xhci_free_command(xhci, command); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Checks if we have enough host controller resources for the default control | 
 |  * endpoint. | 
 |  * | 
 |  * Must be called with xhci->lock held. | 
 |  */ | 
 | static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) | 
 | { | 
 | 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, | 
 | 				"Not enough ep ctxs: " | 
 | 				"%u active, need to add 1, limit is %u.", | 
 | 				xhci->num_active_eps, xhci->limit_active_eps); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	xhci->num_active_eps += 1; | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, | 
 | 			"Adding 1 ep ctx, %u now active.", | 
 | 			xhci->num_active_eps); | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Returns 0 if the xHC ran out of device slots, the Enable Slot command | 
 |  * timed out, or allocating memory failed.  Returns 1 on success. | 
 |  */ | 
 | int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) | 
 | { | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 | 	struct xhci_virt_device *vdev; | 
 | 	struct xhci_slot_ctx *slot_ctx; | 
 | 	unsigned long flags; | 
 | 	int ret, slot_id; | 
 | 	struct xhci_command *command; | 
 |  | 
 | 	command = xhci_alloc_command(xhci, true, GFP_KERNEL); | 
 | 	if (!command) | 
 | 		return 0; | 
 |  | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 | 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); | 
 | 	if (ret) { | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); | 
 | 		xhci_free_command(xhci, command); | 
 | 		return 0; | 
 | 	} | 
 | 	xhci_ring_cmd_db(xhci); | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 |  | 
 | 	wait_for_completion(command->completion); | 
 | 	slot_id = command->slot_id; | 
 |  | 
 | 	if (!slot_id || command->status != COMP_SUCCESS) { | 
 | 		xhci_err(xhci, "Error while assigning device slot ID\n"); | 
 | 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", | 
 | 				HCS_MAX_SLOTS( | 
 | 					readl(&xhci->cap_regs->hcs_params1))); | 
 | 		xhci_free_command(xhci, command); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	xhci_free_command(xhci, command); | 
 |  | 
 | 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { | 
 | 		spin_lock_irqsave(&xhci->lock, flags); | 
 | 		ret = xhci_reserve_host_control_ep_resources(xhci); | 
 | 		if (ret) { | 
 | 			spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 			xhci_warn(xhci, "Not enough host resources, " | 
 | 					"active endpoint contexts = %u\n", | 
 | 					xhci->num_active_eps); | 
 | 			goto disable_slot; | 
 | 		} | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 	} | 
 | 	/* Use GFP_NOIO, since this function can be called from | 
 | 	 * xhci_discover_or_reset_device(), which may be called as part of | 
 | 	 * mass storage driver error handling. | 
 | 	 */ | 
 | 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { | 
 | 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); | 
 | 		goto disable_slot; | 
 | 	} | 
 | 	vdev = xhci->devs[slot_id]; | 
 | 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); | 
 | 	trace_xhci_alloc_dev(slot_ctx); | 
 |  | 
 | 	udev->slot_id = slot_id; | 
 |  | 
 | 	xhci_debugfs_create_slot(xhci, slot_id); | 
 |  | 
 | 	/* | 
 | 	 * If resetting upon resume, we can't put the controller into runtime | 
 | 	 * suspend if there is a device attached. | 
 | 	 */ | 
 | 	if (xhci->quirks & XHCI_RESET_ON_RESUME) | 
 | 		pm_runtime_get_noresume(hcd->self.controller); | 
 |  | 
 | 	/* Is this a LS or FS device under a HS hub? */ | 
 | 	/* Hub or peripherial? */ | 
 | 	return 1; | 
 |  | 
 | disable_slot: | 
 | 	xhci_disable_slot(xhci, udev->slot_id); | 
 | 	xhci_free_virt_device(xhci, udev->slot_id); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Issue an Address Device command and optionally send a corresponding | 
 |  * SetAddress request to the device. | 
 |  */ | 
 | static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, | 
 | 			     enum xhci_setup_dev setup) | 
 | { | 
 | 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; | 
 | 	unsigned long flags; | 
 | 	struct xhci_virt_device *virt_dev; | 
 | 	int ret = 0; | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 | 	struct xhci_slot_ctx *slot_ctx; | 
 | 	struct xhci_input_control_ctx *ctrl_ctx; | 
 | 	u64 temp_64; | 
 | 	struct xhci_command *command = NULL; | 
 |  | 
 | 	mutex_lock(&xhci->mutex); | 
 |  | 
 | 	if (xhci->xhc_state) {	/* dying, removing or halted */ | 
 | 		ret = -ESHUTDOWN; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!udev->slot_id) { | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_address, | 
 | 				"Bad Slot ID %d", udev->slot_id); | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	virt_dev = xhci->devs[udev->slot_id]; | 
 |  | 
 | 	if (WARN_ON(!virt_dev)) { | 
 | 		/* | 
 | 		 * In plug/unplug torture test with an NEC controller, | 
 | 		 * a zero-dereference was observed once due to virt_dev = 0. | 
 | 		 * Print useful debug rather than crash if it is observed again! | 
 | 		 */ | 
 | 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", | 
 | 			udev->slot_id); | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 | 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); | 
 | 	trace_xhci_setup_device_slot(slot_ctx); | 
 |  | 
 | 	if (setup == SETUP_CONTEXT_ONLY) { | 
 | 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == | 
 | 		    SLOT_STATE_DEFAULT) { | 
 | 			xhci_dbg(xhci, "Slot already in default state\n"); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	command = xhci_alloc_command(xhci, true, GFP_KERNEL); | 
 | 	if (!command) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	command->in_ctx = virt_dev->in_ctx; | 
 |  | 
 | 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); | 
 | 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); | 
 | 	if (!ctrl_ctx) { | 
 | 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n", | 
 | 				__func__); | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 | 	/* | 
 | 	 * If this is the first Set Address since device plug-in or | 
 | 	 * virt_device realloaction after a resume with an xHCI power loss, | 
 | 	 * then set up the slot context. | 
 | 	 */ | 
 | 	if (!slot_ctx->dev_info) | 
 | 		xhci_setup_addressable_virt_dev(xhci, udev); | 
 | 	/* Otherwise, update the control endpoint ring enqueue pointer. */ | 
 | 	else | 
 | 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); | 
 | 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); | 
 | 	ctrl_ctx->drop_flags = 0; | 
 |  | 
 | 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx, | 
 | 				le32_to_cpu(slot_ctx->dev_info) >> 27); | 
 |  | 
 | 	trace_xhci_address_ctrl_ctx(ctrl_ctx); | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 | 	trace_xhci_setup_device(virt_dev); | 
 | 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, | 
 | 					udev->slot_id, setup); | 
 | 	if (ret) { | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_address, | 
 | 				"FIXME: allocate a command ring segment"); | 
 | 		goto out; | 
 | 	} | 
 | 	xhci_ring_cmd_db(xhci); | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 |  | 
 | 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ | 
 | 	wait_for_completion(command->completion); | 
 |  | 
 | 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing | 
 | 	 * the SetAddress() "recovery interval" required by USB and aborting the | 
 | 	 * command on a timeout. | 
 | 	 */ | 
 | 	switch (command->status) { | 
 | 	case COMP_COMMAND_ABORTED: | 
 | 	case COMP_COMMAND_RING_STOPPED: | 
 | 		xhci_warn(xhci, "Timeout while waiting for setup device command\n"); | 
 | 		ret = -ETIME; | 
 | 		break; | 
 | 	case COMP_CONTEXT_STATE_ERROR: | 
 | 	case COMP_SLOT_NOT_ENABLED_ERROR: | 
 | 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", | 
 | 			 act, udev->slot_id); | 
 | 		ret = -EINVAL; | 
 | 		break; | 
 | 	case COMP_USB_TRANSACTION_ERROR: | 
 | 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); | 
 |  | 
 | 		mutex_unlock(&xhci->mutex); | 
 | 		ret = xhci_disable_slot(xhci, udev->slot_id); | 
 | 		xhci_free_virt_device(xhci, udev->slot_id); | 
 | 		if (!ret) | 
 | 			xhci_alloc_dev(hcd, udev); | 
 | 		kfree(command->completion); | 
 | 		kfree(command); | 
 | 		return -EPROTO; | 
 | 	case COMP_INCOMPATIBLE_DEVICE_ERROR: | 
 | 		dev_warn(&udev->dev, | 
 | 			 "ERROR: Incompatible device for setup %s command\n", act); | 
 | 		ret = -ENODEV; | 
 | 		break; | 
 | 	case COMP_SUCCESS: | 
 | 		xhci_dbg_trace(xhci, trace_xhci_dbg_address, | 
 | 			       "Successful setup %s command", act); | 
 | 		break; | 
 | 	default: | 
 | 		xhci_err(xhci, | 
 | 			 "ERROR: unexpected setup %s command completion code 0x%x.\n", | 
 | 			 act, command->status); | 
 | 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); | 
 | 		ret = -EINVAL; | 
 | 		break; | 
 | 	} | 
 | 	if (ret) | 
 | 		goto out; | 
 | 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_address, | 
 | 			"Op regs DCBAA ptr = %#016llx", temp_64); | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_address, | 
 | 		"Slot ID %d dcbaa entry @%p = %#016llx", | 
 | 		udev->slot_id, | 
 | 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id], | 
 | 		(unsigned long long) | 
 | 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_address, | 
 | 			"Output Context DMA address = %#08llx", | 
 | 			(unsigned long long)virt_dev->out_ctx->dma); | 
 | 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx, | 
 | 				le32_to_cpu(slot_ctx->dev_info) >> 27); | 
 | 	/* | 
 | 	 * USB core uses address 1 for the roothubs, so we add one to the | 
 | 	 * address given back to us by the HC. | 
 | 	 */ | 
 | 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx, | 
 | 				le32_to_cpu(slot_ctx->dev_info) >> 27); | 
 | 	/* Zero the input context control for later use */ | 
 | 	ctrl_ctx->add_flags = 0; | 
 | 	ctrl_ctx->drop_flags = 0; | 
 | 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); | 
 | 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); | 
 |  | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_address, | 
 | 		       "Internal device address = %d", | 
 | 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); | 
 | out: | 
 | 	mutex_unlock(&xhci->mutex); | 
 | 	if (command) { | 
 | 		kfree(command->completion); | 
 | 		kfree(command); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) | 
 | { | 
 | 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); | 
 | } | 
 |  | 
 | static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) | 
 | { | 
 | 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); | 
 | } | 
 |  | 
 | /* | 
 |  * Transfer the port index into real index in the HW port status | 
 |  * registers. Caculate offset between the port's PORTSC register | 
 |  * and port status base. Divide the number of per port register | 
 |  * to get the real index. The raw port number bases 1. | 
 |  */ | 
 | int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) | 
 | { | 
 | 	struct xhci_hub *rhub; | 
 |  | 
 | 	rhub = xhci_get_rhub(hcd); | 
 | 	return rhub->ports[port1 - 1]->hw_portnum + 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Issue an Evaluate Context command to change the Maximum Exit Latency in the | 
 |  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device. | 
 |  */ | 
 | static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, | 
 | 			struct usb_device *udev, u16 max_exit_latency) | 
 | { | 
 | 	struct xhci_virt_device *virt_dev; | 
 | 	struct xhci_command *command; | 
 | 	struct xhci_input_control_ctx *ctrl_ctx; | 
 | 	struct xhci_slot_ctx *slot_ctx; | 
 | 	unsigned long flags; | 
 | 	int ret; | 
 |  | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 |  | 
 | 	virt_dev = xhci->devs[udev->slot_id]; | 
 |  | 
 | 	/* | 
 | 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and | 
 | 	 * xHC was re-initialized. Exit latency will be set later after | 
 | 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated | 
 | 	 */ | 
 |  | 
 | 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) { | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Attempt to issue an Evaluate Context command to change the MEL. */ | 
 | 	command = xhci->lpm_command; | 
 | 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); | 
 | 	if (!ctrl_ctx) { | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n", | 
 | 				__func__); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 |  | 
 | 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); | 
 | 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); | 
 | 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); | 
 | 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); | 
 | 	slot_ctx->dev_state = 0; | 
 |  | 
 | 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, | 
 | 			"Set up evaluate context for LPM MEL change."); | 
 |  | 
 | 	/* Issue and wait for the evaluate context command. */ | 
 | 	ret = xhci_configure_endpoint(xhci, udev, command, | 
 | 			true, true); | 
 |  | 
 | 	if (!ret) { | 
 | 		spin_lock_irqsave(&xhci->lock, flags); | 
 | 		virt_dev->current_mel = max_exit_latency; | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PM | 
 |  | 
 | /* BESL to HIRD Encoding array for USB2 LPM */ | 
 | static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, | 
 | 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; | 
 |  | 
 | /* Calculate HIRD/BESL for USB2 PORTPMSC*/ | 
 | static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, | 
 | 					struct usb_device *udev) | 
 | { | 
 | 	int u2del, besl, besl_host; | 
 | 	int besl_device = 0; | 
 | 	u32 field; | 
 |  | 
 | 	u2del = HCS_U2_LATENCY(xhci->hcs_params3); | 
 | 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); | 
 |  | 
 | 	if (field & USB_BESL_SUPPORT) { | 
 | 		for (besl_host = 0; besl_host < 16; besl_host++) { | 
 | 			if (xhci_besl_encoding[besl_host] >= u2del) | 
 | 				break; | 
 | 		} | 
 | 		/* Use baseline BESL value as default */ | 
 | 		if (field & USB_BESL_BASELINE_VALID) | 
 | 			besl_device = USB_GET_BESL_BASELINE(field); | 
 | 		else if (field & USB_BESL_DEEP_VALID) | 
 | 			besl_device = USB_GET_BESL_DEEP(field); | 
 | 	} else { | 
 | 		if (u2del <= 50) | 
 | 			besl_host = 0; | 
 | 		else | 
 | 			besl_host = (u2del - 51) / 75 + 1; | 
 | 	} | 
 |  | 
 | 	besl = besl_host + besl_device; | 
 | 	if (besl > 15) | 
 | 		besl = 15; | 
 |  | 
 | 	return besl; | 
 | } | 
 |  | 
 | /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ | 
 | static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) | 
 | { | 
 | 	u32 field; | 
 | 	int l1; | 
 | 	int besld = 0; | 
 | 	int hirdm = 0; | 
 |  | 
 | 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); | 
 |  | 
 | 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ | 
 | 	l1 = udev->l1_params.timeout / 256; | 
 |  | 
 | 	/* device has preferred BESLD */ | 
 | 	if (field & USB_BESL_DEEP_VALID) { | 
 | 		besld = USB_GET_BESL_DEEP(field); | 
 | 		hirdm = 1; | 
 | 	} | 
 |  | 
 | 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); | 
 | } | 
 |  | 
 | static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, | 
 | 			struct usb_device *udev, int enable) | 
 | { | 
 | 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd); | 
 | 	struct xhci_port **ports; | 
 | 	__le32 __iomem	*pm_addr, *hlpm_addr; | 
 | 	u32		pm_val, hlpm_val, field; | 
 | 	unsigned int	port_num; | 
 | 	unsigned long	flags; | 
 | 	int		hird, exit_latency; | 
 | 	int		ret; | 
 |  | 
 | 	if (xhci->quirks & XHCI_HW_LPM_DISABLE) | 
 | 		return -EPERM; | 
 |  | 
 | 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || | 
 | 			!udev->lpm_capable) | 
 | 		return -EPERM; | 
 |  | 
 | 	if (!udev->parent || udev->parent->parent || | 
 | 			udev->descriptor.bDeviceClass == USB_CLASS_HUB) | 
 | 		return -EPERM; | 
 |  | 
 | 	if (udev->usb2_hw_lpm_capable != 1) | 
 | 		return -EPERM; | 
 |  | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 |  | 
 | 	ports = xhci->usb2_rhub.ports; | 
 | 	port_num = udev->portnum - 1; | 
 | 	pm_addr = ports[port_num]->addr + PORTPMSC; | 
 | 	pm_val = readl(pm_addr); | 
 | 	hlpm_addr = ports[port_num]->addr + PORTHLPMC; | 
 |  | 
 | 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", | 
 | 			enable ? "enable" : "disable", port_num + 1); | 
 |  | 
 | 	if (enable) { | 
 | 		/* Host supports BESL timeout instead of HIRD */ | 
 | 		if (udev->usb2_hw_lpm_besl_capable) { | 
 | 			/* if device doesn't have a preferred BESL value use a | 
 | 			 * default one which works with mixed HIRD and BESL | 
 | 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h | 
 | 			 */ | 
 | 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); | 
 | 			if ((field & USB_BESL_SUPPORT) && | 
 | 			    (field & USB_BESL_BASELINE_VALID)) | 
 | 				hird = USB_GET_BESL_BASELINE(field); | 
 | 			else | 
 | 				hird = udev->l1_params.besl; | 
 |  | 
 | 			exit_latency = xhci_besl_encoding[hird]; | 
 | 			spin_unlock_irqrestore(&xhci->lock, flags); | 
 |  | 
 | 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx | 
 | 			 * input context for link powermanagement evaluate | 
 | 			 * context commands. It is protected by hcd->bandwidth | 
 | 			 * mutex and is shared by all devices. We need to set | 
 | 			 * the max ext latency in USB 2 BESL LPM as well, so | 
 | 			 * use the same mutex and xhci_change_max_exit_latency() | 
 | 			 */ | 
 | 			mutex_lock(hcd->bandwidth_mutex); | 
 | 			ret = xhci_change_max_exit_latency(xhci, udev, | 
 | 							   exit_latency); | 
 | 			mutex_unlock(hcd->bandwidth_mutex); | 
 |  | 
 | 			if (ret < 0) | 
 | 				return ret; | 
 | 			spin_lock_irqsave(&xhci->lock, flags); | 
 |  | 
 | 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); | 
 | 			writel(hlpm_val, hlpm_addr); | 
 | 			/* flush write */ | 
 | 			readl(hlpm_addr); | 
 | 		} else { | 
 | 			hird = xhci_calculate_hird_besl(xhci, udev); | 
 | 		} | 
 |  | 
 | 		pm_val &= ~PORT_HIRD_MASK; | 
 | 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); | 
 | 		writel(pm_val, pm_addr); | 
 | 		pm_val = readl(pm_addr); | 
 | 		pm_val |= PORT_HLE; | 
 | 		writel(pm_val, pm_addr); | 
 | 		/* flush write */ | 
 | 		readl(pm_addr); | 
 | 	} else { | 
 | 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); | 
 | 		writel(pm_val, pm_addr); | 
 | 		/* flush write */ | 
 | 		readl(pm_addr); | 
 | 		if (udev->usb2_hw_lpm_besl_capable) { | 
 | 			spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 			mutex_lock(hcd->bandwidth_mutex); | 
 | 			xhci_change_max_exit_latency(xhci, udev, 0); | 
 | 			mutex_unlock(hcd->bandwidth_mutex); | 
 | 			readl_poll_timeout(ports[port_num]->addr, pm_val, | 
 | 					   (pm_val & PORT_PLS_MASK) == XDEV_U0, | 
 | 					   100, 10000); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* check if a usb2 port supports a given extened capability protocol | 
 |  * only USB2 ports extended protocol capability values are cached. | 
 |  * Return 1 if capability is supported | 
 |  */ | 
 | static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, | 
 | 					   unsigned capability) | 
 | { | 
 | 	u32 port_offset, port_count; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < xhci->num_ext_caps; i++) { | 
 | 		if (xhci->ext_caps[i] & capability) { | 
 | 			/* port offsets starts at 1 */ | 
 | 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; | 
 | 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); | 
 | 			if (port >= port_offset && | 
 | 			    port < port_offset + port_count) | 
 | 				return 1; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) | 
 | { | 
 | 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd); | 
 | 	int		portnum = udev->portnum - 1; | 
 |  | 
 | 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) | 
 | 		return 0; | 
 |  | 
 | 	/* we only support lpm for non-hub device connected to root hub yet */ | 
 | 	if (!udev->parent || udev->parent->parent || | 
 | 			udev->descriptor.bDeviceClass == USB_CLASS_HUB) | 
 | 		return 0; | 
 |  | 
 | 	if (xhci->hw_lpm_support == 1 && | 
 | 			xhci_check_usb2_port_capability( | 
 | 				xhci, portnum, XHCI_HLC)) { | 
 | 		udev->usb2_hw_lpm_capable = 1; | 
 | 		udev->l1_params.timeout = XHCI_L1_TIMEOUT; | 
 | 		udev->l1_params.besl = XHCI_DEFAULT_BESL; | 
 | 		if (xhci_check_usb2_port_capability(xhci, portnum, | 
 | 					XHCI_BLC)) | 
 | 			udev->usb2_hw_lpm_besl_capable = 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /*---------------------- USB 3.0 Link PM functions ------------------------*/ | 
 |  | 
 | /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ | 
 | static unsigned long long xhci_service_interval_to_ns( | 
 | 		struct usb_endpoint_descriptor *desc) | 
 | { | 
 | 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000; | 
 | } | 
 |  | 
 | static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, | 
 | 		enum usb3_link_state state) | 
 | { | 
 | 	unsigned long long sel; | 
 | 	unsigned long long pel; | 
 | 	unsigned int max_sel_pel; | 
 | 	char *state_name; | 
 |  | 
 | 	switch (state) { | 
 | 	case USB3_LPM_U1: | 
 | 		/* Convert SEL and PEL stored in nanoseconds to microseconds */ | 
 | 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); | 
 | 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); | 
 | 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; | 
 | 		state_name = "U1"; | 
 | 		break; | 
 | 	case USB3_LPM_U2: | 
 | 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); | 
 | 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); | 
 | 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; | 
 | 		state_name = "U2"; | 
 | 		break; | 
 | 	default: | 
 | 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", | 
 | 				__func__); | 
 | 		return USB3_LPM_DISABLED; | 
 | 	} | 
 |  | 
 | 	if (sel <= max_sel_pel && pel <= max_sel_pel) | 
 | 		return USB3_LPM_DEVICE_INITIATED; | 
 |  | 
 | 	if (sel > max_sel_pel) | 
 | 		dev_dbg(&udev->dev, "Device-initiated %s disabled " | 
 | 				"due to long SEL %llu ms\n", | 
 | 				state_name, sel); | 
 | 	else | 
 | 		dev_dbg(&udev->dev, "Device-initiated %s disabled " | 
 | 				"due to long PEL %llu ms\n", | 
 | 				state_name, pel); | 
 | 	return USB3_LPM_DISABLED; | 
 | } | 
 |  | 
 | /* The U1 timeout should be the maximum of the following values: | 
 |  *  - For control endpoints, U1 system exit latency (SEL) * 3 | 
 |  *  - For bulk endpoints, U1 SEL * 5 | 
 |  *  - For interrupt endpoints: | 
 |  *    - Notification EPs, U1 SEL * 3 | 
 |  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2) | 
 |  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) | 
 |  */ | 
 | static unsigned long long xhci_calculate_intel_u1_timeout( | 
 | 		struct usb_device *udev, | 
 | 		struct usb_endpoint_descriptor *desc) | 
 | { | 
 | 	unsigned long long timeout_ns; | 
 | 	int ep_type; | 
 | 	int intr_type; | 
 |  | 
 | 	ep_type = usb_endpoint_type(desc); | 
 | 	switch (ep_type) { | 
 | 	case USB_ENDPOINT_XFER_CONTROL: | 
 | 		timeout_ns = udev->u1_params.sel * 3; | 
 | 		break; | 
 | 	case USB_ENDPOINT_XFER_BULK: | 
 | 		timeout_ns = udev->u1_params.sel * 5; | 
 | 		break; | 
 | 	case USB_ENDPOINT_XFER_INT: | 
 | 		intr_type = usb_endpoint_interrupt_type(desc); | 
 | 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { | 
 | 			timeout_ns = udev->u1_params.sel * 3; | 
 | 			break; | 
 | 		} | 
 | 		/* Otherwise the calculation is the same as isoc eps */ | 
 | 		fallthrough; | 
 | 	case USB_ENDPOINT_XFER_ISOC: | 
 | 		timeout_ns = xhci_service_interval_to_ns(desc); | 
 | 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); | 
 | 		if (timeout_ns < udev->u1_params.sel * 2) | 
 | 			timeout_ns = udev->u1_params.sel * 2; | 
 | 		break; | 
 | 	default: | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return timeout_ns; | 
 | } | 
 |  | 
 | /* Returns the hub-encoded U1 timeout value. */ | 
 | static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, | 
 | 		struct usb_device *udev, | 
 | 		struct usb_endpoint_descriptor *desc) | 
 | { | 
 | 	unsigned long long timeout_ns; | 
 |  | 
 | 	/* Prevent U1 if service interval is shorter than U1 exit latency */ | 
 | 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { | 
 | 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { | 
 | 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); | 
 | 			return USB3_LPM_DISABLED; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (xhci->quirks & XHCI_INTEL_HOST) | 
 | 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); | 
 | 	else | 
 | 		timeout_ns = udev->u1_params.sel; | 
 |  | 
 | 	/* The U1 timeout is encoded in 1us intervals. | 
 | 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. | 
 | 	 */ | 
 | 	if (timeout_ns == USB3_LPM_DISABLED) | 
 | 		timeout_ns = 1; | 
 | 	else | 
 | 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); | 
 |  | 
 | 	/* If the necessary timeout value is bigger than what we can set in the | 
 | 	 * USB 3.0 hub, we have to disable hub-initiated U1. | 
 | 	 */ | 
 | 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) | 
 | 		return timeout_ns; | 
 | 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled " | 
 | 			"due to long timeout %llu ms\n", timeout_ns); | 
 | 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); | 
 | } | 
 |  | 
 | /* The U2 timeout should be the maximum of: | 
 |  *  - 10 ms (to avoid the bandwidth impact on the scheduler) | 
 |  *  - largest bInterval of any active periodic endpoint (to avoid going | 
 |  *    into lower power link states between intervals). | 
 |  *  - the U2 Exit Latency of the device | 
 |  */ | 
 | static unsigned long long xhci_calculate_intel_u2_timeout( | 
 | 		struct usb_device *udev, | 
 | 		struct usb_endpoint_descriptor *desc) | 
 | { | 
 | 	unsigned long long timeout_ns; | 
 | 	unsigned long long u2_del_ns; | 
 |  | 
 | 	timeout_ns = 10 * 1000 * 1000; | 
 |  | 
 | 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && | 
 | 			(xhci_service_interval_to_ns(desc) > timeout_ns)) | 
 | 		timeout_ns = xhci_service_interval_to_ns(desc); | 
 |  | 
 | 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; | 
 | 	if (u2_del_ns > timeout_ns) | 
 | 		timeout_ns = u2_del_ns; | 
 |  | 
 | 	return timeout_ns; | 
 | } | 
 |  | 
 | /* Returns the hub-encoded U2 timeout value. */ | 
 | static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, | 
 | 		struct usb_device *udev, | 
 | 		struct usb_endpoint_descriptor *desc) | 
 | { | 
 | 	unsigned long long timeout_ns; | 
 |  | 
 | 	/* Prevent U2 if service interval is shorter than U2 exit latency */ | 
 | 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { | 
 | 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { | 
 | 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); | 
 | 			return USB3_LPM_DISABLED; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (xhci->quirks & XHCI_INTEL_HOST) | 
 | 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); | 
 | 	else | 
 | 		timeout_ns = udev->u2_params.sel; | 
 |  | 
 | 	/* The U2 timeout is encoded in 256us intervals */ | 
 | 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); | 
 | 	/* If the necessary timeout value is bigger than what we can set in the | 
 | 	 * USB 3.0 hub, we have to disable hub-initiated U2. | 
 | 	 */ | 
 | 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) | 
 | 		return timeout_ns; | 
 | 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled " | 
 | 			"due to long timeout %llu ms\n", timeout_ns); | 
 | 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); | 
 | } | 
 |  | 
 | static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, | 
 | 		struct usb_device *udev, | 
 | 		struct usb_endpoint_descriptor *desc, | 
 | 		enum usb3_link_state state, | 
 | 		u16 *timeout) | 
 | { | 
 | 	if (state == USB3_LPM_U1) | 
 | 		return xhci_calculate_u1_timeout(xhci, udev, desc); | 
 | 	else if (state == USB3_LPM_U2) | 
 | 		return xhci_calculate_u2_timeout(xhci, udev, desc); | 
 |  | 
 | 	return USB3_LPM_DISABLED; | 
 | } | 
 |  | 
 | static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, | 
 | 		struct usb_device *udev, | 
 | 		struct usb_endpoint_descriptor *desc, | 
 | 		enum usb3_link_state state, | 
 | 		u16 *timeout) | 
 | { | 
 | 	u16 alt_timeout; | 
 |  | 
 | 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, | 
 | 		desc, state, timeout); | 
 |  | 
 | 	/* If we found we can't enable hub-initiated LPM, and | 
 | 	 * the U1 or U2 exit latency was too high to allow | 
 | 	 * device-initiated LPM as well, then we will disable LPM | 
 | 	 * for this device, so stop searching any further. | 
 | 	 */ | 
 | 	if (alt_timeout == USB3_LPM_DISABLED) { | 
 | 		*timeout = alt_timeout; | 
 | 		return -E2BIG; | 
 | 	} | 
 | 	if (alt_timeout > *timeout) | 
 | 		*timeout = alt_timeout; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, | 
 | 		struct usb_device *udev, | 
 | 		struct usb_host_interface *alt, | 
 | 		enum usb3_link_state state, | 
 | 		u16 *timeout) | 
 | { | 
 | 	int j; | 
 |  | 
 | 	for (j = 0; j < alt->desc.bNumEndpoints; j++) { | 
 | 		if (xhci_update_timeout_for_endpoint(xhci, udev, | 
 | 					&alt->endpoint[j].desc, state, timeout)) | 
 | 			return -E2BIG; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int xhci_check_intel_tier_policy(struct usb_device *udev, | 
 | 		enum usb3_link_state state) | 
 | { | 
 | 	struct usb_device *parent; | 
 | 	unsigned int num_hubs; | 
 |  | 
 | 	if (state == USB3_LPM_U2) | 
 | 		return 0; | 
 |  | 
 | 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */ | 
 | 	for (parent = udev->parent, num_hubs = 0; parent->parent; | 
 | 			parent = parent->parent) | 
 | 		num_hubs++; | 
 |  | 
 | 	if (num_hubs < 2) | 
 | 		return 0; | 
 |  | 
 | 	dev_dbg(&udev->dev, "Disabling U1 link state for device" | 
 | 			" below second-tier hub.\n"); | 
 | 	dev_dbg(&udev->dev, "Plug device into first-tier hub " | 
 | 			"to decrease power consumption.\n"); | 
 | 	return -E2BIG; | 
 | } | 
 |  | 
 | static int xhci_check_tier_policy(struct xhci_hcd *xhci, | 
 | 		struct usb_device *udev, | 
 | 		enum usb3_link_state state) | 
 | { | 
 | 	if (xhci->quirks & XHCI_INTEL_HOST) | 
 | 		return xhci_check_intel_tier_policy(udev, state); | 
 | 	else | 
 | 		return 0; | 
 | } | 
 |  | 
 | /* Returns the U1 or U2 timeout that should be enabled. | 
 |  * If the tier check or timeout setting functions return with a non-zero exit | 
 |  * code, that means the timeout value has been finalized and we shouldn't look | 
 |  * at any more endpoints. | 
 |  */ | 
 | static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, | 
 | 			struct usb_device *udev, enum usb3_link_state state) | 
 | { | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 | 	struct usb_host_config *config; | 
 | 	char *state_name; | 
 | 	int i; | 
 | 	u16 timeout = USB3_LPM_DISABLED; | 
 |  | 
 | 	if (state == USB3_LPM_U1) | 
 | 		state_name = "U1"; | 
 | 	else if (state == USB3_LPM_U2) | 
 | 		state_name = "U2"; | 
 | 	else { | 
 | 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n", | 
 | 				state); | 
 | 		return timeout; | 
 | 	} | 
 |  | 
 | 	if (xhci_check_tier_policy(xhci, udev, state) < 0) | 
 | 		return timeout; | 
 |  | 
 | 	/* Gather some information about the currently installed configuration | 
 | 	 * and alternate interface settings. | 
 | 	 */ | 
 | 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, | 
 | 			state, &timeout)) | 
 | 		return timeout; | 
 |  | 
 | 	config = udev->actconfig; | 
 | 	if (!config) | 
 | 		return timeout; | 
 |  | 
 | 	for (i = 0; i < config->desc.bNumInterfaces; i++) { | 
 | 		struct usb_driver *driver; | 
 | 		struct usb_interface *intf = config->interface[i]; | 
 |  | 
 | 		if (!intf) | 
 | 			continue; | 
 |  | 
 | 		/* Check if any currently bound drivers want hub-initiated LPM | 
 | 		 * disabled. | 
 | 		 */ | 
 | 		if (intf->dev.driver) { | 
 | 			driver = to_usb_driver(intf->dev.driver); | 
 | 			if (driver && driver->disable_hub_initiated_lpm) { | 
 | 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", | 
 | 					state_name, driver->name); | 
 | 				timeout = xhci_get_timeout_no_hub_lpm(udev, | 
 | 								      state); | 
 | 				if (timeout == USB3_LPM_DISABLED) | 
 | 					return timeout; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* Not sure how this could happen... */ | 
 | 		if (!intf->cur_altsetting) | 
 | 			continue; | 
 |  | 
 | 		if (xhci_update_timeout_for_interface(xhci, udev, | 
 | 					intf->cur_altsetting, | 
 | 					state, &timeout)) | 
 | 			return timeout; | 
 | 	} | 
 | 	return timeout; | 
 | } | 
 |  | 
 | static int calculate_max_exit_latency(struct usb_device *udev, | 
 | 		enum usb3_link_state state_changed, | 
 | 		u16 hub_encoded_timeout) | 
 | { | 
 | 	unsigned long long u1_mel_us = 0; | 
 | 	unsigned long long u2_mel_us = 0; | 
 | 	unsigned long long mel_us = 0; | 
 | 	bool disabling_u1; | 
 | 	bool disabling_u2; | 
 | 	bool enabling_u1; | 
 | 	bool enabling_u2; | 
 |  | 
 | 	disabling_u1 = (state_changed == USB3_LPM_U1 && | 
 | 			hub_encoded_timeout == USB3_LPM_DISABLED); | 
 | 	disabling_u2 = (state_changed == USB3_LPM_U2 && | 
 | 			hub_encoded_timeout == USB3_LPM_DISABLED); | 
 |  | 
 | 	enabling_u1 = (state_changed == USB3_LPM_U1 && | 
 | 			hub_encoded_timeout != USB3_LPM_DISABLED); | 
 | 	enabling_u2 = (state_changed == USB3_LPM_U2 && | 
 | 			hub_encoded_timeout != USB3_LPM_DISABLED); | 
 |  | 
 | 	/* If U1 was already enabled and we're not disabling it, | 
 | 	 * or we're going to enable U1, account for the U1 max exit latency. | 
 | 	 */ | 
 | 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || | 
 | 			enabling_u1) | 
 | 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); | 
 | 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || | 
 | 			enabling_u2) | 
 | 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); | 
 |  | 
 | 	if (u1_mel_us > u2_mel_us) | 
 | 		mel_us = u1_mel_us; | 
 | 	else | 
 | 		mel_us = u2_mel_us; | 
 | 	/* xHCI host controller max exit latency field is only 16 bits wide. */ | 
 | 	if (mel_us > MAX_EXIT) { | 
 | 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus " | 
 | 				"is too big.\n", mel_us); | 
 | 		return -E2BIG; | 
 | 	} | 
 | 	return mel_us; | 
 | } | 
 |  | 
 | /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ | 
 | static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, | 
 | 			struct usb_device *udev, enum usb3_link_state state) | 
 | { | 
 | 	struct xhci_hcd	*xhci; | 
 | 	struct xhci_port *port; | 
 | 	u16 hub_encoded_timeout; | 
 | 	int mel; | 
 | 	int ret; | 
 |  | 
 | 	xhci = hcd_to_xhci(hcd); | 
 | 	/* The LPM timeout values are pretty host-controller specific, so don't | 
 | 	 * enable hub-initiated timeouts unless the vendor has provided | 
 | 	 * information about their timeout algorithm. | 
 | 	 */ | 
 | 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || | 
 | 			!xhci->devs[udev->slot_id]) | 
 | 		return USB3_LPM_DISABLED; | 
 |  | 
 | 	/* If connected to root port then check port can handle lpm */ | 
 | 	if (udev->parent && !udev->parent->parent) { | 
 | 		port = xhci->usb3_rhub.ports[udev->portnum - 1]; | 
 | 		if (port->lpm_incapable) | 
 | 			return USB3_LPM_DISABLED; | 
 | 	} | 
 |  | 
 | 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); | 
 | 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); | 
 | 	if (mel < 0) { | 
 | 		/* Max Exit Latency is too big, disable LPM. */ | 
 | 		hub_encoded_timeout = USB3_LPM_DISABLED; | 
 | 		mel = 0; | 
 | 	} | 
 |  | 
 | 	ret = xhci_change_max_exit_latency(xhci, udev, mel); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	return hub_encoded_timeout; | 
 | } | 
 |  | 
 | static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, | 
 | 			struct usb_device *udev, enum usb3_link_state state) | 
 | { | 
 | 	struct xhci_hcd	*xhci; | 
 | 	u16 mel; | 
 |  | 
 | 	xhci = hcd_to_xhci(hcd); | 
 | 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || | 
 | 			!xhci->devs[udev->slot_id]) | 
 | 		return 0; | 
 |  | 
 | 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); | 
 | 	return xhci_change_max_exit_latency(xhci, udev, mel); | 
 | } | 
 | #else /* CONFIG_PM */ | 
 |  | 
 | static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, | 
 | 				struct usb_device *udev, int enable) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, | 
 | 			struct usb_device *udev, enum usb3_link_state state) | 
 | { | 
 | 	return USB3_LPM_DISABLED; | 
 | } | 
 |  | 
 | static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, | 
 | 			struct usb_device *udev, enum usb3_link_state state) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif	/* CONFIG_PM */ | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /* Once a hub descriptor is fetched for a device, we need to update the xHC's | 
 |  * internal data structures for the device. | 
 |  */ | 
 | int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, | 
 | 			struct usb_tt *tt, gfp_t mem_flags) | 
 | { | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 | 	struct xhci_virt_device *vdev; | 
 | 	struct xhci_command *config_cmd; | 
 | 	struct xhci_input_control_ctx *ctrl_ctx; | 
 | 	struct xhci_slot_ctx *slot_ctx; | 
 | 	unsigned long flags; | 
 | 	unsigned think_time; | 
 | 	int ret; | 
 |  | 
 | 	/* Ignore root hubs */ | 
 | 	if (!hdev->parent) | 
 | 		return 0; | 
 |  | 
 | 	vdev = xhci->devs[hdev->slot_id]; | 
 | 	if (!vdev) { | 
 | 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); | 
 | 	if (!config_cmd) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); | 
 | 	if (!ctrl_ctx) { | 
 | 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n", | 
 | 				__func__); | 
 | 		xhci_free_command(xhci, config_cmd); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 | 	if (hdev->speed == USB_SPEED_HIGH && | 
 | 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { | 
 | 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); | 
 | 		xhci_free_command(xhci, config_cmd); | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); | 
 | 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); | 
 | 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); | 
 | 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); | 
 | 	/* | 
 | 	 * refer to section 6.2.2: MTT should be 0 for full speed hub, | 
 | 	 * but it may be already set to 1 when setup an xHCI virtual | 
 | 	 * device, so clear it anyway. | 
 | 	 */ | 
 | 	if (tt->multi) | 
 | 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); | 
 | 	else if (hdev->speed == USB_SPEED_FULL) | 
 | 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); | 
 |  | 
 | 	if (xhci->hci_version > 0x95) { | 
 | 		xhci_dbg(xhci, "xHCI version %x needs hub " | 
 | 				"TT think time and number of ports\n", | 
 | 				(unsigned int) xhci->hci_version); | 
 | 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); | 
 | 		/* Set TT think time - convert from ns to FS bit times. | 
 | 		 * 0 = 8 FS bit times, 1 = 16 FS bit times, | 
 | 		 * 2 = 24 FS bit times, 3 = 32 FS bit times. | 
 | 		 * | 
 | 		 * xHCI 1.0: this field shall be 0 if the device is not a | 
 | 		 * High-spped hub. | 
 | 		 */ | 
 | 		think_time = tt->think_time; | 
 | 		if (think_time != 0) | 
 | 			think_time = (think_time / 666) - 1; | 
 | 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) | 
 | 			slot_ctx->tt_info |= | 
 | 				cpu_to_le32(TT_THINK_TIME(think_time)); | 
 | 	} else { | 
 | 		xhci_dbg(xhci, "xHCI version %x doesn't need hub " | 
 | 				"TT think time or number of ports\n", | 
 | 				(unsigned int) xhci->hci_version); | 
 | 	} | 
 | 	slot_ctx->dev_state = 0; | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 |  | 
 | 	xhci_dbg(xhci, "Set up %s for hub device.\n", | 
 | 			(xhci->hci_version > 0x95) ? | 
 | 			"configure endpoint" : "evaluate context"); | 
 |  | 
 | 	/* Issue and wait for the configure endpoint or | 
 | 	 * evaluate context command. | 
 | 	 */ | 
 | 	if (xhci->hci_version > 0x95) | 
 | 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd, | 
 | 				false, false); | 
 | 	else | 
 | 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd, | 
 | 				true, false); | 
 |  | 
 | 	xhci_free_command(xhci, config_cmd); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(xhci_update_hub_device); | 
 |  | 
 | static int xhci_get_frame(struct usb_hcd *hcd) | 
 | { | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 | 	/* EHCI mods by the periodic size.  Why? */ | 
 | 	return readl(&xhci->run_regs->microframe_index) >> 3; | 
 | } | 
 |  | 
 | int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) | 
 | { | 
 | 	struct xhci_hcd		*xhci; | 
 | 	/* | 
 | 	 * TODO: Check with DWC3 clients for sysdev according to | 
 | 	 * quirks | 
 | 	 */ | 
 | 	struct device		*dev = hcd->self.sysdev; | 
 | 	unsigned int		minor_rev; | 
 | 	int			retval; | 
 |  | 
 | 	/* Accept arbitrarily long scatter-gather lists */ | 
 | 	hcd->self.sg_tablesize = ~0; | 
 |  | 
 | 	/* support to build packet from discontinuous buffers */ | 
 | 	hcd->self.no_sg_constraint = 1; | 
 |  | 
 | 	/* XHCI controllers don't stop the ep queue on short packets :| */ | 
 | 	hcd->self.no_stop_on_short = 1; | 
 |  | 
 | 	xhci = hcd_to_xhci(hcd); | 
 |  | 
 | 	if (usb_hcd_is_primary_hcd(hcd)) { | 
 | 		xhci->main_hcd = hcd; | 
 | 		xhci->usb2_rhub.hcd = hcd; | 
 | 		/* Mark the first roothub as being USB 2.0. | 
 | 		 * The xHCI driver will register the USB 3.0 roothub. | 
 | 		 */ | 
 | 		hcd->speed = HCD_USB2; | 
 | 		hcd->self.root_hub->speed = USB_SPEED_HIGH; | 
 | 		/* | 
 | 		 * USB 2.0 roothub under xHCI has an integrated TT, | 
 | 		 * (rate matching hub) as opposed to having an OHCI/UHCI | 
 | 		 * companion controller. | 
 | 		 */ | 
 | 		hcd->has_tt = 1; | 
 | 	} else { | 
 | 		/* | 
 | 		 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts | 
 | 		 * should return 0x31 for sbrn, or that the minor revision | 
 | 		 * is a two digit BCD containig minor and sub-minor numbers. | 
 | 		 * This was later clarified in xHCI 1.2. | 
 | 		 * | 
 | 		 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and | 
 | 		 * minor revision set to 0x1 instead of 0x10. | 
 | 		 */ | 
 | 		if (xhci->usb3_rhub.min_rev == 0x1) | 
 | 			minor_rev = 1; | 
 | 		else | 
 | 			minor_rev = xhci->usb3_rhub.min_rev / 0x10; | 
 |  | 
 | 		switch (minor_rev) { | 
 | 		case 2: | 
 | 			hcd->speed = HCD_USB32; | 
 | 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; | 
 | 			hcd->self.root_hub->rx_lanes = 2; | 
 | 			hcd->self.root_hub->tx_lanes = 2; | 
 | 			hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; | 
 | 			break; | 
 | 		case 1: | 
 | 			hcd->speed = HCD_USB31; | 
 | 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; | 
 | 			hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; | 
 | 			break; | 
 | 		} | 
 | 		xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", | 
 | 			  minor_rev, | 
 | 			  minor_rev ? "Enhanced " : ""); | 
 |  | 
 | 		xhci->usb3_rhub.hcd = hcd; | 
 | 		/* xHCI private pointer was set in xhci_pci_probe for the second | 
 | 		 * registered roothub. | 
 | 		 */ | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	mutex_init(&xhci->mutex); | 
 | 	xhci->cap_regs = hcd->regs; | 
 | 	xhci->op_regs = hcd->regs + | 
 | 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); | 
 | 	xhci->run_regs = hcd->regs + | 
 | 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); | 
 | 	/* Cache read-only capability registers */ | 
 | 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); | 
 | 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); | 
 | 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); | 
 | 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); | 
 | 	xhci->hci_version = HC_VERSION(xhci->hcc_params); | 
 | 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); | 
 | 	if (xhci->hci_version > 0x100) | 
 | 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); | 
 |  | 
 | 	xhci->quirks |= quirks; | 
 |  | 
 | 	get_quirks(dev, xhci); | 
 |  | 
 | 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious | 
 | 	 * success event after a short transfer. This quirk will ignore such | 
 | 	 * spurious event. | 
 | 	 */ | 
 | 	if (xhci->hci_version > 0x96) | 
 | 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS; | 
 |  | 
 | 	/* Make sure the HC is halted. */ | 
 | 	retval = xhci_halt(xhci); | 
 | 	if (retval) | 
 | 		return retval; | 
 |  | 
 | 	xhci_zero_64b_regs(xhci); | 
 |  | 
 | 	xhci_dbg(xhci, "Resetting HCD\n"); | 
 | 	/* Reset the internal HC memory state and registers. */ | 
 | 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); | 
 | 	if (retval) | 
 | 		return retval; | 
 | 	xhci_dbg(xhci, "Reset complete\n"); | 
 |  | 
 | 	/* | 
 | 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) | 
 | 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit | 
 | 	 * address memory pointers actually. So, this driver clears the AC64 | 
 | 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, | 
 | 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). | 
 | 	 */ | 
 | 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) | 
 | 		xhci->hcc_params &= ~BIT(0); | 
 |  | 
 | 	/* Set dma_mask and coherent_dma_mask to 64-bits, | 
 | 	 * if xHC supports 64-bit addressing */ | 
 | 	if (HCC_64BIT_ADDR(xhci->hcc_params) && | 
 | 			!dma_set_mask(dev, DMA_BIT_MASK(64))) { | 
 | 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); | 
 | 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); | 
 | 	} else { | 
 | 		/* | 
 | 		 * This is to avoid error in cases where a 32-bit USB | 
 | 		 * controller is used on a 64-bit capable system. | 
 | 		 */ | 
 | 		retval = dma_set_mask(dev, DMA_BIT_MASK(32)); | 
 | 		if (retval) | 
 | 			return retval; | 
 | 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); | 
 | 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); | 
 | 	} | 
 |  | 
 | 	xhci_dbg(xhci, "Calling HCD init\n"); | 
 | 	/* Initialize HCD and host controller data structures. */ | 
 | 	retval = xhci_init(hcd); | 
 | 	if (retval) | 
 | 		return retval; | 
 | 	xhci_dbg(xhci, "Called HCD init\n"); | 
 |  | 
 | 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", | 
 | 		  xhci->hcc_params, xhci->hci_version, xhci->quirks); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(xhci_gen_setup); | 
 |  | 
 | static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, | 
 | 		struct usb_host_endpoint *ep) | 
 | { | 
 | 	struct xhci_hcd *xhci; | 
 | 	struct usb_device *udev; | 
 | 	unsigned int slot_id; | 
 | 	unsigned int ep_index; | 
 | 	unsigned long flags; | 
 |  | 
 | 	xhci = hcd_to_xhci(hcd); | 
 |  | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 | 	udev = (struct usb_device *)ep->hcpriv; | 
 | 	slot_id = udev->slot_id; | 
 | 	ep_index = xhci_get_endpoint_index(&ep->desc); | 
 |  | 
 | 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; | 
 | 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 | } | 
 |  | 
 | static const struct hc_driver xhci_hc_driver = { | 
 | 	.description =		"xhci-hcd", | 
 | 	.product_desc =		"xHCI Host Controller", | 
 | 	.hcd_priv_size =	sizeof(struct xhci_hcd), | 
 |  | 
 | 	/* | 
 | 	 * generic hardware linkage | 
 | 	 */ | 
 | 	.irq =			xhci_irq, | 
 | 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | | 
 | 				HCD_BH, | 
 |  | 
 | 	/* | 
 | 	 * basic lifecycle operations | 
 | 	 */ | 
 | 	.reset =		NULL, /* set in xhci_init_driver() */ | 
 | 	.start =		xhci_run, | 
 | 	.stop =			xhci_stop, | 
 | 	.shutdown =		xhci_shutdown, | 
 |  | 
 | 	/* | 
 | 	 * managing i/o requests and associated device resources | 
 | 	 */ | 
 | 	.map_urb_for_dma =      xhci_map_urb_for_dma, | 
 | 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma, | 
 | 	.urb_enqueue =		xhci_urb_enqueue, | 
 | 	.urb_dequeue =		xhci_urb_dequeue, | 
 | 	.alloc_dev =		xhci_alloc_dev, | 
 | 	.free_dev =		xhci_free_dev, | 
 | 	.alloc_streams =	xhci_alloc_streams, | 
 | 	.free_streams =		xhci_free_streams, | 
 | 	.add_endpoint =		xhci_add_endpoint, | 
 | 	.drop_endpoint =	xhci_drop_endpoint, | 
 | 	.endpoint_disable =	xhci_endpoint_disable, | 
 | 	.endpoint_reset =	xhci_endpoint_reset, | 
 | 	.check_bandwidth =	xhci_check_bandwidth, | 
 | 	.reset_bandwidth =	xhci_reset_bandwidth, | 
 | 	.address_device =	xhci_address_device, | 
 | 	.enable_device =	xhci_enable_device, | 
 | 	.update_hub_device =	xhci_update_hub_device, | 
 | 	.reset_device =		xhci_discover_or_reset_device, | 
 |  | 
 | 	/* | 
 | 	 * scheduling support | 
 | 	 */ | 
 | 	.get_frame_number =	xhci_get_frame, | 
 |  | 
 | 	/* | 
 | 	 * root hub support | 
 | 	 */ | 
 | 	.hub_control =		xhci_hub_control, | 
 | 	.hub_status_data =	xhci_hub_status_data, | 
 | 	.bus_suspend =		xhci_bus_suspend, | 
 | 	.bus_resume =		xhci_bus_resume, | 
 | 	.get_resuming_ports =	xhci_get_resuming_ports, | 
 |  | 
 | 	/* | 
 | 	 * call back when device connected and addressed | 
 | 	 */ | 
 | 	.update_device =        xhci_update_device, | 
 | 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm, | 
 | 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout, | 
 | 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout, | 
 | 	.find_raw_port_number =	xhci_find_raw_port_number, | 
 | 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, | 
 | }; | 
 |  | 
 | void xhci_init_driver(struct hc_driver *drv, | 
 | 		      const struct xhci_driver_overrides *over) | 
 | { | 
 | 	BUG_ON(!over); | 
 |  | 
 | 	/* Copy the generic table to drv then apply the overrides */ | 
 | 	*drv = xhci_hc_driver; | 
 |  | 
 | 	if (over) { | 
 | 		drv->hcd_priv_size += over->extra_priv_size; | 
 | 		if (over->reset) | 
 | 			drv->reset = over->reset; | 
 | 		if (over->start) | 
 | 			drv->start = over->start; | 
 | 		if (over->add_endpoint) | 
 | 			drv->add_endpoint = over->add_endpoint; | 
 | 		if (over->drop_endpoint) | 
 | 			drv->drop_endpoint = over->drop_endpoint; | 
 | 		if (over->check_bandwidth) | 
 | 			drv->check_bandwidth = over->check_bandwidth; | 
 | 		if (over->reset_bandwidth) | 
 | 			drv->reset_bandwidth = over->reset_bandwidth; | 
 | 		if (over->update_hub_device) | 
 | 			drv->update_hub_device = over->update_hub_device; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(xhci_init_driver); | 
 |  | 
 | MODULE_DESCRIPTION(DRIVER_DESC); | 
 | MODULE_AUTHOR(DRIVER_AUTHOR); | 
 | MODULE_LICENSE("GPL"); | 
 |  | 
 | static int __init xhci_hcd_init(void) | 
 | { | 
 | 	/* | 
 | 	 * Check the compiler generated sizes of structures that must be laid | 
 | 	 * out in specific ways for hardware access. | 
 | 	 */ | 
 | 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); | 
 | 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); | 
 | 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); | 
 | 	/* xhci_device_control has eight fields, and also | 
 | 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx | 
 | 	 */ | 
 | 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); | 
 | 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); | 
 | 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); | 
 | 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); | 
 | 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); | 
 | 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ | 
 | 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); | 
 |  | 
 | 	if (usb_disabled()) | 
 | 		return -ENODEV; | 
 |  | 
 | 	xhci_debugfs_create_root(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * If an init function is provided, an exit function must also be provided | 
 |  * to allow module unload. | 
 |  */ | 
 | static void __exit xhci_hcd_fini(void) | 
 | { | 
 | 	xhci_debugfs_remove_root(); | 
 | } | 
 |  | 
 | module_init(xhci_hcd_init); | 
 | module_exit(xhci_hcd_fini); |