|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | *  linux/mm/memory.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * demand-loading started 01.12.91 - seems it is high on the list of | 
|  | * things wanted, and it should be easy to implement. - Linus | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | 
|  | * pages started 02.12.91, seems to work. - Linus. | 
|  | * | 
|  | * Tested sharing by executing about 30 /bin/sh: under the old kernel it | 
|  | * would have taken more than the 6M I have free, but it worked well as | 
|  | * far as I could see. | 
|  | * | 
|  | * Also corrected some "invalidate()"s - I wasn't doing enough of them. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Real VM (paging to/from disk) started 18.12.91. Much more work and | 
|  | * thought has to go into this. Oh, well.. | 
|  | * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why. | 
|  | *		Found it. Everything seems to work now. | 
|  | * 20.12.91  -  Ok, making the swap-device changeable like the root. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * 05.04.94  -  Multi-page memory management added for v1.1. | 
|  | *              Idea by Alex Bligh (alex@cconcepts.co.uk) | 
|  | * | 
|  | * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG | 
|  | *		(Gerhard.Wichert@pdb.siemens.de) | 
|  | * | 
|  | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mm_inline.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/sched/coredump.h> | 
|  | #include <linux/sched/numa_balancing.h> | 
|  | #include <linux/sched/task.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/memremap.h> | 
|  | #include <linux/kmsan.h> | 
|  | #include <linux/ksm.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/delayacct.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/pfn_t.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/mmu_notifier.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/elf.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/memory-tiers.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/userfaultfd_k.h> | 
|  | #include <linux/dax.h> | 
|  | #include <linux/oom.h> | 
|  | #include <linux/numa.h> | 
|  | #include <linux/perf_event.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/sched/sysctl.h> | 
|  |  | 
|  | #include <trace/events/kmem.h> | 
|  |  | 
|  | #include <asm/io.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/tlbflush.h> | 
|  |  | 
|  | #include "pgalloc-track.h" | 
|  | #include "internal.h" | 
|  | #include "swap.h" | 
|  |  | 
|  | #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) | 
|  | #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. | 
|  | #endif | 
|  |  | 
|  | #ifndef CONFIG_NUMA | 
|  | unsigned long max_mapnr; | 
|  | EXPORT_SYMBOL(max_mapnr); | 
|  |  | 
|  | struct page *mem_map; | 
|  | EXPORT_SYMBOL(mem_map); | 
|  | #endif | 
|  |  | 
|  | static vm_fault_t do_fault(struct vm_fault *vmf); | 
|  |  | 
|  | /* | 
|  | * A number of key systems in x86 including ioremap() rely on the assumption | 
|  | * that high_memory defines the upper bound on direct map memory, then end | 
|  | * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and | 
|  | * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL | 
|  | * and ZONE_HIGHMEM. | 
|  | */ | 
|  | void *high_memory; | 
|  | EXPORT_SYMBOL(high_memory); | 
|  |  | 
|  | /* | 
|  | * Randomize the address space (stacks, mmaps, brk, etc.). | 
|  | * | 
|  | * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, | 
|  | *   as ancient (libc5 based) binaries can segfault. ) | 
|  | */ | 
|  | int randomize_va_space __read_mostly = | 
|  | #ifdef CONFIG_COMPAT_BRK | 
|  | 1; | 
|  | #else | 
|  | 2; | 
|  | #endif | 
|  |  | 
|  | #ifndef arch_wants_old_prefaulted_pte | 
|  | static inline bool arch_wants_old_prefaulted_pte(void) | 
|  | { | 
|  | /* | 
|  | * Transitioning a PTE from 'old' to 'young' can be expensive on | 
|  | * some architectures, even if it's performed in hardware. By | 
|  | * default, "false" means prefaulted entries will be 'young'. | 
|  | */ | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int __init disable_randmaps(char *s) | 
|  | { | 
|  | randomize_va_space = 0; | 
|  | return 1; | 
|  | } | 
|  | __setup("norandmaps", disable_randmaps); | 
|  |  | 
|  | unsigned long zero_pfn __read_mostly; | 
|  | EXPORT_SYMBOL(zero_pfn); | 
|  |  | 
|  | unsigned long highest_memmap_pfn __read_mostly; | 
|  |  | 
|  | /* | 
|  | * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() | 
|  | */ | 
|  | static int __init init_zero_pfn(void) | 
|  | { | 
|  | zero_pfn = page_to_pfn(ZERO_PAGE(0)); | 
|  | return 0; | 
|  | } | 
|  | early_initcall(init_zero_pfn); | 
|  |  | 
|  | void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) | 
|  | { | 
|  | trace_rss_stat(mm, member, count); | 
|  | } | 
|  |  | 
|  | #if defined(SPLIT_RSS_COUNTING) | 
|  |  | 
|  | void sync_mm_rss(struct mm_struct *mm) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < NR_MM_COUNTERS; i++) { | 
|  | if (current->rss_stat.count[i]) { | 
|  | add_mm_counter(mm, i, current->rss_stat.count[i]); | 
|  | current->rss_stat.count[i] = 0; | 
|  | } | 
|  | } | 
|  | current->rss_stat.events = 0; | 
|  | } | 
|  |  | 
|  | static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) | 
|  | { | 
|  | struct task_struct *task = current; | 
|  |  | 
|  | if (likely(task->mm == mm)) | 
|  | task->rss_stat.count[member] += val; | 
|  | else | 
|  | add_mm_counter(mm, member, val); | 
|  | } | 
|  | #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) | 
|  | #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) | 
|  |  | 
|  | /* sync counter once per 64 page faults */ | 
|  | #define TASK_RSS_EVENTS_THRESH	(64) | 
|  | static void check_sync_rss_stat(struct task_struct *task) | 
|  | { | 
|  | if (unlikely(task != current)) | 
|  | return; | 
|  | if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) | 
|  | sync_mm_rss(task->mm); | 
|  | } | 
|  | #else /* SPLIT_RSS_COUNTING */ | 
|  |  | 
|  | #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) | 
|  | #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) | 
|  |  | 
|  | static void check_sync_rss_stat(struct task_struct *task) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif /* SPLIT_RSS_COUNTING */ | 
|  |  | 
|  | /* | 
|  | * Note: this doesn't free the actual pages themselves. That | 
|  | * has been handled earlier when unmapping all the memory regions. | 
|  | */ | 
|  | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, | 
|  | unsigned long addr) | 
|  | { | 
|  | pgtable_t token = pmd_pgtable(*pmd); | 
|  | pmd_clear(pmd); | 
|  | pte_free_tlb(tlb, token, addr); | 
|  | mm_dec_nr_ptes(tlb->mm); | 
|  | } | 
|  |  | 
|  | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long floor, unsigned long ceiling) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long next; | 
|  | unsigned long start; | 
|  |  | 
|  | start = addr; | 
|  | pmd = pmd_offset(pud, addr); | 
|  | do { | 
|  | next = pmd_addr_end(addr, end); | 
|  | if (pmd_none_or_clear_bad(pmd)) | 
|  | continue; | 
|  | free_pte_range(tlb, pmd, addr); | 
|  | } while (pmd++, addr = next, addr != end); | 
|  |  | 
|  | start &= PUD_MASK; | 
|  | if (start < floor) | 
|  | return; | 
|  | if (ceiling) { | 
|  | ceiling &= PUD_MASK; | 
|  | if (!ceiling) | 
|  | return; | 
|  | } | 
|  | if (end - 1 > ceiling - 1) | 
|  | return; | 
|  |  | 
|  | pmd = pmd_offset(pud, start); | 
|  | pud_clear(pud); | 
|  | pmd_free_tlb(tlb, pmd, start); | 
|  | mm_dec_nr_pmds(tlb->mm); | 
|  | } | 
|  |  | 
|  | static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long floor, unsigned long ceiling) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long next; | 
|  | unsigned long start; | 
|  |  | 
|  | start = addr; | 
|  | pud = pud_offset(p4d, addr); | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | if (pud_none_or_clear_bad(pud)) | 
|  | continue; | 
|  | free_pmd_range(tlb, pud, addr, next, floor, ceiling); | 
|  | } while (pud++, addr = next, addr != end); | 
|  |  | 
|  | start &= P4D_MASK; | 
|  | if (start < floor) | 
|  | return; | 
|  | if (ceiling) { | 
|  | ceiling &= P4D_MASK; | 
|  | if (!ceiling) | 
|  | return; | 
|  | } | 
|  | if (end - 1 > ceiling - 1) | 
|  | return; | 
|  |  | 
|  | pud = pud_offset(p4d, start); | 
|  | p4d_clear(p4d); | 
|  | pud_free_tlb(tlb, pud, start); | 
|  | mm_dec_nr_puds(tlb->mm); | 
|  | } | 
|  |  | 
|  | static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long floor, unsigned long ceiling) | 
|  | { | 
|  | p4d_t *p4d; | 
|  | unsigned long next; | 
|  | unsigned long start; | 
|  |  | 
|  | start = addr; | 
|  | p4d = p4d_offset(pgd, addr); | 
|  | do { | 
|  | next = p4d_addr_end(addr, end); | 
|  | if (p4d_none_or_clear_bad(p4d)) | 
|  | continue; | 
|  | free_pud_range(tlb, p4d, addr, next, floor, ceiling); | 
|  | } while (p4d++, addr = next, addr != end); | 
|  |  | 
|  | start &= PGDIR_MASK; | 
|  | if (start < floor) | 
|  | return; | 
|  | if (ceiling) { | 
|  | ceiling &= PGDIR_MASK; | 
|  | if (!ceiling) | 
|  | return; | 
|  | } | 
|  | if (end - 1 > ceiling - 1) | 
|  | return; | 
|  |  | 
|  | p4d = p4d_offset(pgd, start); | 
|  | pgd_clear(pgd); | 
|  | p4d_free_tlb(tlb, p4d, start); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function frees user-level page tables of a process. | 
|  | */ | 
|  | void free_pgd_range(struct mmu_gather *tlb, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long floor, unsigned long ceiling) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | unsigned long next; | 
|  |  | 
|  | /* | 
|  | * The next few lines have given us lots of grief... | 
|  | * | 
|  | * Why are we testing PMD* at this top level?  Because often | 
|  | * there will be no work to do at all, and we'd prefer not to | 
|  | * go all the way down to the bottom just to discover that. | 
|  | * | 
|  | * Why all these "- 1"s?  Because 0 represents both the bottom | 
|  | * of the address space and the top of it (using -1 for the | 
|  | * top wouldn't help much: the masks would do the wrong thing). | 
|  | * The rule is that addr 0 and floor 0 refer to the bottom of | 
|  | * the address space, but end 0 and ceiling 0 refer to the top | 
|  | * Comparisons need to use "end - 1" and "ceiling - 1" (though | 
|  | * that end 0 case should be mythical). | 
|  | * | 
|  | * Wherever addr is brought up or ceiling brought down, we must | 
|  | * be careful to reject "the opposite 0" before it confuses the | 
|  | * subsequent tests.  But what about where end is brought down | 
|  | * by PMD_SIZE below? no, end can't go down to 0 there. | 
|  | * | 
|  | * Whereas we round start (addr) and ceiling down, by different | 
|  | * masks at different levels, in order to test whether a table | 
|  | * now has no other vmas using it, so can be freed, we don't | 
|  | * bother to round floor or end up - the tests don't need that. | 
|  | */ | 
|  |  | 
|  | addr &= PMD_MASK; | 
|  | if (addr < floor) { | 
|  | addr += PMD_SIZE; | 
|  | if (!addr) | 
|  | return; | 
|  | } | 
|  | if (ceiling) { | 
|  | ceiling &= PMD_MASK; | 
|  | if (!ceiling) | 
|  | return; | 
|  | } | 
|  | if (end - 1 > ceiling - 1) | 
|  | end -= PMD_SIZE; | 
|  | if (addr > end - 1) | 
|  | return; | 
|  | /* | 
|  | * We add page table cache pages with PAGE_SIZE, | 
|  | * (see pte_free_tlb()), flush the tlb if we need | 
|  | */ | 
|  | tlb_change_page_size(tlb, PAGE_SIZE); | 
|  | pgd = pgd_offset(tlb->mm, addr); | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | if (pgd_none_or_clear_bad(pgd)) | 
|  | continue; | 
|  | free_p4d_range(tlb, pgd, addr, next, floor, ceiling); | 
|  | } while (pgd++, addr = next, addr != end); | 
|  | } | 
|  |  | 
|  | void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt, | 
|  | struct vm_area_struct *vma, unsigned long floor, | 
|  | unsigned long ceiling) | 
|  | { | 
|  | MA_STATE(mas, mt, vma->vm_end, vma->vm_end); | 
|  |  | 
|  | do { | 
|  | unsigned long addr = vma->vm_start; | 
|  | struct vm_area_struct *next; | 
|  |  | 
|  | /* | 
|  | * Note: USER_PGTABLES_CEILING may be passed as ceiling and may | 
|  | * be 0.  This will underflow and is okay. | 
|  | */ | 
|  | next = mas_find(&mas, ceiling - 1); | 
|  |  | 
|  | /* | 
|  | * Hide vma from rmap and truncate_pagecache before freeing | 
|  | * pgtables | 
|  | */ | 
|  | unlink_anon_vmas(vma); | 
|  | unlink_file_vma(vma); | 
|  |  | 
|  | if (is_vm_hugetlb_page(vma)) { | 
|  | hugetlb_free_pgd_range(tlb, addr, vma->vm_end, | 
|  | floor, next ? next->vm_start : ceiling); | 
|  | } else { | 
|  | /* | 
|  | * Optimization: gather nearby vmas into one call down | 
|  | */ | 
|  | while (next && next->vm_start <= vma->vm_end + PMD_SIZE | 
|  | && !is_vm_hugetlb_page(next)) { | 
|  | vma = next; | 
|  | next = mas_find(&mas, ceiling - 1); | 
|  | unlink_anon_vmas(vma); | 
|  | unlink_file_vma(vma); | 
|  | } | 
|  | free_pgd_range(tlb, addr, vma->vm_end, | 
|  | floor, next ? next->vm_start : ceiling); | 
|  | } | 
|  | vma = next; | 
|  | } while (vma); | 
|  | } | 
|  |  | 
|  | void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) | 
|  | { | 
|  | spinlock_t *ptl = pmd_lock(mm, pmd); | 
|  |  | 
|  | if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */ | 
|  | mm_inc_nr_ptes(mm); | 
|  | /* | 
|  | * Ensure all pte setup (eg. pte page lock and page clearing) are | 
|  | * visible before the pte is made visible to other CPUs by being | 
|  | * put into page tables. | 
|  | * | 
|  | * The other side of the story is the pointer chasing in the page | 
|  | * table walking code (when walking the page table without locking; | 
|  | * ie. most of the time). Fortunately, these data accesses consist | 
|  | * of a chain of data-dependent loads, meaning most CPUs (alpha | 
|  | * being the notable exception) will already guarantee loads are | 
|  | * seen in-order. See the alpha page table accessors for the | 
|  | * smp_rmb() barriers in page table walking code. | 
|  | */ | 
|  | smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ | 
|  | pmd_populate(mm, pmd, *pte); | 
|  | *pte = NULL; | 
|  | } | 
|  | spin_unlock(ptl); | 
|  | } | 
|  |  | 
|  | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) | 
|  | { | 
|  | pgtable_t new = pte_alloc_one(mm); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | pmd_install(mm, pmd, &new); | 
|  | if (new) | 
|  | pte_free(mm, new); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __pte_alloc_kernel(pmd_t *pmd) | 
|  | { | 
|  | pte_t *new = pte_alloc_one_kernel(&init_mm); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spin_lock(&init_mm.page_table_lock); | 
|  | if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */ | 
|  | smp_wmb(); /* See comment in pmd_install() */ | 
|  | pmd_populate_kernel(&init_mm, pmd, new); | 
|  | new = NULL; | 
|  | } | 
|  | spin_unlock(&init_mm.page_table_lock); | 
|  | if (new) | 
|  | pte_free_kernel(&init_mm, new); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void init_rss_vec(int *rss) | 
|  | { | 
|  | memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); | 
|  | } | 
|  |  | 
|  | static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (current->mm == mm) | 
|  | sync_mm_rss(mm); | 
|  | for (i = 0; i < NR_MM_COUNTERS; i++) | 
|  | if (rss[i]) | 
|  | add_mm_counter(mm, i, rss[i]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is called to print an error when a bad pte | 
|  | * is found. For example, we might have a PFN-mapped pte in | 
|  | * a region that doesn't allow it. | 
|  | * | 
|  | * The calling function must still handle the error. | 
|  | */ | 
|  | static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, | 
|  | pte_t pte, struct page *page) | 
|  | { | 
|  | pgd_t *pgd = pgd_offset(vma->vm_mm, addr); | 
|  | p4d_t *p4d = p4d_offset(pgd, addr); | 
|  | pud_t *pud = pud_offset(p4d, addr); | 
|  | pmd_t *pmd = pmd_offset(pud, addr); | 
|  | struct address_space *mapping; | 
|  | pgoff_t index; | 
|  | static unsigned long resume; | 
|  | static unsigned long nr_shown; | 
|  | static unsigned long nr_unshown; | 
|  |  | 
|  | /* | 
|  | * Allow a burst of 60 reports, then keep quiet for that minute; | 
|  | * or allow a steady drip of one report per second. | 
|  | */ | 
|  | if (nr_shown == 60) { | 
|  | if (time_before(jiffies, resume)) { | 
|  | nr_unshown++; | 
|  | return; | 
|  | } | 
|  | if (nr_unshown) { | 
|  | pr_alert("BUG: Bad page map: %lu messages suppressed\n", | 
|  | nr_unshown); | 
|  | nr_unshown = 0; | 
|  | } | 
|  | nr_shown = 0; | 
|  | } | 
|  | if (nr_shown++ == 0) | 
|  | resume = jiffies + 60 * HZ; | 
|  |  | 
|  | mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; | 
|  | index = linear_page_index(vma, addr); | 
|  |  | 
|  | pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n", | 
|  | current->comm, | 
|  | (long long)pte_val(pte), (long long)pmd_val(*pmd)); | 
|  | if (page) | 
|  | dump_page(page, "bad pte"); | 
|  | pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", | 
|  | (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); | 
|  | pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", | 
|  | vma->vm_file, | 
|  | vma->vm_ops ? vma->vm_ops->fault : NULL, | 
|  | vma->vm_file ? vma->vm_file->f_op->mmap : NULL, | 
|  | mapping ? mapping->a_ops->read_folio : NULL); | 
|  | dump_stack(); | 
|  | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vm_normal_page -- This function gets the "struct page" associated with a pte. | 
|  | * | 
|  | * "Special" mappings do not wish to be associated with a "struct page" (either | 
|  | * it doesn't exist, or it exists but they don't want to touch it). In this | 
|  | * case, NULL is returned here. "Normal" mappings do have a struct page. | 
|  | * | 
|  | * There are 2 broad cases. Firstly, an architecture may define a pte_special() | 
|  | * pte bit, in which case this function is trivial. Secondly, an architecture | 
|  | * may not have a spare pte bit, which requires a more complicated scheme, | 
|  | * described below. | 
|  | * | 
|  | * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a | 
|  | * special mapping (even if there are underlying and valid "struct pages"). | 
|  | * COWed pages of a VM_PFNMAP are always normal. | 
|  | * | 
|  | * The way we recognize COWed pages within VM_PFNMAP mappings is through the | 
|  | * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit | 
|  | * set, and the vm_pgoff will point to the first PFN mapped: thus every special | 
|  | * mapping will always honor the rule | 
|  | * | 
|  | *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) | 
|  | * | 
|  | * And for normal mappings this is false. | 
|  | * | 
|  | * This restricts such mappings to be a linear translation from virtual address | 
|  | * to pfn. To get around this restriction, we allow arbitrary mappings so long | 
|  | * as the vma is not a COW mapping; in that case, we know that all ptes are | 
|  | * special (because none can have been COWed). | 
|  | * | 
|  | * | 
|  | * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. | 
|  | * | 
|  | * VM_MIXEDMAP mappings can likewise contain memory with or without "struct | 
|  | * page" backing, however the difference is that _all_ pages with a struct | 
|  | * page (that is, those where pfn_valid is true) are refcounted and considered | 
|  | * normal pages by the VM. The disadvantage is that pages are refcounted | 
|  | * (which can be slower and simply not an option for some PFNMAP users). The | 
|  | * advantage is that we don't have to follow the strict linearity rule of | 
|  | * PFNMAP mappings in order to support COWable mappings. | 
|  | * | 
|  | */ | 
|  | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, | 
|  | pte_t pte) | 
|  | { | 
|  | unsigned long pfn = pte_pfn(pte); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { | 
|  | if (likely(!pte_special(pte))) | 
|  | goto check_pfn; | 
|  | if (vma->vm_ops && vma->vm_ops->find_special_page) | 
|  | return vma->vm_ops->find_special_page(vma, addr); | 
|  | if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) | 
|  | return NULL; | 
|  | if (is_zero_pfn(pfn)) | 
|  | return NULL; | 
|  | if (pte_devmap(pte)) | 
|  | /* | 
|  | * NOTE: New users of ZONE_DEVICE will not set pte_devmap() | 
|  | * and will have refcounts incremented on their struct pages | 
|  | * when they are inserted into PTEs, thus they are safe to | 
|  | * return here. Legacy ZONE_DEVICE pages that set pte_devmap() | 
|  | * do not have refcounts. Example of legacy ZONE_DEVICE is | 
|  | * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. | 
|  | */ | 
|  | return NULL; | 
|  |  | 
|  | print_bad_pte(vma, addr, pte, NULL); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ | 
|  |  | 
|  | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { | 
|  | if (vma->vm_flags & VM_MIXEDMAP) { | 
|  | if (!pfn_valid(pfn)) | 
|  | return NULL; | 
|  | goto out; | 
|  | } else { | 
|  | unsigned long off; | 
|  | off = (addr - vma->vm_start) >> PAGE_SHIFT; | 
|  | if (pfn == vma->vm_pgoff + off) | 
|  | return NULL; | 
|  | if (!is_cow_mapping(vma->vm_flags)) | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (is_zero_pfn(pfn)) | 
|  | return NULL; | 
|  |  | 
|  | check_pfn: | 
|  | if (unlikely(pfn > highest_memmap_pfn)) { | 
|  | print_bad_pte(vma, addr, pte, NULL); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NOTE! We still have PageReserved() pages in the page tables. | 
|  | * eg. VDSO mappings can cause them to exist. | 
|  | */ | 
|  | out: | 
|  | return pfn_to_page(pfn); | 
|  | } | 
|  |  | 
|  | struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, | 
|  | pte_t pte) | 
|  | { | 
|  | struct page *page = vm_normal_page(vma, addr, pte); | 
|  |  | 
|  | if (page) | 
|  | return page_folio(page); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, | 
|  | pmd_t pmd) | 
|  | { | 
|  | unsigned long pfn = pmd_pfn(pmd); | 
|  |  | 
|  | /* | 
|  | * There is no pmd_special() but there may be special pmds, e.g. | 
|  | * in a direct-access (dax) mapping, so let's just replicate the | 
|  | * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. | 
|  | */ | 
|  | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { | 
|  | if (vma->vm_flags & VM_MIXEDMAP) { | 
|  | if (!pfn_valid(pfn)) | 
|  | return NULL; | 
|  | goto out; | 
|  | } else { | 
|  | unsigned long off; | 
|  | off = (addr - vma->vm_start) >> PAGE_SHIFT; | 
|  | if (pfn == vma->vm_pgoff + off) | 
|  | return NULL; | 
|  | if (!is_cow_mapping(vma->vm_flags)) | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (pmd_devmap(pmd)) | 
|  | return NULL; | 
|  | if (is_huge_zero_pmd(pmd)) | 
|  | return NULL; | 
|  | if (unlikely(pfn > highest_memmap_pfn)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * NOTE! We still have PageReserved() pages in the page tables. | 
|  | * eg. VDSO mappings can cause them to exist. | 
|  | */ | 
|  | out: | 
|  | return pfn_to_page(pfn); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void restore_exclusive_pte(struct vm_area_struct *vma, | 
|  | struct page *page, unsigned long address, | 
|  | pte_t *ptep) | 
|  | { | 
|  | pte_t pte; | 
|  | swp_entry_t entry; | 
|  |  | 
|  | pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); | 
|  | if (pte_swp_soft_dirty(*ptep)) | 
|  | pte = pte_mksoft_dirty(pte); | 
|  |  | 
|  | entry = pte_to_swp_entry(*ptep); | 
|  | if (pte_swp_uffd_wp(*ptep)) | 
|  | pte = pte_mkuffd_wp(pte); | 
|  | else if (is_writable_device_exclusive_entry(entry)) | 
|  | pte = maybe_mkwrite(pte_mkdirty(pte), vma); | 
|  |  | 
|  | VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page))); | 
|  |  | 
|  | /* | 
|  | * No need to take a page reference as one was already | 
|  | * created when the swap entry was made. | 
|  | */ | 
|  | if (PageAnon(page)) | 
|  | page_add_anon_rmap(page, vma, address, RMAP_NONE); | 
|  | else | 
|  | /* | 
|  | * Currently device exclusive access only supports anonymous | 
|  | * memory so the entry shouldn't point to a filebacked page. | 
|  | */ | 
|  | WARN_ON_ONCE(1); | 
|  |  | 
|  | set_pte_at(vma->vm_mm, address, ptep, pte); | 
|  |  | 
|  | /* | 
|  | * No need to invalidate - it was non-present before. However | 
|  | * secondary CPUs may have mappings that need invalidating. | 
|  | */ | 
|  | update_mmu_cache(vma, address, ptep); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Tries to restore an exclusive pte if the page lock can be acquired without | 
|  | * sleeping. | 
|  | */ | 
|  | static int | 
|  | try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, | 
|  | unsigned long addr) | 
|  | { | 
|  | swp_entry_t entry = pte_to_swp_entry(*src_pte); | 
|  | struct page *page = pfn_swap_entry_to_page(entry); | 
|  |  | 
|  | if (trylock_page(page)) { | 
|  | restore_exclusive_pte(vma, page, addr, src_pte); | 
|  | unlock_page(page); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * copy one vm_area from one task to the other. Assumes the page tables | 
|  | * already present in the new task to be cleared in the whole range | 
|  | * covered by this vma. | 
|  | */ | 
|  |  | 
|  | static unsigned long | 
|  | copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
|  | pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, | 
|  | struct vm_area_struct *src_vma, unsigned long addr, int *rss) | 
|  | { | 
|  | unsigned long vm_flags = dst_vma->vm_flags; | 
|  | pte_t pte = *src_pte; | 
|  | struct page *page; | 
|  | swp_entry_t entry = pte_to_swp_entry(pte); | 
|  |  | 
|  | if (likely(!non_swap_entry(entry))) { | 
|  | if (swap_duplicate(entry) < 0) | 
|  | return -EIO; | 
|  |  | 
|  | /* make sure dst_mm is on swapoff's mmlist. */ | 
|  | if (unlikely(list_empty(&dst_mm->mmlist))) { | 
|  | spin_lock(&mmlist_lock); | 
|  | if (list_empty(&dst_mm->mmlist)) | 
|  | list_add(&dst_mm->mmlist, | 
|  | &src_mm->mmlist); | 
|  | spin_unlock(&mmlist_lock); | 
|  | } | 
|  | /* Mark the swap entry as shared. */ | 
|  | if (pte_swp_exclusive(*src_pte)) { | 
|  | pte = pte_swp_clear_exclusive(*src_pte); | 
|  | set_pte_at(src_mm, addr, src_pte, pte); | 
|  | } | 
|  | rss[MM_SWAPENTS]++; | 
|  | } else if (is_migration_entry(entry)) { | 
|  | page = pfn_swap_entry_to_page(entry); | 
|  |  | 
|  | rss[mm_counter(page)]++; | 
|  |  | 
|  | if (!is_readable_migration_entry(entry) && | 
|  | is_cow_mapping(vm_flags)) { | 
|  | /* | 
|  | * COW mappings require pages in both parent and child | 
|  | * to be set to read. A previously exclusive entry is | 
|  | * now shared. | 
|  | */ | 
|  | entry = make_readable_migration_entry( | 
|  | swp_offset(entry)); | 
|  | pte = swp_entry_to_pte(entry); | 
|  | if (pte_swp_soft_dirty(*src_pte)) | 
|  | pte = pte_swp_mksoft_dirty(pte); | 
|  | if (pte_swp_uffd_wp(*src_pte)) | 
|  | pte = pte_swp_mkuffd_wp(pte); | 
|  | set_pte_at(src_mm, addr, src_pte, pte); | 
|  | } | 
|  | } else if (is_device_private_entry(entry)) { | 
|  | page = pfn_swap_entry_to_page(entry); | 
|  |  | 
|  | /* | 
|  | * Update rss count even for unaddressable pages, as | 
|  | * they should treated just like normal pages in this | 
|  | * respect. | 
|  | * | 
|  | * We will likely want to have some new rss counters | 
|  | * for unaddressable pages, at some point. But for now | 
|  | * keep things as they are. | 
|  | */ | 
|  | get_page(page); | 
|  | rss[mm_counter(page)]++; | 
|  | /* Cannot fail as these pages cannot get pinned. */ | 
|  | BUG_ON(page_try_dup_anon_rmap(page, false, src_vma)); | 
|  |  | 
|  | /* | 
|  | * We do not preserve soft-dirty information, because so | 
|  | * far, checkpoint/restore is the only feature that | 
|  | * requires that. And checkpoint/restore does not work | 
|  | * when a device driver is involved (you cannot easily | 
|  | * save and restore device driver state). | 
|  | */ | 
|  | if (is_writable_device_private_entry(entry) && | 
|  | is_cow_mapping(vm_flags)) { | 
|  | entry = make_readable_device_private_entry( | 
|  | swp_offset(entry)); | 
|  | pte = swp_entry_to_pte(entry); | 
|  | if (pte_swp_uffd_wp(*src_pte)) | 
|  | pte = pte_swp_mkuffd_wp(pte); | 
|  | set_pte_at(src_mm, addr, src_pte, pte); | 
|  | } | 
|  | } else if (is_device_exclusive_entry(entry)) { | 
|  | /* | 
|  | * Make device exclusive entries present by restoring the | 
|  | * original entry then copying as for a present pte. Device | 
|  | * exclusive entries currently only support private writable | 
|  | * (ie. COW) mappings. | 
|  | */ | 
|  | VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); | 
|  | if (try_restore_exclusive_pte(src_pte, src_vma, addr)) | 
|  | return -EBUSY; | 
|  | return -ENOENT; | 
|  | } else if (is_pte_marker_entry(entry)) { | 
|  | if (userfaultfd_wp(dst_vma)) | 
|  | set_pte_at(dst_mm, addr, dst_pte, pte); | 
|  | return 0; | 
|  | } | 
|  | if (!userfaultfd_wp(dst_vma)) | 
|  | pte = pte_swp_clear_uffd_wp(pte); | 
|  | set_pte_at(dst_mm, addr, dst_pte, pte); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy a present and normal page. | 
|  | * | 
|  | * NOTE! The usual case is that this isn't required; | 
|  | * instead, the caller can just increase the page refcount | 
|  | * and re-use the pte the traditional way. | 
|  | * | 
|  | * And if we need a pre-allocated page but don't yet have | 
|  | * one, return a negative error to let the preallocation | 
|  | * code know so that it can do so outside the page table | 
|  | * lock. | 
|  | */ | 
|  | static inline int | 
|  | copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, | 
|  | pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, | 
|  | struct page **prealloc, struct page *page) | 
|  | { | 
|  | struct page *new_page; | 
|  | pte_t pte; | 
|  |  | 
|  | new_page = *prealloc; | 
|  | if (!new_page) | 
|  | return -EAGAIN; | 
|  |  | 
|  | /* | 
|  | * We have a prealloc page, all good!  Take it | 
|  | * over and copy the page & arm it. | 
|  | */ | 
|  | *prealloc = NULL; | 
|  | copy_user_highpage(new_page, page, addr, src_vma); | 
|  | __SetPageUptodate(new_page); | 
|  | page_add_new_anon_rmap(new_page, dst_vma, addr); | 
|  | lru_cache_add_inactive_or_unevictable(new_page, dst_vma); | 
|  | rss[mm_counter(new_page)]++; | 
|  |  | 
|  | /* All done, just insert the new page copy in the child */ | 
|  | pte = mk_pte(new_page, dst_vma->vm_page_prot); | 
|  | pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); | 
|  | if (userfaultfd_pte_wp(dst_vma, *src_pte)) | 
|  | /* Uffd-wp needs to be delivered to dest pte as well */ | 
|  | pte = pte_wrprotect(pte_mkuffd_wp(pte)); | 
|  | set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page | 
|  | * is required to copy this pte. | 
|  | */ | 
|  | static inline int | 
|  | copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, | 
|  | pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, | 
|  | struct page **prealloc) | 
|  | { | 
|  | struct mm_struct *src_mm = src_vma->vm_mm; | 
|  | unsigned long vm_flags = src_vma->vm_flags; | 
|  | pte_t pte = *src_pte; | 
|  | struct page *page; | 
|  |  | 
|  | page = vm_normal_page(src_vma, addr, pte); | 
|  | if (page && PageAnon(page)) { | 
|  | /* | 
|  | * If this page may have been pinned by the parent process, | 
|  | * copy the page immediately for the child so that we'll always | 
|  | * guarantee the pinned page won't be randomly replaced in the | 
|  | * future. | 
|  | */ | 
|  | get_page(page); | 
|  | if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) { | 
|  | /* Page maybe pinned, we have to copy. */ | 
|  | put_page(page); | 
|  | return copy_present_page(dst_vma, src_vma, dst_pte, src_pte, | 
|  | addr, rss, prealloc, page); | 
|  | } | 
|  | rss[mm_counter(page)]++; | 
|  | } else if (page) { | 
|  | get_page(page); | 
|  | page_dup_file_rmap(page, false); | 
|  | rss[mm_counter(page)]++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If it's a COW mapping, write protect it both | 
|  | * in the parent and the child | 
|  | */ | 
|  | if (is_cow_mapping(vm_flags) && pte_write(pte)) { | 
|  | ptep_set_wrprotect(src_mm, addr, src_pte); | 
|  | pte = pte_wrprotect(pte); | 
|  | } | 
|  | VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page)); | 
|  |  | 
|  | /* | 
|  | * If it's a shared mapping, mark it clean in | 
|  | * the child | 
|  | */ | 
|  | if (vm_flags & VM_SHARED) | 
|  | pte = pte_mkclean(pte); | 
|  | pte = pte_mkold(pte); | 
|  |  | 
|  | if (!userfaultfd_wp(dst_vma)) | 
|  | pte = pte_clear_uffd_wp(pte); | 
|  |  | 
|  | set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline struct page * | 
|  | page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma, | 
|  | unsigned long addr) | 
|  | { | 
|  | struct page *new_page; | 
|  |  | 
|  | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr); | 
|  | if (!new_page) | 
|  | return NULL; | 
|  |  | 
|  | if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) { | 
|  | put_page(new_page); | 
|  | return NULL; | 
|  | } | 
|  | cgroup_throttle_swaprate(new_page, GFP_KERNEL); | 
|  |  | 
|  | return new_page; | 
|  | } | 
|  |  | 
|  | static int | 
|  | copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, | 
|  | pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, | 
|  | unsigned long end) | 
|  | { | 
|  | struct mm_struct *dst_mm = dst_vma->vm_mm; | 
|  | struct mm_struct *src_mm = src_vma->vm_mm; | 
|  | pte_t *orig_src_pte, *orig_dst_pte; | 
|  | pte_t *src_pte, *dst_pte; | 
|  | spinlock_t *src_ptl, *dst_ptl; | 
|  | int progress, ret = 0; | 
|  | int rss[NR_MM_COUNTERS]; | 
|  | swp_entry_t entry = (swp_entry_t){0}; | 
|  | struct page *prealloc = NULL; | 
|  |  | 
|  | again: | 
|  | progress = 0; | 
|  | init_rss_vec(rss); | 
|  |  | 
|  | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); | 
|  | if (!dst_pte) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | src_pte = pte_offset_map(src_pmd, addr); | 
|  | src_ptl = pte_lockptr(src_mm, src_pmd); | 
|  | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); | 
|  | orig_src_pte = src_pte; | 
|  | orig_dst_pte = dst_pte; | 
|  | arch_enter_lazy_mmu_mode(); | 
|  |  | 
|  | do { | 
|  | /* | 
|  | * We are holding two locks at this point - either of them | 
|  | * could generate latencies in another task on another CPU. | 
|  | */ | 
|  | if (progress >= 32) { | 
|  | progress = 0; | 
|  | if (need_resched() || | 
|  | spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) | 
|  | break; | 
|  | } | 
|  | if (pte_none(*src_pte)) { | 
|  | progress++; | 
|  | continue; | 
|  | } | 
|  | if (unlikely(!pte_present(*src_pte))) { | 
|  | ret = copy_nonpresent_pte(dst_mm, src_mm, | 
|  | dst_pte, src_pte, | 
|  | dst_vma, src_vma, | 
|  | addr, rss); | 
|  | if (ret == -EIO) { | 
|  | entry = pte_to_swp_entry(*src_pte); | 
|  | break; | 
|  | } else if (ret == -EBUSY) { | 
|  | break; | 
|  | } else if (!ret) { | 
|  | progress += 8; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Device exclusive entry restored, continue by copying | 
|  | * the now present pte. | 
|  | */ | 
|  | WARN_ON_ONCE(ret != -ENOENT); | 
|  | } | 
|  | /* copy_present_pte() will clear `*prealloc' if consumed */ | 
|  | ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, | 
|  | addr, rss, &prealloc); | 
|  | /* | 
|  | * If we need a pre-allocated page for this pte, drop the | 
|  | * locks, allocate, and try again. | 
|  | */ | 
|  | if (unlikely(ret == -EAGAIN)) | 
|  | break; | 
|  | if (unlikely(prealloc)) { | 
|  | /* | 
|  | * pre-alloc page cannot be reused by next time so as | 
|  | * to strictly follow mempolicy (e.g., alloc_page_vma() | 
|  | * will allocate page according to address).  This | 
|  | * could only happen if one pinned pte changed. | 
|  | */ | 
|  | put_page(prealloc); | 
|  | prealloc = NULL; | 
|  | } | 
|  | progress += 8; | 
|  | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | 
|  |  | 
|  | arch_leave_lazy_mmu_mode(); | 
|  | spin_unlock(src_ptl); | 
|  | pte_unmap(orig_src_pte); | 
|  | add_mm_rss_vec(dst_mm, rss); | 
|  | pte_unmap_unlock(orig_dst_pte, dst_ptl); | 
|  | cond_resched(); | 
|  |  | 
|  | if (ret == -EIO) { | 
|  | VM_WARN_ON_ONCE(!entry.val); | 
|  | if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | entry.val = 0; | 
|  | } else if (ret == -EBUSY) { | 
|  | goto out; | 
|  | } else if (ret ==  -EAGAIN) { | 
|  | prealloc = page_copy_prealloc(src_mm, src_vma, addr); | 
|  | if (!prealloc) | 
|  | return -ENOMEM; | 
|  | } else if (ret) { | 
|  | VM_WARN_ON_ONCE(1); | 
|  | } | 
|  |  | 
|  | /* We've captured and resolved the error. Reset, try again. */ | 
|  | ret = 0; | 
|  |  | 
|  | if (addr != end) | 
|  | goto again; | 
|  | out: | 
|  | if (unlikely(prealloc)) | 
|  | put_page(prealloc); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, | 
|  | pud_t *dst_pud, pud_t *src_pud, unsigned long addr, | 
|  | unsigned long end) | 
|  | { | 
|  | struct mm_struct *dst_mm = dst_vma->vm_mm; | 
|  | struct mm_struct *src_mm = src_vma->vm_mm; | 
|  | pmd_t *src_pmd, *dst_pmd; | 
|  | unsigned long next; | 
|  |  | 
|  | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | 
|  | if (!dst_pmd) | 
|  | return -ENOMEM; | 
|  | src_pmd = pmd_offset(src_pud, addr); | 
|  | do { | 
|  | next = pmd_addr_end(addr, end); | 
|  | if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) | 
|  | || pmd_devmap(*src_pmd)) { | 
|  | int err; | 
|  | VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); | 
|  | err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, | 
|  | addr, dst_vma, src_vma); | 
|  | if (err == -ENOMEM) | 
|  | return -ENOMEM; | 
|  | if (!err) | 
|  | continue; | 
|  | /* fall through */ | 
|  | } | 
|  | if (pmd_none_or_clear_bad(src_pmd)) | 
|  | continue; | 
|  | if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, | 
|  | addr, next)) | 
|  | return -ENOMEM; | 
|  | } while (dst_pmd++, src_pmd++, addr = next, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, | 
|  | p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, | 
|  | unsigned long end) | 
|  | { | 
|  | struct mm_struct *dst_mm = dst_vma->vm_mm; | 
|  | struct mm_struct *src_mm = src_vma->vm_mm; | 
|  | pud_t *src_pud, *dst_pud; | 
|  | unsigned long next; | 
|  |  | 
|  | dst_pud = pud_alloc(dst_mm, dst_p4d, addr); | 
|  | if (!dst_pud) | 
|  | return -ENOMEM; | 
|  | src_pud = pud_offset(src_p4d, addr); | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { | 
|  | int err; | 
|  |  | 
|  | VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); | 
|  | err = copy_huge_pud(dst_mm, src_mm, | 
|  | dst_pud, src_pud, addr, src_vma); | 
|  | if (err == -ENOMEM) | 
|  | return -ENOMEM; | 
|  | if (!err) | 
|  | continue; | 
|  | /* fall through */ | 
|  | } | 
|  | if (pud_none_or_clear_bad(src_pud)) | 
|  | continue; | 
|  | if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, | 
|  | addr, next)) | 
|  | return -ENOMEM; | 
|  | } while (dst_pud++, src_pud++, addr = next, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, | 
|  | pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, | 
|  | unsigned long end) | 
|  | { | 
|  | struct mm_struct *dst_mm = dst_vma->vm_mm; | 
|  | p4d_t *src_p4d, *dst_p4d; | 
|  | unsigned long next; | 
|  |  | 
|  | dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); | 
|  | if (!dst_p4d) | 
|  | return -ENOMEM; | 
|  | src_p4d = p4d_offset(src_pgd, addr); | 
|  | do { | 
|  | next = p4d_addr_end(addr, end); | 
|  | if (p4d_none_or_clear_bad(src_p4d)) | 
|  | continue; | 
|  | if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, | 
|  | addr, next)) | 
|  | return -ENOMEM; | 
|  | } while (dst_p4d++, src_p4d++, addr = next, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if the vma needs to copy the pgtable during this fork().  Return | 
|  | * false when we can speed up fork() by allowing lazy page faults later until | 
|  | * when the child accesses the memory range. | 
|  | */ | 
|  | static bool | 
|  | vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) | 
|  | { | 
|  | /* | 
|  | * Always copy pgtables when dst_vma has uffd-wp enabled even if it's | 
|  | * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable | 
|  | * contains uffd-wp protection information, that's something we can't | 
|  | * retrieve from page cache, and skip copying will lose those info. | 
|  | */ | 
|  | if (userfaultfd_wp(dst_vma)) | 
|  | return true; | 
|  |  | 
|  | if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) | 
|  | return true; | 
|  |  | 
|  | if (src_vma->anon_vma) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * Don't copy ptes where a page fault will fill them correctly.  Fork | 
|  | * becomes much lighter when there are big shared or private readonly | 
|  | * mappings. The tradeoff is that copy_page_range is more efficient | 
|  | * than faulting. | 
|  | */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int | 
|  | copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) | 
|  | { | 
|  | pgd_t *src_pgd, *dst_pgd; | 
|  | unsigned long next; | 
|  | unsigned long addr = src_vma->vm_start; | 
|  | unsigned long end = src_vma->vm_end; | 
|  | struct mm_struct *dst_mm = dst_vma->vm_mm; | 
|  | struct mm_struct *src_mm = src_vma->vm_mm; | 
|  | struct mmu_notifier_range range; | 
|  | bool is_cow; | 
|  | int ret; | 
|  |  | 
|  | if (!vma_needs_copy(dst_vma, src_vma)) | 
|  | return 0; | 
|  |  | 
|  | if (is_vm_hugetlb_page(src_vma)) | 
|  | return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); | 
|  |  | 
|  | if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { | 
|  | /* | 
|  | * We do not free on error cases below as remove_vma | 
|  | * gets called on error from higher level routine | 
|  | */ | 
|  | ret = track_pfn_copy(src_vma); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to invalidate the secondary MMU mappings only when | 
|  | * there could be a permission downgrade on the ptes of the | 
|  | * parent mm. And a permission downgrade will only happen if | 
|  | * is_cow_mapping() returns true. | 
|  | */ | 
|  | is_cow = is_cow_mapping(src_vma->vm_flags); | 
|  |  | 
|  | if (is_cow) { | 
|  | mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, | 
|  | 0, src_vma, src_mm, addr, end); | 
|  | mmu_notifier_invalidate_range_start(&range); | 
|  | /* | 
|  | * Disabling preemption is not needed for the write side, as | 
|  | * the read side doesn't spin, but goes to the mmap_lock. | 
|  | * | 
|  | * Use the raw variant of the seqcount_t write API to avoid | 
|  | * lockdep complaining about preemptibility. | 
|  | */ | 
|  | mmap_assert_write_locked(src_mm); | 
|  | raw_write_seqcount_begin(&src_mm->write_protect_seq); | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | dst_pgd = pgd_offset(dst_mm, addr); | 
|  | src_pgd = pgd_offset(src_mm, addr); | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | if (pgd_none_or_clear_bad(src_pgd)) | 
|  | continue; | 
|  | if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, | 
|  | addr, next))) { | 
|  | ret = -ENOMEM; | 
|  | break; | 
|  | } | 
|  | } while (dst_pgd++, src_pgd++, addr = next, addr != end); | 
|  |  | 
|  | if (is_cow) { | 
|  | raw_write_seqcount_end(&src_mm->write_protect_seq); | 
|  | mmu_notifier_invalidate_range_end(&range); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Whether we should zap all COWed (private) pages too */ | 
|  | static inline bool should_zap_cows(struct zap_details *details) | 
|  | { | 
|  | /* By default, zap all pages */ | 
|  | if (!details) | 
|  | return true; | 
|  |  | 
|  | /* Or, we zap COWed pages only if the caller wants to */ | 
|  | return details->even_cows; | 
|  | } | 
|  |  | 
|  | /* Decides whether we should zap this page with the page pointer specified */ | 
|  | static inline bool should_zap_page(struct zap_details *details, struct page *page) | 
|  | { | 
|  | /* If we can make a decision without *page.. */ | 
|  | if (should_zap_cows(details)) | 
|  | return true; | 
|  |  | 
|  | /* E.g. the caller passes NULL for the case of a zero page */ | 
|  | if (!page) | 
|  | return true; | 
|  |  | 
|  | /* Otherwise we should only zap non-anon pages */ | 
|  | return !PageAnon(page); | 
|  | } | 
|  |  | 
|  | static inline bool zap_drop_file_uffd_wp(struct zap_details *details) | 
|  | { | 
|  | if (!details) | 
|  | return false; | 
|  |  | 
|  | return details->zap_flags & ZAP_FLAG_DROP_MARKER; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function makes sure that we'll replace the none pte with an uffd-wp | 
|  | * swap special pte marker when necessary. Must be with the pgtable lock held. | 
|  | */ | 
|  | static inline void | 
|  | zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, | 
|  | unsigned long addr, pte_t *pte, | 
|  | struct zap_details *details, pte_t pteval) | 
|  | { | 
|  | #ifdef CONFIG_PTE_MARKER_UFFD_WP | 
|  | if (zap_drop_file_uffd_wp(details)) | 
|  | return; | 
|  |  | 
|  | pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static unsigned long zap_pte_range(struct mmu_gather *tlb, | 
|  | struct vm_area_struct *vma, pmd_t *pmd, | 
|  | unsigned long addr, unsigned long end, | 
|  | struct zap_details *details) | 
|  | { | 
|  | struct mm_struct *mm = tlb->mm; | 
|  | int force_flush = 0; | 
|  | int rss[NR_MM_COUNTERS]; | 
|  | spinlock_t *ptl; | 
|  | pte_t *start_pte; | 
|  | pte_t *pte; | 
|  | swp_entry_t entry; | 
|  |  | 
|  | tlb_change_page_size(tlb, PAGE_SIZE); | 
|  | again: | 
|  | init_rss_vec(rss); | 
|  | start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); | 
|  | pte = start_pte; | 
|  | flush_tlb_batched_pending(mm); | 
|  | arch_enter_lazy_mmu_mode(); | 
|  | do { | 
|  | pte_t ptent = *pte; | 
|  | struct page *page; | 
|  |  | 
|  | if (pte_none(ptent)) | 
|  | continue; | 
|  |  | 
|  | if (need_resched()) | 
|  | break; | 
|  |  | 
|  | if (pte_present(ptent)) { | 
|  | page = vm_normal_page(vma, addr, ptent); | 
|  | if (unlikely(!should_zap_page(details, page))) | 
|  | continue; | 
|  | ptent = ptep_get_and_clear_full(mm, addr, pte, | 
|  | tlb->fullmm); | 
|  | tlb_remove_tlb_entry(tlb, pte, addr); | 
|  | zap_install_uffd_wp_if_needed(vma, addr, pte, details, | 
|  | ptent); | 
|  | if (unlikely(!page)) | 
|  | continue; | 
|  |  | 
|  | if (!PageAnon(page)) { | 
|  | if (pte_dirty(ptent)) { | 
|  | force_flush = 1; | 
|  | set_page_dirty(page); | 
|  | } | 
|  | if (pte_young(ptent) && | 
|  | likely(!(vma->vm_flags & VM_SEQ_READ))) | 
|  | mark_page_accessed(page); | 
|  | } | 
|  | rss[mm_counter(page)]--; | 
|  | page_remove_rmap(page, vma, false); | 
|  | if (unlikely(page_mapcount(page) < 0)) | 
|  | print_bad_pte(vma, addr, ptent, page); | 
|  | if (unlikely(__tlb_remove_page(tlb, page))) { | 
|  | force_flush = 1; | 
|  | addr += PAGE_SIZE; | 
|  | break; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | entry = pte_to_swp_entry(ptent); | 
|  | if (is_device_private_entry(entry) || | 
|  | is_device_exclusive_entry(entry)) { | 
|  | page = pfn_swap_entry_to_page(entry); | 
|  | if (unlikely(!should_zap_page(details, page))) | 
|  | continue; | 
|  | /* | 
|  | * Both device private/exclusive mappings should only | 
|  | * work with anonymous page so far, so we don't need to | 
|  | * consider uffd-wp bit when zap. For more information, | 
|  | * see zap_install_uffd_wp_if_needed(). | 
|  | */ | 
|  | WARN_ON_ONCE(!vma_is_anonymous(vma)); | 
|  | rss[mm_counter(page)]--; | 
|  | if (is_device_private_entry(entry)) | 
|  | page_remove_rmap(page, vma, false); | 
|  | put_page(page); | 
|  | } else if (!non_swap_entry(entry)) { | 
|  | /* Genuine swap entry, hence a private anon page */ | 
|  | if (!should_zap_cows(details)) | 
|  | continue; | 
|  | rss[MM_SWAPENTS]--; | 
|  | if (unlikely(!free_swap_and_cache(entry))) | 
|  | print_bad_pte(vma, addr, ptent, NULL); | 
|  | } else if (is_migration_entry(entry)) { | 
|  | page = pfn_swap_entry_to_page(entry); | 
|  | if (!should_zap_page(details, page)) | 
|  | continue; | 
|  | rss[mm_counter(page)]--; | 
|  | } else if (pte_marker_entry_uffd_wp(entry)) { | 
|  | /* Only drop the uffd-wp marker if explicitly requested */ | 
|  | if (!zap_drop_file_uffd_wp(details)) | 
|  | continue; | 
|  | } else if (is_hwpoison_entry(entry) || | 
|  | is_swapin_error_entry(entry)) { | 
|  | if (!should_zap_cows(details)) | 
|  | continue; | 
|  | } else { | 
|  | /* We should have covered all the swap entry types */ | 
|  | WARN_ON_ONCE(1); | 
|  | } | 
|  | pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); | 
|  | zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent); | 
|  | } while (pte++, addr += PAGE_SIZE, addr != end); | 
|  |  | 
|  | add_mm_rss_vec(mm, rss); | 
|  | arch_leave_lazy_mmu_mode(); | 
|  |  | 
|  | /* Do the actual TLB flush before dropping ptl */ | 
|  | if (force_flush) | 
|  | tlb_flush_mmu_tlbonly(tlb); | 
|  | pte_unmap_unlock(start_pte, ptl); | 
|  |  | 
|  | /* | 
|  | * If we forced a TLB flush (either due to running out of | 
|  | * batch buffers or because we needed to flush dirty TLB | 
|  | * entries before releasing the ptl), free the batched | 
|  | * memory too. Restart if we didn't do everything. | 
|  | */ | 
|  | if (force_flush) { | 
|  | force_flush = 0; | 
|  | tlb_flush_mmu(tlb); | 
|  | } | 
|  |  | 
|  | if (addr != end) { | 
|  | cond_resched(); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, | 
|  | struct vm_area_struct *vma, pud_t *pud, | 
|  | unsigned long addr, unsigned long end, | 
|  | struct zap_details *details) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long next; | 
|  |  | 
|  | pmd = pmd_offset(pud, addr); | 
|  | do { | 
|  | next = pmd_addr_end(addr, end); | 
|  | if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { | 
|  | if (next - addr != HPAGE_PMD_SIZE) | 
|  | __split_huge_pmd(vma, pmd, addr, false, NULL); | 
|  | else if (zap_huge_pmd(tlb, vma, pmd, addr)) | 
|  | goto next; | 
|  | /* fall through */ | 
|  | } else if (details && details->single_folio && | 
|  | folio_test_pmd_mappable(details->single_folio) && | 
|  | next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { | 
|  | spinlock_t *ptl = pmd_lock(tlb->mm, pmd); | 
|  | /* | 
|  | * Take and drop THP pmd lock so that we cannot return | 
|  | * prematurely, while zap_huge_pmd() has cleared *pmd, | 
|  | * but not yet decremented compound_mapcount(). | 
|  | */ | 
|  | spin_unlock(ptl); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Here there can be other concurrent MADV_DONTNEED or | 
|  | * trans huge page faults running, and if the pmd is | 
|  | * none or trans huge it can change under us. This is | 
|  | * because MADV_DONTNEED holds the mmap_lock in read | 
|  | * mode. | 
|  | */ | 
|  | if (pmd_none_or_trans_huge_or_clear_bad(pmd)) | 
|  | goto next; | 
|  | next = zap_pte_range(tlb, vma, pmd, addr, next, details); | 
|  | next: | 
|  | cond_resched(); | 
|  | } while (pmd++, addr = next, addr != end); | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | static inline unsigned long zap_pud_range(struct mmu_gather *tlb, | 
|  | struct vm_area_struct *vma, p4d_t *p4d, | 
|  | unsigned long addr, unsigned long end, | 
|  | struct zap_details *details) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long next; | 
|  |  | 
|  | pud = pud_offset(p4d, addr); | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | if (pud_trans_huge(*pud) || pud_devmap(*pud)) { | 
|  | if (next - addr != HPAGE_PUD_SIZE) { | 
|  | mmap_assert_locked(tlb->mm); | 
|  | split_huge_pud(vma, pud, addr); | 
|  | } else if (zap_huge_pud(tlb, vma, pud, addr)) | 
|  | goto next; | 
|  | /* fall through */ | 
|  | } | 
|  | if (pud_none_or_clear_bad(pud)) | 
|  | continue; | 
|  | next = zap_pmd_range(tlb, vma, pud, addr, next, details); | 
|  | next: | 
|  | cond_resched(); | 
|  | } while (pud++, addr = next, addr != end); | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, | 
|  | struct vm_area_struct *vma, pgd_t *pgd, | 
|  | unsigned long addr, unsigned long end, | 
|  | struct zap_details *details) | 
|  | { | 
|  | p4d_t *p4d; | 
|  | unsigned long next; | 
|  |  | 
|  | p4d = p4d_offset(pgd, addr); | 
|  | do { | 
|  | next = p4d_addr_end(addr, end); | 
|  | if (p4d_none_or_clear_bad(p4d)) | 
|  | continue; | 
|  | next = zap_pud_range(tlb, vma, p4d, addr, next, details); | 
|  | } while (p4d++, addr = next, addr != end); | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | void unmap_page_range(struct mmu_gather *tlb, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long addr, unsigned long end, | 
|  | struct zap_details *details) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | unsigned long next; | 
|  |  | 
|  | BUG_ON(addr >= end); | 
|  | tlb_start_vma(tlb, vma); | 
|  | pgd = pgd_offset(vma->vm_mm, addr); | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | if (pgd_none_or_clear_bad(pgd)) | 
|  | continue; | 
|  | next = zap_p4d_range(tlb, vma, pgd, addr, next, details); | 
|  | } while (pgd++, addr = next, addr != end); | 
|  | tlb_end_vma(tlb, vma); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void unmap_single_vma(struct mmu_gather *tlb, | 
|  | struct vm_area_struct *vma, unsigned long start_addr, | 
|  | unsigned long end_addr, | 
|  | struct zap_details *details) | 
|  | { | 
|  | unsigned long start = max(vma->vm_start, start_addr); | 
|  | unsigned long end; | 
|  |  | 
|  | if (start >= vma->vm_end) | 
|  | return; | 
|  | end = min(vma->vm_end, end_addr); | 
|  | if (end <= vma->vm_start) | 
|  | return; | 
|  |  | 
|  | if (vma->vm_file) | 
|  | uprobe_munmap(vma, start, end); | 
|  |  | 
|  | if (unlikely(vma->vm_flags & VM_PFNMAP)) | 
|  | untrack_pfn(vma, 0, 0); | 
|  |  | 
|  | if (start != end) { | 
|  | if (unlikely(is_vm_hugetlb_page(vma))) { | 
|  | /* | 
|  | * It is undesirable to test vma->vm_file as it | 
|  | * should be non-null for valid hugetlb area. | 
|  | * However, vm_file will be NULL in the error | 
|  | * cleanup path of mmap_region. When | 
|  | * hugetlbfs ->mmap method fails, | 
|  | * mmap_region() nullifies vma->vm_file | 
|  | * before calling this function to clean up. | 
|  | * Since no pte has actually been setup, it is | 
|  | * safe to do nothing in this case. | 
|  | */ | 
|  | if (vma->vm_file) { | 
|  | zap_flags_t zap_flags = details ? | 
|  | details->zap_flags : 0; | 
|  | __unmap_hugepage_range_final(tlb, vma, start, end, | 
|  | NULL, zap_flags); | 
|  | } | 
|  | } else | 
|  | unmap_page_range(tlb, vma, start, end, details); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * unmap_vmas - unmap a range of memory covered by a list of vma's | 
|  | * @tlb: address of the caller's struct mmu_gather | 
|  | * @mt: the maple tree | 
|  | * @vma: the starting vma | 
|  | * @start_addr: virtual address at which to start unmapping | 
|  | * @end_addr: virtual address at which to end unmapping | 
|  | * | 
|  | * Unmap all pages in the vma list. | 
|  | * | 
|  | * Only addresses between `start' and `end' will be unmapped. | 
|  | * | 
|  | * The VMA list must be sorted in ascending virtual address order. | 
|  | * | 
|  | * unmap_vmas() assumes that the caller will flush the whole unmapped address | 
|  | * range after unmap_vmas() returns.  So the only responsibility here is to | 
|  | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | 
|  | * drops the lock and schedules. | 
|  | */ | 
|  | void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt, | 
|  | struct vm_area_struct *vma, unsigned long start_addr, | 
|  | unsigned long end_addr) | 
|  | { | 
|  | struct mmu_notifier_range range; | 
|  | struct zap_details details = { | 
|  | .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, | 
|  | /* Careful - we need to zap private pages too! */ | 
|  | .even_cows = true, | 
|  | }; | 
|  | MA_STATE(mas, mt, vma->vm_end, vma->vm_end); | 
|  |  | 
|  | mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, | 
|  | start_addr, end_addr); | 
|  | mmu_notifier_invalidate_range_start(&range); | 
|  | do { | 
|  | unmap_single_vma(tlb, vma, start_addr, end_addr, &details); | 
|  | } while ((vma = mas_find(&mas, end_addr - 1)) != NULL); | 
|  | mmu_notifier_invalidate_range_end(&range); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * zap_page_range - remove user pages in a given range | 
|  | * @vma: vm_area_struct holding the applicable pages | 
|  | * @start: starting address of pages to zap | 
|  | * @size: number of bytes to zap | 
|  | * | 
|  | * Caller must protect the VMA list | 
|  | */ | 
|  | void zap_page_range(struct vm_area_struct *vma, unsigned long start, | 
|  | unsigned long size) | 
|  | { | 
|  | struct maple_tree *mt = &vma->vm_mm->mm_mt; | 
|  | unsigned long end = start + size; | 
|  | struct mmu_notifier_range range; | 
|  | struct mmu_gather tlb; | 
|  | MA_STATE(mas, mt, vma->vm_end, vma->vm_end); | 
|  |  | 
|  | lru_add_drain(); | 
|  | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, | 
|  | start, start + size); | 
|  | tlb_gather_mmu(&tlb, vma->vm_mm); | 
|  | update_hiwater_rss(vma->vm_mm); | 
|  | mmu_notifier_invalidate_range_start(&range); | 
|  | do { | 
|  | unmap_single_vma(&tlb, vma, start, range.end, NULL); | 
|  | } while ((vma = mas_find(&mas, end - 1)) != NULL); | 
|  | mmu_notifier_invalidate_range_end(&range); | 
|  | tlb_finish_mmu(&tlb); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * zap_page_range_single - remove user pages in a given range | 
|  | * @vma: vm_area_struct holding the applicable pages | 
|  | * @address: starting address of pages to zap | 
|  | * @size: number of bytes to zap | 
|  | * @details: details of shared cache invalidation | 
|  | * | 
|  | * The range must fit into one VMA. | 
|  | */ | 
|  | void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, | 
|  | unsigned long size, struct zap_details *details) | 
|  | { | 
|  | const unsigned long end = address + size; | 
|  | struct mmu_notifier_range range; | 
|  | struct mmu_gather tlb; | 
|  |  | 
|  | lru_add_drain(); | 
|  | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, | 
|  | address, end); | 
|  | if (is_vm_hugetlb_page(vma)) | 
|  | adjust_range_if_pmd_sharing_possible(vma, &range.start, | 
|  | &range.end); | 
|  | tlb_gather_mmu(&tlb, vma->vm_mm); | 
|  | update_hiwater_rss(vma->vm_mm); | 
|  | mmu_notifier_invalidate_range_start(&range); | 
|  | /* | 
|  | * unmap 'address-end' not 'range.start-range.end' as range | 
|  | * could have been expanded for hugetlb pmd sharing. | 
|  | */ | 
|  | unmap_single_vma(&tlb, vma, address, end, details); | 
|  | mmu_notifier_invalidate_range_end(&range); | 
|  | tlb_finish_mmu(&tlb); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * zap_vma_ptes - remove ptes mapping the vma | 
|  | * @vma: vm_area_struct holding ptes to be zapped | 
|  | * @address: starting address of pages to zap | 
|  | * @size: number of bytes to zap | 
|  | * | 
|  | * This function only unmaps ptes assigned to VM_PFNMAP vmas. | 
|  | * | 
|  | * The entire address range must be fully contained within the vma. | 
|  | * | 
|  | */ | 
|  | void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, | 
|  | unsigned long size) | 
|  | { | 
|  | if (!range_in_vma(vma, address, address + size) || | 
|  | !(vma->vm_flags & VM_PFNMAP)) | 
|  | return; | 
|  |  | 
|  | zap_page_range_single(vma, address, size, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zap_vma_ptes); | 
|  |  | 
|  | static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | p4d_t *p4d; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  |  | 
|  | pgd = pgd_offset(mm, addr); | 
|  | p4d = p4d_alloc(mm, pgd, addr); | 
|  | if (!p4d) | 
|  | return NULL; | 
|  | pud = pud_alloc(mm, p4d, addr); | 
|  | if (!pud) | 
|  | return NULL; | 
|  | pmd = pmd_alloc(mm, pud, addr); | 
|  | if (!pmd) | 
|  | return NULL; | 
|  |  | 
|  | VM_BUG_ON(pmd_trans_huge(*pmd)); | 
|  | return pmd; | 
|  | } | 
|  |  | 
|  | pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, | 
|  | spinlock_t **ptl) | 
|  | { | 
|  | pmd_t *pmd = walk_to_pmd(mm, addr); | 
|  |  | 
|  | if (!pmd) | 
|  | return NULL; | 
|  | return pte_alloc_map_lock(mm, pmd, addr, ptl); | 
|  | } | 
|  |  | 
|  | static int validate_page_before_insert(struct page *page) | 
|  | { | 
|  | if (PageAnon(page) || PageSlab(page) || page_has_type(page)) | 
|  | return -EINVAL; | 
|  | flush_dcache_page(page); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, | 
|  | unsigned long addr, struct page *page, pgprot_t prot) | 
|  | { | 
|  | if (!pte_none(*pte)) | 
|  | return -EBUSY; | 
|  | /* Ok, finally just insert the thing.. */ | 
|  | get_page(page); | 
|  | inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); | 
|  | page_add_file_rmap(page, vma, false); | 
|  | set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the old fallback for page remapping. | 
|  | * | 
|  | * For historical reasons, it only allows reserved pages. Only | 
|  | * old drivers should use this, and they needed to mark their | 
|  | * pages reserved for the old functions anyway. | 
|  | */ | 
|  | static int insert_page(struct vm_area_struct *vma, unsigned long addr, | 
|  | struct page *page, pgprot_t prot) | 
|  | { | 
|  | int retval; | 
|  | pte_t *pte; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | retval = validate_page_before_insert(page); | 
|  | if (retval) | 
|  | goto out; | 
|  | retval = -ENOMEM; | 
|  | pte = get_locked_pte(vma->vm_mm, addr, &ptl); | 
|  | if (!pte) | 
|  | goto out; | 
|  | retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); | 
|  | pte_unmap_unlock(pte, ptl); | 
|  | out: | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | #ifdef pte_index | 
|  | static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, | 
|  | unsigned long addr, struct page *page, pgprot_t prot) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (!page_count(page)) | 
|  | return -EINVAL; | 
|  | err = validate_page_before_insert(page); | 
|  | if (err) | 
|  | return err; | 
|  | return insert_page_into_pte_locked(vma, pte, addr, page, prot); | 
|  | } | 
|  |  | 
|  | /* insert_pages() amortizes the cost of spinlock operations | 
|  | * when inserting pages in a loop. Arch *must* define pte_index. | 
|  | */ | 
|  | static int insert_pages(struct vm_area_struct *vma, unsigned long addr, | 
|  | struct page **pages, unsigned long *num, pgprot_t prot) | 
|  | { | 
|  | pmd_t *pmd = NULL; | 
|  | pte_t *start_pte, *pte; | 
|  | spinlock_t *pte_lock; | 
|  | struct mm_struct *const mm = vma->vm_mm; | 
|  | unsigned long curr_page_idx = 0; | 
|  | unsigned long remaining_pages_total = *num; | 
|  | unsigned long pages_to_write_in_pmd; | 
|  | int ret; | 
|  | more: | 
|  | ret = -EFAULT; | 
|  | pmd = walk_to_pmd(mm, addr); | 
|  | if (!pmd) | 
|  | goto out; | 
|  |  | 
|  | pages_to_write_in_pmd = min_t(unsigned long, | 
|  | remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); | 
|  |  | 
|  | /* Allocate the PTE if necessary; takes PMD lock once only. */ | 
|  | ret = -ENOMEM; | 
|  | if (pte_alloc(mm, pmd)) | 
|  | goto out; | 
|  |  | 
|  | while (pages_to_write_in_pmd) { | 
|  | int pte_idx = 0; | 
|  | const int batch_size = min_t(int, pages_to_write_in_pmd, 8); | 
|  |  | 
|  | start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); | 
|  | for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { | 
|  | int err = insert_page_in_batch_locked(vma, pte, | 
|  | addr, pages[curr_page_idx], prot); | 
|  | if (unlikely(err)) { | 
|  | pte_unmap_unlock(start_pte, pte_lock); | 
|  | ret = err; | 
|  | remaining_pages_total -= pte_idx; | 
|  | goto out; | 
|  | } | 
|  | addr += PAGE_SIZE; | 
|  | ++curr_page_idx; | 
|  | } | 
|  | pte_unmap_unlock(start_pte, pte_lock); | 
|  | pages_to_write_in_pmd -= batch_size; | 
|  | remaining_pages_total -= batch_size; | 
|  | } | 
|  | if (remaining_pages_total) | 
|  | goto more; | 
|  | ret = 0; | 
|  | out: | 
|  | *num = remaining_pages_total; | 
|  | return ret; | 
|  | } | 
|  | #endif  /* ifdef pte_index */ | 
|  |  | 
|  | /** | 
|  | * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. | 
|  | * @vma: user vma to map to | 
|  | * @addr: target start user address of these pages | 
|  | * @pages: source kernel pages | 
|  | * @num: in: number of pages to map. out: number of pages that were *not* | 
|  | * mapped. (0 means all pages were successfully mapped). | 
|  | * | 
|  | * Preferred over vm_insert_page() when inserting multiple pages. | 
|  | * | 
|  | * In case of error, we may have mapped a subset of the provided | 
|  | * pages. It is the caller's responsibility to account for this case. | 
|  | * | 
|  | * The same restrictions apply as in vm_insert_page(). | 
|  | */ | 
|  | int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, | 
|  | struct page **pages, unsigned long *num) | 
|  | { | 
|  | #ifdef pte_index | 
|  | const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; | 
|  |  | 
|  | if (addr < vma->vm_start || end_addr >= vma->vm_end) | 
|  | return -EFAULT; | 
|  | if (!(vma->vm_flags & VM_MIXEDMAP)) { | 
|  | BUG_ON(mmap_read_trylock(vma->vm_mm)); | 
|  | BUG_ON(vma->vm_flags & VM_PFNMAP); | 
|  | vma->vm_flags |= VM_MIXEDMAP; | 
|  | } | 
|  | /* Defer page refcount checking till we're about to map that page. */ | 
|  | return insert_pages(vma, addr, pages, num, vma->vm_page_prot); | 
|  | #else | 
|  | unsigned long idx = 0, pgcount = *num; | 
|  | int err = -EINVAL; | 
|  |  | 
|  | for (; idx < pgcount; ++idx) { | 
|  | err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); | 
|  | if (err) | 
|  | break; | 
|  | } | 
|  | *num = pgcount - idx; | 
|  | return err; | 
|  | #endif  /* ifdef pte_index */ | 
|  | } | 
|  | EXPORT_SYMBOL(vm_insert_pages); | 
|  |  | 
|  | /** | 
|  | * vm_insert_page - insert single page into user vma | 
|  | * @vma: user vma to map to | 
|  | * @addr: target user address of this page | 
|  | * @page: source kernel page | 
|  | * | 
|  | * This allows drivers to insert individual pages they've allocated | 
|  | * into a user vma. | 
|  | * | 
|  | * The page has to be a nice clean _individual_ kernel allocation. | 
|  | * If you allocate a compound page, you need to have marked it as | 
|  | * such (__GFP_COMP), or manually just split the page up yourself | 
|  | * (see split_page()). | 
|  | * | 
|  | * NOTE! Traditionally this was done with "remap_pfn_range()" which | 
|  | * took an arbitrary page protection parameter. This doesn't allow | 
|  | * that. Your vma protection will have to be set up correctly, which | 
|  | * means that if you want a shared writable mapping, you'd better | 
|  | * ask for a shared writable mapping! | 
|  | * | 
|  | * The page does not need to be reserved. | 
|  | * | 
|  | * Usually this function is called from f_op->mmap() handler | 
|  | * under mm->mmap_lock write-lock, so it can change vma->vm_flags. | 
|  | * Caller must set VM_MIXEDMAP on vma if it wants to call this | 
|  | * function from other places, for example from page-fault handler. | 
|  | * | 
|  | * Return: %0 on success, negative error code otherwise. | 
|  | */ | 
|  | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, | 
|  | struct page *page) | 
|  | { | 
|  | if (addr < vma->vm_start || addr >= vma->vm_end) | 
|  | return -EFAULT; | 
|  | if (!page_count(page)) | 
|  | return -EINVAL; | 
|  | if (!(vma->vm_flags & VM_MIXEDMAP)) { | 
|  | BUG_ON(mmap_read_trylock(vma->vm_mm)); | 
|  | BUG_ON(vma->vm_flags & VM_PFNMAP); | 
|  | vma->vm_flags |= VM_MIXEDMAP; | 
|  | } | 
|  | return insert_page(vma, addr, page, vma->vm_page_prot); | 
|  | } | 
|  | EXPORT_SYMBOL(vm_insert_page); | 
|  |  | 
|  | /* | 
|  | * __vm_map_pages - maps range of kernel pages into user vma | 
|  | * @vma: user vma to map to | 
|  | * @pages: pointer to array of source kernel pages | 
|  | * @num: number of pages in page array | 
|  | * @offset: user's requested vm_pgoff | 
|  | * | 
|  | * This allows drivers to map range of kernel pages into a user vma. | 
|  | * | 
|  | * Return: 0 on success and error code otherwise. | 
|  | */ | 
|  | static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, | 
|  | unsigned long num, unsigned long offset) | 
|  | { | 
|  | unsigned long count = vma_pages(vma); | 
|  | unsigned long uaddr = vma->vm_start; | 
|  | int ret, i; | 
|  |  | 
|  | /* Fail if the user requested offset is beyond the end of the object */ | 
|  | if (offset >= num) | 
|  | return -ENXIO; | 
|  |  | 
|  | /* Fail if the user requested size exceeds available object size */ | 
|  | if (count > num - offset) | 
|  | return -ENXIO; | 
|  |  | 
|  | for (i = 0; i < count; i++) { | 
|  | ret = vm_insert_page(vma, uaddr, pages[offset + i]); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | uaddr += PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vm_map_pages - maps range of kernel pages starts with non zero offset | 
|  | * @vma: user vma to map to | 
|  | * @pages: pointer to array of source kernel pages | 
|  | * @num: number of pages in page array | 
|  | * | 
|  | * Maps an object consisting of @num pages, catering for the user's | 
|  | * requested vm_pgoff | 
|  | * | 
|  | * If we fail to insert any page into the vma, the function will return | 
|  | * immediately leaving any previously inserted pages present.  Callers | 
|  | * from the mmap handler may immediately return the error as their caller | 
|  | * will destroy the vma, removing any successfully inserted pages. Other | 
|  | * callers should make their own arrangements for calling unmap_region(). | 
|  | * | 
|  | * Context: Process context. Called by mmap handlers. | 
|  | * Return: 0 on success and error code otherwise. | 
|  | */ | 
|  | int vm_map_pages(struct vm_area_struct *vma, struct page **pages, | 
|  | unsigned long num) | 
|  | { | 
|  | return __vm_map_pages(vma, pages, num, vma->vm_pgoff); | 
|  | } | 
|  | EXPORT_SYMBOL(vm_map_pages); | 
|  |  | 
|  | /** | 
|  | * vm_map_pages_zero - map range of kernel pages starts with zero offset | 
|  | * @vma: user vma to map to | 
|  | * @pages: pointer to array of source kernel pages | 
|  | * @num: number of pages in page array | 
|  | * | 
|  | * Similar to vm_map_pages(), except that it explicitly sets the offset | 
|  | * to 0. This function is intended for the drivers that did not consider | 
|  | * vm_pgoff. | 
|  | * | 
|  | * Context: Process context. Called by mmap handlers. | 
|  | * Return: 0 on success and error code otherwise. | 
|  | */ | 
|  | int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, | 
|  | unsigned long num) | 
|  | { | 
|  | return __vm_map_pages(vma, pages, num, 0); | 
|  | } | 
|  | EXPORT_SYMBOL(vm_map_pages_zero); | 
|  |  | 
|  | static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, | 
|  | pfn_t pfn, pgprot_t prot, bool mkwrite) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | pte_t *pte, entry; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | pte = get_locked_pte(mm, addr, &ptl); | 
|  | if (!pte) | 
|  | return VM_FAULT_OOM; | 
|  | if (!pte_none(*pte)) { | 
|  | if (mkwrite) { | 
|  | /* | 
|  | * For read faults on private mappings the PFN passed | 
|  | * in may not match the PFN we have mapped if the | 
|  | * mapped PFN is a writeable COW page.  In the mkwrite | 
|  | * case we are creating a writable PTE for a shared | 
|  | * mapping and we expect the PFNs to match. If they | 
|  | * don't match, we are likely racing with block | 
|  | * allocation and mapping invalidation so just skip the | 
|  | * update. | 
|  | */ | 
|  | if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { | 
|  | WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); | 
|  | goto out_unlock; | 
|  | } | 
|  | entry = pte_mkyoung(*pte); | 
|  | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
|  | if (ptep_set_access_flags(vma, addr, pte, entry, 1)) | 
|  | update_mmu_cache(vma, addr, pte); | 
|  | } | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* Ok, finally just insert the thing.. */ | 
|  | if (pfn_t_devmap(pfn)) | 
|  | entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); | 
|  | else | 
|  | entry = pte_mkspecial(pfn_t_pte(pfn, prot)); | 
|  |  | 
|  | if (mkwrite) { | 
|  | entry = pte_mkyoung(entry); | 
|  | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
|  | } | 
|  |  | 
|  | set_pte_at(mm, addr, pte, entry); | 
|  | update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ | 
|  |  | 
|  | out_unlock: | 
|  | pte_unmap_unlock(pte, ptl); | 
|  | return VM_FAULT_NOPAGE; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot | 
|  | * @vma: user vma to map to | 
|  | * @addr: target user address of this page | 
|  | * @pfn: source kernel pfn | 
|  | * @pgprot: pgprot flags for the inserted page | 
|  | * | 
|  | * This is exactly like vmf_insert_pfn(), except that it allows drivers | 
|  | * to override pgprot on a per-page basis. | 
|  | * | 
|  | * This only makes sense for IO mappings, and it makes no sense for | 
|  | * COW mappings.  In general, using multiple vmas is preferable; | 
|  | * vmf_insert_pfn_prot should only be used if using multiple VMAs is | 
|  | * impractical. | 
|  | * | 
|  | * See vmf_insert_mixed_prot() for a discussion of the implication of using | 
|  | * a value of @pgprot different from that of @vma->vm_page_prot. | 
|  | * | 
|  | * Context: Process context.  May allocate using %GFP_KERNEL. | 
|  | * Return: vm_fault_t value. | 
|  | */ | 
|  | vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, | 
|  | unsigned long pfn, pgprot_t pgprot) | 
|  | { | 
|  | /* | 
|  | * Technically, architectures with pte_special can avoid all these | 
|  | * restrictions (same for remap_pfn_range).  However we would like | 
|  | * consistency in testing and feature parity among all, so we should | 
|  | * try to keep these invariants in place for everybody. | 
|  | */ | 
|  | BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); | 
|  | BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == | 
|  | (VM_PFNMAP|VM_MIXEDMAP)); | 
|  | BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); | 
|  | BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); | 
|  |  | 
|  | if (addr < vma->vm_start || addr >= vma->vm_end) | 
|  | return VM_FAULT_SIGBUS; | 
|  |  | 
|  | if (!pfn_modify_allowed(pfn, pgprot)) | 
|  | return VM_FAULT_SIGBUS; | 
|  |  | 
|  | track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); | 
|  |  | 
|  | return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, | 
|  | false); | 
|  | } | 
|  | EXPORT_SYMBOL(vmf_insert_pfn_prot); | 
|  |  | 
|  | /** | 
|  | * vmf_insert_pfn - insert single pfn into user vma | 
|  | * @vma: user vma to map to | 
|  | * @addr: target user address of this page | 
|  | * @pfn: source kernel pfn | 
|  | * | 
|  | * Similar to vm_insert_page, this allows drivers to insert individual pages | 
|  | * they've allocated into a user vma. Same comments apply. | 
|  | * | 
|  | * This function should only be called from a vm_ops->fault handler, and | 
|  | * in that case the handler should return the result of this function. | 
|  | * | 
|  | * vma cannot be a COW mapping. | 
|  | * | 
|  | * As this is called only for pages that do not currently exist, we | 
|  | * do not need to flush old virtual caches or the TLB. | 
|  | * | 
|  | * Context: Process context.  May allocate using %GFP_KERNEL. | 
|  | * Return: vm_fault_t value. | 
|  | */ | 
|  | vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | 
|  | unsigned long pfn) | 
|  | { | 
|  | return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); | 
|  | } | 
|  | EXPORT_SYMBOL(vmf_insert_pfn); | 
|  |  | 
|  | static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) | 
|  | { | 
|  | /* these checks mirror the abort conditions in vm_normal_page */ | 
|  | if (vma->vm_flags & VM_MIXEDMAP) | 
|  | return true; | 
|  | if (pfn_t_devmap(pfn)) | 
|  | return true; | 
|  | if (pfn_t_special(pfn)) | 
|  | return true; | 
|  | if (is_zero_pfn(pfn_t_to_pfn(pfn))) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, | 
|  | unsigned long addr, pfn_t pfn, pgprot_t pgprot, | 
|  | bool mkwrite) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | BUG_ON(!vm_mixed_ok(vma, pfn)); | 
|  |  | 
|  | if (addr < vma->vm_start || addr >= vma->vm_end) | 
|  | return VM_FAULT_SIGBUS; | 
|  |  | 
|  | track_pfn_insert(vma, &pgprot, pfn); | 
|  |  | 
|  | if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) | 
|  | return VM_FAULT_SIGBUS; | 
|  |  | 
|  | /* | 
|  | * If we don't have pte special, then we have to use the pfn_valid() | 
|  | * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* | 
|  | * refcount the page if pfn_valid is true (hence insert_page rather | 
|  | * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP | 
|  | * without pte special, it would there be refcounted as a normal page. | 
|  | */ | 
|  | if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && | 
|  | !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { | 
|  | struct page *page; | 
|  |  | 
|  | /* | 
|  | * At this point we are committed to insert_page() | 
|  | * regardless of whether the caller specified flags that | 
|  | * result in pfn_t_has_page() == false. | 
|  | */ | 
|  | page = pfn_to_page(pfn_t_to_pfn(pfn)); | 
|  | err = insert_page(vma, addr, page, pgprot); | 
|  | } else { | 
|  | return insert_pfn(vma, addr, pfn, pgprot, mkwrite); | 
|  | } | 
|  |  | 
|  | if (err == -ENOMEM) | 
|  | return VM_FAULT_OOM; | 
|  | if (err < 0 && err != -EBUSY) | 
|  | return VM_FAULT_SIGBUS; | 
|  |  | 
|  | return VM_FAULT_NOPAGE; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot | 
|  | * @vma: user vma to map to | 
|  | * @addr: target user address of this page | 
|  | * @pfn: source kernel pfn | 
|  | * @pgprot: pgprot flags for the inserted page | 
|  | * | 
|  | * This is exactly like vmf_insert_mixed(), except that it allows drivers | 
|  | * to override pgprot on a per-page basis. | 
|  | * | 
|  | * Typically this function should be used by drivers to set caching- and | 
|  | * encryption bits different than those of @vma->vm_page_prot, because | 
|  | * the caching- or encryption mode may not be known at mmap() time. | 
|  | * This is ok as long as @vma->vm_page_prot is not used by the core vm | 
|  | * to set caching and encryption bits for those vmas (except for COW pages). | 
|  | * This is ensured by core vm only modifying these page table entries using | 
|  | * functions that don't touch caching- or encryption bits, using pte_modify() | 
|  | * if needed. (See for example mprotect()). | 
|  | * Also when new page-table entries are created, this is only done using the | 
|  | * fault() callback, and never using the value of vma->vm_page_prot, | 
|  | * except for page-table entries that point to anonymous pages as the result | 
|  | * of COW. | 
|  | * | 
|  | * Context: Process context.  May allocate using %GFP_KERNEL. | 
|  | * Return: vm_fault_t value. | 
|  | */ | 
|  | vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, | 
|  | pfn_t pfn, pgprot_t pgprot) | 
|  | { | 
|  | return __vm_insert_mixed(vma, addr, pfn, pgprot, false); | 
|  | } | 
|  | EXPORT_SYMBOL(vmf_insert_mixed_prot); | 
|  |  | 
|  | vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, | 
|  | pfn_t pfn) | 
|  | { | 
|  | return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); | 
|  | } | 
|  | EXPORT_SYMBOL(vmf_insert_mixed); | 
|  |  | 
|  | /* | 
|  | *  If the insertion of PTE failed because someone else already added a | 
|  | *  different entry in the mean time, we treat that as success as we assume | 
|  | *  the same entry was actually inserted. | 
|  | */ | 
|  | vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, | 
|  | unsigned long addr, pfn_t pfn) | 
|  | { | 
|  | return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); | 
|  | } | 
|  | EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); | 
|  |  | 
|  | /* | 
|  | * maps a range of physical memory into the requested pages. the old | 
|  | * mappings are removed. any references to nonexistent pages results | 
|  | * in null mappings (currently treated as "copy-on-access") | 
|  | */ | 
|  | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long pfn, pgprot_t prot) | 
|  | { | 
|  | pte_t *pte, *mapped_pte; | 
|  | spinlock_t *ptl; | 
|  | int err = 0; | 
|  |  | 
|  | mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); | 
|  | if (!pte) | 
|  | return -ENOMEM; | 
|  | arch_enter_lazy_mmu_mode(); | 
|  | do { | 
|  | BUG_ON(!pte_none(*pte)); | 
|  | if (!pfn_modify_allowed(pfn, prot)) { | 
|  | err = -EACCES; | 
|  | break; | 
|  | } | 
|  | set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); | 
|  | pfn++; | 
|  | } while (pte++, addr += PAGE_SIZE, addr != end); | 
|  | arch_leave_lazy_mmu_mode(); | 
|  | pte_unmap_unlock(mapped_pte, ptl); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long pfn, pgprot_t prot) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long next; | 
|  | int err; | 
|  |  | 
|  | pfn -= addr >> PAGE_SHIFT; | 
|  | pmd = pmd_alloc(mm, pud, addr); | 
|  | if (!pmd) | 
|  | return -ENOMEM; | 
|  | VM_BUG_ON(pmd_trans_huge(*pmd)); | 
|  | do { | 
|  | next = pmd_addr_end(addr, end); | 
|  | err = remap_pte_range(mm, pmd, addr, next, | 
|  | pfn + (addr >> PAGE_SHIFT), prot); | 
|  | if (err) | 
|  | return err; | 
|  | } while (pmd++, addr = next, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long pfn, pgprot_t prot) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long next; | 
|  | int err; | 
|  |  | 
|  | pfn -= addr >> PAGE_SHIFT; | 
|  | pud = pud_alloc(mm, p4d, addr); | 
|  | if (!pud) | 
|  | return -ENOMEM; | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | err = remap_pmd_range(mm, pud, addr, next, | 
|  | pfn + (addr >> PAGE_SHIFT), prot); | 
|  | if (err) | 
|  | return err; | 
|  | } while (pud++, addr = next, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long pfn, pgprot_t prot) | 
|  | { | 
|  | p4d_t *p4d; | 
|  | unsigned long next; | 
|  | int err; | 
|  |  | 
|  | pfn -= addr >> PAGE_SHIFT; | 
|  | p4d = p4d_alloc(mm, pgd, addr); | 
|  | if (!p4d) | 
|  | return -ENOMEM; | 
|  | do { | 
|  | next = p4d_addr_end(addr, end); | 
|  | err = remap_pud_range(mm, p4d, addr, next, | 
|  | pfn + (addr >> PAGE_SHIFT), prot); | 
|  | if (err) | 
|  | return err; | 
|  | } while (p4d++, addr = next, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, | 
|  | unsigned long pfn, unsigned long size, pgprot_t prot) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | unsigned long next; | 
|  | unsigned long end = addr + PAGE_ALIGN(size); | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | int err; | 
|  |  | 
|  | if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Physically remapped pages are special. Tell the | 
|  | * rest of the world about it: | 
|  | *   VM_IO tells people not to look at these pages | 
|  | *	(accesses can have side effects). | 
|  | *   VM_PFNMAP tells the core MM that the base pages are just | 
|  | *	raw PFN mappings, and do not have a "struct page" associated | 
|  | *	with them. | 
|  | *   VM_DONTEXPAND | 
|  | *      Disable vma merging and expanding with mremap(). | 
|  | *   VM_DONTDUMP | 
|  | *      Omit vma from core dump, even when VM_IO turned off. | 
|  | * | 
|  | * There's a horrible special case to handle copy-on-write | 
|  | * behaviour that some programs depend on. We mark the "original" | 
|  | * un-COW'ed pages by matching them up with "vma->vm_pgoff". | 
|  | * See vm_normal_page() for details. | 
|  | */ | 
|  | if (is_cow_mapping(vma->vm_flags)) { | 
|  | if (addr != vma->vm_start || end != vma->vm_end) | 
|  | return -EINVAL; | 
|  | vma->vm_pgoff = pfn; | 
|  | } | 
|  |  | 
|  | vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; | 
|  |  | 
|  | BUG_ON(addr >= end); | 
|  | pfn -= addr >> PAGE_SHIFT; | 
|  | pgd = pgd_offset(mm, addr); | 
|  | flush_cache_range(vma, addr, end); | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | err = remap_p4d_range(mm, pgd, addr, next, | 
|  | pfn + (addr >> PAGE_SHIFT), prot); | 
|  | if (err) | 
|  | return err; | 
|  | } while (pgd++, addr = next, addr != end); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller | 
|  | * must have pre-validated the caching bits of the pgprot_t. | 
|  | */ | 
|  | int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, | 
|  | unsigned long pfn, unsigned long size, pgprot_t prot) | 
|  | { | 
|  | int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); | 
|  |  | 
|  | if (!error) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * A partial pfn range mapping is dangerous: it does not | 
|  | * maintain page reference counts, and callers may free | 
|  | * pages due to the error. So zap it early. | 
|  | */ | 
|  | zap_page_range_single(vma, addr, size, NULL); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * remap_pfn_range - remap kernel memory to userspace | 
|  | * @vma: user vma to map to | 
|  | * @addr: target page aligned user address to start at | 
|  | * @pfn: page frame number of kernel physical memory address | 
|  | * @size: size of mapping area | 
|  | * @prot: page protection flags for this mapping | 
|  | * | 
|  | * Note: this is only safe if the mm semaphore is held when called. | 
|  | * | 
|  | * Return: %0 on success, negative error code otherwise. | 
|  | */ | 
|  | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, | 
|  | unsigned long pfn, unsigned long size, pgprot_t prot) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); | 
|  | if (err) | 
|  | return -EINVAL; | 
|  |  | 
|  | err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); | 
|  | if (err) | 
|  | untrack_pfn(vma, pfn, PAGE_ALIGN(size)); | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(remap_pfn_range); | 
|  |  | 
|  | /** | 
|  | * vm_iomap_memory - remap memory to userspace | 
|  | * @vma: user vma to map to | 
|  | * @start: start of the physical memory to be mapped | 
|  | * @len: size of area | 
|  | * | 
|  | * This is a simplified io_remap_pfn_range() for common driver use. The | 
|  | * driver just needs to give us the physical memory range to be mapped, | 
|  | * we'll figure out the rest from the vma information. | 
|  | * | 
|  | * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get | 
|  | * whatever write-combining details or similar. | 
|  | * | 
|  | * Return: %0 on success, negative error code otherwise. | 
|  | */ | 
|  | int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) | 
|  | { | 
|  | unsigned long vm_len, pfn, pages; | 
|  |  | 
|  | /* Check that the physical memory area passed in looks valid */ | 
|  | if (start + len < start) | 
|  | return -EINVAL; | 
|  | /* | 
|  | * You *really* shouldn't map things that aren't page-aligned, | 
|  | * but we've historically allowed it because IO memory might | 
|  | * just have smaller alignment. | 
|  | */ | 
|  | len += start & ~PAGE_MASK; | 
|  | pfn = start >> PAGE_SHIFT; | 
|  | pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; | 
|  | if (pfn + pages < pfn) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* We start the mapping 'vm_pgoff' pages into the area */ | 
|  | if (vma->vm_pgoff > pages) | 
|  | return -EINVAL; | 
|  | pfn += vma->vm_pgoff; | 
|  | pages -= vma->vm_pgoff; | 
|  |  | 
|  | /* Can we fit all of the mapping? */ | 
|  | vm_len = vma->vm_end - vma->vm_start; | 
|  | if (vm_len >> PAGE_SHIFT > pages) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Ok, let it rip */ | 
|  | return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); | 
|  | } | 
|  | EXPORT_SYMBOL(vm_iomap_memory); | 
|  |  | 
|  | static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, | 
|  | unsigned long addr, unsigned long end, | 
|  | pte_fn_t fn, void *data, bool create, | 
|  | pgtbl_mod_mask *mask) | 
|  | { | 
|  | pte_t *pte, *mapped_pte; | 
|  | int err = 0; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | if (create) { | 
|  | mapped_pte = pte = (mm == &init_mm) ? | 
|  | pte_alloc_kernel_track(pmd, addr, mask) : | 
|  | pte_alloc_map_lock(mm, pmd, addr, &ptl); | 
|  | if (!pte) | 
|  | return -ENOMEM; | 
|  | } else { | 
|  | mapped_pte = pte = (mm == &init_mm) ? | 
|  | pte_offset_kernel(pmd, addr) : | 
|  | pte_offset_map_lock(mm, pmd, addr, &ptl); | 
|  | } | 
|  |  | 
|  | BUG_ON(pmd_huge(*pmd)); | 
|  |  | 
|  | arch_enter_lazy_mmu_mode(); | 
|  |  | 
|  | if (fn) { | 
|  | do { | 
|  | if (create || !pte_none(*pte)) { | 
|  | err = fn(pte++, addr, data); | 
|  | if (err) | 
|  | break; | 
|  | } | 
|  | } while (addr += PAGE_SIZE, addr != end); | 
|  | } | 
|  | *mask |= PGTBL_PTE_MODIFIED; | 
|  |  | 
|  | arch_leave_lazy_mmu_mode(); | 
|  |  | 
|  | if (mm != &init_mm) | 
|  | pte_unmap_unlock(mapped_pte, ptl); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, | 
|  | unsigned long addr, unsigned long end, | 
|  | pte_fn_t fn, void *data, bool create, | 
|  | pgtbl_mod_mask *mask) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long next; | 
|  | int err = 0; | 
|  |  | 
|  | BUG_ON(pud_huge(*pud)); | 
|  |  | 
|  | if (create) { | 
|  | pmd = pmd_alloc_track(mm, pud, addr, mask); | 
|  | if (!pmd) | 
|  | return -ENOMEM; | 
|  | } else { | 
|  | pmd = pmd_offset(pud, addr); | 
|  | } | 
|  | do { | 
|  | next = pmd_addr_end(addr, end); | 
|  | if (pmd_none(*pmd) && !create) | 
|  | continue; | 
|  | if (WARN_ON_ONCE(pmd_leaf(*pmd))) | 
|  | return -EINVAL; | 
|  | if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { | 
|  | if (!create) | 
|  | continue; | 
|  | pmd_clear_bad(pmd); | 
|  | } | 
|  | err = apply_to_pte_range(mm, pmd, addr, next, | 
|  | fn, data, create, mask); | 
|  | if (err) | 
|  | break; | 
|  | } while (pmd++, addr = next, addr != end); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, | 
|  | unsigned long addr, unsigned long end, | 
|  | pte_fn_t fn, void *data, bool create, | 
|  | pgtbl_mod_mask *mask) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long next; | 
|  | int err = 0; | 
|  |  | 
|  | if (create) { | 
|  | pud = pud_alloc_track(mm, p4d, addr, mask); | 
|  | if (!pud) | 
|  | return -ENOMEM; | 
|  | } else { | 
|  | pud = pud_offset(p4d, addr); | 
|  | } | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | if (pud_none(*pud) && !create) | 
|  | continue; | 
|  | if (WARN_ON_ONCE(pud_leaf(*pud))) | 
|  | return -EINVAL; | 
|  | if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { | 
|  | if (!create) | 
|  | continue; | 
|  | pud_clear_bad(pud); | 
|  | } | 
|  | err = apply_to_pmd_range(mm, pud, addr, next, | 
|  | fn, data, create, mask); | 
|  | if (err) | 
|  | break; | 
|  | } while (pud++, addr = next, addr != end); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, | 
|  | unsigned long addr, unsigned long end, | 
|  | pte_fn_t fn, void *data, bool create, | 
|  | pgtbl_mod_mask *mask) | 
|  | { | 
|  | p4d_t *p4d; | 
|  | unsigned long next; | 
|  | int err = 0; | 
|  |  | 
|  | if (create) { | 
|  | p4d = p4d_alloc_track(mm, pgd, addr, mask); | 
|  | if (!p4d) | 
|  | return -ENOMEM; | 
|  | } else { | 
|  | p4d = p4d_offset(pgd, addr); | 
|  | } | 
|  | do { | 
|  | next = p4d_addr_end(addr, end); | 
|  | if (p4d_none(*p4d) && !create) | 
|  | continue; | 
|  | if (WARN_ON_ONCE(p4d_leaf(*p4d))) | 
|  | return -EINVAL; | 
|  | if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { | 
|  | if (!create) | 
|  | continue; | 
|  | p4d_clear_bad(p4d); | 
|  | } | 
|  | err = apply_to_pud_range(mm, p4d, addr, next, | 
|  | fn, data, create, mask); | 
|  | if (err) | 
|  | break; | 
|  | } while (p4d++, addr = next, addr != end); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, | 
|  | unsigned long size, pte_fn_t fn, | 
|  | void *data, bool create) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | unsigned long start = addr, next; | 
|  | unsigned long end = addr + size; | 
|  | pgtbl_mod_mask mask = 0; | 
|  | int err = 0; | 
|  |  | 
|  | if (WARN_ON(addr >= end)) | 
|  | return -EINVAL; | 
|  |  | 
|  | pgd = pgd_offset(mm, addr); | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | if (pgd_none(*pgd) && !create) | 
|  | continue; | 
|  | if (WARN_ON_ONCE(pgd_leaf(*pgd))) | 
|  | return -EINVAL; | 
|  | if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { | 
|  | if (!create) | 
|  | continue; | 
|  | pgd_clear_bad(pgd); | 
|  | } | 
|  | err = apply_to_p4d_range(mm, pgd, addr, next, | 
|  | fn, data, create, &mask); | 
|  | if (err) | 
|  | break; | 
|  | } while (pgd++, addr = next, addr != end); | 
|  |  | 
|  | if (mask & ARCH_PAGE_TABLE_SYNC_MASK) | 
|  | arch_sync_kernel_mappings(start, start + size); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scan a region of virtual memory, filling in page tables as necessary | 
|  | * and calling a provided function on each leaf page table. | 
|  | */ | 
|  | int apply_to_page_range(struct mm_struct *mm, unsigned long addr, | 
|  | unsigned long size, pte_fn_t fn, void *data) | 
|  | { | 
|  | return __apply_to_page_range(mm, addr, size, fn, data, true); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(apply_to_page_range); | 
|  |  | 
|  | /* | 
|  | * Scan a region of virtual memory, calling a provided function on | 
|  | * each leaf page table where it exists. | 
|  | * | 
|  | * Unlike apply_to_page_range, this does _not_ fill in page tables | 
|  | * where they are absent. | 
|  | */ | 
|  | int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, | 
|  | unsigned long size, pte_fn_t fn, void *data) | 
|  | { | 
|  | return __apply_to_page_range(mm, addr, size, fn, data, false); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(apply_to_existing_page_range); | 
|  |  | 
|  | /* | 
|  | * handle_pte_fault chooses page fault handler according to an entry which was | 
|  | * read non-atomically.  Before making any commitment, on those architectures | 
|  | * or configurations (e.g. i386 with PAE) which might give a mix of unmatched | 
|  | * parts, do_swap_page must check under lock before unmapping the pte and | 
|  | * proceeding (but do_wp_page is only called after already making such a check; | 
|  | * and do_anonymous_page can safely check later on). | 
|  | */ | 
|  | static inline int pte_unmap_same(struct vm_fault *vmf) | 
|  | { | 
|  | int same = 1; | 
|  | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) | 
|  | if (sizeof(pte_t) > sizeof(unsigned long)) { | 
|  | spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); | 
|  | spin_lock(ptl); | 
|  | same = pte_same(*vmf->pte, vmf->orig_pte); | 
|  | spin_unlock(ptl); | 
|  | } | 
|  | #endif | 
|  | pte_unmap(vmf->pte); | 
|  | vmf->pte = NULL; | 
|  | return same; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return: | 
|  | *	0:		copied succeeded | 
|  | *	-EHWPOISON:	copy failed due to hwpoison in source page | 
|  | *	-EAGAIN:	copied failed (some other reason) | 
|  | */ | 
|  | static inline int __wp_page_copy_user(struct page *dst, struct page *src, | 
|  | struct vm_fault *vmf) | 
|  | { | 
|  | int ret; | 
|  | void *kaddr; | 
|  | void __user *uaddr; | 
|  | bool locked = false; | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | unsigned long addr = vmf->address; | 
|  |  | 
|  | if (likely(src)) { | 
|  | if (copy_mc_user_highpage(dst, src, addr, vma)) { | 
|  | memory_failure_queue(page_to_pfn(src), 0); | 
|  | return -EHWPOISON; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the source page was a PFN mapping, we don't have | 
|  | * a "struct page" for it. We do a best-effort copy by | 
|  | * just copying from the original user address. If that | 
|  | * fails, we just zero-fill it. Live with it. | 
|  | */ | 
|  | kaddr = kmap_atomic(dst); | 
|  | uaddr = (void __user *)(addr & PAGE_MASK); | 
|  |  | 
|  | /* | 
|  | * On architectures with software "accessed" bits, we would | 
|  | * take a double page fault, so mark it accessed here. | 
|  | */ | 
|  | if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { | 
|  | pte_t entry; | 
|  |  | 
|  | vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); | 
|  | locked = true; | 
|  | if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { | 
|  | /* | 
|  | * Other thread has already handled the fault | 
|  | * and update local tlb only | 
|  | */ | 
|  | update_mmu_tlb(vma, addr, vmf->pte); | 
|  | ret = -EAGAIN; | 
|  | goto pte_unlock; | 
|  | } | 
|  |  | 
|  | entry = pte_mkyoung(vmf->orig_pte); | 
|  | if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) | 
|  | update_mmu_cache(vma, addr, vmf->pte); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This really shouldn't fail, because the page is there | 
|  | * in the page tables. But it might just be unreadable, | 
|  | * in which case we just give up and fill the result with | 
|  | * zeroes. | 
|  | */ | 
|  | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { | 
|  | if (locked) | 
|  | goto warn; | 
|  |  | 
|  | /* Re-validate under PTL if the page is still mapped */ | 
|  | vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); | 
|  | locked = true; | 
|  | if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { | 
|  | /* The PTE changed under us, update local tlb */ | 
|  | update_mmu_tlb(vma, addr, vmf->pte); | 
|  | ret = -EAGAIN; | 
|  | goto pte_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The same page can be mapped back since last copy attempt. | 
|  | * Try to copy again under PTL. | 
|  | */ | 
|  | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { | 
|  | /* | 
|  | * Give a warn in case there can be some obscure | 
|  | * use-case | 
|  | */ | 
|  | warn: | 
|  | WARN_ON_ONCE(1); | 
|  | clear_page(kaddr); | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | pte_unlock: | 
|  | if (locked) | 
|  | pte_unmap_unlock(vmf->pte, vmf->ptl); | 
|  | kunmap_atomic(kaddr); | 
|  | flush_dcache_page(dst); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) | 
|  | { | 
|  | struct file *vm_file = vma->vm_file; | 
|  |  | 
|  | if (vm_file) | 
|  | return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; | 
|  |  | 
|  | /* | 
|  | * Special mappings (e.g. VDSO) do not have any file so fake | 
|  | * a default GFP_KERNEL for them. | 
|  | */ | 
|  | return GFP_KERNEL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Notify the address space that the page is about to become writable so that | 
|  | * it can prohibit this or wait for the page to get into an appropriate state. | 
|  | * | 
|  | * We do this without the lock held, so that it can sleep if it needs to. | 
|  | */ | 
|  | static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) | 
|  | { | 
|  | vm_fault_t ret; | 
|  | struct page *page = vmf->page; | 
|  | unsigned int old_flags = vmf->flags; | 
|  |  | 
|  | vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; | 
|  |  | 
|  | if (vmf->vma->vm_file && | 
|  | IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) | 
|  | return VM_FAULT_SIGBUS; | 
|  |  | 
|  | ret = vmf->vma->vm_ops->page_mkwrite(vmf); | 
|  | /* Restore original flags so that caller is not surprised */ | 
|  | vmf->flags = old_flags; | 
|  | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) | 
|  | return ret; | 
|  | if (unlikely(!(ret & VM_FAULT_LOCKED))) { | 
|  | lock_page(page); | 
|  | if (!page->mapping) { | 
|  | unlock_page(page); | 
|  | return 0; /* retry */ | 
|  | } | 
|  | ret |= VM_FAULT_LOCKED; | 
|  | } else | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle dirtying of a page in shared file mapping on a write fault. | 
|  | * | 
|  | * The function expects the page to be locked and unlocks it. | 
|  | */ | 
|  | static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) | 
|  | { | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | struct address_space *mapping; | 
|  | struct page *page = vmf->page; | 
|  | bool dirtied; | 
|  | bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; | 
|  |  | 
|  | dirtied = set_page_dirty(page); | 
|  | VM_BUG_ON_PAGE(PageAnon(page), page); | 
|  | /* | 
|  | * Take a local copy of the address_space - page.mapping may be zeroed | 
|  | * by truncate after unlock_page().   The address_space itself remains | 
|  | * pinned by vma->vm_file's reference.  We rely on unlock_page()'s | 
|  | * release semantics to prevent the compiler from undoing this copying. | 
|  | */ | 
|  | mapping = page_rmapping(page); | 
|  | unlock_page(page); | 
|  |  | 
|  | if (!page_mkwrite) | 
|  | file_update_time(vma->vm_file); | 
|  |  | 
|  | /* | 
|  | * Throttle page dirtying rate down to writeback speed. | 
|  | * | 
|  | * mapping may be NULL here because some device drivers do not | 
|  | * set page.mapping but still dirty their pages | 
|  | * | 
|  | * Drop the mmap_lock before waiting on IO, if we can. The file | 
|  | * is pinning the mapping, as per above. | 
|  | */ | 
|  | if ((dirtied || page_mkwrite) && mapping) { | 
|  | struct file *fpin; | 
|  |  | 
|  | fpin = maybe_unlock_mmap_for_io(vmf, NULL); | 
|  | balance_dirty_pages_ratelimited(mapping); | 
|  | if (fpin) { | 
|  | fput(fpin); | 
|  | return VM_FAULT_COMPLETED; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle write page faults for pages that can be reused in the current vma | 
|  | * | 
|  | * This can happen either due to the mapping being with the VM_SHARED flag, | 
|  | * or due to us being the last reference standing to the page. In either | 
|  | * case, all we need to do here is to mark the page as writable and update | 
|  | * any related book-keeping. | 
|  | */ | 
|  | static inline void wp_page_reuse(struct vm_fault *vmf) | 
|  | __releases(vmf->ptl) | 
|  | { | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | struct page *page = vmf->page; | 
|  | pte_t entry; | 
|  |  | 
|  | VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); | 
|  | VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page)); | 
|  |  | 
|  | /* | 
|  | * Clear the pages cpupid information as the existing | 
|  | * information potentially belongs to a now completely | 
|  | * unrelated process. | 
|  | */ | 
|  | if (page) | 
|  | page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); | 
|  |  | 
|  | flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); | 
|  | entry = pte_mkyoung(vmf->orig_pte); | 
|  | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
|  | if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) | 
|  | update_mmu_cache(vma, vmf->address, vmf->pte); | 
|  | pte_unmap_unlock(vmf->pte, vmf->ptl); | 
|  | count_vm_event(PGREUSE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle the case of a page which we actually need to copy to a new page, | 
|  | * either due to COW or unsharing. | 
|  | * | 
|  | * Called with mmap_lock locked and the old page referenced, but | 
|  | * without the ptl held. | 
|  | * | 
|  | * High level logic flow: | 
|  | * | 
|  | * - Allocate a page, copy the content of the old page to the new one. | 
|  | * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. | 
|  | * - Take the PTL. If the pte changed, bail out and release the allocated page | 
|  | * - If the pte is still the way we remember it, update the page table and all | 
|  | *   relevant references. This includes dropping the reference the page-table | 
|  | *   held to the old page, as well as updating the rmap. | 
|  | * - In any case, unlock the PTL and drop the reference we took to the old page. | 
|  | */ | 
|  | static vm_fault_t wp_page_copy(struct vm_fault *vmf) | 
|  | { | 
|  | const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct page *old_page = vmf->page; | 
|  | struct page *new_page = NULL; | 
|  | pte_t entry; | 
|  | int page_copied = 0; | 
|  | struct mmu_notifier_range range; | 
|  | int ret; | 
|  |  | 
|  | delayacct_wpcopy_start(); | 
|  |  | 
|  | if (unlikely(anon_vma_prepare(vma))) | 
|  | goto oom; | 
|  |  | 
|  | if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { | 
|  | new_page = alloc_zeroed_user_highpage_movable(vma, | 
|  | vmf->address); | 
|  | if (!new_page) | 
|  | goto oom; | 
|  | } else { | 
|  | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, | 
|  | vmf->address); | 
|  | if (!new_page) | 
|  | goto oom; | 
|  |  | 
|  | ret = __wp_page_copy_user(new_page, old_page, vmf); | 
|  | if (ret) { | 
|  | /* | 
|  | * COW failed, if the fault was solved by other, | 
|  | * it's fine. If not, userspace would re-fault on | 
|  | * the same address and we will handle the fault | 
|  | * from the second attempt. | 
|  | * The -EHWPOISON case will not be retried. | 
|  | */ | 
|  | put_page(new_page); | 
|  | if (old_page) | 
|  | put_page(old_page); | 
|  |  | 
|  | delayacct_wpcopy_end(); | 
|  | return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0; | 
|  | } | 
|  | kmsan_copy_page_meta(new_page, old_page); | 
|  | } | 
|  |  | 
|  | if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL)) | 
|  | goto oom_free_new; | 
|  | cgroup_throttle_swaprate(new_page, GFP_KERNEL); | 
|  |  | 
|  | __SetPageUptodate(new_page); | 
|  |  | 
|  | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, | 
|  | vmf->address & PAGE_MASK, | 
|  | (vmf->address & PAGE_MASK) + PAGE_SIZE); | 
|  | mmu_notifier_invalidate_range_start(&range); | 
|  |  | 
|  | /* | 
|  | * Re-check the pte - we dropped the lock | 
|  | */ | 
|  | vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); | 
|  | if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { | 
|  | if (old_page) { | 
|  | if (!PageAnon(old_page)) { | 
|  | dec_mm_counter_fast(mm, | 
|  | mm_counter_file(old_page)); | 
|  | inc_mm_counter_fast(mm, MM_ANONPAGES); | 
|  | } | 
|  | } else { | 
|  | inc_mm_counter_fast(mm, MM_ANONPAGES); | 
|  | } | 
|  | flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); | 
|  | entry = mk_pte(new_page, vma->vm_page_prot); | 
|  | entry = pte_sw_mkyoung(entry); | 
|  | if (unlikely(unshare)) { | 
|  | if (pte_soft_dirty(vmf->orig_pte)) | 
|  | entry = pte_mksoft_dirty(entry); | 
|  | if (pte_uffd_wp(vmf->orig_pte)) | 
|  | entry = pte_mkuffd_wp(entry); | 
|  | } else { | 
|  | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear the pte entry and flush it first, before updating the | 
|  | * pte with the new entry, to keep TLBs on different CPUs in | 
|  | * sync. This code used to set the new PTE then flush TLBs, but | 
|  | * that left a window where the new PTE could be loaded into | 
|  | * some TLBs while the old PTE remains in others. | 
|  | */ | 
|  | ptep_clear_flush_notify(vma, vmf->address, vmf->pte); | 
|  | page_add_new_anon_rmap(new_page, vma, vmf->address); | 
|  | lru_cache_add_inactive_or_unevictable(new_page, vma); | 
|  | /* | 
|  | * We call the notify macro here because, when using secondary | 
|  | * mmu page tables (such as kvm shadow page tables), we want the | 
|  | * new page to be mapped directly into the secondary page table. | 
|  | */ | 
|  | BUG_ON(unshare && pte_write(entry)); | 
|  | set_pte_at_notify(mm, vmf->address, vmf->pte, entry); | 
|  | update_mmu_cache(vma, vmf->address, vmf->pte); | 
|  | if (old_page) { | 
|  | /* | 
|  | * Only after switching the pte to the new page may | 
|  | * we remove the mapcount here. Otherwise another | 
|  | * process may come and find the rmap count decremented | 
|  | * before the pte is switched to the new page, and | 
|  | * "reuse" the old page writing into it while our pte | 
|  | * here still points into it and can be read by other | 
|  | * threads. | 
|  | * | 
|  | * The critical issue is to order this | 
|  | * page_remove_rmap with the ptp_clear_flush above. | 
|  | * Those stores are ordered by (if nothing else,) | 
|  | * the barrier present in the atomic_add_negative | 
|  | * in page_remove_rmap. | 
|  | * | 
|  | * Then the TLB flush in ptep_clear_flush ensures that | 
|  | * no process can access the old page before the | 
|  | * decremented mapcount is visible. And the old page | 
|  | * cannot be reused until after the decremented | 
|  | * mapcount is visible. So transitively, TLBs to | 
|  | * old page will be flushed before it can be reused. | 
|  | */ | 
|  | page_remove_rmap(old_page, vma, false); | 
|  | } | 
|  |  | 
|  | /* Free the old page.. */ | 
|  | new_page = old_page; | 
|  | page_copied = 1; | 
|  | } else { | 
|  | update_mmu_tlb(vma, vmf->address, vmf->pte); | 
|  | } | 
|  |  | 
|  | if (new_page) | 
|  | put_page(new_page); | 
|  |  | 
|  | pte_unmap_unlock(vmf->pte, vmf->ptl); | 
|  | /* | 
|  | * No need to double call mmu_notifier->invalidate_range() callback as | 
|  | * the above ptep_clear_flush_notify() did already call it. | 
|  | */ | 
|  | mmu_notifier_invalidate_range_only_end(&range); | 
|  | if (old_page) { | 
|  | if (page_copied) | 
|  | free_swap_cache(old_page); | 
|  | put_page(old_page); | 
|  | } | 
|  |  | 
|  | delayacct_wpcopy_end(); | 
|  | return (page_copied && !unshare) ? VM_FAULT_WRITE : 0; | 
|  | oom_free_new: | 
|  | put_page(new_page); | 
|  | oom: | 
|  | if (old_page) | 
|  | put_page(old_page); | 
|  |  | 
|  | delayacct_wpcopy_end(); | 
|  | return VM_FAULT_OOM; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE | 
|  | *			  writeable once the page is prepared | 
|  | * | 
|  | * @vmf: structure describing the fault | 
|  | * | 
|  | * This function handles all that is needed to finish a write page fault in a | 
|  | * shared mapping due to PTE being read-only once the mapped page is prepared. | 
|  | * It handles locking of PTE and modifying it. | 
|  | * | 
|  | * The function expects the page to be locked or other protection against | 
|  | * concurrent faults / writeback (such as DAX radix tree locks). | 
|  | * | 
|  | * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before | 
|  | * we acquired PTE lock. | 
|  | */ | 
|  | vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) | 
|  | { | 
|  | WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); | 
|  | vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, | 
|  | &vmf->ptl); | 
|  | /* | 
|  | * We might have raced with another page fault while we released the | 
|  | * pte_offset_map_lock. | 
|  | */ | 
|  | if (!pte_same(*vmf->pte, vmf->orig_pte)) { | 
|  | update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); | 
|  | pte_unmap_unlock(vmf->pte, vmf->ptl); | 
|  | return VM_FAULT_NOPAGE; | 
|  | } | 
|  | wp_page_reuse(vmf); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED | 
|  | * mapping | 
|  | */ | 
|  | static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) | 
|  | { | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  |  | 
|  | if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { | 
|  | vm_fault_t ret; | 
|  |  | 
|  | pte_unmap_unlock(vmf->pte, vmf->ptl); | 
|  | vmf->flags |= FAULT_FLAG_MKWRITE; | 
|  | ret = vma->vm_ops->pfn_mkwrite(vmf); | 
|  | if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) | 
|  | return ret; | 
|  | return finish_mkwrite_fault(vmf); | 
|  | } | 
|  | wp_page_reuse(vmf); | 
|  | return VM_FAULT_WRITE; | 
|  | } | 
|  |  | 
|  | static vm_fault_t wp_page_shared(struct vm_fault *vmf) | 
|  | __releases(vmf->ptl) | 
|  | { | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | vm_fault_t ret = VM_FAULT_WRITE; | 
|  |  | 
|  | get_page(vmf->page); | 
|  |  | 
|  | if (vma->vm_ops && vma->vm_ops->page_mkwrite) { | 
|  | vm_fault_t tmp; | 
|  |  | 
|  | pte_unmap_unlock(vmf->pte, vmf->ptl); | 
|  | tmp = do_page_mkwrite(vmf); | 
|  | if (unlikely(!tmp || (tmp & | 
|  | (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { | 
|  | put_page(vmf->page); | 
|  | return tmp; | 
|  | } | 
|  | tmp = finish_mkwrite_fault(vmf); | 
|  | if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { | 
|  | unlock_page(vmf->page); | 
|  | put_page(vmf->page); | 
|  | return tmp; | 
|  | } | 
|  | } else { | 
|  | wp_page_reuse(vmf); | 
|  | lock_page(vmf->page); | 
|  | } | 
|  | ret |= fault_dirty_shared_page(vmf); | 
|  | put_page(vmf->page); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine handles present pages, when | 
|  | * * users try to write to a shared page (FAULT_FLAG_WRITE) | 
|  | * * GUP wants to take a R/O pin on a possibly shared anonymous page | 
|  | *   (FAULT_FLAG_UNSHARE) | 
|  | * | 
|  | * It is done by copying the page to a new address and decrementing the | 
|  | * shared-page counter for the old page. | 
|  | * | 
|  | * Note that this routine assumes that the protection checks have been | 
|  | * done by the caller (the low-level page fault routine in most cases). | 
|  | * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've | 
|  | * done any necessary COW. | 
|  | * | 
|  | * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even | 
|  | * though the page will change only once the write actually happens. This | 
|  | * avoids a few races, and potentially makes it more efficient. | 
|  | * | 
|  | * We enter with non-exclusive mmap_lock (to exclude vma changes, | 
|  | * but allow concurrent faults), with pte both mapped and locked. | 
|  | * We return with mmap_lock still held, but pte unmapped and unlocked. | 
|  | */ | 
|  | static vm_fault_t do_wp_page(struct vm_fault *vmf) | 
|  | __releases(vmf->ptl) | 
|  | { | 
|  | const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | struct folio *folio; | 
|  |  | 
|  | VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE)); | 
|  | VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE)); | 
|  |  | 
|  | if (likely(!unshare)) { | 
|  | if (userfaultfd_pte_wp(vma, *vmf->pte)) { | 
|  | pte_unmap_unlock(vmf->pte, vmf->ptl); | 
|  | return handle_userfault(vmf, VM_UFFD_WP); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Userfaultfd write-protect can defer flushes. Ensure the TLB | 
|  | * is flushed in this case before copying. | 
|  | */ | 
|  | if (unlikely(userfaultfd_wp(vmf->vma) && | 
|  | mm_tlb_flush_pending(vmf->vma->vm_mm))) | 
|  | flush_tlb_page(vmf->vma, vmf->address); | 
|  | } | 
|  |  | 
|  | vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); | 
|  | if (!vmf->page) { | 
|  | if (unlikely(unshare)) { | 
|  | /* No anonymous page -> nothing to do. */ | 
|  | pte_unmap_unlock(vmf->pte, vmf->ptl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a | 
|  | * VM_PFNMAP VMA. | 
|  | * | 
|  | * We should not cow pages in a shared writeable mapping. | 
|  | * Just mark the pages writable and/or call ops->pfn_mkwrite. | 
|  | */ | 
|  | if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | 
|  | (VM_WRITE|VM_SHARED)) | 
|  | return wp_pfn_shared(vmf); | 
|  |  | 
|  | pte_unmap_unlock(vmf->pte, vmf->ptl); | 
|  | return wp_page_copy(vmf); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Take out anonymous pages first, anonymous shared vmas are | 
|  | * not dirty accountable. | 
|  | */ | 
|  | folio = page_folio(vmf->page); | 
|  | if (folio_test_anon(folio)) { | 
|  | /* | 
|  | * If the page is exclusive to this process we must reuse the | 
|  | * page without further checks. | 
|  | */ | 
|  | if (PageAnonExclusive(vmf->page)) | 
|  | goto reuse; | 
|  |  | 
|  | /* | 
|  | * We have to verify under folio lock: these early checks are | 
|  | * just an optimization to avoid locking the folio and freeing | 
|  | * the swapcache if there is little hope that we can reuse. | 
|  | * | 
|  | * KSM doesn't necessarily raise the folio refcount. | 
|  | */ | 
|  | if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) | 
|  | goto copy; | 
|  | if (!folio_test_lru(folio)) | 
|  | /* | 
|  | * Note: We cannot easily detect+handle references from | 
|  | * remote LRU pagevecs or references to LRU folios. | 
|  | */ | 
|  | lru_add_drain(); | 
|  | if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) | 
|  | goto copy; | 
|  | if (!folio_trylock(folio)) | 
|  | goto copy; | 
|  | if (folio_test_swapcache(folio)) | 
|  | folio_free_swap(folio); | 
|  | if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { | 
|  | folio_unlock(folio); | 
|  | goto copy; | 
|  | } | 
|  | /* | 
|  | * Ok, we've got the only folio reference from our mapping | 
|  | * and the folio is locked, it's dark out, and we're wearing | 
|  | * sunglasses. Hit it. | 
|  | */ | 
|  | page_move_anon_rmap(vmf->page, vma); | 
|  | folio_unlock(folio); | 
|  | reuse: | 
|  | if (unlikely(unshare)) { | 
|  | pte_unmap_unlock(vmf->pte, vmf->ptl); | 
|  | return 0; | 
|  | } | 
|  | wp_page_reuse(vmf); | 
|  | return VM_FAULT_WRITE; | 
|  | } else if (unshare) { | 
|  | /* No anonymous page -> nothing to do. */ | 
|  | pte_unmap_unlock(vmf->pte, vmf->ptl); | 
|  | return 0; | 
|  | } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | 
|  | (VM_WRITE|VM_SHARED))) { | 
|  | return wp_page_shared(vmf); | 
|  | } | 
|  | copy: | 
|  | /* | 
|  | * Ok, we need to copy. Oh, well.. | 
|  | */ | 
|  | get_page(vmf->page); | 
|  |  | 
|  | pte_unmap_unlock(vmf->pte, vmf->ptl); | 
|  | #ifdef CONFIG_KSM | 
|  | if (PageKsm(vmf->page)) | 
|  | count_vm_event(COW_KSM); | 
|  | #endif | 
|  | return wp_page_copy(vmf); | 
|  | } | 
|  |  | 
|  | static void unmap_mapping_range_vma(struct vm_area_struct *vma, | 
|  | unsigned long start_addr, unsigned long end_addr, | 
|  | struct zap_details *details) | 
|  | { | 
|  | zap_page_range_single(vma, start_addr, end_addr - start_addr, details); | 
|  | } | 
|  |  | 
|  | static inline void unmap_mapping_range_tree(struct rb_root_cached *root, | 
|  | pgoff_t first_index, | 
|  | pgoff_t last_index, | 
|  | struct zap_details *details) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | pgoff_t vba, vea, zba, zea; | 
|  |  | 
|  | vma_interval_tree_foreach(vma, root, first_index, last_index) { | 
|  | vba = vma->vm_pgoff; | 
|  | vea = vba + vma_pages(vma) - 1; | 
|  | zba = max(first_index, vba); | 
|  | zea = min(last_index, vea); | 
|  |  | 
|  | unmap_mapping_range_vma(vma, | 
|  | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, | 
|  | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | 
|  | details); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * unmap_mapping_folio() - Unmap single folio from processes. | 
|  | * @folio: The locked folio to be unmapped. | 
|  | * | 
|  | * Unmap this folio from any userspace process which still has it mmaped. | 
|  | * Typically, for efficiency, the range of nearby pages has already been | 
|  | * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once | 
|  | * truncation or invalidation holds the lock on a folio, it may find that | 
|  | * the page has been remapped again: and then uses unmap_mapping_folio() | 
|  | * to unmap it finally. | 
|  | */ | 
|  | void unmap_mapping_folio(struct folio *folio) | 
|  | { | 
|  | struct address_space *mapping = folio->mapping; | 
|  | struct zap_details details = { }; | 
|  | pgoff_t	first_index; | 
|  | pgoff_t	last_index; | 
|  |  | 
|  | VM_BUG_ON(!folio_test_locked(folio)); | 
|  |  | 
|  | first_index = folio->index; | 
|  | last_index = folio->index + folio_nr_pages(folio) - 1; | 
|  |  | 
|  | details.even_cows = false; | 
|  | details.single_folio = folio; | 
|  | details.zap_flags = ZAP_FLAG_DROP_MARKER; | 
|  |  | 
|  | i_mmap_lock_read(mapping); | 
|  | if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) | 
|  | unmap_mapping_range_tree(&mapping->i_mmap, first_index, | 
|  | last_index, &details); | 
|  | i_mmap_unlock_read(mapping); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * unmap_mapping_pages() - Unmap pages from processes. | 
|  | * @mapping: The address space containing pages to be unmapped. | 
|  | * @start: Index of first page to be unmapped. | 
|  | * @nr: Number of pages to be unmapped.  0 to unmap to end of file. | 
|  | * @even_cows: Whether to unmap even private COWed pages. | 
|  | * | 
|  | * Unmap the pages in this address space from any userspace process which | 
|  | * has them mmaped.  Generally, you want to remove COWed pages as well when | 
|  | * a file is being truncated, but not when invalidating pages from the page | 
|  | * cache. | 
|  | */ | 
|  | void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, | 
|  | pgoff_t nr, bool even_cows) | 
|  | { | 
|  | struct zap_details details = { }; | 
|  | pgoff_t	first_index = start; | 
|  | pgoff_t	last_index = start + nr - 1; | 
|  |  | 
|  | details.even_cows = even_cows; | 
|  | if (last_index < first_index) | 
|  | last_index = ULONG_MAX; | 
|  |  | 
|  | i_mmap_lock_read(mapping); | 
|  | if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) | 
|  | unmap_mapping_range_tree(&mapping->i_mmap, first_index, | 
|  | last_index, &details); | 
|  | i_mmap_unlock_read(mapping); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(unmap_mapping_pages); | 
|  |  | 
|  | /** | 
|  | * unmap_mapping_range - unmap the portion of all mmaps in the specified | 
|  | * address_space corresponding to the specified byte range in the underlying | 
|  | * file. | 
|  | * | 
|  | * @mapping: the address space containing mmaps to be unmapped. | 
|  | * @holebegin: byte in first page to unmap, relative to the start of | 
|  | * the underlying file.  This will be rounded down to a PAGE_SIZE | 
|  | * boundary.  Note that this is different from truncate_pagecache(), which | 
|  | * must keep the partial page.  In contrast, we must get rid of | 
|  | * partial pages. | 
|  | * @holelen: size of prospective hole in bytes.  This will be rounded | 
|  | * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the | 
|  | * end of the file. | 
|  | * @even_cows: 1 when truncating a file, unmap even private COWed pages; | 
|  | * but 0 when invalidating pagecache, don't throw away private data. | 
|  | */ | 
|  | void unmap_mapping_range(struct address_space *mapping, | 
|  | loff_t const holebegin, loff_t const holelen, int even_cows) | 
|  | { | 
|  | pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; | 
|  | pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  |  | 
|  | /* Check for overflow. */ | 
|  | if (sizeof(holelen) > sizeof(hlen)) { | 
|  | long long holeend = | 
|  | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | if (holeend & ~(long long)ULONG_MAX) | 
|  | hlen = ULONG_MAX - hba + 1; | 
|  | } | 
|  |  | 
|  | unmap_mapping_pages(mapping, hba, hlen, even_cows); | 
|  | } | 
|  | EXPORT_SYMBOL(unmap_mapping_range); | 
|  |  | 
|  | /* | 
|  | * Restore a potential device exclusive pte to a working pte entry | 
|  | */ | 
|  | static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) | 
|  | { | 
|  | struct folio *folio = page_folio(vmf->page); | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | struct mmu_notifier_range range; | 
|  |  | 
|  | /* | 
|  | * We need a reference to lock the folio because we don't hold | 
|  | * the PTL so a racing thread can remove the device-exclusive | 
|  | * entry and unmap it. If the folio is free the entry must | 
|  | * have been removed already. If it happens to have already | 
|  | * been re-allocated after being freed all we do is lock and | 
|  | * unlock it. | 
|  | */ | 
|  | if (!folio_try_get(folio)) | 
|  | return 0; | 
|  |  | 
|  | if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) { | 
|  | folio_put(folio); | 
|  | return VM_FAULT_RETRY; | 
|  | } | 
|  | mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma, | 
|  | vma->vm_mm, vmf->address & PAGE_MASK, | 
|  | (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); | 
|  | mmu_notifier_invalidate_range_start(&range); | 
|  |  | 
|  | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, | 
|  | &vmf->ptl); | 
|  | if (likely(pte_same(*vmf->pte, vmf->orig_pte))) | 
|  | restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); | 
|  |  | 
|  | pte_unmap_unlock(vmf->pte, vmf->ptl); | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  |  | 
|  | mmu_notifier_invalidate_range_end(&range); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline bool should_try_to_free_swap(struct folio *folio, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned int fault_flags) | 
|  | { | 
|  | if (!folio_test_swapcache(folio)) | 
|  | return false; | 
|  | if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || | 
|  | folio_test_mlocked(folio)) | 
|  | return true; | 
|  | /* | 
|  | * If we want to map a page that's in the swapcache writable, we | 
|  | * have to detect via the refcount if we're really the exclusive | 
|  | * user. Try freeing the swapcache to get rid of the swapcache | 
|  | * reference only in case it's likely that we'll be the exlusive user. | 
|  | */ | 
|  | return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && | 
|  | folio_ref_count(folio) == 2; | 
|  | } | 
|  |  | 
|  | static vm_fault_t pte_marker_clear(struct vm_fault *vmf) | 
|  | { | 
|  | vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, | 
|  | vmf->address, &vmf->ptl); | 
|  | /* | 
|  | * Be careful so that we will only recover a special uffd-wp pte into a | 
|  | * none pte.  Otherwise it means the pte could have changed, so retry. | 
|  | */ | 
|  | if (is_pte_marker(*vmf->pte)) | 
|  | pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); | 
|  | pte_unmap_unlock(vmf->pte, vmf->ptl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is actually a page-missing access, but with uffd-wp special pte | 
|  | * installed.  It means this pte was wr-protected before being unmapped. | 
|  | */ | 
|  | static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) | 
|  | { | 
|  | /* | 
|  | * Just in case there're leftover special ptes even after the region | 
|  | * got unregistered - we can simply clear them.  We can also do that | 
|  | * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp | 
|  | * ranges, but it should be more efficient to be done lazily here. | 
|  | */ | 
|  | if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma))) | 
|  | return pte_marker_clear(vmf); | 
|  |  | 
|  | /* do_fault() can handle pte markers too like none pte */ | 
|  | return do_fault(vmf); | 
|  | } | 
|  |  | 
|  | static vm_fault_t handle_pte_marker(struct vm_fault *vmf) | 
|  | { | 
|  | swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); | 
|  | unsigned long marker = pte_marker_get(entry); | 
|  |  | 
|  | /* | 
|  | * PTE markers should always be with file-backed memories, and the | 
|  | * marker should never be empty.  If anything weird happened, the best | 
|  | * thing to do is to kill the process along with its mm. | 
|  | */ | 
|  | if (WARN_ON_ONCE(vma_is_anonymous(vmf->vma) || !marker)) | 
|  | return VM_FAULT_SIGBUS; | 
|  |  | 
|  | if (pte_marker_entry_uffd_wp(entry)) | 
|  | return pte_marker_handle_uffd_wp(vmf); | 
|  |  | 
|  | /* This is an unknown pte marker */ | 
|  | return VM_FAULT_SIGBUS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We enter with non-exclusive mmap_lock (to exclude vma changes, | 
|  | * but allow concurrent faults), and pte mapped but not yet locked. | 
|  | * We return with pte unmapped and unlocked. | 
|  | * | 
|  | * We return with the mmap_lock locked or unlocked in the same cases | 
|  | * as does filemap_fault(). | 
|  | */ | 
|  | vm_fault_t do_swap_page(struct vm_fault *vmf) | 
|  | { | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | struct folio *swapcache, *folio = NULL; | 
|  | struct page *page; | 
|  | struct swap_info_struct *si = NULL; | 
|  | rmap_t rmap_flags = RMAP_NONE; | 
|  | bool need_clear_cache = false; | 
|  | bool exclusive = false; | 
|  | swp_entry_t entry; | 
|  | pte_t pte; | 
|  | int locked; | 
|  | vm_fault_t ret = 0; | 
|  | void *shadow = NULL; | 
|  |  | 
|  | if (!pte_unmap_same(vmf)) | 
|  | goto out; | 
|  |  | 
|  | entry = pte_to_swp_entry(vmf->orig_pte); | 
|  | if (unlikely(non_swap_entry(entry))) { | 
|  | if (is_migration_entry(entry)) { | 
|  | migration_entry_wait(vma->vm_mm, vmf->pmd, | 
|  | vmf->address); | 
|  | } else if (is_device_exclusive_entry(entry)) { | 
|  | vmf->page = pfn_swap_entry_to_page(entry); | 
|  | ret = remove_device_exclusive_entry(vmf); | 
|  | } else if (is_device_private_entry(entry)) { | 
|  | vmf->page = pfn_swap_entry_to_page(entry); | 
|  | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, | 
|  | vmf->address, &vmf->ptl); | 
|  | if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { | 
|  | spin_unlock(vmf->ptl); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get a page reference while we know the page can't be | 
|  | * freed. | 
|  | */ | 
|  | get_page(vmf->page); | 
|  | pte_unmap_unlock(vmf->pte, vmf->ptl); | 
|  | ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); | 
|  | put_page(vmf->page); | 
|  | } else if (is_hwpoison_entry(entry)) { | 
|  | ret = VM_FAULT_HWPOISON; | 
|  | } else if (is_swapin_error_entry(entry)) { | 
|  | ret = VM_FAULT_SIGBUS; | 
|  | } else if (is_pte_marker_entry(entry)) { | 
|  | ret = handle_pte_marker(vmf); | 
|  | } else { | 
|  | print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); | 
|  | ret = VM_FAULT_SIGBUS; | 
|  | } | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Prevent swapoff from happening to us. */ | 
|  | si = get_swap_device(entry); | 
|  | if (unlikely(!si)) | 
|  | goto out; | 
|  |  | 
|  | folio = swap_cache_get_folio(entry, vma, vmf->address); | 
|  | if (folio) | 
|  | page = folio_file_page(folio, swp_offset(entry)); | 
|  | swapcache = folio; | 
|  |  | 
|  | if (!folio) { | 
|  | if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && | 
|  | __swap_count(entry) == 1) { | 
|  | /* | 
|  | * Prevent parallel swapin from proceeding with | 
|  | * the cache flag. Otherwise, another thread may | 
|  | * finish swapin first, free the entry, and swapout | 
|  | * reusing the same entry. It's undetectable as | 
|  | * pte_same() returns true due to entry reuse. | 
|  | */ | 
|  | if (swapcache_prepare(entry)) { | 
|  | /* Relax a bit to prevent rapid repeated page faults */ | 
|  | schedule_timeout_uninterruptible(1); | 
|  | goto out; | 
|  | } | 
|  | need_clear_cache = true; | 
|  |  | 
|  | /* skip swapcache */ | 
|  | folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, | 
|  | vma, vmf->address, false); | 
|  | page = &folio->page; | 
|  | if (folio) { | 
|  | __folio_set_locked(folio); | 
|  | __folio_set_swapbacked(folio); | 
|  |  | 
|  | if (mem_cgroup_swapin_charge_folio(folio, | 
|  | vma->vm_mm, GFP_KERNEL, | 
|  | entry)) { | 
|  | ret = VM_FAULT_OOM; | 
|  | goto out_page; | 
|  | } | 
|  | mem_cgroup_swapin_uncharge_swap(entry); | 
|  |  | 
|  | shadow = get_shadow_from_swap_cache(entry); | 
|  | if (shadow) | 
|  | workingset_refault(folio, shadow); | 
|  |  | 
|  | folio_add_lru(folio); | 
|  |  | 
|  | /* To provide entry to swap_readpage() */ | 
|  | folio_set_swap_entry(folio, entry); | 
|  | swap_readpage(page, true, NULL); | 
|  | folio->private = NULL; | 
|  | } | 
|  | } else { | 
|  | page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, | 
|  | vmf); | 
|  | if (page) | 
|  | folio = page_folio(page); | 
|  | swapcache = folio; | 
|  | } | 
|  |  | 
|  | if (!folio) { | 
|  | /* | 
|  | * Back out if somebody else faulted in this pte | 
|  | * while we released the pte lock. | 
|  | */ | 
|  | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, | 
|  | vmf->address, &vmf->ptl); | 
|  | if (likely(pte_same(*vmf->pte, vmf->orig_pte))) | 
|  | ret = VM_FAULT_OOM; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | /* Had to read the page from swap area: Major fault */ | 
|  | ret = VM_FAULT_MAJOR; | 
|  | count_vm_event(PGMAJFAULT); | 
|  | count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); | 
|  | } else if (PageHWPoison(page)) { | 
|  | /* | 
|  | * hwpoisoned dirty swapcache pages are kept for killing | 
|  | * owner processes (which may be unknown at hwpoison time) | 
|  | */ | 
|  | ret = VM_FAULT_HWPOISON; | 
|  | goto out_release; | 
|  | } | 
|  |  | 
|  | locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags); | 
|  |  | 
|  | if (!locked) { | 
|  | ret |= VM_FAULT_RETRY; | 
|  | goto out_release; | 
|  | } | 
|  |  | 
|  | if (swapcache) { | 
|  | /* | 
|  | * Make sure folio_free_swap() or swapoff did not release the | 
|  | * swapcache from under us.  The page pin, and pte_same test | 
|  | * below, are not enough to exclude that.  Even if it is still | 
|  | * swapcache, we need to check that the page's swap has not | 
|  | * changed. | 
|  | */ | 
|  | if (unlikely(!folio_test_swapcache(folio) || | 
|  | page_private(page) != entry.val)) | 
|  | goto out_page; | 
|  |  | 
|  | /* | 
|  | * KSM sometimes has to copy on read faults, for example, if | 
|  | * page->index of !PageKSM() pages would be nonlinear inside the | 
|  | * anon VMA -- PageKSM() is lost on actual swapout. | 
|  | */ | 
|  | page = ksm_might_need_to_copy(page, vma, vmf->address); | 
|  | if (unlikely(!page)) { | 
|  | ret = VM_FAULT_OOM; | 
|  | goto out_page; | 
|  | } | 
|  | folio = page_folio(page); | 
|  |  | 
|  | /* | 
|  | * If we want to map a page that's in the swapcache writable, we | 
|  | * have to detect via the refcount if we're really the exclusive | 
|  | * owner. Try removing the extra reference from the local LRU | 
|  | * pagevecs if required. | 
|  | */ | 
|  | if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && | 
|  | !folio_test_ksm(folio) && !folio_test_lru(folio)) | 
|  | lru_add_drain(); | 
|  | } | 
|  |  | 
|  | cgroup_throttle_swaprate(page, GFP_KERNEL); | 
|  |  | 
|  | /* | 
|  | * Back out if somebody else already faulted in this pte. | 
|  | */ | 
|  | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, | 
|  | &vmf->ptl); | 
|  | if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) | 
|  | goto out_nomap; | 
|  |  | 
|  | if (unlikely(!folio_test_uptodate(folio))) { | 
|  | ret = VM_FAULT_SIGBUS; | 
|  | goto out_nomap; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte | 
|  | * must never point at an anonymous page in the swapcache that is | 
|  | * PG_anon_exclusive. Sanity check that this holds and especially, that | 
|  | * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity | 
|  | * check after taking the PT lock and making sure that nobody | 
|  | * concurrently faulted in this page and set PG_anon_exclusive. | 
|  | */ | 
|  | BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); | 
|  | BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); | 
|  |  | 
|  | /* | 
|  | * Check under PT lock (to protect against concurrent fork() sharing | 
|  | * the swap entry concurrently) for certainly exclusive pages. | 
|  | */ | 
|  | if (!folio_test_ksm(folio)) { | 
|  | /* | 
|  | * Note that pte_swp_exclusive() == false for architectures | 
|  | * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE. | 
|  | */ | 
|  | exclusive = pte_swp_exclusive(vmf->orig_pte); | 
|  | if (folio != swapcache) { | 
|  | /* | 
|  | * We have a fresh page that is not exposed to the | 
|  | * swapcache -> certainly exclusive. | 
|  | */ | 
|  | exclusive = true; | 
|  | } else if (exclusive && folio_test_writeback(folio) && | 
|  | data_race(si->flags & SWP_STABLE_WRITES)) { | 
|  | /* | 
|  | * This is tricky: not all swap backends support | 
|  | * concurrent page modifications while under writeback. | 
|  | * | 
|  | * So if we stumble over such a page in the swapcache | 
|  | * we must not set the page exclusive, otherwise we can | 
|  | * map it writable without further checks and modify it | 
|  | * while still under writeback. | 
|  | * | 
|  | * For these problematic swap backends, simply drop the | 
|  | * exclusive marker: this is perfectly fine as we start | 
|  | * writeback only if we fully unmapped the page and | 
|  | * there are no unexpected references on the page after | 
|  | * unmapping succeeded. After fully unmapped, no | 
|  | * further GUP references (FOLL_GET and FOLL_PIN) can | 
|  | * appear, so dropping the exclusive marker and mapping | 
|  | * it only R/O is fine. | 
|  | */ | 
|  | exclusive = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some architectures may have to restore extra metadata to the page | 
|  | * when reading from swap. This metadata may be indexed by swap entry | 
|  | * so this must be called before swap_free(). | 
|  | */ | 
|  | arch_swap_restore(entry, folio); | 
|  |  | 
|  | /* | 
|  | * Remove the swap entry and conditionally try to free up the swapcache. | 
|  | * We're already holding a reference on the page but haven't mapped it | 
|  | * yet. | 
|  | */ | 
|  | swap_free(entry); | 
|  | if (should_try_to_free_swap(folio, vma, vmf->flags)) | 
|  | folio_free_swap(folio); | 
|  |  | 
|  | inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); | 
|  | dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); | 
|  | pte = mk_pte(page, vma->vm_page_prot); | 
|  |  | 
|  | /* | 
|  | * Same logic as in do_wp_page(); however, optimize for pages that are | 
|  | * certainly not shared either because we just allocated them without | 
|  | * exposing them to the swapcache or because the swap entry indicates | 
|  | * exclusivity. | 
|  | */ | 
|  | if (!folio_test_ksm(folio) && | 
|  | (exclusive || folio_ref_count(folio) == 1)) { | 
|  | if (vmf->flags & FAULT_FLAG_WRITE) { | 
|  | pte = maybe_mkwrite(pte_mkdirty(pte), vma); | 
|  | vmf->flags &= ~FAULT_FLAG_WRITE; | 
|  | ret |= VM_FAULT_WRITE; | 
|  | } | 
|  | rmap_flags |= RMAP_EXCLUSIVE; | 
|  | } | 
|  | flush_icache_page(vma, page); | 
|  | if (pte_swp_soft_dirty(vmf->orig_pte)) | 
|  | pte = pte_mksoft_dirty(pte); | 
|  | if (pte_swp_uffd_wp(vmf->orig_pte)) { | 
|  | pte = pte_mkuffd_wp(pte); | 
|  | pte = pte_wrprotect(pte); | 
|  | } | 
|  | vmf->orig_pte = pte; | 
|  |  | 
|  | /* ksm created a completely new copy */ | 
|  | if (unlikely(folio != swapcache && swapcache)) { | 
|  | page_add_new_anon_rmap(page, vma, vmf->address); | 
|  | folio_add_lru_vma(folio, vma); | 
|  | } else { | 
|  | page_add_anon_rmap(page, vma, vmf->address, rmap_flags); | 
|  | } | 
|  |  | 
|  | VM_BUG_ON(!folio_test_anon(folio) || | 
|  | (pte_write(pte) && !PageAnonExclusive(page))); | 
|  | set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); | 
|  | arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); | 
|  |  | 
|  | folio_unlock(folio); | 
|  | if (folio != swapcache && swapcache) { | 
|  | /* | 
|  | * Hold the lock to avoid the swap entry to be reused | 
|  | * until we take the PT lock for the pte_same() check | 
|  | * (to avoid false positives from pte_same). For | 
|  | * further safety release the lock after the swap_free | 
|  | * so that the swap count won't change under a | 
|  | * parallel locked swapcache. | 
|  | */ | 
|  | folio_unlock(swapcache); | 
|  | folio_put(swapcache); | 
|  | } | 
|  |  | 
|  | if (vmf->flags & FAULT_FLAG_WRITE) { | 
|  | ret |= do_wp_page(vmf); | 
|  | if (ret & VM_FAULT_ERROR) | 
|  | ret &= VM_FAULT_ERROR; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* No need to invalidate - it was non-present before */ | 
|  | update_mmu_cache(vma, vmf->address, vmf->pte); | 
|  | unlock: | 
|  | pte_unmap_unlock(vmf->pte, vmf->ptl); | 
|  | out: | 
|  | /* Clear the swap cache pin for direct swapin after PTL unlock */ | 
|  | if (need_clear_cache) | 
|  | swapcache_clear(si, entry); | 
|  | if (si) | 
|  | put_swap_device(si); | 
|  | return ret; | 
|  | out_nomap: | 
|  | pte_unmap_unlock(vmf->pte, vmf->ptl); | 
|  | out_page: | 
|  | folio_unlock(folio); | 
|  | out_release: | 
|  | folio_put(folio); | 
|  | if (folio != swapcache && swapcache) { | 
|  | folio_unlock(swapcache); | 
|  | folio_put(swapcache); | 
|  | } | 
|  | if (need_clear_cache) | 
|  | swapcache_clear(si, entry); | 
|  | if (si) | 
|  | put_swap_device(si); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We enter with non-exclusive mmap_lock (to exclude vma changes, | 
|  | * but allow concurrent faults), and pte mapped but not yet locked. | 
|  | * We return with mmap_lock still held, but pte unmapped and unlocked. | 
|  | */ | 
|  | static vm_fault_t do_anonymous_page(struct vm_fault *vmf) | 
|  | { | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | struct page *page; | 
|  | vm_fault_t ret = 0; | 
|  | pte_t entry; | 
|  |  | 
|  | /* File mapping without ->vm_ops ? */ | 
|  | if (vma->vm_flags & VM_SHARED) | 
|  | return VM_FAULT_SIGBUS; | 
|  |  | 
|  | /* | 
|  | * Use pte_alloc() instead of pte_alloc_map().  We can't run | 
|  | * pte_offset_map() on pmds where a huge pmd might be created | 
|  | * from a different thread. | 
|  | * | 
|  | * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when | 
|  | * parallel threads are excluded by other means. | 
|  | * | 
|  | * Here we only have mmap_read_lock(mm). | 
|  | */ | 
|  | if (pte_alloc(vma->vm_mm, vmf->pmd)) | 
|  | return VM_FAULT_OOM; | 
|  |  | 
|  | /* See comment in handle_pte_fault() */ | 
|  | if (unlikely(pmd_trans_unstable(vmf->pmd))) | 
|  | return 0; | 
|  |  | 
|  | /* Use the zero-page for reads */ | 
|  | if (!(vmf->flags & FAULT_FLAG_WRITE) && | 
|  | !mm_forbids_zeropage(vma->vm_mm)) { | 
|  | entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), | 
|  | vma->vm_page_prot)); | 
|  | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, | 
|  | vmf->address, &vmf->ptl); | 
|  | if (!pte_none(*vmf->pte)) { | 
|  | update_mmu_tlb(vma, vmf->address, vmf->pte); | 
|  | goto unlock; | 
|  | } | 
|  | ret = check_stable_address_space(vma->vm_mm); | 
|  | if (ret) | 
|  | goto unlock; | 
|  | /* Deliver the page fault to userland, check inside PT lock */ | 
|  | if (userfaultfd_missing(vma)) { | 
|  | pte_unmap_unlock(vmf->pte, vmf->ptl); | 
|  | return handle_userfault(vmf, VM_UFFD_MISSING); | 
|  | } | 
|  | goto setpte; | 
|  | } | 
|  |  | 
|  | /* Allocate our own private page. */ | 
|  | if (unlikely(anon_vma_prepare(vma))) | 
|  | goto oom; | 
|  | page = alloc_zeroed_user_highpage_movable(vma, vmf->address); | 
|  | if (!page) | 
|  | goto oom; | 
|  |  | 
|  | if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL)) | 
|  | goto oom_free_page; | 
|  | cgroup_throttle_swaprate(page, GFP_KERNEL); | 
|  |  | 
|  | /* | 
|  | * The memory barrier inside __SetPageUptodate makes sure that | 
|  | * preceding stores to the page contents become visible before | 
|  | * the set_pte_at() write. | 
|  | */ | 
|  | __SetPageUptodate(page); | 
|  |  | 
|  | entry = mk_pte(page, vma->vm_page_prot); | 
|  | entry = pte_sw_mkyoung(entry); | 
|  | if (vma->vm_flags & VM_WRITE) | 
|  | entry = pte_mkwrite(pte_mkdirty(entry)); | 
|  |  | 
|  | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, | 
|  | &vmf->ptl); | 
|  | if (!pte_none(*vmf->pte)) { | 
|  | update_mmu_tlb(vma, vmf->address, vmf->pte); | 
|  | goto release; | 
|  | } | 
|  |  | 
|  | ret = check_stable_address_space(vma->vm_mm); | 
|  | if (ret) | 
|  | goto release; | 
|  |  | 
|  | /* Deliver the page fault to userland, check inside PT lock */ | 
|  | if (userfaultfd_missing(vma)) { | 
|  | pte_unmap_unlock(vmf->pte, vmf->ptl); | 
|  | put_page(page); | 
|  | return handle_userfault(vmf, VM_UFFD_MISSING); | 
|  | } | 
|  |  | 
|  | inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); | 
|  | page_add_new_anon_rmap(page, vma, vmf->address); | 
|  | lru_cache_add_inactive_or_unevictable(page, vma); | 
|  | setpte: | 
|  | set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); | 
|  |  | 
|  | /* No need to invalidate - it was non-present before */ | 
|  | update_mmu_cache(vma, vmf->address, vmf->pte); | 
|  | unlock: | 
|  | pte_unmap_unlock(vmf->pte, vmf->ptl); | 
|  | return ret; | 
|  | release: | 
|  | put_page(page); | 
|  | goto unlock; | 
|  | oom_free_page: | 
|  | put_page(page); | 
|  | oom: | 
|  | return VM_FAULT_OOM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The mmap_lock must have been held on entry, and may have been | 
|  | * released depending on flags and vma->vm_ops->fault() return value. | 
|  | * See filemap_fault() and __lock_page_retry(). | 
|  | */ | 
|  | static vm_fault_t __do_fault(struct vm_fault *vmf) | 
|  | { | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | vm_fault_t ret; | 
|  |  | 
|  | /* | 
|  | * Preallocate pte before we take page_lock because this might lead to | 
|  | * deadlocks for memcg reclaim which waits for pages under writeback: | 
|  | *				lock_page(A) | 
|  | *				SetPageWriteback(A) | 
|  | *				unlock_page(A) | 
|  | * lock_page(B) | 
|  | *				lock_page(B) | 
|  | * pte_alloc_one | 
|  | *   shrink_page_list | 
|  | *     wait_on_page_writeback(A) | 
|  | *				SetPageWriteback(B) | 
|  | *				unlock_page(B) | 
|  | *				# flush A, B to clear the writeback | 
|  | */ | 
|  | if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { | 
|  | vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); | 
|  | if (!vmf->prealloc_pte) | 
|  | return VM_FAULT_OOM; | 
|  | } | 
|  |  | 
|  | ret = vma->vm_ops->fault(vmf); | 
|  | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | | 
|  | VM_FAULT_DONE_COW))) | 
|  | return ret; | 
|  |  | 
|  | if (unlikely(PageHWPoison(vmf->page))) { | 
|  | struct page *page = vmf->page; | 
|  | vm_fault_t poisonret = VM_FAULT_HWPOISON; | 
|  | if (ret & VM_FAULT_LOCKED) { | 
|  | if (page_mapped(page)) | 
|  | unmap_mapping_pages(page_mapping(page), | 
|  | page->index, 1, false); | 
|  | /* Retry if a clean page was removed from the cache. */ | 
|  | if (invalidate_inode_page(page)) | 
|  | poisonret = VM_FAULT_NOPAGE; | 
|  | unlock_page(page); | 
|  | } | 
|  | put_page(page); | 
|  | vmf->page = NULL; | 
|  | return poisonret; | 
|  | } | 
|  |  | 
|  | if (unlikely(!(ret & VM_FAULT_LOCKED))) | 
|  | lock_page(vmf->page); | 
|  | else | 
|  | VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | static void deposit_prealloc_pte(struct vm_fault *vmf) | 
|  | { | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  |  | 
|  | pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); | 
|  | /* | 
|  | * We are going to consume the prealloc table, | 
|  | * count that as nr_ptes. | 
|  | */ | 
|  | mm_inc_nr_ptes(vma->vm_mm); | 
|  | vmf->prealloc_pte = NULL; | 
|  | } | 
|  |  | 
|  | vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) | 
|  | { | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | bool write = vmf->flags & FAULT_FLAG_WRITE; | 
|  | unsigned long haddr = vmf->address & HPAGE_PMD_MASK; | 
|  | pmd_t entry; | 
|  | int i; | 
|  | vm_fault_t ret = VM_FAULT_FALLBACK; | 
|  |  | 
|  | if (!transhuge_vma_suitable(vma, haddr)) | 
|  | return ret; | 
|  |  | 
|  | page = compound_head(page); | 
|  | if (compound_order(page) != HPAGE_PMD_ORDER) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Just backoff if any subpage of a THP is corrupted otherwise | 
|  | * the corrupted page may mapped by PMD silently to escape the | 
|  | * check.  This kind of THP just can be PTE mapped.  Access to | 
|  | * the corrupted subpage should trigger SIGBUS as expected. | 
|  | */ | 
|  | if (unlikely(PageHasHWPoisoned(page))) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Archs like ppc64 need additional space to store information | 
|  | * related to pte entry. Use the preallocated table for that. | 
|  | */ | 
|  | if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { | 
|  | vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); | 
|  | if (!vmf->prealloc_pte) | 
|  | return VM_FAULT_OOM; | 
|  | } | 
|  |  | 
|  | vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); | 
|  | if (unlikely(!pmd_none(*vmf->pmd))) | 
|  | goto out; | 
|  |  | 
|  | for (i = 0; i < HPAGE_PMD_NR; i++) | 
|  | flush_icache_page(vma, page + i); | 
|  |  | 
|  | entry = mk_huge_pmd(page, vma->vm_page_prot); | 
|  | if (write) | 
|  | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); | 
|  |  | 
|  | add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); | 
|  | page_add_file_rmap(page, vma, true); | 
|  |  | 
|  | /* | 
|  | * deposit and withdraw with pmd lock held | 
|  | */ | 
|  | if (arch_needs_pgtable_deposit()) | 
|  | deposit_prealloc_pte(vmf); | 
|  |  | 
|  | set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); | 
|  |  | 
|  | update_mmu_cache_pmd(vma, haddr, vmf->pmd); | 
|  |  | 
|  | /* fault is handled */ | 
|  | ret = 0; | 
|  | count_vm_event(THP_FILE_MAPPED); | 
|  | out: | 
|  | spin_unlock(vmf->ptl); | 
|  | return ret; | 
|  | } | 
|  | #else | 
|  | vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) | 
|  | { | 
|  | return VM_FAULT_FALLBACK; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr) | 
|  | { | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte); | 
|  | bool write = vmf->flags & FAULT_FLAG_WRITE; | 
|  | bool prefault = vmf->address != addr; | 
|  | pte_t entry; | 
|  |  | 
|  | flush_icache_page(vma, page); | 
|  | entry = mk_pte(page, vma->vm_page_prot); | 
|  |  | 
|  | if (prefault && arch_wants_old_prefaulted_pte()) | 
|  | entry = pte_mkold(entry); | 
|  | else | 
|  | entry = pte_sw_mkyoung(entry); | 
|  |  | 
|  | if (write) | 
|  | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
|  | if (unlikely(uffd_wp)) | 
|  | entry = pte_mkuffd_wp(pte_wrprotect(entry)); | 
|  | /* copy-on-write page */ | 
|  | if (write && !(vma->vm_flags & VM_SHARED)) { | 
|  | inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); | 
|  | page_add_new_anon_rmap(page, vma, addr); | 
|  | lru_cache_add_inactive_or_unevictable(page, vma); | 
|  | } else { | 
|  | inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); | 
|  | page_add_file_rmap(page, vma, false); | 
|  | } | 
|  | set_pte_at(vma->vm_mm, addr, vmf->pte, entry); | 
|  | } | 
|  |  | 
|  | static bool vmf_pte_changed(struct vm_fault *vmf) | 
|  | { | 
|  | if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) | 
|  | return !pte_same(*vmf->pte, vmf->orig_pte); | 
|  |  | 
|  | return !pte_none(*vmf->pte); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * finish_fault - finish page fault once we have prepared the page to fault | 
|  | * | 
|  | * @vmf: structure describing the fault | 
|  | * | 
|  | * This function handles all that is needed to finish a page fault once the | 
|  | * page to fault in is prepared. It handles locking of PTEs, inserts PTE for | 
|  | * given page, adds reverse page mapping, handles memcg charges and LRU | 
|  | * addition. | 
|  | * | 
|  | * The function expects the page to be locked and on success it consumes a | 
|  | * reference of a page being mapped (for the PTE which maps it). | 
|  | * | 
|  | * Return: %0 on success, %VM_FAULT_ code in case of error. | 
|  | */ | 
|  | vm_fault_t finish_fault(struct vm_fault *vmf) | 
|  | { | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | struct page *page; | 
|  | vm_fault_t ret; | 
|  |  | 
|  | /* Did we COW the page? */ | 
|  | if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) | 
|  | page = vmf->cow_page; | 
|  | else | 
|  | page = vmf->page; | 
|  |  | 
|  | /* | 
|  | * check even for read faults because we might have lost our CoWed | 
|  | * page | 
|  | */ | 
|  | if (!(vma->vm_flags & VM_SHARED)) { | 
|  | ret = check_stable_address_space(vma->vm_mm); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (pmd_none(*vmf->pmd)) { | 
|  | if (PageTransCompound(page)) { | 
|  | ret = do_set_pmd(vmf, page); | 
|  | if (ret != VM_FAULT_FALLBACK) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (vmf->prealloc_pte) | 
|  | pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); | 
|  | else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) | 
|  | return VM_FAULT_OOM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * See comment in handle_pte_fault() for how this scenario happens, we | 
|  | * need to return NOPAGE so that we drop this page. | 
|  | */ | 
|  | if (pmd_devmap_trans_unstable(vmf->pmd)) | 
|  | return VM_FAULT_NOPAGE; | 
|  |  | 
|  | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, | 
|  | vmf->address, &vmf->ptl); | 
|  |  | 
|  | /* Re-check under ptl */ | 
|  | if (likely(!vmf_pte_changed(vmf))) { | 
|  | do_set_pte(vmf, page, vmf->address); | 
|  |  | 
|  | /* no need to invalidate: a not-present page won't be cached */ | 
|  | update_mmu_cache(vma, vmf->address, vmf->pte); | 
|  |  | 
|  | ret = 0; | 
|  | } else { | 
|  | update_mmu_tlb(vma, vmf->address, vmf->pte); | 
|  | ret = VM_FAULT_NOPAGE; | 
|  | } | 
|  |  | 
|  | pte_unmap_unlock(vmf->pte, vmf->ptl); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static unsigned long fault_around_bytes __read_mostly = | 
|  | rounddown_pow_of_two(65536); | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_FS | 
|  | static int fault_around_bytes_get(void *data, u64 *val) | 
|  | { | 
|  | *val = fault_around_bytes; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fault_around_bytes must be rounded down to the nearest page order as it's | 
|  | * what do_fault_around() expects to see. | 
|  | */ | 
|  | static int fault_around_bytes_set(void *data, u64 val) | 
|  | { | 
|  | if (val / PAGE_SIZE > PTRS_PER_PTE) | 
|  | return -EINVAL; | 
|  | if (val > PAGE_SIZE) | 
|  | fault_around_bytes = rounddown_pow_of_two(val); | 
|  | else | 
|  | fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ | 
|  | return 0; | 
|  | } | 
|  | DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, | 
|  | fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); | 
|  |  | 
|  | static int __init fault_around_debugfs(void) | 
|  | { | 
|  | debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, | 
|  | &fault_around_bytes_fops); | 
|  | return 0; | 
|  | } | 
|  | late_initcall(fault_around_debugfs); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * do_fault_around() tries to map few pages around the fault address. The hope | 
|  | * is that the pages will be needed soon and this will lower the number of | 
|  | * faults to handle. | 
|  | * | 
|  | * It uses vm_ops->map_pages() to map the pages, which skips the page if it's | 
|  | * not ready to be mapped: not up-to-date, locked, etc. | 
|  | * | 
|  | * This function doesn't cross the VMA boundaries, in order to call map_pages() | 
|  | * only once. | 
|  | * | 
|  | * fault_around_bytes defines how many bytes we'll try to map. | 
|  | * do_fault_around() expects it to be set to a power of two less than or equal | 
|  | * to PTRS_PER_PTE. | 
|  | * | 
|  | * The virtual address of the area that we map is naturally aligned to | 
|  | * fault_around_bytes rounded down to the machine page size | 
|  | * (and therefore to page order).  This way it's easier to guarantee | 
|  | * that we don't cross page table boundaries. | 
|  | */ | 
|  | static vm_fault_t do_fault_around(struct vm_fault *vmf) | 
|  | { | 
|  | unsigned long address = vmf->address, nr_pages, mask; | 
|  | pgoff_t start_pgoff = vmf->pgoff; | 
|  | pgoff_t end_pgoff; | 
|  | int off; | 
|  |  | 
|  | nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; | 
|  | mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; | 
|  |  | 
|  | address = max(address & mask, vmf->vma->vm_start); | 
|  | off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); | 
|  | start_pgoff -= off; | 
|  |  | 
|  | /* | 
|  | *  end_pgoff is either the end of the page table, the end of | 
|  | *  the vma or nr_pages from start_pgoff, depending what is nearest. | 
|  | */ | 
|  | end_pgoff = start_pgoff - | 
|  | ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + | 
|  | PTRS_PER_PTE - 1; | 
|  | end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, | 
|  | start_pgoff + nr_pages - 1); | 
|  |  | 
|  | if (pmd_none(*vmf->pmd)) { | 
|  | vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); | 
|  | if (!vmf->prealloc_pte) | 
|  | return VM_FAULT_OOM; | 
|  | } | 
|  |  | 
|  | return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); | 
|  | } | 
|  |  | 
|  | /* Return true if we should do read fault-around, false otherwise */ | 
|  | static inline bool should_fault_around(struct vm_fault *vmf) | 
|  | { | 
|  | /* No ->map_pages?  No way to fault around... */ | 
|  | if (!vmf->vma->vm_ops->map_pages) | 
|  | return false; | 
|  |  | 
|  | if (uffd_disable_fault_around(vmf->vma)) | 
|  | return false; | 
|  |  | 
|  | return fault_around_bytes >> PAGE_SHIFT > 1; | 
|  | } | 
|  |  | 
|  | static vm_fault_t do_read_fault(struct vm_fault *vmf) | 
|  | { | 
|  | vm_fault_t ret = 0; | 
|  |  | 
|  | /* | 
|  | * Let's call ->map_pages() first and use ->fault() as fallback | 
|  | * if page by the offset is not ready to be mapped (cold cache or | 
|  | * something). | 
|  | */ | 
|  | if (should_fault_around(vmf)) { | 
|  | ret = do_fault_around(vmf); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = __do_fault(vmf); | 
|  | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) | 
|  | return ret; | 
|  |  | 
|  | ret |= finish_fault(vmf); | 
|  | unlock_page(vmf->page); | 
|  | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) | 
|  | put_page(vmf->page); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static vm_fault_t do_cow_fault(struct vm_fault *vmf) | 
|  | { | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | vm_fault_t ret; | 
|  |  | 
|  | if (unlikely(anon_vma_prepare(vma))) | 
|  | return VM_FAULT_OOM; | 
|  |  | 
|  | vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); | 
|  | if (!vmf->cow_page) | 
|  | return VM_FAULT_OOM; | 
|  |  | 
|  | if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm, | 
|  | GFP_KERNEL)) { | 
|  | put_page(vmf->cow_page); | 
|  | return VM_FAULT_OOM; | 
|  | } | 
|  | cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); | 
|  |  | 
|  | ret = __do_fault(vmf); | 
|  | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) | 
|  | goto uncharge_out; | 
|  | if (ret & VM_FAULT_DONE_COW) | 
|  | return ret; | 
|  |  | 
|  | copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); | 
|  | __SetPageUptodate(vmf->cow_page); | 
|  |  | 
|  | ret |= finish_fault(vmf); | 
|  | unlock_page(vmf->page); | 
|  | put_page(vmf->page); | 
|  | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) | 
|  | goto uncharge_out; | 
|  | return ret; | 
|  | uncharge_out: | 
|  | put_page(vmf->cow_page); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static vm_fault_t do_shared_fault(struct vm_fault *vmf) | 
|  | { | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | vm_fault_t ret, tmp; | 
|  |  | 
|  | ret = __do_fault(vmf); | 
|  | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Check if the backing address space wants to know that the page is | 
|  | * about to become writable | 
|  | */ | 
|  | if (vma->vm_ops->page_mkwrite) { | 
|  | unlock_page(vmf->page); | 
|  | tmp = do_page_mkwrite(vmf); | 
|  | if (unlikely(!tmp || | 
|  | (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { | 
|  | put_page(vmf->page); | 
|  | return tmp; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret |= finish_fault(vmf); | 
|  | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | | 
|  | VM_FAULT_RETRY))) { | 
|  | unlock_page(vmf->page); | 
|  | put_page(vmf->page); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret |= fault_dirty_shared_page(vmf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We enter with non-exclusive mmap_lock (to exclude vma changes, | 
|  | * but allow concurrent faults). | 
|  | * The mmap_lock may have been released depending on flags and our | 
|  | * return value.  See filemap_fault() and __folio_lock_or_retry(). | 
|  | * If mmap_lock is released, vma may become invalid (for example | 
|  | * by other thread calling munmap()). | 
|  | */ | 
|  | static vm_fault_t do_fault(struct vm_fault *vmf) | 
|  | { | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | struct mm_struct *vm_mm = vma->vm_mm; | 
|  | vm_fault_t ret; | 
|  |  | 
|  | /* | 
|  | * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND | 
|  | */ | 
|  | if (!vma->vm_ops->fault) { | 
|  | /* | 
|  | * If we find a migration pmd entry or a none pmd entry, which | 
|  | * should never happen, return SIGBUS | 
|  | */ | 
|  | if (unlikely(!pmd_present(*vmf->pmd))) | 
|  | ret = VM_FAULT_SIGBUS; | 
|  | else { | 
|  | vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, | 
|  | vmf->pmd, | 
|  | vmf->address, | 
|  | &vmf->ptl); | 
|  | /* | 
|  | * Make sure this is not a temporary clearing of pte | 
|  | * by holding ptl and checking again. A R/M/W update | 
|  | * of pte involves: take ptl, clearing the pte so that | 
|  | * we don't have concurrent modification by hardware | 
|  | * followed by an update. | 
|  | */ | 
|  | if (unlikely(pte_none(*vmf->pte))) | 
|  | ret = VM_FAULT_SIGBUS; | 
|  | else | 
|  | ret = VM_FAULT_NOPAGE; | 
|  |  | 
|  | pte_unmap_unlock(vmf->pte, vmf->ptl); | 
|  | } | 
|  | } else if (!(vmf->flags & FAULT_FLAG_WRITE)) | 
|  | ret = do_read_fault(vmf); | 
|  | else if (!(vma->vm_flags & VM_SHARED)) | 
|  | ret = do_cow_fault(vmf); | 
|  | else | 
|  | ret = do_shared_fault(vmf); | 
|  |  | 
|  | /* preallocated pagetable is unused: free it */ | 
|  | if (vmf->prealloc_pte) { | 
|  | pte_free(vm_mm, vmf->prealloc_pte); | 
|  | vmf->prealloc_pte = NULL; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, | 
|  | unsigned long addr, int page_nid, int *flags) | 
|  | { | 
|  | get_page(page); | 
|  |  | 
|  | count_vm_numa_event(NUMA_HINT_FAULTS); | 
|  | if (page_nid == numa_node_id()) { | 
|  | count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); | 
|  | *flags |= TNF_FAULT_LOCAL; | 
|  | } | 
|  |  | 
|  | return mpol_misplaced(page, vma, addr); | 
|  | } | 
|  |  | 
|  | static vm_fault_t do_numa_page(struct vm_fault *vmf) | 
|  | { | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | struct page *page = NULL; | 
|  | int page_nid = NUMA_NO_NODE; | 
|  | int last_cpupid; | 
|  | int target_nid; | 
|  | pte_t pte, old_pte; | 
|  | bool was_writable = pte_savedwrite(vmf->orig_pte); | 
|  | int flags = 0; | 
|  |  | 
|  | /* | 
|  | * The "pte" at this point cannot be used safely without | 
|  | * validation through pte_unmap_same(). It's of NUMA type but | 
|  | * the pfn may be screwed if the read is non atomic. | 
|  | */ | 
|  | vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); | 
|  | spin_lock(vmf->ptl); | 
|  | if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { | 
|  | pte_unmap_unlock(vmf->pte, vmf->ptl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Get the normal PTE  */ | 
|  | old_pte = ptep_get(vmf->pte); | 
|  | pte = pte_modify(old_pte, vma->vm_page_prot); | 
|  |  | 
|  | page = vm_normal_page(vma, vmf->address, pte); | 
|  | if (!page || is_zone_device_page(page)) | 
|  | goto out_map; | 
|  |  | 
|  | /* TODO: handle PTE-mapped THP */ | 
|  | if (PageCompound(page)) | 
|  | goto out_map; | 
|  |  | 
|  | /* | 
|  | * Avoid grouping on RO pages in general. RO pages shouldn't hurt as | 
|  | * much anyway since they can be in shared cache state. This misses | 
|  | * the case where a mapping is writable but the process never writes | 
|  | * to it but pte_write gets cleared during protection updates and | 
|  | * pte_dirty has unpredictable behaviour between PTE scan updates, | 
|  | * background writeback, dirty balancing and application behaviour. | 
|  | */ | 
|  | if (!was_writable) | 
|  | flags |= TNF_NO_GROUP; | 
|  |  | 
|  | /* | 
|  | * Flag if the page is shared between multiple address spaces. This | 
|  | * is later used when determining whether to group tasks together | 
|  | */ | 
|  | if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) | 
|  | flags |= TNF_SHARED; | 
|  |  | 
|  | page_nid = page_to_nid(page); | 
|  | /* | 
|  | * For memory tiering mode, cpupid of slow memory page is used | 
|  | * to record page access time.  So use default value. | 
|  | */ | 
|  | if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && | 
|  | !node_is_toptier(page_nid)) | 
|  | last_cpupid = (-1 & LAST_CPUPID_MASK); | 
|  | else | 
|  | last_cpupid = page_cpupid_last(page); | 
|  | target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, | 
|  | &flags); | 
|  | if (target_nid == NUMA_NO_NODE) { | 
|  | put_page(page); | 
|  | goto out_map; | 
|  | } | 
|  | pte_unmap_unlock(vmf->pte, vmf->ptl); | 
|  |  | 
|  | /* Migrate to the requested node */ | 
|  | if (migrate_misplaced_page(page, vma, target_nid)) { | 
|  | page_nid = target_nid; | 
|  | flags |= TNF_MIGRATED; | 
|  | task_numa_fault(last_cpupid, page_nid, 1, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | flags |= TNF_MIGRATE_FAIL; | 
|  | vmf->pte = pte_offset_map(vmf->pmd, vmf->address); | 
|  | spin_lock(vmf->ptl); | 
|  | if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { | 
|  | pte_unmap_unlock(vmf->pte, vmf->ptl); | 
|  | return 0; | 
|  | } | 
|  | out_map: | 
|  | /* | 
|  | * Make it present again, depending on how arch implements | 
|  | * non-accessible ptes, some can allow access by kernel mode. | 
|  | */ | 
|  | old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); | 
|  | pte = pte_modify(old_pte, vma->vm_page_prot); | 
|  | pte = pte_mkyoung(pte); | 
|  | if (was_writable) | 
|  | pte = pte_mkwrite(pte); | 
|  | ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); | 
|  | update_mmu_cache(vma, vmf->address, vmf->pte); | 
|  | pte_unmap_unlock(vmf->pte, vmf->ptl); | 
|  |  | 
|  | if (page_nid != NUMA_NO_NODE) | 
|  | task_numa_fault(last_cpupid, page_nid, 1, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) | 
|  | { | 
|  | if (vma_is_anonymous(vmf->vma)) | 
|  | return do_huge_pmd_anonymous_page(vmf); | 
|  | if (vmf->vma->vm_ops->huge_fault) | 
|  | return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); | 
|  | return VM_FAULT_FALLBACK; | 
|  | } | 
|  |  | 
|  | /* `inline' is required to avoid gcc 4.1.2 build error */ | 
|  | static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) | 
|  | { | 
|  | const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; | 
|  |  | 
|  | if (vma_is_anonymous(vmf->vma)) { | 
|  | if (likely(!unshare) && | 
|  | userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd)) | 
|  | return handle_userfault(vmf, VM_UFFD_WP); | 
|  | return do_huge_pmd_wp_page(vmf); | 
|  | } | 
|  | if (vmf->vma->vm_ops->huge_fault) { | 
|  | vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); | 
|  |  | 
|  | if (!(ret & VM_FAULT_FALLBACK)) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* COW or write-notify handled on pte level: split pmd. */ | 
|  | __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); | 
|  |  | 
|  | return VM_FAULT_FALLBACK; | 
|  | } | 
|  |  | 
|  | static vm_fault_t create_huge_pud(struct vm_fault *vmf) | 
|  | { | 
|  | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\ | 
|  | defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) | 
|  | /* No support for anonymous transparent PUD pages yet */ | 
|  | if (vma_is_anonymous(vmf->vma)) | 
|  | return VM_FAULT_FALLBACK; | 
|  | if (vmf->vma->vm_ops->huge_fault) | 
|  | return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); | 
|  | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
|  | return VM_FAULT_FALLBACK; | 
|  | } | 
|  |  | 
|  | static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) | 
|  | { | 
|  | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\ | 
|  | defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) | 
|  | /* No support for anonymous transparent PUD pages yet */ | 
|  | if (vma_is_anonymous(vmf->vma)) | 
|  | goto split; | 
|  | if (vmf->vma->vm_ops->huge_fault) { | 
|  | vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); | 
|  |  | 
|  | if (!(ret & VM_FAULT_FALLBACK)) | 
|  | return ret; | 
|  | } | 
|  | split: | 
|  | /* COW or write-notify not handled on PUD level: split pud.*/ | 
|  | __split_huge_pud(vmf->vma, vmf->pud, vmf->address); | 
|  | #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ | 
|  | return VM_FAULT_FALLBACK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These routines also need to handle stuff like marking pages dirty | 
|  | * and/or accessed for architectures that don't do it in hardware (most | 
|  | * RISC architectures).  The early dirtying is also good on the i386. | 
|  | * | 
|  | * There is also a hook called "update_mmu_cache()" that architectures | 
|  | * with external mmu caches can use to update those (ie the Sparc or | 
|  | * PowerPC hashed page tables that act as extended TLBs). | 
|  | * | 
|  | * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow | 
|  | * concurrent faults). | 
|  | * | 
|  | * The mmap_lock may have been released depending on flags and our return value. | 
|  | * See filemap_fault() and __folio_lock_or_retry(). | 
|  | */ | 
|  | static vm_fault_t handle_pte_fault(struct vm_fault *vmf) | 
|  | { | 
|  | pte_t entry; | 
|  |  | 
|  | if (unlikely(pmd_none(*vmf->pmd))) { | 
|  | /* | 
|  | * Leave __pte_alloc() until later: because vm_ops->fault may | 
|  | * want to allocate huge page, and if we expose page table | 
|  | * for an instant, it will be difficult to retract from | 
|  | * concurrent faults and from rmap lookups. | 
|  | */ | 
|  | vmf->pte = NULL; | 
|  | vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; | 
|  | } else { | 
|  | /* | 
|  | * If a huge pmd materialized under us just retry later.  Use | 
|  | * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead | 
|  | * of pmd_trans_huge() to ensure the pmd didn't become | 
|  | * pmd_trans_huge under us and then back to pmd_none, as a | 
|  | * result of MADV_DONTNEED running immediately after a huge pmd | 
|  | * fault in a different thread of this mm, in turn leading to a | 
|  | * misleading pmd_trans_huge() retval. All we have to ensure is | 
|  | * that it is a regular pmd that we can walk with | 
|  | * pte_offset_map() and we can do that through an atomic read | 
|  | * in C, which is what pmd_trans_unstable() provides. | 
|  | */ | 
|  | if (pmd_devmap_trans_unstable(vmf->pmd)) | 
|  | return 0; | 
|  | /* | 
|  | * A regular pmd is established and it can't morph into a huge | 
|  | * pmd from under us anymore at this point because we hold the | 
|  | * mmap_lock read mode and khugepaged takes it in write mode. | 
|  | * So now it's safe to run pte_offset_map(). | 
|  | */ | 
|  | vmf->pte = pte_offset_map(vmf->pmd, vmf->address); | 
|  | vmf->orig_pte = *vmf->pte; | 
|  | vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; | 
|  |  | 
|  | /* | 
|  | * some architectures can have larger ptes than wordsize, | 
|  | * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and | 
|  | * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic | 
|  | * accesses.  The code below just needs a consistent view | 
|  | * for the ifs and we later double check anyway with the | 
|  | * ptl lock held. So here a barrier will do. | 
|  | */ | 
|  | barrier(); | 
|  | if (pte_none(vmf->orig_pte)) { | 
|  | pte_unmap(vmf->pte); | 
|  | vmf->pte = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!vmf->pte) { | 
|  | if (vma_is_anonymous(vmf->vma)) | 
|  | return do_anonymous_page(vmf); | 
|  | else | 
|  | return do_fault(vmf); | 
|  | } | 
|  |  | 
|  | if (!pte_present(vmf->orig_pte)) | 
|  | return do_swap_page(vmf); | 
|  |  | 
|  | if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) | 
|  | return do_numa_page(vmf); | 
|  |  | 
|  | vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); | 
|  | spin_lock(vmf->ptl); | 
|  | entry = vmf->orig_pte; | 
|  | if (unlikely(!pte_same(*vmf->pte, entry))) { | 
|  | update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); | 
|  | goto unlock; | 
|  | } | 
|  | if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { | 
|  | if (!pte_write(entry)) | 
|  | return do_wp_page(vmf); | 
|  | else if (likely(vmf->flags & FAULT_FLAG_WRITE)) | 
|  | entry = pte_mkdirty(entry); | 
|  | } | 
|  | entry = pte_mkyoung(entry); | 
|  | if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, | 
|  | vmf->flags & FAULT_FLAG_WRITE)) { | 
|  | update_mmu_cache(vmf->vma, vmf->address, vmf->pte); | 
|  | } else { | 
|  | /* Skip spurious TLB flush for retried page fault */ | 
|  | if (vmf->flags & FAULT_FLAG_TRIED) | 
|  | goto unlock; | 
|  | /* | 
|  | * This is needed only for protection faults but the arch code | 
|  | * is not yet telling us if this is a protection fault or not. | 
|  | * This still avoids useless tlb flushes for .text page faults | 
|  | * with threads. | 
|  | */ | 
|  | if (vmf->flags & FAULT_FLAG_WRITE) | 
|  | flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); | 
|  | } | 
|  | unlock: | 
|  | pte_unmap_unlock(vmf->pte, vmf->ptl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * By the time we get here, we already hold the mm semaphore | 
|  | * | 
|  | * The mmap_lock may have been released depending on flags and our | 
|  | * return value.  See filemap_fault() and __folio_lock_or_retry(). | 
|  | */ | 
|  | static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, | 
|  | unsigned long address, unsigned int flags) | 
|  | { | 
|  | struct vm_fault vmf = { | 
|  | .vma = vma, | 
|  | .address = address & PAGE_MASK, | 
|  | .real_address = address, | 
|  | .flags = flags, | 
|  | .pgoff = linear_page_index(vma, address), | 
|  | .gfp_mask = __get_fault_gfp_mask(vma), | 
|  | }; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | unsigned long vm_flags = vma->vm_flags; | 
|  | pgd_t *pgd; | 
|  | p4d_t *p4d; | 
|  | vm_fault_t ret; | 
|  |  | 
|  | pgd = pgd_offset(mm, address); | 
|  | p4d = p4d_alloc(mm, pgd, address); | 
|  | if (!p4d) | 
|  | return VM_FAULT_OOM; | 
|  |  | 
|  | vmf.pud = pud_alloc(mm, p4d, address); | 
|  | if (!vmf.pud) | 
|  | return VM_FAULT_OOM; | 
|  | retry_pud: | 
|  | if (pud_none(*vmf.pud) && | 
|  | hugepage_vma_check(vma, vm_flags, false, true, true)) { | 
|  | ret = create_huge_pud(&vmf); | 
|  | if (!(ret & VM_FAULT_FALLBACK)) | 
|  | return ret; | 
|  | } else { | 
|  | pud_t orig_pud = *vmf.pud; | 
|  |  | 
|  | barrier(); | 
|  | if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { | 
|  |  | 
|  | /* | 
|  | * TODO once we support anonymous PUDs: NUMA case and | 
|  | * FAULT_FLAG_UNSHARE handling. | 
|  | */ | 
|  | if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { | 
|  | ret = wp_huge_pud(&vmf, orig_pud); | 
|  | if (!(ret & VM_FAULT_FALLBACK)) | 
|  | return ret; | 
|  | } else { | 
|  | huge_pud_set_accessed(&vmf, orig_pud); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | vmf.pmd = pmd_alloc(mm, vmf.pud, address); | 
|  | if (!vmf.pmd) | 
|  | return VM_FAULT_OOM; | 
|  |  | 
|  | /* Huge pud page fault raced with pmd_alloc? */ | 
|  | if (pud_trans_unstable(vmf.pud)) | 
|  | goto retry_pud; | 
|  |  | 
|  | if (pmd_none(*vmf.pmd) && | 
|  | hugepage_vma_check(vma, vm_flags, false, true, true)) { | 
|  | ret = create_huge_pmd(&vmf); | 
|  | if (!(ret & VM_FAULT_FALLBACK)) | 
|  | return ret; | 
|  | } else { | 
|  | vmf.orig_pmd = *vmf.pmd; | 
|  |  | 
|  | barrier(); | 
|  | if (unlikely(is_swap_pmd(vmf.orig_pmd))) { | 
|  | VM_BUG_ON(thp_migration_supported() && | 
|  | !is_pmd_migration_entry(vmf.orig_pmd)); | 
|  | if (is_pmd_migration_entry(vmf.orig_pmd)) | 
|  | pmd_migration_entry_wait(mm, vmf.pmd); | 
|  | return 0; | 
|  | } | 
|  | if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { | 
|  | if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) | 
|  | return do_huge_pmd_numa_page(&vmf); | 
|  |  | 
|  | if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && | 
|  | !pmd_write(vmf.orig_pmd)) { | 
|  | ret = wp_huge_pmd(&vmf); | 
|  | if (!(ret & VM_FAULT_FALLBACK)) | 
|  | return ret; | 
|  | } else { | 
|  | huge_pmd_set_accessed(&vmf); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return handle_pte_fault(&vmf); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mm_account_fault - Do page fault accounting | 
|  | * | 
|  | * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting | 
|  | *        of perf event counters, but we'll still do the per-task accounting to | 
|  | *        the task who triggered this page fault. | 
|  | * @address: the faulted address. | 
|  | * @flags: the fault flags. | 
|  | * @ret: the fault retcode. | 
|  | * | 
|  | * This will take care of most of the page fault accounting.  Meanwhile, it | 
|  | * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter | 
|  | * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should | 
|  | * still be in per-arch page fault handlers at the entry of page fault. | 
|  | */ | 
|  | static inline void mm_account_fault(struct pt_regs *regs, | 
|  | unsigned long address, unsigned int flags, | 
|  | vm_fault_t ret) | 
|  | { | 
|  | bool major; | 
|  |  | 
|  | /* | 
|  | * We don't do accounting for some specific faults: | 
|  | * | 
|  | * - Unsuccessful faults (e.g. when the address wasn't valid).  That | 
|  | *   includes arch_vma_access_permitted() failing before reaching here. | 
|  | *   So this is not a "this many hardware page faults" counter.  We | 
|  | *   should use the hw profiling for that. | 
|  | * | 
|  | * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted | 
|  | *   once they're completed. | 
|  | */ | 
|  | if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * We define the fault as a major fault when the final successful fault | 
|  | * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't | 
|  | * handle it immediately previously). | 
|  | */ | 
|  | major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); | 
|  |  | 
|  | if (major) | 
|  | current->maj_flt++; | 
|  | else | 
|  | current->min_flt++; | 
|  |  | 
|  | /* | 
|  | * If the fault is done for GUP, regs will be NULL.  We only do the | 
|  | * accounting for the per thread fault counters who triggered the | 
|  | * fault, and we skip the perf event updates. | 
|  | */ | 
|  | if (!regs) | 
|  | return; | 
|  |  | 
|  | if (major) | 
|  | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); | 
|  | else | 
|  | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_LRU_GEN | 
|  | static void lru_gen_enter_fault(struct vm_area_struct *vma) | 
|  | { | 
|  | /* the LRU algorithm doesn't apply to sequential or random reads */ | 
|  | current->in_lru_fault = !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ)); | 
|  | } | 
|  |  | 
|  | static void lru_gen_exit_fault(void) | 
|  | { | 
|  | current->in_lru_fault = false; | 
|  | } | 
|  | #else | 
|  | static void lru_gen_enter_fault(struct vm_area_struct *vma) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void lru_gen_exit_fault(void) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_LRU_GEN */ | 
|  |  | 
|  | /* | 
|  | * By the time we get here, we already hold the mm semaphore | 
|  | * | 
|  | * The mmap_lock may have been released depending on flags and our | 
|  | * return value.  See filemap_fault() and __folio_lock_or_retry(). | 
|  | */ | 
|  | vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, | 
|  | unsigned int flags, struct pt_regs *regs) | 
|  | { | 
|  | vm_fault_t ret; | 
|  |  | 
|  | __set_current_state(TASK_RUNNING); | 
|  |  | 
|  | count_vm_event(PGFAULT); | 
|  | count_memcg_event_mm(vma->vm_mm, PGFAULT); | 
|  |  | 
|  | /* do counter updates before entering really critical section. */ | 
|  | check_sync_rss_stat(current); | 
|  |  | 
|  | if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, | 
|  | flags & FAULT_FLAG_INSTRUCTION, | 
|  | flags & FAULT_FLAG_REMOTE)) | 
|  | return VM_FAULT_SIGSEGV; | 
|  |  | 
|  | /* | 
|  | * Enable the memcg OOM handling for faults triggered in user | 
|  | * space.  Kernel faults are handled more gracefully. | 
|  | */ | 
|  | if (flags & FAULT_FLAG_USER) | 
|  | mem_cgroup_enter_user_fault(); | 
|  |  | 
|  | lru_gen_enter_fault(vma); | 
|  |  | 
|  | if (unlikely(is_vm_hugetlb_page(vma))) | 
|  | ret = hugetlb_fault(vma->vm_mm, vma, address, flags); | 
|  | else | 
|  | ret = __handle_mm_fault(vma, address, flags); | 
|  |  | 
|  | lru_gen_exit_fault(); | 
|  |  | 
|  | if (flags & FAULT_FLAG_USER) { | 
|  | mem_cgroup_exit_user_fault(); | 
|  | /* | 
|  | * The task may have entered a memcg OOM situation but | 
|  | * if the allocation error was handled gracefully (no | 
|  | * VM_FAULT_OOM), there is no need to kill anything. | 
|  | * Just clean up the OOM state peacefully. | 
|  | */ | 
|  | if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) | 
|  | mem_cgroup_oom_synchronize(false); | 
|  | } | 
|  |  | 
|  | mm_account_fault(regs, address, flags, ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(handle_mm_fault); | 
|  |  | 
|  | #ifdef CONFIG_LOCK_MM_AND_FIND_VMA | 
|  | #include <linux/extable.h> | 
|  |  | 
|  | static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) | 
|  | { | 
|  | /* Even if this succeeds, make it clear we *might* have slept */ | 
|  | if (likely(mmap_read_trylock(mm))) { | 
|  | might_sleep(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (regs && !user_mode(regs)) { | 
|  | unsigned long ip = instruction_pointer(regs); | 
|  | if (!search_exception_tables(ip)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return !mmap_read_lock_killable(mm); | 
|  | } | 
|  |  | 
|  | static inline bool mmap_upgrade_trylock(struct mm_struct *mm) | 
|  | { | 
|  | /* | 
|  | * We don't have this operation yet. | 
|  | * | 
|  | * It should be easy enough to do: it's basically a | 
|  | *    atomic_long_try_cmpxchg_acquire() | 
|  | * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but | 
|  | * it also needs the proper lockdep magic etc. | 
|  | */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) | 
|  | { | 
|  | mmap_read_unlock(mm); | 
|  | if (regs && !user_mode(regs)) { | 
|  | unsigned long ip = instruction_pointer(regs); | 
|  | if (!search_exception_tables(ip)) | 
|  | return false; | 
|  | } | 
|  | return !mmap_write_lock_killable(mm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper for page fault handling. | 
|  | * | 
|  | * This is kind of equivalend to "mmap_read_lock()" followed | 
|  | * by "find_extend_vma()", except it's a lot more careful about | 
|  | * the locking (and will drop the lock on failure). | 
|  | * | 
|  | * For example, if we have a kernel bug that causes a page | 
|  | * fault, we don't want to just use mmap_read_lock() to get | 
|  | * the mm lock, because that would deadlock if the bug were | 
|  | * to happen while we're holding the mm lock for writing. | 
|  | * | 
|  | * So this checks the exception tables on kernel faults in | 
|  | * order to only do this all for instructions that are actually | 
|  | * expected to fault. | 
|  | * | 
|  | * We can also actually take the mm lock for writing if we | 
|  | * need to extend the vma, which helps the VM layer a lot. | 
|  | */ | 
|  | struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, | 
|  | unsigned long addr, struct pt_regs *regs) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | if (!get_mmap_lock_carefully(mm, regs)) | 
|  | return NULL; | 
|  |  | 
|  | vma = find_vma(mm, addr); | 
|  | if (likely(vma && (vma->vm_start <= addr))) | 
|  | return vma; | 
|  |  | 
|  | /* | 
|  | * Well, dang. We might still be successful, but only | 
|  | * if we can extend a vma to do so. | 
|  | */ | 
|  | if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { | 
|  | mmap_read_unlock(mm); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We can try to upgrade the mmap lock atomically, | 
|  | * in which case we can continue to use the vma | 
|  | * we already looked up. | 
|  | * | 
|  | * Otherwise we'll have to drop the mmap lock and | 
|  | * re-take it, and also look up the vma again, | 
|  | * re-checking it. | 
|  | */ | 
|  | if (!mmap_upgrade_trylock(mm)) { | 
|  | if (!upgrade_mmap_lock_carefully(mm, regs)) | 
|  | return NULL; | 
|  |  | 
|  | vma = find_vma(mm, addr); | 
|  | if (!vma) | 
|  | goto fail; | 
|  | if (vma->vm_start <= addr) | 
|  | goto success; | 
|  | if (!(vma->vm_flags & VM_GROWSDOWN)) | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (expand_stack_locked(vma, addr)) | 
|  | goto fail; | 
|  |  | 
|  | success: | 
|  | mmap_write_downgrade(mm); | 
|  | return vma; | 
|  |  | 
|  | fail: | 
|  | mmap_write_unlock(mm); | 
|  | return NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef __PAGETABLE_P4D_FOLDED | 
|  | /* | 
|  | * Allocate p4d page table. | 
|  | * We've already handled the fast-path in-line. | 
|  | */ | 
|  | int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) | 
|  | { | 
|  | p4d_t *new = p4d_alloc_one(mm, address); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | if (pgd_present(*pgd)) {	/* Another has populated it */ | 
|  | p4d_free(mm, new); | 
|  | } else { | 
|  | smp_wmb(); /* See comment in pmd_install() */ | 
|  | pgd_populate(mm, pgd, new); | 
|  | } | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | return 0; | 
|  | } | 
|  | #endif /* __PAGETABLE_P4D_FOLDED */ | 
|  |  | 
|  | #ifndef __PAGETABLE_PUD_FOLDED | 
|  | /* | 
|  | * Allocate page upper directory. | 
|  | * We've already handled the fast-path in-line. | 
|  | */ | 
|  | int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) | 
|  | { | 
|  | pud_t *new = pud_alloc_one(mm, address); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | if (!p4d_present(*p4d)) { | 
|  | mm_inc_nr_puds(mm); | 
|  | smp_wmb(); /* See comment in pmd_install() */ | 
|  | p4d_populate(mm, p4d, new); | 
|  | } else	/* Another has populated it */ | 
|  | pud_free(mm, new); | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | return 0; | 
|  | } | 
|  | #endif /* __PAGETABLE_PUD_FOLDED */ | 
|  |  | 
|  | #ifndef __PAGETABLE_PMD_FOLDED | 
|  | /* | 
|  | * Allocate page middle directory. | 
|  | * We've already handled the fast-path in-line. | 
|  | */ | 
|  | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) | 
|  | { | 
|  | spinlock_t *ptl; | 
|  | pmd_t *new = pmd_alloc_one(mm, address); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ptl = pud_lock(mm, pud); | 
|  | if (!pud_present(*pud)) { | 
|  | mm_inc_nr_pmds(mm); | 
|  | smp_wmb(); /* See comment in pmd_install() */ | 
|  | pud_populate(mm, pud, new); | 
|  | } else {	/* Another has populated it */ | 
|  | pmd_free(mm, new); | 
|  | } | 
|  | spin_unlock(ptl); | 
|  | return 0; | 
|  | } | 
|  | #endif /* __PAGETABLE_PMD_FOLDED */ | 
|  |  | 
|  | /** | 
|  | * follow_pte - look up PTE at a user virtual address | 
|  | * @mm: the mm_struct of the target address space | 
|  | * @address: user virtual address | 
|  | * @ptepp: location to store found PTE | 
|  | * @ptlp: location to store the lock for the PTE | 
|  | * | 
|  | * On a successful return, the pointer to the PTE is stored in @ptepp; | 
|  | * the corresponding lock is taken and its location is stored in @ptlp. | 
|  | * The contents of the PTE are only stable until @ptlp is released; | 
|  | * any further use, if any, must be protected against invalidation | 
|  | * with MMU notifiers. | 
|  | * | 
|  | * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore | 
|  | * should be taken for read. | 
|  | * | 
|  | * KVM uses this function.  While it is arguably less bad than ``follow_pfn``, | 
|  | * it is not a good general-purpose API. | 
|  | * | 
|  | * Return: zero on success, -ve otherwise. | 
|  | */ | 
|  | int follow_pte(struct mm_struct *mm, unsigned long address, | 
|  | pte_t **ptepp, spinlock_t **ptlp) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | p4d_t *p4d; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *ptep; | 
|  |  | 
|  | pgd = pgd_offset(mm, address); | 
|  | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | 
|  | goto out; | 
|  |  | 
|  | p4d = p4d_offset(pgd, address); | 
|  | if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) | 
|  | goto out; | 
|  |  | 
|  | pud = pud_offset(p4d, address); | 
|  | if (pud_none(*pud) || unlikely(pud_bad(*pud))) | 
|  | goto out; | 
|  |  | 
|  | pmd = pmd_offset(pud, address); | 
|  | VM_BUG_ON(pmd_trans_huge(*pmd)); | 
|  |  | 
|  | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | 
|  | goto out; | 
|  |  | 
|  | ptep = pte_offset_map_lock(mm, pmd, address, ptlp); | 
|  | if (!pte_present(*ptep)) | 
|  | goto unlock; | 
|  | *ptepp = ptep; | 
|  | return 0; | 
|  | unlock: | 
|  | pte_unmap_unlock(ptep, *ptlp); | 
|  | out: | 
|  | return -EINVAL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(follow_pte); | 
|  |  | 
|  | /** | 
|  | * follow_pfn - look up PFN at a user virtual address | 
|  | * @vma: memory mapping | 
|  | * @address: user virtual address | 
|  | * @pfn: location to store found PFN | 
|  | * | 
|  | * Only IO mappings and raw PFN mappings are allowed. | 
|  | * | 
|  | * This function does not allow the caller to read the permissions | 
|  | * of the PTE.  Do not use it. | 
|  | * | 
|  | * Return: zero and the pfn at @pfn on success, -ve otherwise. | 
|  | */ | 
|  | int follow_pfn(struct vm_area_struct *vma, unsigned long address, | 
|  | unsigned long *pfn) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  | spinlock_t *ptl; | 
|  | pte_t *ptep; | 
|  |  | 
|  | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | 
|  | return ret; | 
|  |  | 
|  | ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); | 
|  | if (ret) | 
|  | return ret; | 
|  | *pfn = pte_pfn(*ptep); | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(follow_pfn); | 
|  |  | 
|  | #ifdef CONFIG_HAVE_IOREMAP_PROT | 
|  | int follow_phys(struct vm_area_struct *vma, | 
|  | unsigned long address, unsigned int flags, | 
|  | unsigned long *prot, resource_size_t *phys) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  | pte_t *ptep, pte; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | 
|  | goto out; | 
|  |  | 
|  | if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) | 
|  | goto out; | 
|  | pte = *ptep; | 
|  |  | 
|  | /* Never return PFNs of anon folios in COW mappings. */ | 
|  | if (vm_normal_folio(vma, address, pte)) | 
|  | goto unlock; | 
|  |  | 
|  | if ((flags & FOLL_WRITE) && !pte_write(pte)) | 
|  | goto unlock; | 
|  |  | 
|  | *prot = pgprot_val(pte_pgprot(pte)); | 
|  | *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; | 
|  |  | 
|  | ret = 0; | 
|  | unlock: | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * generic_access_phys - generic implementation for iomem mmap access | 
|  | * @vma: the vma to access | 
|  | * @addr: userspace address, not relative offset within @vma | 
|  | * @buf: buffer to read/write | 
|  | * @len: length of transfer | 
|  | * @write: set to FOLL_WRITE when writing, otherwise reading | 
|  | * | 
|  | * This is a generic implementation for &vm_operations_struct.access for an | 
|  | * iomem mapping. This callback is used by access_process_vm() when the @vma is | 
|  | * not page based. | 
|  | */ | 
|  | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, | 
|  | void *buf, int len, int write) | 
|  | { | 
|  | resource_size_t phys_addr; | 
|  | unsigned long prot = 0; | 
|  | void __iomem *maddr; | 
|  | pte_t *ptep, pte; | 
|  | spinlock_t *ptl; | 
|  | int offset = offset_in_page(addr); | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | 
|  | return -EINVAL; | 
|  |  | 
|  | retry: | 
|  | if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) | 
|  | return -EINVAL; | 
|  | pte = *ptep; | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  |  | 
|  | prot = pgprot_val(pte_pgprot(pte)); | 
|  | phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; | 
|  |  | 
|  | if ((write & FOLL_WRITE) && !pte_write(pte)) | 
|  | return -EINVAL; | 
|  |  | 
|  | maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); | 
|  | if (!maddr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) | 
|  | goto out_unmap; | 
|  |  | 
|  | if (!pte_same(pte, *ptep)) { | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | iounmap(maddr); | 
|  |  | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | if (write) | 
|  | memcpy_toio(maddr + offset, buf, len); | 
|  | else | 
|  | memcpy_fromio(buf, maddr + offset, len); | 
|  | ret = len; | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | out_unmap: | 
|  | iounmap(maddr); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(generic_access_phys); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Access another process' address space as given in mm. | 
|  | */ | 
|  | int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, | 
|  | int len, unsigned int gup_flags) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | void *old_buf = buf; | 
|  | int write = gup_flags & FOLL_WRITE; | 
|  |  | 
|  | if (mmap_read_lock_killable(mm)) | 
|  | return 0; | 
|  |  | 
|  | /* We might need to expand the stack to access it */ | 
|  | vma = vma_lookup(mm, addr); | 
|  | if (!vma) { | 
|  | vma = expand_stack(mm, addr); | 
|  | if (!vma) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* ignore errors, just check how much was successfully transferred */ | 
|  | while (len) { | 
|  | int bytes, ret, offset; | 
|  | void *maddr; | 
|  | struct page *page = NULL; | 
|  |  | 
|  | ret = get_user_pages_remote(mm, addr, 1, | 
|  | gup_flags, &page, &vma, NULL); | 
|  | if (ret <= 0) { | 
|  | #ifndef CONFIG_HAVE_IOREMAP_PROT | 
|  | break; | 
|  | #else | 
|  | /* | 
|  | * Check if this is a VM_IO | VM_PFNMAP VMA, which | 
|  | * we can access using slightly different code. | 
|  | */ | 
|  | vma = vma_lookup(mm, addr); | 
|  | if (!vma) | 
|  | break; | 
|  | if (vma->vm_ops && vma->vm_ops->access) | 
|  | ret = vma->vm_ops->access(vma, addr, buf, | 
|  | len, write); | 
|  | if (ret <= 0) | 
|  | break; | 
|  | bytes = ret; | 
|  | #endif | 
|  | } else { | 
|  | bytes = len; | 
|  | offset = addr & (PAGE_SIZE-1); | 
|  | if (bytes > PAGE_SIZE-offset) | 
|  | bytes = PAGE_SIZE-offset; | 
|  |  | 
|  | maddr = kmap(page); | 
|  | if (write) { | 
|  | copy_to_user_page(vma, page, addr, | 
|  | maddr + offset, buf, bytes); | 
|  | set_page_dirty_lock(page); | 
|  | } else { | 
|  | copy_from_user_page(vma, page, addr, | 
|  | buf, maddr + offset, bytes); | 
|  | } | 
|  | kunmap(page); | 
|  | put_page(page); | 
|  | } | 
|  | len -= bytes; | 
|  | buf += bytes; | 
|  | addr += bytes; | 
|  | } | 
|  | mmap_read_unlock(mm); | 
|  |  | 
|  | return buf - old_buf; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * access_remote_vm - access another process' address space | 
|  | * @mm:		the mm_struct of the target address space | 
|  | * @addr:	start address to access | 
|  | * @buf:	source or destination buffer | 
|  | * @len:	number of bytes to transfer | 
|  | * @gup_flags:	flags modifying lookup behaviour | 
|  | * | 
|  | * The caller must hold a reference on @mm. | 
|  | * | 
|  | * Return: number of bytes copied from source to destination. | 
|  | */ | 
|  | int access_remote_vm(struct mm_struct *mm, unsigned long addr, | 
|  | void *buf, int len, unsigned int gup_flags) | 
|  | { | 
|  | return __access_remote_vm(mm, addr, buf, len, gup_flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Access another process' address space. | 
|  | * Source/target buffer must be kernel space, | 
|  | * Do not walk the page table directly, use get_user_pages | 
|  | */ | 
|  | int access_process_vm(struct task_struct *tsk, unsigned long addr, | 
|  | void *buf, int len, unsigned int gup_flags) | 
|  | { | 
|  | struct mm_struct *mm; | 
|  | int ret; | 
|  |  | 
|  | mm = get_task_mm(tsk); | 
|  | if (!mm) | 
|  | return 0; | 
|  |  | 
|  | ret = __access_remote_vm(mm, addr, buf, len, gup_flags); | 
|  |  | 
|  | mmput(mm); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(access_process_vm); | 
|  |  | 
|  | /* | 
|  | * Print the name of a VMA. | 
|  | */ | 
|  | void print_vma_addr(char *prefix, unsigned long ip) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | /* | 
|  | * we might be running from an atomic context so we cannot sleep | 
|  | */ | 
|  | if (!mmap_read_trylock(mm)) | 
|  | return; | 
|  |  | 
|  | vma = find_vma(mm, ip); | 
|  | if (vma && vma->vm_file) { | 
|  | struct file *f = vma->vm_file; | 
|  | char *buf = (char *)__get_free_page(GFP_NOWAIT); | 
|  | if (buf) { | 
|  | char *p; | 
|  |  | 
|  | p = file_path(f, buf, PAGE_SIZE); | 
|  | if (IS_ERR(p)) | 
|  | p = "?"; | 
|  | printk("%s%s[%lx+%lx]", prefix, kbasename(p), | 
|  | vma->vm_start, | 
|  | vma->vm_end - vma->vm_start); | 
|  | free_page((unsigned long)buf); | 
|  | } | 
|  | } | 
|  | mmap_read_unlock(mm); | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) | 
|  | void __might_fault(const char *file, int line) | 
|  | { | 
|  | if (pagefault_disabled()) | 
|  | return; | 
|  | __might_sleep(file, line); | 
|  | #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) | 
|  | if (current->mm) | 
|  | might_lock_read(¤t->mm->mmap_lock); | 
|  | #endif | 
|  | } | 
|  | EXPORT_SYMBOL(__might_fault); | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) | 
|  | /* | 
|  | * Process all subpages of the specified huge page with the specified | 
|  | * operation.  The target subpage will be processed last to keep its | 
|  | * cache lines hot. | 
|  | */ | 
|  | static inline void process_huge_page( | 
|  | unsigned long addr_hint, unsigned int pages_per_huge_page, | 
|  | void (*process_subpage)(unsigned long addr, int idx, void *arg), | 
|  | void *arg) | 
|  | { | 
|  | int i, n, base, l; | 
|  | unsigned long addr = addr_hint & | 
|  | ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); | 
|  |  | 
|  | /* Process target subpage last to keep its cache lines hot */ | 
|  | might_sleep(); | 
|  | n = (addr_hint - addr) / PAGE_SIZE; | 
|  | if (2 * n <= pages_per_huge_page) { | 
|  | /* If target subpage in first half of huge page */ | 
|  | base = 0; | 
|  | l = n; | 
|  | /* Process subpages at the end of huge page */ | 
|  | for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { | 
|  | cond_resched(); | 
|  | process_subpage(addr + i * PAGE_SIZE, i, arg); | 
|  | } | 
|  | } else { | 
|  | /* If target subpage in second half of huge page */ | 
|  | base = pages_per_huge_page - 2 * (pages_per_huge_page - n); | 
|  | l = pages_per_huge_page - n; | 
|  | /* Process subpages at the begin of huge page */ | 
|  | for (i = 0; i < base; i++) { | 
|  | cond_resched(); | 
|  | process_subpage(addr + i * PAGE_SIZE, i, arg); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Process remaining subpages in left-right-left-right pattern | 
|  | * towards the target subpage | 
|  | */ | 
|  | for (i = 0; i < l; i++) { | 
|  | int left_idx = base + i; | 
|  | int right_idx = base + 2 * l - 1 - i; | 
|  |  | 
|  | cond_resched(); | 
|  | process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); | 
|  | cond_resched(); | 
|  | process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void clear_gigantic_page(struct page *page, | 
|  | unsigned long addr, | 
|  | unsigned int pages_per_huge_page) | 
|  | { | 
|  | int i; | 
|  | struct page *p; | 
|  |  | 
|  | might_sleep(); | 
|  | for (i = 0; i < pages_per_huge_page; i++) { | 
|  | p = nth_page(page, i); | 
|  | cond_resched(); | 
|  | clear_user_highpage(p, addr + i * PAGE_SIZE); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void clear_subpage(unsigned long addr, int idx, void *arg) | 
|  | { | 
|  | struct page *page = arg; | 
|  |  | 
|  | clear_user_highpage(page + idx, addr); | 
|  | } | 
|  |  | 
|  | void clear_huge_page(struct page *page, | 
|  | unsigned long addr_hint, unsigned int pages_per_huge_page) | 
|  | { | 
|  | unsigned long addr = addr_hint & | 
|  | ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); | 
|  |  | 
|  | if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { | 
|  | clear_gigantic_page(page, addr, pages_per_huge_page); | 
|  | return; | 
|  | } | 
|  |  | 
|  | process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); | 
|  | } | 
|  |  | 
|  | static void copy_user_gigantic_page(struct page *dst, struct page *src, | 
|  | unsigned long addr, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned int pages_per_huge_page) | 
|  | { | 
|  | int i; | 
|  | struct page *dst_base = dst; | 
|  | struct page *src_base = src; | 
|  |  | 
|  | for (i = 0; i < pages_per_huge_page; i++) { | 
|  | dst = nth_page(dst_base, i); | 
|  | src = nth_page(src_base, i); | 
|  |  | 
|  | cond_resched(); | 
|  | copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct copy_subpage_arg { | 
|  | struct page *dst; | 
|  | struct page *src; | 
|  | struct vm_area_struct *vma; | 
|  | }; | 
|  |  | 
|  | static void copy_subpage(unsigned long addr, int idx, void *arg) | 
|  | { | 
|  | struct copy_subpage_arg *copy_arg = arg; | 
|  |  | 
|  | copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, | 
|  | addr, copy_arg->vma); | 
|  | } | 
|  |  | 
|  | void copy_user_huge_page(struct page *dst, struct page *src, | 
|  | unsigned long addr_hint, struct vm_area_struct *vma, | 
|  | unsigned int pages_per_huge_page) | 
|  | { | 
|  | unsigned long addr = addr_hint & | 
|  | ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); | 
|  | struct copy_subpage_arg arg = { | 
|  | .dst = dst, | 
|  | .src = src, | 
|  | .vma = vma, | 
|  | }; | 
|  |  | 
|  | if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { | 
|  | copy_user_gigantic_page(dst, src, addr, vma, | 
|  | pages_per_huge_page); | 
|  | return; | 
|  | } | 
|  |  | 
|  | process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); | 
|  | } | 
|  |  | 
|  | long copy_huge_page_from_user(struct page *dst_page, | 
|  | const void __user *usr_src, | 
|  | unsigned int pages_per_huge_page, | 
|  | bool allow_pagefault) | 
|  | { | 
|  | void *page_kaddr; | 
|  | unsigned long i, rc = 0; | 
|  | unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; | 
|  | struct page *subpage; | 
|  |  | 
|  | for (i = 0; i < pages_per_huge_page; i++) { | 
|  | subpage = nth_page(dst_page, i); | 
|  | if (allow_pagefault) | 
|  | page_kaddr = kmap(subpage); | 
|  | else | 
|  | page_kaddr = kmap_atomic(subpage); | 
|  | rc = copy_from_user(page_kaddr, | 
|  | usr_src + i * PAGE_SIZE, PAGE_SIZE); | 
|  | if (allow_pagefault) | 
|  | kunmap(subpage); | 
|  | else | 
|  | kunmap_atomic(page_kaddr); | 
|  |  | 
|  | ret_val -= (PAGE_SIZE - rc); | 
|  | if (rc) | 
|  | break; | 
|  |  | 
|  | flush_dcache_page(subpage); | 
|  |  | 
|  | cond_resched(); | 
|  | } | 
|  | return ret_val; | 
|  | } | 
|  | #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ | 
|  |  | 
|  | #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS | 
|  |  | 
|  | static struct kmem_cache *page_ptl_cachep; | 
|  |  | 
|  | void __init ptlock_cache_init(void) | 
|  | { | 
|  | page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, | 
|  | SLAB_PANIC, NULL); | 
|  | } | 
|  |  | 
|  | bool ptlock_alloc(struct page *page) | 
|  | { | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); | 
|  | if (!ptl) | 
|  | return false; | 
|  | page->ptl = ptl; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void ptlock_free(struct page *page) | 
|  | { | 
|  | kmem_cache_free(page_ptl_cachep, page->ptl); | 
|  | } | 
|  | #endif |