|  | /* SPDX-License-Identifier: GPL-2.0 */ | 
|  | #ifndef _LINUX_SCHED_H | 
|  | #define _LINUX_SCHED_H | 
|  |  | 
|  | /* | 
|  | * Define 'struct task_struct' and provide the main scheduler | 
|  | * APIs (schedule(), wakeup variants, etc.) | 
|  | */ | 
|  |  | 
|  | #include <uapi/linux/sched.h> | 
|  |  | 
|  | #include <asm/current.h> | 
|  |  | 
|  | #include <linux/pid.h> | 
|  | #include <linux/sem.h> | 
|  | #include <linux/shm.h> | 
|  | #include <linux/kmsan_types.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/plist.h> | 
|  | #include <linux/hrtimer.h> | 
|  | #include <linux/irqflags.h> | 
|  | #include <linux/seccomp.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/refcount.h> | 
|  | #include <linux/resource.h> | 
|  | #include <linux/latencytop.h> | 
|  | #include <linux/sched/prio.h> | 
|  | #include <linux/sched/types.h> | 
|  | #include <linux/signal_types.h> | 
|  | #include <linux/syscall_user_dispatch.h> | 
|  | #include <linux/mm_types_task.h> | 
|  | #include <linux/task_io_accounting.h> | 
|  | #include <linux/posix-timers.h> | 
|  | #include <linux/rseq.h> | 
|  | #include <linux/seqlock.h> | 
|  | #include <linux/kcsan.h> | 
|  | #include <linux/rv.h> | 
|  | #include <asm/kmap_size.h> | 
|  |  | 
|  | /* task_struct member predeclarations (sorted alphabetically): */ | 
|  | struct backing_dev_info; | 
|  | struct bio_list; | 
|  | struct blk_plug; | 
|  | struct bpf_local_storage; | 
|  | struct bpf_run_ctx; | 
|  | struct capture_control; | 
|  | struct cfs_rq; | 
|  | struct fs_struct; | 
|  | struct futex_pi_state; | 
|  | struct io_context; | 
|  | struct io_uring_task; | 
|  | struct mempolicy; | 
|  | struct nameidata; | 
|  | struct nsproxy; | 
|  | struct perf_event_context; | 
|  | struct pid_namespace; | 
|  | struct pipe_inode_info; | 
|  | struct rcu_node; | 
|  | struct reclaim_state; | 
|  | struct robust_list_head; | 
|  | struct root_domain; | 
|  | struct rq; | 
|  | struct sched_attr; | 
|  | struct sched_param; | 
|  | struct seq_file; | 
|  | struct sighand_struct; | 
|  | struct signal_struct; | 
|  | struct task_delay_info; | 
|  | struct task_group; | 
|  |  | 
|  | /* | 
|  | * Task state bitmask. NOTE! These bits are also | 
|  | * encoded in fs/proc/array.c: get_task_state(). | 
|  | * | 
|  | * We have two separate sets of flags: task->state | 
|  | * is about runnability, while task->exit_state are | 
|  | * about the task exiting. Confusing, but this way | 
|  | * modifying one set can't modify the other one by | 
|  | * mistake. | 
|  | */ | 
|  |  | 
|  | /* Used in tsk->state: */ | 
|  | #define TASK_RUNNING			0x00000000 | 
|  | #define TASK_INTERRUPTIBLE		0x00000001 | 
|  | #define TASK_UNINTERRUPTIBLE		0x00000002 | 
|  | #define __TASK_STOPPED			0x00000004 | 
|  | #define __TASK_TRACED			0x00000008 | 
|  | /* Used in tsk->exit_state: */ | 
|  | #define EXIT_DEAD			0x00000010 | 
|  | #define EXIT_ZOMBIE			0x00000020 | 
|  | #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD) | 
|  | /* Used in tsk->state again: */ | 
|  | #define TASK_PARKED			0x00000040 | 
|  | #define TASK_DEAD			0x00000080 | 
|  | #define TASK_WAKEKILL			0x00000100 | 
|  | #define TASK_WAKING			0x00000200 | 
|  | #define TASK_NOLOAD			0x00000400 | 
|  | #define TASK_NEW			0x00000800 | 
|  | #define TASK_RTLOCK_WAIT		0x00001000 | 
|  | #define TASK_FREEZABLE			0x00002000 | 
|  | #define __TASK_FREEZABLE_UNSAFE	       (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP)) | 
|  | #define TASK_FROZEN			0x00008000 | 
|  | #define TASK_STATE_MAX			0x00010000 | 
|  |  | 
|  | #define TASK_ANY			(TASK_STATE_MAX-1) | 
|  |  | 
|  | /* | 
|  | * DO NOT ADD ANY NEW USERS ! | 
|  | */ | 
|  | #define TASK_FREEZABLE_UNSAFE		(TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE) | 
|  |  | 
|  | /* Convenience macros for the sake of set_current_state: */ | 
|  | #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) | 
|  | #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED) | 
|  | #define TASK_TRACED			__TASK_TRACED | 
|  |  | 
|  | #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD) | 
|  |  | 
|  | /* Convenience macros for the sake of wake_up(): */ | 
|  | #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) | 
|  |  | 
|  | /* get_task_state(): */ | 
|  | #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \ | 
|  | TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ | 
|  | __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ | 
|  | TASK_PARKED) | 
|  |  | 
|  | #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING) | 
|  |  | 
|  | #define task_is_traced(task)		((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0) | 
|  | #define task_is_stopped(task)		((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0) | 
|  | #define task_is_stopped_or_traced(task)	((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0) | 
|  |  | 
|  | /* | 
|  | * Special states are those that do not use the normal wait-loop pattern. See | 
|  | * the comment with set_special_state(). | 
|  | */ | 
|  | #define is_special_task_state(state)				\ | 
|  | ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD)) | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_ATOMIC_SLEEP | 
|  | # define debug_normal_state_change(state_value)				\ | 
|  | do {								\ | 
|  | WARN_ON_ONCE(is_special_task_state(state_value));	\ | 
|  | current->task_state_change = _THIS_IP_;			\ | 
|  | } while (0) | 
|  |  | 
|  | # define debug_special_state_change(state_value)			\ | 
|  | do {								\ | 
|  | WARN_ON_ONCE(!is_special_task_state(state_value));	\ | 
|  | current->task_state_change = _THIS_IP_;			\ | 
|  | } while (0) | 
|  |  | 
|  | # define debug_rtlock_wait_set_state()					\ | 
|  | do {								 \ | 
|  | current->saved_state_change = current->task_state_change;\ | 
|  | current->task_state_change = _THIS_IP_;			 \ | 
|  | } while (0) | 
|  |  | 
|  | # define debug_rtlock_wait_restore_state()				\ | 
|  | do {								 \ | 
|  | current->task_state_change = current->saved_state_change;\ | 
|  | } while (0) | 
|  |  | 
|  | #else | 
|  | # define debug_normal_state_change(cond)	do { } while (0) | 
|  | # define debug_special_state_change(cond)	do { } while (0) | 
|  | # define debug_rtlock_wait_set_state()		do { } while (0) | 
|  | # define debug_rtlock_wait_restore_state()	do { } while (0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * set_current_state() includes a barrier so that the write of current->state | 
|  | * is correctly serialised wrt the caller's subsequent test of whether to | 
|  | * actually sleep: | 
|  | * | 
|  | *   for (;;) { | 
|  | *	set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | *	if (CONDITION) | 
|  | *	   break; | 
|  | * | 
|  | *	schedule(); | 
|  | *   } | 
|  | *   __set_current_state(TASK_RUNNING); | 
|  | * | 
|  | * If the caller does not need such serialisation (because, for instance, the | 
|  | * CONDITION test and condition change and wakeup are under the same lock) then | 
|  | * use __set_current_state(). | 
|  | * | 
|  | * The above is typically ordered against the wakeup, which does: | 
|  | * | 
|  | *   CONDITION = 1; | 
|  | *   wake_up_state(p, TASK_UNINTERRUPTIBLE); | 
|  | * | 
|  | * where wake_up_state()/try_to_wake_up() executes a full memory barrier before | 
|  | * accessing p->state. | 
|  | * | 
|  | * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, | 
|  | * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a | 
|  | * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). | 
|  | * | 
|  | * However, with slightly different timing the wakeup TASK_RUNNING store can | 
|  | * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not | 
|  | * a problem either because that will result in one extra go around the loop | 
|  | * and our @cond test will save the day. | 
|  | * | 
|  | * Also see the comments of try_to_wake_up(). | 
|  | */ | 
|  | #define __set_current_state(state_value)				\ | 
|  | do {								\ | 
|  | debug_normal_state_change((state_value));		\ | 
|  | WRITE_ONCE(current->__state, (state_value));		\ | 
|  | } while (0) | 
|  |  | 
|  | #define set_current_state(state_value)					\ | 
|  | do {								\ | 
|  | debug_normal_state_change((state_value));		\ | 
|  | smp_store_mb(current->__state, (state_value));		\ | 
|  | } while (0) | 
|  |  | 
|  | /* | 
|  | * set_special_state() should be used for those states when the blocking task | 
|  | * can not use the regular condition based wait-loop. In that case we must | 
|  | * serialize against wakeups such that any possible in-flight TASK_RUNNING | 
|  | * stores will not collide with our state change. | 
|  | */ | 
|  | #define set_special_state(state_value)					\ | 
|  | do {								\ | 
|  | unsigned long flags; /* may shadow */			\ | 
|  | \ | 
|  | raw_spin_lock_irqsave(¤t->pi_lock, flags);	\ | 
|  | debug_special_state_change((state_value));		\ | 
|  | WRITE_ONCE(current->__state, (state_value));		\ | 
|  | raw_spin_unlock_irqrestore(¤t->pi_lock, flags);	\ | 
|  | } while (0) | 
|  |  | 
|  | /* | 
|  | * PREEMPT_RT specific variants for "sleeping" spin/rwlocks | 
|  | * | 
|  | * RT's spin/rwlock substitutions are state preserving. The state of the | 
|  | * task when blocking on the lock is saved in task_struct::saved_state and | 
|  | * restored after the lock has been acquired.  These operations are | 
|  | * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT | 
|  | * lock related wakeups while the task is blocked on the lock are | 
|  | * redirected to operate on task_struct::saved_state to ensure that these | 
|  | * are not dropped. On restore task_struct::saved_state is set to | 
|  | * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail. | 
|  | * | 
|  | * The lock operation looks like this: | 
|  | * | 
|  | *	current_save_and_set_rtlock_wait_state(); | 
|  | *	for (;;) { | 
|  | *		if (try_lock()) | 
|  | *			break; | 
|  | *		raw_spin_unlock_irq(&lock->wait_lock); | 
|  | *		schedule_rtlock(); | 
|  | *		raw_spin_lock_irq(&lock->wait_lock); | 
|  | *		set_current_state(TASK_RTLOCK_WAIT); | 
|  | *	} | 
|  | *	current_restore_rtlock_saved_state(); | 
|  | */ | 
|  | #define current_save_and_set_rtlock_wait_state()			\ | 
|  | do {								\ | 
|  | lockdep_assert_irqs_disabled();				\ | 
|  | raw_spin_lock(¤t->pi_lock);			\ | 
|  | current->saved_state = current->__state;		\ | 
|  | debug_rtlock_wait_set_state();				\ | 
|  | WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\ | 
|  | raw_spin_unlock(¤t->pi_lock);			\ | 
|  | } while (0); | 
|  |  | 
|  | #define current_restore_rtlock_saved_state()				\ | 
|  | do {								\ | 
|  | lockdep_assert_irqs_disabled();				\ | 
|  | raw_spin_lock(¤t->pi_lock);			\ | 
|  | debug_rtlock_wait_restore_state();			\ | 
|  | WRITE_ONCE(current->__state, current->saved_state);	\ | 
|  | current->saved_state = TASK_RUNNING;			\ | 
|  | raw_spin_unlock(¤t->pi_lock);			\ | 
|  | } while (0); | 
|  |  | 
|  | #define get_current_state()	READ_ONCE(current->__state) | 
|  |  | 
|  | /* | 
|  | * Define the task command name length as enum, then it can be visible to | 
|  | * BPF programs. | 
|  | */ | 
|  | enum { | 
|  | TASK_COMM_LEN = 16, | 
|  | }; | 
|  |  | 
|  | extern void scheduler_tick(void); | 
|  |  | 
|  | #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX | 
|  |  | 
|  | extern long schedule_timeout(long timeout); | 
|  | extern long schedule_timeout_interruptible(long timeout); | 
|  | extern long schedule_timeout_killable(long timeout); | 
|  | extern long schedule_timeout_uninterruptible(long timeout); | 
|  | extern long schedule_timeout_idle(long timeout); | 
|  | asmlinkage void schedule(void); | 
|  | extern void schedule_preempt_disabled(void); | 
|  | asmlinkage void preempt_schedule_irq(void); | 
|  | #ifdef CONFIG_PREEMPT_RT | 
|  | extern void schedule_rtlock(void); | 
|  | #endif | 
|  |  | 
|  | extern int __must_check io_schedule_prepare(void); | 
|  | extern void io_schedule_finish(int token); | 
|  | extern long io_schedule_timeout(long timeout); | 
|  | extern void io_schedule(void); | 
|  |  | 
|  | /** | 
|  | * struct prev_cputime - snapshot of system and user cputime | 
|  | * @utime: time spent in user mode | 
|  | * @stime: time spent in system mode | 
|  | * @lock: protects the above two fields | 
|  | * | 
|  | * Stores previous user/system time values such that we can guarantee | 
|  | * monotonicity. | 
|  | */ | 
|  | struct prev_cputime { | 
|  | #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE | 
|  | u64				utime; | 
|  | u64				stime; | 
|  | raw_spinlock_t			lock; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | enum vtime_state { | 
|  | /* Task is sleeping or running in a CPU with VTIME inactive: */ | 
|  | VTIME_INACTIVE = 0, | 
|  | /* Task is idle */ | 
|  | VTIME_IDLE, | 
|  | /* Task runs in kernelspace in a CPU with VTIME active: */ | 
|  | VTIME_SYS, | 
|  | /* Task runs in userspace in a CPU with VTIME active: */ | 
|  | VTIME_USER, | 
|  | /* Task runs as guests in a CPU with VTIME active: */ | 
|  | VTIME_GUEST, | 
|  | }; | 
|  |  | 
|  | struct vtime { | 
|  | seqcount_t		seqcount; | 
|  | unsigned long long	starttime; | 
|  | enum vtime_state	state; | 
|  | unsigned int		cpu; | 
|  | u64			utime; | 
|  | u64			stime; | 
|  | u64			gtime; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Utilization clamp constraints. | 
|  | * @UCLAMP_MIN:	Minimum utilization | 
|  | * @UCLAMP_MAX:	Maximum utilization | 
|  | * @UCLAMP_CNT:	Utilization clamp constraints count | 
|  | */ | 
|  | enum uclamp_id { | 
|  | UCLAMP_MIN = 0, | 
|  | UCLAMP_MAX, | 
|  | UCLAMP_CNT | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | extern struct root_domain def_root_domain; | 
|  | extern struct mutex sched_domains_mutex; | 
|  | #endif | 
|  |  | 
|  | struct sched_info { | 
|  | #ifdef CONFIG_SCHED_INFO | 
|  | /* Cumulative counters: */ | 
|  |  | 
|  | /* # of times we have run on this CPU: */ | 
|  | unsigned long			pcount; | 
|  |  | 
|  | /* Time spent waiting on a runqueue: */ | 
|  | unsigned long long		run_delay; | 
|  |  | 
|  | /* Timestamps: */ | 
|  |  | 
|  | /* When did we last run on a CPU? */ | 
|  | unsigned long long		last_arrival; | 
|  |  | 
|  | /* When were we last queued to run? */ | 
|  | unsigned long long		last_queued; | 
|  |  | 
|  | #endif /* CONFIG_SCHED_INFO */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Integer metrics need fixed point arithmetic, e.g., sched/fair | 
|  | * has a few: load, load_avg, util_avg, freq, and capacity. | 
|  | * | 
|  | * We define a basic fixed point arithmetic range, and then formalize | 
|  | * all these metrics based on that basic range. | 
|  | */ | 
|  | # define SCHED_FIXEDPOINT_SHIFT		10 | 
|  | # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT) | 
|  |  | 
|  | /* Increase resolution of cpu_capacity calculations */ | 
|  | # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT | 
|  | # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT) | 
|  |  | 
|  | struct load_weight { | 
|  | unsigned long			weight; | 
|  | u32				inv_weight; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct util_est - Estimation utilization of FAIR tasks | 
|  | * @enqueued: instantaneous estimated utilization of a task/cpu | 
|  | * @ewma:     the Exponential Weighted Moving Average (EWMA) | 
|  | *            utilization of a task | 
|  | * | 
|  | * Support data structure to track an Exponential Weighted Moving Average | 
|  | * (EWMA) of a FAIR task's utilization. New samples are added to the moving | 
|  | * average each time a task completes an activation. Sample's weight is chosen | 
|  | * so that the EWMA will be relatively insensitive to transient changes to the | 
|  | * task's workload. | 
|  | * | 
|  | * The enqueued attribute has a slightly different meaning for tasks and cpus: | 
|  | * - task:   the task's util_avg at last task dequeue time | 
|  | * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU | 
|  | * Thus, the util_est.enqueued of a task represents the contribution on the | 
|  | * estimated utilization of the CPU where that task is currently enqueued. | 
|  | * | 
|  | * Only for tasks we track a moving average of the past instantaneous | 
|  | * estimated utilization. This allows to absorb sporadic drops in utilization | 
|  | * of an otherwise almost periodic task. | 
|  | * | 
|  | * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg | 
|  | * updates. When a task is dequeued, its util_est should not be updated if its | 
|  | * util_avg has not been updated in the meantime. | 
|  | * This information is mapped into the MSB bit of util_est.enqueued at dequeue | 
|  | * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg | 
|  | * for a task) it is safe to use MSB. | 
|  | */ | 
|  | struct util_est { | 
|  | unsigned int			enqueued; | 
|  | unsigned int			ewma; | 
|  | #define UTIL_EST_WEIGHT_SHIFT		2 | 
|  | #define UTIL_AVG_UNCHANGED		0x80000000 | 
|  | } __attribute__((__aligned__(sizeof(u64)))); | 
|  |  | 
|  | /* | 
|  | * The load/runnable/util_avg accumulates an infinite geometric series | 
|  | * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c). | 
|  | * | 
|  | * [load_avg definition] | 
|  | * | 
|  | *   load_avg = runnable% * scale_load_down(load) | 
|  | * | 
|  | * [runnable_avg definition] | 
|  | * | 
|  | *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE | 
|  | * | 
|  | * [util_avg definition] | 
|  | * | 
|  | *   util_avg = running% * SCHED_CAPACITY_SCALE | 
|  | * | 
|  | * where runnable% is the time ratio that a sched_entity is runnable and | 
|  | * running% the time ratio that a sched_entity is running. | 
|  | * | 
|  | * For cfs_rq, they are the aggregated values of all runnable and blocked | 
|  | * sched_entities. | 
|  | * | 
|  | * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU | 
|  | * capacity scaling. The scaling is done through the rq_clock_pelt that is used | 
|  | * for computing those signals (see update_rq_clock_pelt()) | 
|  | * | 
|  | * N.B., the above ratios (runnable% and running%) themselves are in the | 
|  | * range of [0, 1]. To do fixed point arithmetics, we therefore scale them | 
|  | * to as large a range as necessary. This is for example reflected by | 
|  | * util_avg's SCHED_CAPACITY_SCALE. | 
|  | * | 
|  | * [Overflow issue] | 
|  | * | 
|  | * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities | 
|  | * with the highest load (=88761), always runnable on a single cfs_rq, | 
|  | * and should not overflow as the number already hits PID_MAX_LIMIT. | 
|  | * | 
|  | * For all other cases (including 32-bit kernels), struct load_weight's | 
|  | * weight will overflow first before we do, because: | 
|  | * | 
|  | *    Max(load_avg) <= Max(load.weight) | 
|  | * | 
|  | * Then it is the load_weight's responsibility to consider overflow | 
|  | * issues. | 
|  | */ | 
|  | struct sched_avg { | 
|  | u64				last_update_time; | 
|  | u64				load_sum; | 
|  | u64				runnable_sum; | 
|  | u32				util_sum; | 
|  | u32				period_contrib; | 
|  | unsigned long			load_avg; | 
|  | unsigned long			runnable_avg; | 
|  | unsigned long			util_avg; | 
|  | struct util_est			util_est; | 
|  | } ____cacheline_aligned; | 
|  |  | 
|  | struct sched_statistics { | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | u64				wait_start; | 
|  | u64				wait_max; | 
|  | u64				wait_count; | 
|  | u64				wait_sum; | 
|  | u64				iowait_count; | 
|  | u64				iowait_sum; | 
|  |  | 
|  | u64				sleep_start; | 
|  | u64				sleep_max; | 
|  | s64				sum_sleep_runtime; | 
|  |  | 
|  | u64				block_start; | 
|  | u64				block_max; | 
|  | s64				sum_block_runtime; | 
|  |  | 
|  | u64				exec_max; | 
|  | u64				slice_max; | 
|  |  | 
|  | u64				nr_migrations_cold; | 
|  | u64				nr_failed_migrations_affine; | 
|  | u64				nr_failed_migrations_running; | 
|  | u64				nr_failed_migrations_hot; | 
|  | u64				nr_forced_migrations; | 
|  |  | 
|  | u64				nr_wakeups; | 
|  | u64				nr_wakeups_sync; | 
|  | u64				nr_wakeups_migrate; | 
|  | u64				nr_wakeups_local; | 
|  | u64				nr_wakeups_remote; | 
|  | u64				nr_wakeups_affine; | 
|  | u64				nr_wakeups_affine_attempts; | 
|  | u64				nr_wakeups_passive; | 
|  | u64				nr_wakeups_idle; | 
|  |  | 
|  | #ifdef CONFIG_SCHED_CORE | 
|  | u64				core_forceidle_sum; | 
|  | #endif | 
|  | #endif /* CONFIG_SCHEDSTATS */ | 
|  | } ____cacheline_aligned; | 
|  |  | 
|  | struct sched_entity { | 
|  | /* For load-balancing: */ | 
|  | struct load_weight		load; | 
|  | struct rb_node			run_node; | 
|  | struct list_head		group_node; | 
|  | unsigned int			on_rq; | 
|  |  | 
|  | u64				exec_start; | 
|  | u64				sum_exec_runtime; | 
|  | u64				vruntime; | 
|  | u64				prev_sum_exec_runtime; | 
|  |  | 
|  | u64				nr_migrations; | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | int				depth; | 
|  | struct sched_entity		*parent; | 
|  | /* rq on which this entity is (to be) queued: */ | 
|  | struct cfs_rq			*cfs_rq; | 
|  | /* rq "owned" by this entity/group: */ | 
|  | struct cfs_rq			*my_q; | 
|  | /* cached value of my_q->h_nr_running */ | 
|  | unsigned long			runnable_weight; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * Per entity load average tracking. | 
|  | * | 
|  | * Put into separate cache line so it does not | 
|  | * collide with read-mostly values above. | 
|  | */ | 
|  | struct sched_avg		avg; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | struct sched_rt_entity { | 
|  | struct list_head		run_list; | 
|  | unsigned long			timeout; | 
|  | unsigned long			watchdog_stamp; | 
|  | unsigned int			time_slice; | 
|  | unsigned short			on_rq; | 
|  | unsigned short			on_list; | 
|  |  | 
|  | struct sched_rt_entity		*back; | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | struct sched_rt_entity		*parent; | 
|  | /* rq on which this entity is (to be) queued: */ | 
|  | struct rt_rq			*rt_rq; | 
|  | /* rq "owned" by this entity/group: */ | 
|  | struct rt_rq			*my_q; | 
|  | #endif | 
|  | } __randomize_layout; | 
|  |  | 
|  | struct sched_dl_entity { | 
|  | struct rb_node			rb_node; | 
|  |  | 
|  | /* | 
|  | * Original scheduling parameters. Copied here from sched_attr | 
|  | * during sched_setattr(), they will remain the same until | 
|  | * the next sched_setattr(). | 
|  | */ | 
|  | u64				dl_runtime;	/* Maximum runtime for each instance	*/ | 
|  | u64				dl_deadline;	/* Relative deadline of each instance	*/ | 
|  | u64				dl_period;	/* Separation of two instances (period) */ | 
|  | u64				dl_bw;		/* dl_runtime / dl_period		*/ | 
|  | u64				dl_density;	/* dl_runtime / dl_deadline		*/ | 
|  |  | 
|  | /* | 
|  | * Actual scheduling parameters. Initialized with the values above, | 
|  | * they are continuously updated during task execution. Note that | 
|  | * the remaining runtime could be < 0 in case we are in overrun. | 
|  | */ | 
|  | s64				runtime;	/* Remaining runtime for this instance	*/ | 
|  | u64				deadline;	/* Absolute deadline for this instance	*/ | 
|  | unsigned int			flags;		/* Specifying the scheduler behaviour	*/ | 
|  |  | 
|  | /* | 
|  | * Some bool flags: | 
|  | * | 
|  | * @dl_throttled tells if we exhausted the runtime. If so, the | 
|  | * task has to wait for a replenishment to be performed at the | 
|  | * next firing of dl_timer. | 
|  | * | 
|  | * @dl_yielded tells if task gave up the CPU before consuming | 
|  | * all its available runtime during the last job. | 
|  | * | 
|  | * @dl_non_contending tells if the task is inactive while still | 
|  | * contributing to the active utilization. In other words, it | 
|  | * indicates if the inactive timer has been armed and its handler | 
|  | * has not been executed yet. This flag is useful to avoid race | 
|  | * conditions between the inactive timer handler and the wakeup | 
|  | * code. | 
|  | * | 
|  | * @dl_overrun tells if the task asked to be informed about runtime | 
|  | * overruns. | 
|  | */ | 
|  | unsigned int			dl_throttled      : 1; | 
|  | unsigned int			dl_yielded        : 1; | 
|  | unsigned int			dl_non_contending : 1; | 
|  | unsigned int			dl_overrun	  : 1; | 
|  |  | 
|  | /* | 
|  | * Bandwidth enforcement timer. Each -deadline task has its | 
|  | * own bandwidth to be enforced, thus we need one timer per task. | 
|  | */ | 
|  | struct hrtimer			dl_timer; | 
|  |  | 
|  | /* | 
|  | * Inactive timer, responsible for decreasing the active utilization | 
|  | * at the "0-lag time". When a -deadline task blocks, it contributes | 
|  | * to GRUB's active utilization until the "0-lag time", hence a | 
|  | * timer is needed to decrease the active utilization at the correct | 
|  | * time. | 
|  | */ | 
|  | struct hrtimer inactive_timer; | 
|  |  | 
|  | #ifdef CONFIG_RT_MUTEXES | 
|  | /* | 
|  | * Priority Inheritance. When a DEADLINE scheduling entity is boosted | 
|  | * pi_se points to the donor, otherwise points to the dl_se it belongs | 
|  | * to (the original one/itself). | 
|  | */ | 
|  | struct sched_dl_entity *pi_se; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_UCLAMP_TASK | 
|  | /* Number of utilization clamp buckets (shorter alias) */ | 
|  | #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT | 
|  |  | 
|  | /* | 
|  | * Utilization clamp for a scheduling entity | 
|  | * @value:		clamp value "assigned" to a se | 
|  | * @bucket_id:		bucket index corresponding to the "assigned" value | 
|  | * @active:		the se is currently refcounted in a rq's bucket | 
|  | * @user_defined:	the requested clamp value comes from user-space | 
|  | * | 
|  | * The bucket_id is the index of the clamp bucket matching the clamp value | 
|  | * which is pre-computed and stored to avoid expensive integer divisions from | 
|  | * the fast path. | 
|  | * | 
|  | * The active bit is set whenever a task has got an "effective" value assigned, | 
|  | * which can be different from the clamp value "requested" from user-space. | 
|  | * This allows to know a task is refcounted in the rq's bucket corresponding | 
|  | * to the "effective" bucket_id. | 
|  | * | 
|  | * The user_defined bit is set whenever a task has got a task-specific clamp | 
|  | * value requested from userspace, i.e. the system defaults apply to this task | 
|  | * just as a restriction. This allows to relax default clamps when a less | 
|  | * restrictive task-specific value has been requested, thus allowing to | 
|  | * implement a "nice" semantic. For example, a task running with a 20% | 
|  | * default boost can still drop its own boosting to 0%. | 
|  | */ | 
|  | struct uclamp_se { | 
|  | unsigned int value		: bits_per(SCHED_CAPACITY_SCALE); | 
|  | unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS); | 
|  | unsigned int active		: 1; | 
|  | unsigned int user_defined	: 1; | 
|  | }; | 
|  | #endif /* CONFIG_UCLAMP_TASK */ | 
|  |  | 
|  | union rcu_special { | 
|  | struct { | 
|  | u8			blocked; | 
|  | u8			need_qs; | 
|  | u8			exp_hint; /* Hint for performance. */ | 
|  | u8			need_mb; /* Readers need smp_mb(). */ | 
|  | } b; /* Bits. */ | 
|  | u32 s; /* Set of bits. */ | 
|  | }; | 
|  |  | 
|  | enum perf_event_task_context { | 
|  | perf_invalid_context = -1, | 
|  | perf_hw_context = 0, | 
|  | perf_sw_context, | 
|  | perf_nr_task_contexts, | 
|  | }; | 
|  |  | 
|  | struct wake_q_node { | 
|  | struct wake_q_node *next; | 
|  | }; | 
|  |  | 
|  | struct kmap_ctrl { | 
|  | #ifdef CONFIG_KMAP_LOCAL | 
|  | int				idx; | 
|  | pte_t				pteval[KM_MAX_IDX]; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | struct task_struct { | 
|  | #ifdef CONFIG_THREAD_INFO_IN_TASK | 
|  | /* | 
|  | * For reasons of header soup (see current_thread_info()), this | 
|  | * must be the first element of task_struct. | 
|  | */ | 
|  | struct thread_info		thread_info; | 
|  | #endif | 
|  | unsigned int			__state; | 
|  |  | 
|  | #ifdef CONFIG_PREEMPT_RT | 
|  | /* saved state for "spinlock sleepers" */ | 
|  | unsigned int			saved_state; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This begins the randomizable portion of task_struct. Only | 
|  | * scheduling-critical items should be added above here. | 
|  | */ | 
|  | randomized_struct_fields_start | 
|  |  | 
|  | void				*stack; | 
|  | refcount_t			usage; | 
|  | /* Per task flags (PF_*), defined further below: */ | 
|  | unsigned int			flags; | 
|  | unsigned int			ptrace; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | int				on_cpu; | 
|  | struct __call_single_node	wake_entry; | 
|  | unsigned int			wakee_flips; | 
|  | unsigned long			wakee_flip_decay_ts; | 
|  | struct task_struct		*last_wakee; | 
|  |  | 
|  | /* | 
|  | * recent_used_cpu is initially set as the last CPU used by a task | 
|  | * that wakes affine another task. Waker/wakee relationships can | 
|  | * push tasks around a CPU where each wakeup moves to the next one. | 
|  | * Tracking a recently used CPU allows a quick search for a recently | 
|  | * used CPU that may be idle. | 
|  | */ | 
|  | int				recent_used_cpu; | 
|  | int				wake_cpu; | 
|  | #endif | 
|  | int				on_rq; | 
|  |  | 
|  | int				prio; | 
|  | int				static_prio; | 
|  | int				normal_prio; | 
|  | unsigned int			rt_priority; | 
|  |  | 
|  | struct sched_entity		se; | 
|  | struct sched_rt_entity		rt; | 
|  | struct sched_dl_entity		dl; | 
|  | const struct sched_class	*sched_class; | 
|  |  | 
|  | #ifdef CONFIG_SCHED_CORE | 
|  | struct rb_node			core_node; | 
|  | unsigned long			core_cookie; | 
|  | unsigned int			core_occupation; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_SCHED | 
|  | struct task_group		*sched_task_group; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_UCLAMP_TASK | 
|  | /* | 
|  | * Clamp values requested for a scheduling entity. | 
|  | * Must be updated with task_rq_lock() held. | 
|  | */ | 
|  | struct uclamp_se		uclamp_req[UCLAMP_CNT]; | 
|  | /* | 
|  | * Effective clamp values used for a scheduling entity. | 
|  | * Must be updated with task_rq_lock() held. | 
|  | */ | 
|  | struct uclamp_se		uclamp[UCLAMP_CNT]; | 
|  | #endif | 
|  |  | 
|  | struct sched_statistics         stats; | 
|  |  | 
|  | #ifdef CONFIG_PREEMPT_NOTIFIERS | 
|  | /* List of struct preempt_notifier: */ | 
|  | struct hlist_head		preempt_notifiers; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_BLK_DEV_IO_TRACE | 
|  | unsigned int			btrace_seq; | 
|  | #endif | 
|  |  | 
|  | unsigned int			policy; | 
|  | int				nr_cpus_allowed; | 
|  | const cpumask_t			*cpus_ptr; | 
|  | cpumask_t			*user_cpus_ptr; | 
|  | cpumask_t			cpus_mask; | 
|  | void				*migration_pending; | 
|  | #ifdef CONFIG_SMP | 
|  | unsigned short			migration_disabled; | 
|  | #endif | 
|  | unsigned short			migration_flags; | 
|  |  | 
|  | #ifdef CONFIG_PREEMPT_RCU | 
|  | int				rcu_read_lock_nesting; | 
|  | union rcu_special		rcu_read_unlock_special; | 
|  | struct list_head		rcu_node_entry; | 
|  | struct rcu_node			*rcu_blocked_node; | 
|  | #endif /* #ifdef CONFIG_PREEMPT_RCU */ | 
|  |  | 
|  | #ifdef CONFIG_TASKS_RCU | 
|  | unsigned long			rcu_tasks_nvcsw; | 
|  | u8				rcu_tasks_holdout; | 
|  | u8				rcu_tasks_idx; | 
|  | int				rcu_tasks_idle_cpu; | 
|  | struct list_head		rcu_tasks_holdout_list; | 
|  | #endif /* #ifdef CONFIG_TASKS_RCU */ | 
|  |  | 
|  | #ifdef CONFIG_TASKS_TRACE_RCU | 
|  | int				trc_reader_nesting; | 
|  | int				trc_ipi_to_cpu; | 
|  | union rcu_special		trc_reader_special; | 
|  | struct list_head		trc_holdout_list; | 
|  | struct list_head		trc_blkd_node; | 
|  | int				trc_blkd_cpu; | 
|  | #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ | 
|  |  | 
|  | struct sched_info		sched_info; | 
|  |  | 
|  | struct list_head		tasks; | 
|  | #ifdef CONFIG_SMP | 
|  | struct plist_node		pushable_tasks; | 
|  | struct rb_node			pushable_dl_tasks; | 
|  | #endif | 
|  |  | 
|  | struct mm_struct		*mm; | 
|  | struct mm_struct		*active_mm; | 
|  |  | 
|  | #ifdef SPLIT_RSS_COUNTING | 
|  | struct task_rss_stat		rss_stat; | 
|  | #endif | 
|  | int				exit_state; | 
|  | int				exit_code; | 
|  | int				exit_signal; | 
|  | /* The signal sent when the parent dies: */ | 
|  | int				pdeath_signal; | 
|  | /* JOBCTL_*, siglock protected: */ | 
|  | unsigned long			jobctl; | 
|  |  | 
|  | /* Used for emulating ABI behavior of previous Linux versions: */ | 
|  | unsigned int			personality; | 
|  |  | 
|  | /* Scheduler bits, serialized by scheduler locks: */ | 
|  | unsigned			sched_reset_on_fork:1; | 
|  | unsigned			sched_contributes_to_load:1; | 
|  | unsigned			sched_migrated:1; | 
|  | #ifdef CONFIG_PSI | 
|  | unsigned			sched_psi_wake_requeue:1; | 
|  | #endif | 
|  |  | 
|  | /* Force alignment to the next boundary: */ | 
|  | unsigned			:0; | 
|  |  | 
|  | /* Unserialized, strictly 'current' */ | 
|  |  | 
|  | /* | 
|  | * This field must not be in the scheduler word above due to wakelist | 
|  | * queueing no longer being serialized by p->on_cpu. However: | 
|  | * | 
|  | * p->XXX = X;			ttwu() | 
|  | * schedule()			  if (p->on_rq && ..) // false | 
|  | *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true | 
|  | *   deactivate_task()		      ttwu_queue_wakelist()) | 
|  | *     p->on_rq = 0;			p->sched_remote_wakeup = Y; | 
|  | * | 
|  | * guarantees all stores of 'current' are visible before | 
|  | * ->sched_remote_wakeup gets used, so it can be in this word. | 
|  | */ | 
|  | unsigned			sched_remote_wakeup:1; | 
|  |  | 
|  | /* Bit to tell LSMs we're in execve(): */ | 
|  | unsigned			in_execve:1; | 
|  | unsigned			in_iowait:1; | 
|  | #ifndef TIF_RESTORE_SIGMASK | 
|  | unsigned			restore_sigmask:1; | 
|  | #endif | 
|  | #ifdef CONFIG_MEMCG | 
|  | unsigned			in_user_fault:1; | 
|  | #endif | 
|  | #ifdef CONFIG_LRU_GEN | 
|  | /* whether the LRU algorithm may apply to this access */ | 
|  | unsigned			in_lru_fault:1; | 
|  | #endif | 
|  | #ifdef CONFIG_COMPAT_BRK | 
|  | unsigned			brk_randomized:1; | 
|  | #endif | 
|  | #ifdef CONFIG_CGROUPS | 
|  | /* disallow userland-initiated cgroup migration */ | 
|  | unsigned			no_cgroup_migration:1; | 
|  | /* task is frozen/stopped (used by the cgroup freezer) */ | 
|  | unsigned			frozen:1; | 
|  | #endif | 
|  | #ifdef CONFIG_BLK_CGROUP | 
|  | unsigned			use_memdelay:1; | 
|  | #endif | 
|  | #ifdef CONFIG_PSI | 
|  | /* Stalled due to lack of memory */ | 
|  | unsigned			in_memstall:1; | 
|  | #endif | 
|  | #ifdef CONFIG_PAGE_OWNER | 
|  | /* Used by page_owner=on to detect recursion in page tracking. */ | 
|  | unsigned			in_page_owner:1; | 
|  | #endif | 
|  | #ifdef CONFIG_EVENTFD | 
|  | /* Recursion prevention for eventfd_signal() */ | 
|  | unsigned			in_eventfd:1; | 
|  | #endif | 
|  | #ifdef CONFIG_IOMMU_SVA | 
|  | unsigned			pasid_activated:1; | 
|  | #endif | 
|  | #ifdef	CONFIG_CPU_SUP_INTEL | 
|  | unsigned			reported_split_lock:1; | 
|  | #endif | 
|  | #ifdef CONFIG_TASK_DELAY_ACCT | 
|  | /* delay due to memory thrashing */ | 
|  | unsigned                        in_thrashing:1; | 
|  | #endif | 
|  |  | 
|  | unsigned long			atomic_flags; /* Flags requiring atomic access. */ | 
|  |  | 
|  | struct restart_block		restart_block; | 
|  |  | 
|  | pid_t				pid; | 
|  | pid_t				tgid; | 
|  |  | 
|  | #ifdef CONFIG_STACKPROTECTOR | 
|  | /* Canary value for the -fstack-protector GCC feature: */ | 
|  | unsigned long			stack_canary; | 
|  | #endif | 
|  | /* | 
|  | * Pointers to the (original) parent process, youngest child, younger sibling, | 
|  | * older sibling, respectively.  (p->father can be replaced with | 
|  | * p->real_parent->pid) | 
|  | */ | 
|  |  | 
|  | /* Real parent process: */ | 
|  | struct task_struct __rcu	*real_parent; | 
|  |  | 
|  | /* Recipient of SIGCHLD, wait4() reports: */ | 
|  | struct task_struct __rcu	*parent; | 
|  |  | 
|  | /* | 
|  | * Children/sibling form the list of natural children: | 
|  | */ | 
|  | struct list_head		children; | 
|  | struct list_head		sibling; | 
|  | struct task_struct		*group_leader; | 
|  |  | 
|  | /* | 
|  | * 'ptraced' is the list of tasks this task is using ptrace() on. | 
|  | * | 
|  | * This includes both natural children and PTRACE_ATTACH targets. | 
|  | * 'ptrace_entry' is this task's link on the p->parent->ptraced list. | 
|  | */ | 
|  | struct list_head		ptraced; | 
|  | struct list_head		ptrace_entry; | 
|  |  | 
|  | /* PID/PID hash table linkage. */ | 
|  | struct pid			*thread_pid; | 
|  | struct hlist_node		pid_links[PIDTYPE_MAX]; | 
|  | struct list_head		thread_group; | 
|  | struct list_head		thread_node; | 
|  |  | 
|  | struct completion		*vfork_done; | 
|  |  | 
|  | /* CLONE_CHILD_SETTID: */ | 
|  | int __user			*set_child_tid; | 
|  |  | 
|  | /* CLONE_CHILD_CLEARTID: */ | 
|  | int __user			*clear_child_tid; | 
|  |  | 
|  | /* PF_KTHREAD | PF_IO_WORKER */ | 
|  | void				*worker_private; | 
|  |  | 
|  | u64				utime; | 
|  | u64				stime; | 
|  | #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME | 
|  | u64				utimescaled; | 
|  | u64				stimescaled; | 
|  | #endif | 
|  | u64				gtime; | 
|  | struct prev_cputime		prev_cputime; | 
|  | #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN | 
|  | struct vtime			vtime; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_NO_HZ_FULL | 
|  | atomic_t			tick_dep_mask; | 
|  | #endif | 
|  | /* Context switch counts: */ | 
|  | unsigned long			nvcsw; | 
|  | unsigned long			nivcsw; | 
|  |  | 
|  | /* Monotonic time in nsecs: */ | 
|  | u64				start_time; | 
|  |  | 
|  | /* Boot based time in nsecs: */ | 
|  | u64				start_boottime; | 
|  |  | 
|  | /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ | 
|  | unsigned long			min_flt; | 
|  | unsigned long			maj_flt; | 
|  |  | 
|  | /* Empty if CONFIG_POSIX_CPUTIMERS=n */ | 
|  | struct posix_cputimers		posix_cputimers; | 
|  |  | 
|  | #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK | 
|  | struct posix_cputimers_work	posix_cputimers_work; | 
|  | #endif | 
|  |  | 
|  | /* Process credentials: */ | 
|  |  | 
|  | /* Tracer's credentials at attach: */ | 
|  | const struct cred __rcu		*ptracer_cred; | 
|  |  | 
|  | /* Objective and real subjective task credentials (COW): */ | 
|  | const struct cred __rcu		*real_cred; | 
|  |  | 
|  | /* Effective (overridable) subjective task credentials (COW): */ | 
|  | const struct cred __rcu		*cred; | 
|  |  | 
|  | #ifdef CONFIG_KEYS | 
|  | /* Cached requested key. */ | 
|  | struct key			*cached_requested_key; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * executable name, excluding path. | 
|  | * | 
|  | * - normally initialized setup_new_exec() | 
|  | * - access it with [gs]et_task_comm() | 
|  | * - lock it with task_lock() | 
|  | */ | 
|  | char				comm[TASK_COMM_LEN]; | 
|  |  | 
|  | struct nameidata		*nameidata; | 
|  |  | 
|  | #ifdef CONFIG_SYSVIPC | 
|  | struct sysv_sem			sysvsem; | 
|  | struct sysv_shm			sysvshm; | 
|  | #endif | 
|  | #ifdef CONFIG_DETECT_HUNG_TASK | 
|  | unsigned long			last_switch_count; | 
|  | unsigned long			last_switch_time; | 
|  | #endif | 
|  | /* Filesystem information: */ | 
|  | struct fs_struct		*fs; | 
|  |  | 
|  | /* Open file information: */ | 
|  | struct files_struct		*files; | 
|  |  | 
|  | #ifdef CONFIG_IO_URING | 
|  | struct io_uring_task		*io_uring; | 
|  | #endif | 
|  |  | 
|  | /* Namespaces: */ | 
|  | struct nsproxy			*nsproxy; | 
|  |  | 
|  | /* Signal handlers: */ | 
|  | struct signal_struct		*signal; | 
|  | struct sighand_struct __rcu		*sighand; | 
|  | sigset_t			blocked; | 
|  | sigset_t			real_blocked; | 
|  | /* Restored if set_restore_sigmask() was used: */ | 
|  | sigset_t			saved_sigmask; | 
|  | struct sigpending		pending; | 
|  | unsigned long			sas_ss_sp; | 
|  | size_t				sas_ss_size; | 
|  | unsigned int			sas_ss_flags; | 
|  |  | 
|  | struct callback_head		*task_works; | 
|  |  | 
|  | #ifdef CONFIG_AUDIT | 
|  | struct audit_task_info		*audit; | 
|  | #endif | 
|  | struct seccomp			seccomp; | 
|  | struct syscall_user_dispatch	syscall_dispatch; | 
|  |  | 
|  | /* Thread group tracking: */ | 
|  | u64				parent_exec_id; | 
|  | u64				self_exec_id; | 
|  |  | 
|  | /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ | 
|  | spinlock_t			alloc_lock; | 
|  |  | 
|  | /* Protection of the PI data structures: */ | 
|  | raw_spinlock_t			pi_lock; | 
|  |  | 
|  | struct wake_q_node		wake_q; | 
|  |  | 
|  | #ifdef CONFIG_RT_MUTEXES | 
|  | /* PI waiters blocked on a rt_mutex held by this task: */ | 
|  | struct rb_root_cached		pi_waiters; | 
|  | /* Updated under owner's pi_lock and rq lock */ | 
|  | struct task_struct		*pi_top_task; | 
|  | /* Deadlock detection and priority inheritance handling: */ | 
|  | struct rt_mutex_waiter		*pi_blocked_on; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_MUTEXES | 
|  | /* Mutex deadlock detection: */ | 
|  | struct mutex_waiter		*blocked_on; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_ATOMIC_SLEEP | 
|  | int				non_block_count; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_TRACE_IRQFLAGS | 
|  | struct irqtrace_events		irqtrace; | 
|  | unsigned int			hardirq_threaded; | 
|  | u64				hardirq_chain_key; | 
|  | int				softirqs_enabled; | 
|  | int				softirq_context; | 
|  | int				irq_config; | 
|  | #endif | 
|  | #ifdef CONFIG_PREEMPT_RT | 
|  | int				softirq_disable_cnt; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_LOCKDEP | 
|  | # define MAX_LOCK_DEPTH			48UL | 
|  | u64				curr_chain_key; | 
|  | int				lockdep_depth; | 
|  | unsigned int			lockdep_recursion; | 
|  | struct held_lock		held_locks[MAX_LOCK_DEPTH]; | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP) | 
|  | unsigned int			in_ubsan; | 
|  | #endif | 
|  |  | 
|  | /* Journalling filesystem info: */ | 
|  | void				*journal_info; | 
|  |  | 
|  | /* Stacked block device info: */ | 
|  | struct bio_list			*bio_list; | 
|  |  | 
|  | /* Stack plugging: */ | 
|  | struct blk_plug			*plug; | 
|  |  | 
|  | /* VM state: */ | 
|  | struct reclaim_state		*reclaim_state; | 
|  |  | 
|  | struct backing_dev_info		*backing_dev_info; | 
|  |  | 
|  | struct io_context		*io_context; | 
|  |  | 
|  | #ifdef CONFIG_COMPACTION | 
|  | struct capture_control		*capture_control; | 
|  | #endif | 
|  | /* Ptrace state: */ | 
|  | unsigned long			ptrace_message; | 
|  | kernel_siginfo_t		*last_siginfo; | 
|  |  | 
|  | struct task_io_accounting	ioac; | 
|  | #ifdef CONFIG_PSI | 
|  | /* Pressure stall state */ | 
|  | unsigned int			psi_flags; | 
|  | #endif | 
|  | #ifdef CONFIG_TASK_XACCT | 
|  | /* Accumulated RSS usage: */ | 
|  | u64				acct_rss_mem1; | 
|  | /* Accumulated virtual memory usage: */ | 
|  | u64				acct_vm_mem1; | 
|  | /* stime + utime since last update: */ | 
|  | u64				acct_timexpd; | 
|  | #endif | 
|  | #ifdef CONFIG_CPUSETS | 
|  | /* Protected by ->alloc_lock: */ | 
|  | nodemask_t			mems_allowed; | 
|  | /* Sequence number to catch updates: */ | 
|  | seqcount_spinlock_t		mems_allowed_seq; | 
|  | int				cpuset_mem_spread_rotor; | 
|  | int				cpuset_slab_spread_rotor; | 
|  | #endif | 
|  | #ifdef CONFIG_CGROUPS | 
|  | /* Control Group info protected by css_set_lock: */ | 
|  | struct css_set __rcu		*cgroups; | 
|  | /* cg_list protected by css_set_lock and tsk->alloc_lock: */ | 
|  | struct list_head		cg_list; | 
|  | #endif | 
|  | #ifdef CONFIG_X86_CPU_RESCTRL | 
|  | u32				closid; | 
|  | u32				rmid; | 
|  | #endif | 
|  | #ifdef CONFIG_FUTEX | 
|  | struct robust_list_head __user	*robust_list; | 
|  | #ifdef CONFIG_COMPAT | 
|  | struct compat_robust_list_head __user *compat_robust_list; | 
|  | #endif | 
|  | struct list_head		pi_state_list; | 
|  | struct futex_pi_state		*pi_state_cache; | 
|  | struct mutex			futex_exit_mutex; | 
|  | unsigned int			futex_state; | 
|  | #endif | 
|  | #ifdef CONFIG_PERF_EVENTS | 
|  | struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts]; | 
|  | struct mutex			perf_event_mutex; | 
|  | struct list_head		perf_event_list; | 
|  | #endif | 
|  | #ifdef CONFIG_DEBUG_PREEMPT | 
|  | unsigned long			preempt_disable_ip; | 
|  | #endif | 
|  | #ifdef CONFIG_NUMA | 
|  | /* Protected by alloc_lock: */ | 
|  | struct mempolicy		*mempolicy; | 
|  | short				il_prev; | 
|  | short				pref_node_fork; | 
|  | #endif | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | int				numa_scan_seq; | 
|  | unsigned int			numa_scan_period; | 
|  | unsigned int			numa_scan_period_max; | 
|  | int				numa_preferred_nid; | 
|  | unsigned long			numa_migrate_retry; | 
|  | /* Migration stamp: */ | 
|  | u64				node_stamp; | 
|  | u64				last_task_numa_placement; | 
|  | u64				last_sum_exec_runtime; | 
|  | struct callback_head		numa_work; | 
|  |  | 
|  | /* | 
|  | * This pointer is only modified for current in syscall and | 
|  | * pagefault context (and for tasks being destroyed), so it can be read | 
|  | * from any of the following contexts: | 
|  | *  - RCU read-side critical section | 
|  | *  - current->numa_group from everywhere | 
|  | *  - task's runqueue locked, task not running | 
|  | */ | 
|  | struct numa_group __rcu		*numa_group; | 
|  |  | 
|  | /* | 
|  | * numa_faults is an array split into four regions: | 
|  | * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer | 
|  | * in this precise order. | 
|  | * | 
|  | * faults_memory: Exponential decaying average of faults on a per-node | 
|  | * basis. Scheduling placement decisions are made based on these | 
|  | * counts. The values remain static for the duration of a PTE scan. | 
|  | * faults_cpu: Track the nodes the process was running on when a NUMA | 
|  | * hinting fault was incurred. | 
|  | * faults_memory_buffer and faults_cpu_buffer: Record faults per node | 
|  | * during the current scan window. When the scan completes, the counts | 
|  | * in faults_memory and faults_cpu decay and these values are copied. | 
|  | */ | 
|  | unsigned long			*numa_faults; | 
|  | unsigned long			total_numa_faults; | 
|  |  | 
|  | /* | 
|  | * numa_faults_locality tracks if faults recorded during the last | 
|  | * scan window were remote/local or failed to migrate. The task scan | 
|  | * period is adapted based on the locality of the faults with different | 
|  | * weights depending on whether they were shared or private faults | 
|  | */ | 
|  | unsigned long			numa_faults_locality[3]; | 
|  |  | 
|  | unsigned long			numa_pages_migrated; | 
|  | #endif /* CONFIG_NUMA_BALANCING */ | 
|  |  | 
|  | #ifdef CONFIG_RSEQ | 
|  | struct rseq __user *rseq; | 
|  | u32 rseq_sig; | 
|  | /* | 
|  | * RmW on rseq_event_mask must be performed atomically | 
|  | * with respect to preemption. | 
|  | */ | 
|  | unsigned long rseq_event_mask; | 
|  | #endif | 
|  |  | 
|  | struct tlbflush_unmap_batch	tlb_ubc; | 
|  |  | 
|  | union { | 
|  | refcount_t		rcu_users; | 
|  | struct rcu_head		rcu; | 
|  | }; | 
|  |  | 
|  | /* Cache last used pipe for splice(): */ | 
|  | struct pipe_inode_info		*splice_pipe; | 
|  |  | 
|  | struct page_frag		task_frag; | 
|  |  | 
|  | #ifdef CONFIG_TASK_DELAY_ACCT | 
|  | struct task_delay_info		*delays; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_FAULT_INJECTION | 
|  | int				make_it_fail; | 
|  | unsigned int			fail_nth; | 
|  | #endif | 
|  | /* | 
|  | * When (nr_dirtied >= nr_dirtied_pause), it's time to call | 
|  | * balance_dirty_pages() for a dirty throttling pause: | 
|  | */ | 
|  | int				nr_dirtied; | 
|  | int				nr_dirtied_pause; | 
|  | /* Start of a write-and-pause period: */ | 
|  | unsigned long			dirty_paused_when; | 
|  |  | 
|  | #ifdef CONFIG_LATENCYTOP | 
|  | int				latency_record_count; | 
|  | struct latency_record		latency_record[LT_SAVECOUNT]; | 
|  | #endif | 
|  | /* | 
|  | * Time slack values; these are used to round up poll() and | 
|  | * select() etc timeout values. These are in nanoseconds. | 
|  | */ | 
|  | u64				timer_slack_ns; | 
|  | u64				default_timer_slack_ns; | 
|  |  | 
|  | #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) | 
|  | unsigned int			kasan_depth; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_KCSAN | 
|  | struct kcsan_ctx		kcsan_ctx; | 
|  | #ifdef CONFIG_TRACE_IRQFLAGS | 
|  | struct irqtrace_events		kcsan_save_irqtrace; | 
|  | #endif | 
|  | #ifdef CONFIG_KCSAN_WEAK_MEMORY | 
|  | int				kcsan_stack_depth; | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_KMSAN | 
|  | struct kmsan_ctx		kmsan_ctx; | 
|  | #endif | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_KUNIT) | 
|  | struct kunit			*kunit_test; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_FUNCTION_GRAPH_TRACER | 
|  | /* Index of current stored address in ret_stack: */ | 
|  | int				curr_ret_stack; | 
|  | int				curr_ret_depth; | 
|  |  | 
|  | /* Stack of return addresses for return function tracing: */ | 
|  | struct ftrace_ret_stack		*ret_stack; | 
|  |  | 
|  | /* Timestamp for last schedule: */ | 
|  | unsigned long long		ftrace_timestamp; | 
|  |  | 
|  | /* | 
|  | * Number of functions that haven't been traced | 
|  | * because of depth overrun: | 
|  | */ | 
|  | atomic_t			trace_overrun; | 
|  |  | 
|  | /* Pause tracing: */ | 
|  | atomic_t			tracing_graph_pause; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_TRACING | 
|  | /* Bitmask and counter of trace recursion: */ | 
|  | unsigned long			trace_recursion; | 
|  | #endif /* CONFIG_TRACING */ | 
|  |  | 
|  | #ifdef CONFIG_KCOV | 
|  | /* See kernel/kcov.c for more details. */ | 
|  |  | 
|  | /* Coverage collection mode enabled for this task (0 if disabled): */ | 
|  | unsigned int			kcov_mode; | 
|  |  | 
|  | /* Size of the kcov_area: */ | 
|  | unsigned int			kcov_size; | 
|  |  | 
|  | /* Buffer for coverage collection: */ | 
|  | void				*kcov_area; | 
|  |  | 
|  | /* KCOV descriptor wired with this task or NULL: */ | 
|  | struct kcov			*kcov; | 
|  |  | 
|  | /* KCOV common handle for remote coverage collection: */ | 
|  | u64				kcov_handle; | 
|  |  | 
|  | /* KCOV sequence number: */ | 
|  | int				kcov_sequence; | 
|  |  | 
|  | /* Collect coverage from softirq context: */ | 
|  | unsigned int			kcov_softirq; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_MEMCG | 
|  | struct mem_cgroup		*memcg_in_oom; | 
|  | gfp_t				memcg_oom_gfp_mask; | 
|  | int				memcg_oom_order; | 
|  |  | 
|  | /* Number of pages to reclaim on returning to userland: */ | 
|  | unsigned int			memcg_nr_pages_over_high; | 
|  |  | 
|  | /* Used by memcontrol for targeted memcg charge: */ | 
|  | struct mem_cgroup		*active_memcg; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_BLK_CGROUP | 
|  | struct request_queue		*throttle_queue; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_UPROBES | 
|  | struct uprobe_task		*utask; | 
|  | #endif | 
|  | #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) | 
|  | unsigned int			sequential_io; | 
|  | unsigned int			sequential_io_avg; | 
|  | #endif | 
|  | struct kmap_ctrl		kmap_ctrl; | 
|  | #ifdef CONFIG_DEBUG_ATOMIC_SLEEP | 
|  | unsigned long			task_state_change; | 
|  | # ifdef CONFIG_PREEMPT_RT | 
|  | unsigned long			saved_state_change; | 
|  | # endif | 
|  | #endif | 
|  | int				pagefault_disabled; | 
|  | #ifdef CONFIG_MMU | 
|  | struct task_struct		*oom_reaper_list; | 
|  | struct timer_list		oom_reaper_timer; | 
|  | #endif | 
|  | #ifdef CONFIG_VMAP_STACK | 
|  | struct vm_struct		*stack_vm_area; | 
|  | #endif | 
|  | #ifdef CONFIG_THREAD_INFO_IN_TASK | 
|  | /* A live task holds one reference: */ | 
|  | refcount_t			stack_refcount; | 
|  | #endif | 
|  | #ifdef CONFIG_LIVEPATCH | 
|  | int patch_state; | 
|  | #endif | 
|  | #ifdef CONFIG_SECURITY | 
|  | /* Used by LSM modules for access restriction: */ | 
|  | void				*security; | 
|  | #endif | 
|  | #ifdef CONFIG_BPF_SYSCALL | 
|  | /* Used by BPF task local storage */ | 
|  | struct bpf_local_storage __rcu	*bpf_storage; | 
|  | /* Used for BPF run context */ | 
|  | struct bpf_run_ctx		*bpf_ctx; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_GCC_PLUGIN_STACKLEAK | 
|  | unsigned long			lowest_stack; | 
|  | unsigned long			prev_lowest_stack; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_X86_MCE | 
|  | void __user			*mce_vaddr; | 
|  | __u64				mce_kflags; | 
|  | u64				mce_addr; | 
|  | __u64				mce_ripv : 1, | 
|  | mce_whole_page : 1, | 
|  | __mce_reserved : 62; | 
|  | struct callback_head		mce_kill_me; | 
|  | int				mce_count; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_KRETPROBES | 
|  | struct llist_head               kretprobe_instances; | 
|  | #endif | 
|  | #ifdef CONFIG_RETHOOK | 
|  | struct llist_head               rethooks; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH | 
|  | /* | 
|  | * If L1D flush is supported on mm context switch | 
|  | * then we use this callback head to queue kill work | 
|  | * to kill tasks that are not running on SMT disabled | 
|  | * cores | 
|  | */ | 
|  | struct callback_head		l1d_flush_kill; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_RV | 
|  | /* | 
|  | * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS. | 
|  | * If we find justification for more monitors, we can think | 
|  | * about adding more or developing a dynamic method. So far, | 
|  | * none of these are justified. | 
|  | */ | 
|  | union rv_task_monitor		rv[RV_PER_TASK_MONITORS]; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * New fields for task_struct should be added above here, so that | 
|  | * they are included in the randomized portion of task_struct. | 
|  | */ | 
|  | randomized_struct_fields_end | 
|  |  | 
|  | /* CPU-specific state of this task: */ | 
|  | struct thread_struct		thread; | 
|  |  | 
|  | /* | 
|  | * WARNING: on x86, 'thread_struct' contains a variable-sized | 
|  | * structure.  It *MUST* be at the end of 'task_struct'. | 
|  | * | 
|  | * Do not put anything below here! | 
|  | */ | 
|  | }; | 
|  |  | 
|  | static inline struct pid *task_pid(struct task_struct *task) | 
|  | { | 
|  | return task->thread_pid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the helpers to get the task's different pids as they are seen | 
|  | * from various namespaces | 
|  | * | 
|  | * task_xid_nr()     : global id, i.e. the id seen from the init namespace; | 
|  | * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of | 
|  | *                     current. | 
|  | * task_xid_nr_ns()  : id seen from the ns specified; | 
|  | * | 
|  | * see also pid_nr() etc in include/linux/pid.h | 
|  | */ | 
|  | pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); | 
|  |  | 
|  | static inline pid_t task_pid_nr(struct task_struct *tsk) | 
|  | { | 
|  | return tsk->pid; | 
|  | } | 
|  |  | 
|  | static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) | 
|  | { | 
|  | return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); | 
|  | } | 
|  |  | 
|  | static inline pid_t task_pid_vnr(struct task_struct *tsk) | 
|  | { | 
|  | return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline pid_t task_tgid_nr(struct task_struct *tsk) | 
|  | { | 
|  | return tsk->tgid; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pid_alive - check that a task structure is not stale | 
|  | * @p: Task structure to be checked. | 
|  | * | 
|  | * Test if a process is not yet dead (at most zombie state) | 
|  | * If pid_alive fails, then pointers within the task structure | 
|  | * can be stale and must not be dereferenced. | 
|  | * | 
|  | * Return: 1 if the process is alive. 0 otherwise. | 
|  | */ | 
|  | static inline int pid_alive(const struct task_struct *p) | 
|  | { | 
|  | return p->thread_pid != NULL; | 
|  | } | 
|  |  | 
|  | static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) | 
|  | { | 
|  | return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); | 
|  | } | 
|  |  | 
|  | static inline pid_t task_pgrp_vnr(struct task_struct *tsk) | 
|  | { | 
|  | return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) | 
|  | { | 
|  | return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); | 
|  | } | 
|  |  | 
|  | static inline pid_t task_session_vnr(struct task_struct *tsk) | 
|  | { | 
|  | return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); | 
|  | } | 
|  |  | 
|  | static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) | 
|  | { | 
|  | return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns); | 
|  | } | 
|  |  | 
|  | static inline pid_t task_tgid_vnr(struct task_struct *tsk) | 
|  | { | 
|  | return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL); | 
|  | } | 
|  |  | 
|  | static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) | 
|  | { | 
|  | pid_t pid = 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | if (pid_alive(tsk)) | 
|  | pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return pid; | 
|  | } | 
|  |  | 
|  | static inline pid_t task_ppid_nr(const struct task_struct *tsk) | 
|  | { | 
|  | return task_ppid_nr_ns(tsk, &init_pid_ns); | 
|  | } | 
|  |  | 
|  | /* Obsolete, do not use: */ | 
|  | static inline pid_t task_pgrp_nr(struct task_struct *tsk) | 
|  | { | 
|  | return task_pgrp_nr_ns(tsk, &init_pid_ns); | 
|  | } | 
|  |  | 
|  | #define TASK_REPORT_IDLE	(TASK_REPORT + 1) | 
|  | #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1) | 
|  |  | 
|  | static inline unsigned int __task_state_index(unsigned int tsk_state, | 
|  | unsigned int tsk_exit_state) | 
|  | { | 
|  | unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT; | 
|  |  | 
|  | BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX); | 
|  |  | 
|  | if ((tsk_state & TASK_IDLE) == TASK_IDLE) | 
|  | state = TASK_REPORT_IDLE; | 
|  |  | 
|  | /* | 
|  | * We're lying here, but rather than expose a completely new task state | 
|  | * to userspace, we can make this appear as if the task has gone through | 
|  | * a regular rt_mutex_lock() call. | 
|  | * Report frozen tasks as uninterruptible. | 
|  | */ | 
|  | if ((tsk_state & TASK_RTLOCK_WAIT) || (tsk_state & TASK_FROZEN)) | 
|  | state = TASK_UNINTERRUPTIBLE; | 
|  |  | 
|  | return fls(state); | 
|  | } | 
|  |  | 
|  | static inline unsigned int task_state_index(struct task_struct *tsk) | 
|  | { | 
|  | return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state); | 
|  | } | 
|  |  | 
|  | static inline char task_index_to_char(unsigned int state) | 
|  | { | 
|  | static const char state_char[] = "RSDTtXZPI"; | 
|  |  | 
|  | BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1); | 
|  |  | 
|  | return state_char[state]; | 
|  | } | 
|  |  | 
|  | static inline char task_state_to_char(struct task_struct *tsk) | 
|  | { | 
|  | return task_index_to_char(task_state_index(tsk)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * is_global_init - check if a task structure is init. Since init | 
|  | * is free to have sub-threads we need to check tgid. | 
|  | * @tsk: Task structure to be checked. | 
|  | * | 
|  | * Check if a task structure is the first user space task the kernel created. | 
|  | * | 
|  | * Return: 1 if the task structure is init. 0 otherwise. | 
|  | */ | 
|  | static inline int is_global_init(struct task_struct *tsk) | 
|  | { | 
|  | return task_tgid_nr(tsk) == 1; | 
|  | } | 
|  |  | 
|  | extern struct pid *cad_pid; | 
|  |  | 
|  | /* | 
|  | * Per process flags | 
|  | */ | 
|  | #define PF_VCPU			0x00000001	/* I'm a virtual CPU */ | 
|  | #define PF_IDLE			0x00000002	/* I am an IDLE thread */ | 
|  | #define PF_EXITING		0x00000004	/* Getting shut down */ | 
|  | #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */ | 
|  | #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */ | 
|  | #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */ | 
|  | #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */ | 
|  | #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */ | 
|  | #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */ | 
|  | #define PF_DUMPCORE		0x00000200	/* Dumped core */ | 
|  | #define PF_SIGNALED		0x00000400	/* Killed by a signal */ | 
|  | #define PF_MEMALLOC		0x00000800	/* Allocating memory */ | 
|  | #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */ | 
|  | #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */ | 
|  | #define PF__HOLE__00004000	0x00004000 | 
|  | #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */ | 
|  | #define PF__HOLE__00010000	0x00010000 | 
|  | #define PF_KSWAPD		0x00020000	/* I am kswapd */ | 
|  | #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */ | 
|  | #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */ | 
|  | #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to, | 
|  | * I am cleaning dirty pages from some other bdi. */ | 
|  | #define PF_KTHREAD		0x00200000	/* I am a kernel thread */ | 
|  | #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */ | 
|  | #define PF__HOLE__00800000	0x00800000 | 
|  | #define PF__HOLE__01000000	0x01000000 | 
|  | #define PF__HOLE__02000000	0x02000000 | 
|  | #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */ | 
|  | #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */ | 
|  | #define PF_MEMALLOC_PIN		0x10000000	/* Allocation context constrained to zones which allow long term pinning. */ | 
|  | #define PF__HOLE__20000000	0x20000000 | 
|  | #define PF__HOLE__40000000	0x40000000 | 
|  | #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */ | 
|  |  | 
|  | /* | 
|  | * Only the _current_ task can read/write to tsk->flags, but other | 
|  | * tasks can access tsk->flags in readonly mode for example | 
|  | * with tsk_used_math (like during threaded core dumping). | 
|  | * There is however an exception to this rule during ptrace | 
|  | * or during fork: the ptracer task is allowed to write to the | 
|  | * child->flags of its traced child (same goes for fork, the parent | 
|  | * can write to the child->flags), because we're guaranteed the | 
|  | * child is not running and in turn not changing child->flags | 
|  | * at the same time the parent does it. | 
|  | */ | 
|  | #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0) | 
|  | #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0) | 
|  | #define clear_used_math()			clear_stopped_child_used_math(current) | 
|  | #define set_used_math()				set_stopped_child_used_math(current) | 
|  |  | 
|  | #define conditional_stopped_child_used_math(condition, child) \ | 
|  | do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) | 
|  |  | 
|  | #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current) | 
|  |  | 
|  | #define copy_to_stopped_child_used_math(child) \ | 
|  | do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) | 
|  |  | 
|  | /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ | 
|  | #define tsk_used_math(p)			((p)->flags & PF_USED_MATH) | 
|  | #define used_math()				tsk_used_math(current) | 
|  |  | 
|  | static __always_inline bool is_percpu_thread(void) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | return (current->flags & PF_NO_SETAFFINITY) && | 
|  | (current->nr_cpus_allowed  == 1); | 
|  | #else | 
|  | return true; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Per-process atomic flags. */ | 
|  | #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */ | 
|  | #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */ | 
|  | #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */ | 
|  | #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */ | 
|  | #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/ | 
|  | #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */ | 
|  | #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */ | 
|  | #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */ | 
|  |  | 
|  | #define TASK_PFA_TEST(name, func)					\ | 
|  | static inline bool task_##func(struct task_struct *p)		\ | 
|  | { return test_bit(PFA_##name, &p->atomic_flags); } | 
|  |  | 
|  | #define TASK_PFA_SET(name, func)					\ | 
|  | static inline void task_set_##func(struct task_struct *p)	\ | 
|  | { set_bit(PFA_##name, &p->atomic_flags); } | 
|  |  | 
|  | #define TASK_PFA_CLEAR(name, func)					\ | 
|  | static inline void task_clear_##func(struct task_struct *p)	\ | 
|  | { clear_bit(PFA_##name, &p->atomic_flags); } | 
|  |  | 
|  | TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) | 
|  | TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) | 
|  |  | 
|  | TASK_PFA_TEST(SPREAD_PAGE, spread_page) | 
|  | TASK_PFA_SET(SPREAD_PAGE, spread_page) | 
|  | TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) | 
|  |  | 
|  | TASK_PFA_TEST(SPREAD_SLAB, spread_slab) | 
|  | TASK_PFA_SET(SPREAD_SLAB, spread_slab) | 
|  | TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) | 
|  |  | 
|  | TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) | 
|  | TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) | 
|  | TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) | 
|  |  | 
|  | TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec) | 
|  | TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec) | 
|  | TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec) | 
|  |  | 
|  | TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) | 
|  | TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) | 
|  |  | 
|  | TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable) | 
|  | TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable) | 
|  | TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable) | 
|  |  | 
|  | TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) | 
|  | TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) | 
|  |  | 
|  | static inline void | 
|  | current_restore_flags(unsigned long orig_flags, unsigned long flags) | 
|  | { | 
|  | current->flags &= ~flags; | 
|  | current->flags |= orig_flags & flags; | 
|  | } | 
|  |  | 
|  | extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); | 
|  | extern int task_can_attach(struct task_struct *p); | 
|  | extern int dl_bw_alloc(int cpu, u64 dl_bw); | 
|  | extern void dl_bw_free(int cpu, u64 dl_bw); | 
|  | #ifdef CONFIG_SMP | 
|  | extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); | 
|  | extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); | 
|  | extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node); | 
|  | extern void release_user_cpus_ptr(struct task_struct *p); | 
|  | extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask); | 
|  | extern void force_compatible_cpus_allowed_ptr(struct task_struct *p); | 
|  | extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p); | 
|  | #else | 
|  | static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) | 
|  | { | 
|  | } | 
|  | static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) | 
|  | { | 
|  | if (!cpumask_test_cpu(0, new_mask)) | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | } | 
|  | static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node) | 
|  | { | 
|  | if (src->user_cpus_ptr) | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | } | 
|  | static inline void release_user_cpus_ptr(struct task_struct *p) | 
|  | { | 
|  | WARN_ON(p->user_cpus_ptr); | 
|  | } | 
|  |  | 
|  | static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | extern int yield_to(struct task_struct *p, bool preempt); | 
|  | extern void set_user_nice(struct task_struct *p, long nice); | 
|  | extern int task_prio(const struct task_struct *p); | 
|  |  | 
|  | /** | 
|  | * task_nice - return the nice value of a given task. | 
|  | * @p: the task in question. | 
|  | * | 
|  | * Return: The nice value [ -20 ... 0 ... 19 ]. | 
|  | */ | 
|  | static inline int task_nice(const struct task_struct *p) | 
|  | { | 
|  | return PRIO_TO_NICE((p)->static_prio); | 
|  | } | 
|  |  | 
|  | extern int can_nice(const struct task_struct *p, const int nice); | 
|  | extern int task_curr(const struct task_struct *p); | 
|  | extern int idle_cpu(int cpu); | 
|  | extern int available_idle_cpu(int cpu); | 
|  | extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); | 
|  | extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); | 
|  | extern void sched_set_fifo(struct task_struct *p); | 
|  | extern void sched_set_fifo_low(struct task_struct *p); | 
|  | extern void sched_set_normal(struct task_struct *p, int nice); | 
|  | extern int sched_setattr(struct task_struct *, const struct sched_attr *); | 
|  | extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *); | 
|  | extern struct task_struct *idle_task(int cpu); | 
|  |  | 
|  | /** | 
|  | * is_idle_task - is the specified task an idle task? | 
|  | * @p: the task in question. | 
|  | * | 
|  | * Return: 1 if @p is an idle task. 0 otherwise. | 
|  | */ | 
|  | static __always_inline bool is_idle_task(const struct task_struct *p) | 
|  | { | 
|  | return !!(p->flags & PF_IDLE); | 
|  | } | 
|  |  | 
|  | extern struct task_struct *curr_task(int cpu); | 
|  | extern void ia64_set_curr_task(int cpu, struct task_struct *p); | 
|  |  | 
|  | void yield(void); | 
|  |  | 
|  | union thread_union { | 
|  | #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK | 
|  | struct task_struct task; | 
|  | #endif | 
|  | #ifndef CONFIG_THREAD_INFO_IN_TASK | 
|  | struct thread_info thread_info; | 
|  | #endif | 
|  | unsigned long stack[THREAD_SIZE/sizeof(long)]; | 
|  | }; | 
|  |  | 
|  | #ifndef CONFIG_THREAD_INFO_IN_TASK | 
|  | extern struct thread_info init_thread_info; | 
|  | #endif | 
|  |  | 
|  | extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; | 
|  |  | 
|  | #ifdef CONFIG_THREAD_INFO_IN_TASK | 
|  | # define task_thread_info(task)	(&(task)->thread_info) | 
|  | #elif !defined(__HAVE_THREAD_FUNCTIONS) | 
|  | # define task_thread_info(task)	((struct thread_info *)(task)->stack) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * find a task by one of its numerical ids | 
|  | * | 
|  | * find_task_by_pid_ns(): | 
|  | *      finds a task by its pid in the specified namespace | 
|  | * find_task_by_vpid(): | 
|  | *      finds a task by its virtual pid | 
|  | * | 
|  | * see also find_vpid() etc in include/linux/pid.h | 
|  | */ | 
|  |  | 
|  | extern struct task_struct *find_task_by_vpid(pid_t nr); | 
|  | extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); | 
|  |  | 
|  | /* | 
|  | * find a task by its virtual pid and get the task struct | 
|  | */ | 
|  | extern struct task_struct *find_get_task_by_vpid(pid_t nr); | 
|  |  | 
|  | extern int wake_up_state(struct task_struct *tsk, unsigned int state); | 
|  | extern int wake_up_process(struct task_struct *tsk); | 
|  | extern void wake_up_new_task(struct task_struct *tsk); | 
|  |  | 
|  | /* | 
|  | * Wake up tsk and try to swap it into the current tasks place, which | 
|  | * initially means just trying to migrate it to the current CPU. | 
|  | */ | 
|  | extern int wake_up_swap(struct task_struct *tsk); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | extern void kick_process(struct task_struct *tsk); | 
|  | #else | 
|  | static inline void kick_process(struct task_struct *tsk) { } | 
|  | #endif | 
|  |  | 
|  | extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); | 
|  |  | 
|  | static inline void set_task_comm(struct task_struct *tsk, const char *from) | 
|  | { | 
|  | __set_task_comm(tsk, from, false); | 
|  | } | 
|  |  | 
|  | extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk); | 
|  | #define get_task_comm(buf, tsk) ({			\ | 
|  | BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\ | 
|  | __get_task_comm(buf, sizeof(buf), tsk);		\ | 
|  | }) | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static __always_inline void scheduler_ipi(void) | 
|  | { | 
|  | /* | 
|  | * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting | 
|  | * TIF_NEED_RESCHED remotely (for the first time) will also send | 
|  | * this IPI. | 
|  | */ | 
|  | preempt_fold_need_resched(); | 
|  | } | 
|  | extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state); | 
|  | #else | 
|  | static inline void scheduler_ipi(void) { } | 
|  | static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Set thread flags in other task's structures. | 
|  | * See asm/thread_info.h for TIF_xxxx flags available: | 
|  | */ | 
|  | static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) | 
|  | { | 
|  | set_ti_thread_flag(task_thread_info(tsk), flag); | 
|  | } | 
|  |  | 
|  | static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) | 
|  | { | 
|  | clear_ti_thread_flag(task_thread_info(tsk), flag); | 
|  | } | 
|  |  | 
|  | static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag, | 
|  | bool value) | 
|  | { | 
|  | update_ti_thread_flag(task_thread_info(tsk), flag, value); | 
|  | } | 
|  |  | 
|  | static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) | 
|  | { | 
|  | return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); | 
|  | } | 
|  |  | 
|  | static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) | 
|  | { | 
|  | return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); | 
|  | } | 
|  |  | 
|  | static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) | 
|  | { | 
|  | return test_ti_thread_flag(task_thread_info(tsk), flag); | 
|  | } | 
|  |  | 
|  | static inline void set_tsk_need_resched(struct task_struct *tsk) | 
|  | { | 
|  | set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); | 
|  | } | 
|  |  | 
|  | static inline void clear_tsk_need_resched(struct task_struct *tsk) | 
|  | { | 
|  | clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); | 
|  | } | 
|  |  | 
|  | static inline int test_tsk_need_resched(struct task_struct *tsk) | 
|  | { | 
|  | return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cond_resched() and cond_resched_lock(): latency reduction via | 
|  | * explicit rescheduling in places that are safe. The return | 
|  | * value indicates whether a reschedule was done in fact. | 
|  | * cond_resched_lock() will drop the spinlock before scheduling, | 
|  | */ | 
|  | #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) | 
|  | extern int __cond_resched(void); | 
|  |  | 
|  | #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) | 
|  |  | 
|  | DECLARE_STATIC_CALL(cond_resched, __cond_resched); | 
|  |  | 
|  | static __always_inline int _cond_resched(void) | 
|  | { | 
|  | return static_call_mod(cond_resched)(); | 
|  | } | 
|  |  | 
|  | #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) | 
|  | extern int dynamic_cond_resched(void); | 
|  |  | 
|  | static __always_inline int _cond_resched(void) | 
|  | { | 
|  | return dynamic_cond_resched(); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline int _cond_resched(void) | 
|  | { | 
|  | return __cond_resched(); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_PREEMPT_DYNAMIC */ | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline int _cond_resched(void) { return 0; } | 
|  |  | 
|  | #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */ | 
|  |  | 
|  | #define cond_resched() ({			\ | 
|  | __might_resched(__FILE__, __LINE__, 0);	\ | 
|  | _cond_resched();			\ | 
|  | }) | 
|  |  | 
|  | extern int __cond_resched_lock(spinlock_t *lock); | 
|  | extern int __cond_resched_rwlock_read(rwlock_t *lock); | 
|  | extern int __cond_resched_rwlock_write(rwlock_t *lock); | 
|  |  | 
|  | #define MIGHT_RESCHED_RCU_SHIFT		8 | 
|  | #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1) | 
|  |  | 
|  | #ifndef CONFIG_PREEMPT_RT | 
|  | /* | 
|  | * Non RT kernels have an elevated preempt count due to the held lock, | 
|  | * but are not allowed to be inside a RCU read side critical section | 
|  | */ | 
|  | # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET | 
|  | #else | 
|  | /* | 
|  | * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in | 
|  | * cond_resched*lock() has to take that into account because it checks for | 
|  | * preempt_count() and rcu_preempt_depth(). | 
|  | */ | 
|  | # define PREEMPT_LOCK_RESCHED_OFFSETS	\ | 
|  | (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT)) | 
|  | #endif | 
|  |  | 
|  | #define cond_resched_lock(lock) ({						\ | 
|  | __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\ | 
|  | __cond_resched_lock(lock);						\ | 
|  | }) | 
|  |  | 
|  | #define cond_resched_rwlock_read(lock) ({					\ | 
|  | __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\ | 
|  | __cond_resched_rwlock_read(lock);					\ | 
|  | }) | 
|  |  | 
|  | #define cond_resched_rwlock_write(lock) ({					\ | 
|  | __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\ | 
|  | __cond_resched_rwlock_write(lock);					\ | 
|  | }) | 
|  |  | 
|  | static inline void cond_resched_rcu(void) | 
|  | { | 
|  | #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) | 
|  | rcu_read_unlock(); | 
|  | cond_resched(); | 
|  | rcu_read_lock(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PREEMPT_DYNAMIC | 
|  |  | 
|  | extern bool preempt_model_none(void); | 
|  | extern bool preempt_model_voluntary(void); | 
|  | extern bool preempt_model_full(void); | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline bool preempt_model_none(void) | 
|  | { | 
|  | return IS_ENABLED(CONFIG_PREEMPT_NONE); | 
|  | } | 
|  | static inline bool preempt_model_voluntary(void) | 
|  | { | 
|  | return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY); | 
|  | } | 
|  | static inline bool preempt_model_full(void) | 
|  | { | 
|  | return IS_ENABLED(CONFIG_PREEMPT); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static inline bool preempt_model_rt(void) | 
|  | { | 
|  | return IS_ENABLED(CONFIG_PREEMPT_RT); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Does the preemption model allow non-cooperative preemption? | 
|  | * | 
|  | * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with | 
|  | * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the | 
|  | * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the | 
|  | * PREEMPT_NONE model. | 
|  | */ | 
|  | static inline bool preempt_model_preemptible(void) | 
|  | { | 
|  | return preempt_model_full() || preempt_model_rt(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Does a critical section need to be broken due to another | 
|  | * task waiting?: (technically does not depend on CONFIG_PREEMPTION, | 
|  | * but a general need for low latency) | 
|  | */ | 
|  | static inline int spin_needbreak(spinlock_t *lock) | 
|  | { | 
|  | #ifdef CONFIG_PREEMPTION | 
|  | return spin_is_contended(lock); | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if a rwlock is contended. | 
|  | * Returns non-zero if there is another task waiting on the rwlock. | 
|  | * Returns zero if the lock is not contended or the system / underlying | 
|  | * rwlock implementation does not support contention detection. | 
|  | * Technically does not depend on CONFIG_PREEMPTION, but a general need | 
|  | * for low latency. | 
|  | */ | 
|  | static inline int rwlock_needbreak(rwlock_t *lock) | 
|  | { | 
|  | #ifdef CONFIG_PREEMPTION | 
|  | return rwlock_is_contended(lock); | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static __always_inline bool need_resched(void) | 
|  | { | 
|  | return unlikely(tif_need_resched()); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wrappers for p->thread_info->cpu access. No-op on UP. | 
|  | */ | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | static inline unsigned int task_cpu(const struct task_struct *p) | 
|  | { | 
|  | return READ_ONCE(task_thread_info(p)->cpu); | 
|  | } | 
|  |  | 
|  | extern void set_task_cpu(struct task_struct *p, unsigned int cpu); | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline unsigned int task_cpu(const struct task_struct *p) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | extern bool sched_task_on_rq(struct task_struct *p); | 
|  | extern unsigned long get_wchan(struct task_struct *p); | 
|  | extern struct task_struct *cpu_curr_snapshot(int cpu); | 
|  |  | 
|  | /* | 
|  | * In order to reduce various lock holder preemption latencies provide an | 
|  | * interface to see if a vCPU is currently running or not. | 
|  | * | 
|  | * This allows us to terminate optimistic spin loops and block, analogous to | 
|  | * the native optimistic spin heuristic of testing if the lock owner task is | 
|  | * running or not. | 
|  | */ | 
|  | #ifndef vcpu_is_preempted | 
|  | static inline bool vcpu_is_preempted(int cpu) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); | 
|  | extern long sched_getaffinity(pid_t pid, struct cpumask *mask); | 
|  |  | 
|  | #ifndef TASK_SIZE_OF | 
|  | #define TASK_SIZE_OF(tsk)	TASK_SIZE | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static inline bool owner_on_cpu(struct task_struct *owner) | 
|  | { | 
|  | /* | 
|  | * As lock holder preemption issue, we both skip spinning if | 
|  | * task is not on cpu or its cpu is preempted | 
|  | */ | 
|  | return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner)); | 
|  | } | 
|  |  | 
|  | /* Returns effective CPU energy utilization, as seen by the scheduler */ | 
|  | unsigned long sched_cpu_util(int cpu); | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | #ifdef CONFIG_RSEQ | 
|  |  | 
|  | /* | 
|  | * Map the event mask on the user-space ABI enum rseq_cs_flags | 
|  | * for direct mask checks. | 
|  | */ | 
|  | enum rseq_event_mask_bits { | 
|  | RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT, | 
|  | RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT, | 
|  | RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT, | 
|  | }; | 
|  |  | 
|  | enum rseq_event_mask { | 
|  | RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT), | 
|  | RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT), | 
|  | RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT), | 
|  | }; | 
|  |  | 
|  | static inline void rseq_set_notify_resume(struct task_struct *t) | 
|  | { | 
|  | if (t->rseq) | 
|  | set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); | 
|  | } | 
|  |  | 
|  | void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs); | 
|  |  | 
|  | static inline void rseq_handle_notify_resume(struct ksignal *ksig, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | if (current->rseq) | 
|  | __rseq_handle_notify_resume(ksig, regs); | 
|  | } | 
|  |  | 
|  | static inline void rseq_signal_deliver(struct ksignal *ksig, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | preempt_disable(); | 
|  | __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask); | 
|  | preempt_enable(); | 
|  | rseq_handle_notify_resume(ksig, regs); | 
|  | } | 
|  |  | 
|  | /* rseq_preempt() requires preemption to be disabled. */ | 
|  | static inline void rseq_preempt(struct task_struct *t) | 
|  | { | 
|  | __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask); | 
|  | rseq_set_notify_resume(t); | 
|  | } | 
|  |  | 
|  | /* rseq_migrate() requires preemption to be disabled. */ | 
|  | static inline void rseq_migrate(struct task_struct *t) | 
|  | { | 
|  | __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask); | 
|  | rseq_set_notify_resume(t); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If parent process has a registered restartable sequences area, the | 
|  | * child inherits. Unregister rseq for a clone with CLONE_VM set. | 
|  | */ | 
|  | static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) | 
|  | { | 
|  | if (clone_flags & CLONE_VM) { | 
|  | t->rseq = NULL; | 
|  | t->rseq_sig = 0; | 
|  | t->rseq_event_mask = 0; | 
|  | } else { | 
|  | t->rseq = current->rseq; | 
|  | t->rseq_sig = current->rseq_sig; | 
|  | t->rseq_event_mask = current->rseq_event_mask; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void rseq_execve(struct task_struct *t) | 
|  | { | 
|  | t->rseq = NULL; | 
|  | t->rseq_sig = 0; | 
|  | t->rseq_event_mask = 0; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline void rseq_set_notify_resume(struct task_struct *t) | 
|  | { | 
|  | } | 
|  | static inline void rseq_handle_notify_resume(struct ksignal *ksig, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | } | 
|  | static inline void rseq_signal_deliver(struct ksignal *ksig, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | } | 
|  | static inline void rseq_preempt(struct task_struct *t) | 
|  | { | 
|  | } | 
|  | static inline void rseq_migrate(struct task_struct *t) | 
|  | { | 
|  | } | 
|  | static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) | 
|  | { | 
|  | } | 
|  | static inline void rseq_execve(struct task_struct *t) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_RSEQ | 
|  |  | 
|  | void rseq_syscall(struct pt_regs *regs); | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline void rseq_syscall(struct pt_regs *regs) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SCHED_CORE | 
|  | extern void sched_core_free(struct task_struct *tsk); | 
|  | extern void sched_core_fork(struct task_struct *p); | 
|  | extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type, | 
|  | unsigned long uaddr); | 
|  | #else | 
|  | static inline void sched_core_free(struct task_struct *tsk) { } | 
|  | static inline void sched_core_fork(struct task_struct *p) { } | 
|  | #endif | 
|  |  | 
|  | extern void sched_set_stop_task(int cpu, struct task_struct *stop); | 
|  |  | 
|  | #endif |