|  | /* | 
|  | * JFFS2 -- Journalling Flash File System, Version 2. | 
|  | * | 
|  | * Copyright © 2001-2007 Red Hat, Inc. | 
|  | * | 
|  | * Created by David Woodhouse <dwmw2@infradead.org> | 
|  | * | 
|  | * For licensing information, see the file 'LICENCE' in this directory. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include "nodelist.h" | 
|  | #include "debug.h" | 
|  |  | 
|  | /* | 
|  | * Check whether the user is allowed to write. | 
|  | */ | 
|  | static int jffs2_rp_can_write(struct jffs2_sb_info *c) | 
|  | { | 
|  | uint32_t avail; | 
|  | struct jffs2_mount_opts *opts = &c->mount_opts; | 
|  |  | 
|  | avail = c->dirty_size + c->free_size + c->unchecked_size + | 
|  | c->erasing_size - c->resv_blocks_write * c->sector_size | 
|  | - c->nospc_dirty_size; | 
|  |  | 
|  | if (avail < 2 * opts->rp_size) | 
|  | jffs2_dbg(1, "rpsize %u, dirty_size %u, free_size %u, " | 
|  | "erasing_size %u, unchecked_size %u, " | 
|  | "nr_erasing_blocks %u, avail %u, resrv %u\n", | 
|  | opts->rp_size, c->dirty_size, c->free_size, | 
|  | c->erasing_size, c->unchecked_size, | 
|  | c->nr_erasing_blocks, avail, c->nospc_dirty_size); | 
|  |  | 
|  | if (avail > opts->rp_size) | 
|  | return 1; | 
|  |  | 
|  | /* Always allow root */ | 
|  | if (capable(CAP_SYS_RESOURCE)) | 
|  | return 1; | 
|  |  | 
|  | jffs2_dbg(1, "forbid writing\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	jffs2_reserve_space - request physical space to write nodes to flash | 
|  | *	@c: superblock info | 
|  | *	@minsize: Minimum acceptable size of allocation | 
|  | *	@len: Returned value of allocation length | 
|  | *	@prio: Allocation type - ALLOC_{NORMAL,DELETION} | 
|  | * | 
|  | *	Requests a block of physical space on the flash. Returns zero for success | 
|  | *	and puts 'len' into the appropriate place, or returns -ENOSPC or other | 
|  | *	error if appropriate. Doesn't return len since that's | 
|  | * | 
|  | *	If it returns zero, jffs2_reserve_space() also downs the per-filesystem | 
|  | *	allocation semaphore, to prevent more than one allocation from being | 
|  | *	active at any time. The semaphore is later released by jffs2_commit_allocation() | 
|  | * | 
|  | *	jffs2_reserve_space() may trigger garbage collection in order to make room | 
|  | *	for the requested allocation. | 
|  | */ | 
|  |  | 
|  | static int jffs2_do_reserve_space(struct jffs2_sb_info *c,  uint32_t minsize, | 
|  | uint32_t *len, uint32_t sumsize); | 
|  |  | 
|  | int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, | 
|  | uint32_t *len, int prio, uint32_t sumsize) | 
|  | { | 
|  | int ret = -EAGAIN; | 
|  | int blocksneeded = c->resv_blocks_write; | 
|  | /* align it */ | 
|  | minsize = PAD(minsize); | 
|  |  | 
|  | jffs2_dbg(1, "%s(): Requested 0x%x bytes\n", __func__, minsize); | 
|  | mutex_lock(&c->alloc_sem); | 
|  |  | 
|  | jffs2_dbg(1, "%s(): alloc sem got\n", __func__); | 
|  |  | 
|  | spin_lock(&c->erase_completion_lock); | 
|  |  | 
|  | /* | 
|  | * Check if the free space is greater then size of the reserved pool. | 
|  | * If not, only allow root to proceed with writing. | 
|  | */ | 
|  | if (prio != ALLOC_DELETION && !jffs2_rp_can_write(c)) { | 
|  | ret = -ENOSPC; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* this needs a little more thought (true <tglx> :)) */ | 
|  | while(ret == -EAGAIN) { | 
|  | while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) { | 
|  | uint32_t dirty, avail; | 
|  |  | 
|  | /* calculate real dirty size | 
|  | * dirty_size contains blocks on erase_pending_list | 
|  | * those blocks are counted in c->nr_erasing_blocks. | 
|  | * If one block is actually erased, it is not longer counted as dirty_space | 
|  | * but it is counted in c->nr_erasing_blocks, so we add it and subtract it | 
|  | * with c->nr_erasing_blocks * c->sector_size again. | 
|  | * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks | 
|  | * This helps us to force gc and pick eventually a clean block to spread the load. | 
|  | * We add unchecked_size here, as we hopefully will find some space to use. | 
|  | * This will affect the sum only once, as gc first finishes checking | 
|  | * of nodes. | 
|  | */ | 
|  | dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size; | 
|  | if (dirty < c->nospc_dirty_size) { | 
|  | if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) { | 
|  | jffs2_dbg(1, "%s(): Low on dirty space to GC, but it's a deletion. Allowing...\n", | 
|  | __func__); | 
|  | break; | 
|  | } | 
|  | jffs2_dbg(1, "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n", | 
|  | dirty, c->unchecked_size, | 
|  | c->sector_size); | 
|  |  | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | mutex_unlock(&c->alloc_sem); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | /* Calc possibly available space. Possibly available means that we | 
|  | * don't know, if unchecked size contains obsoleted nodes, which could give us some | 
|  | * more usable space. This will affect the sum only once, as gc first finishes checking | 
|  | * of nodes. | 
|  | + Return -ENOSPC, if the maximum possibly available space is less or equal than | 
|  | * blocksneeded * sector_size. | 
|  | * This blocks endless gc looping on a filesystem, which is nearly full, even if | 
|  | * the check above passes. | 
|  | */ | 
|  | avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size; | 
|  | if ( (avail / c->sector_size) <= blocksneeded) { | 
|  | if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) { | 
|  | jffs2_dbg(1, "%s(): Low on possibly available space, but it's a deletion. Allowing...\n", | 
|  | __func__); | 
|  | break; | 
|  | } | 
|  |  | 
|  | jffs2_dbg(1, "max. available size 0x%08x  < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n", | 
|  | avail, blocksneeded * c->sector_size); | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | mutex_unlock(&c->alloc_sem); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&c->alloc_sem); | 
|  |  | 
|  | jffs2_dbg(1, "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n", | 
|  | c->nr_free_blocks, c->nr_erasing_blocks, | 
|  | c->free_size, c->dirty_size, c->wasted_size, | 
|  | c->used_size, c->erasing_size, c->bad_size, | 
|  | c->free_size + c->dirty_size + | 
|  | c->wasted_size + c->used_size + | 
|  | c->erasing_size + c->bad_size, | 
|  | c->flash_size); | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  |  | 
|  | ret = jffs2_garbage_collect_pass(c); | 
|  |  | 
|  | if (ret == -EAGAIN) { | 
|  | spin_lock(&c->erase_completion_lock); | 
|  | if (c->nr_erasing_blocks && | 
|  | list_empty(&c->erase_pending_list) && | 
|  | list_empty(&c->erase_complete_list)) { | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | add_wait_queue(&c->erase_wait, &wait); | 
|  | jffs2_dbg(1, "%s waiting for erase to complete\n", | 
|  | __func__); | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  |  | 
|  | schedule(); | 
|  | remove_wait_queue(&c->erase_wait, &wait); | 
|  | } else | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | } else if (ret) | 
|  | return ret; | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | if (signal_pending(current)) | 
|  | return -EINTR; | 
|  |  | 
|  | mutex_lock(&c->alloc_sem); | 
|  | spin_lock(&c->erase_completion_lock); | 
|  | } | 
|  |  | 
|  | ret = jffs2_do_reserve_space(c, minsize, len, sumsize); | 
|  | if (ret) { | 
|  | jffs2_dbg(1, "%s(): ret is %d\n", __func__, ret); | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | if (!ret) | 
|  | ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1); | 
|  | if (ret) | 
|  | mutex_unlock(&c->alloc_sem); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize, | 
|  | uint32_t *len, uint32_t sumsize) | 
|  | { | 
|  | int ret; | 
|  | minsize = PAD(minsize); | 
|  |  | 
|  | jffs2_dbg(1, "%s(): Requested 0x%x bytes\n", __func__, minsize); | 
|  |  | 
|  | while (true) { | 
|  | spin_lock(&c->erase_completion_lock); | 
|  | ret = jffs2_do_reserve_space(c, minsize, len, sumsize); | 
|  | if (ret) { | 
|  | jffs2_dbg(1, "%s(): looping, ret is %d\n", | 
|  | __func__, ret); | 
|  | } | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  |  | 
|  | if (ret == -EAGAIN) | 
|  | cond_resched(); | 
|  | else | 
|  | break; | 
|  | } | 
|  | if (!ret) | 
|  | ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Classify nextblock (clean, dirty of verydirty) and force to select an other one */ | 
|  |  | 
|  | static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) | 
|  | { | 
|  |  | 
|  | if (c->nextblock == NULL) { | 
|  | jffs2_dbg(1, "%s(): Erase block at 0x%08x has already been placed in a list\n", | 
|  | __func__, jeb->offset); | 
|  | return; | 
|  | } | 
|  | /* Check, if we have a dirty block now, or if it was dirty already */ | 
|  | if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) { | 
|  | c->dirty_size += jeb->wasted_size; | 
|  | c->wasted_size -= jeb->wasted_size; | 
|  | jeb->dirty_size += jeb->wasted_size; | 
|  | jeb->wasted_size = 0; | 
|  | if (VERYDIRTY(c, jeb->dirty_size)) { | 
|  | jffs2_dbg(1, "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", | 
|  | jeb->offset, jeb->free_size, jeb->dirty_size, | 
|  | jeb->used_size); | 
|  | list_add_tail(&jeb->list, &c->very_dirty_list); | 
|  | } else { | 
|  | jffs2_dbg(1, "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", | 
|  | jeb->offset, jeb->free_size, jeb->dirty_size, | 
|  | jeb->used_size); | 
|  | list_add_tail(&jeb->list, &c->dirty_list); | 
|  | } | 
|  | } else { | 
|  | jffs2_dbg(1, "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", | 
|  | jeb->offset, jeb->free_size, jeb->dirty_size, | 
|  | jeb->used_size); | 
|  | list_add_tail(&jeb->list, &c->clean_list); | 
|  | } | 
|  | c->nextblock = NULL; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Select a new jeb for nextblock */ | 
|  |  | 
|  | static int jffs2_find_nextblock(struct jffs2_sb_info *c) | 
|  | { | 
|  | struct list_head *next; | 
|  |  | 
|  | /* Take the next block off the 'free' list */ | 
|  |  | 
|  | if (list_empty(&c->free_list)) { | 
|  |  | 
|  | if (!c->nr_erasing_blocks && | 
|  | !list_empty(&c->erasable_list)) { | 
|  | struct jffs2_eraseblock *ejeb; | 
|  |  | 
|  | ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list); | 
|  | list_move_tail(&ejeb->list, &c->erase_pending_list); | 
|  | c->nr_erasing_blocks++; | 
|  | jffs2_garbage_collect_trigger(c); | 
|  | jffs2_dbg(1, "%s(): Triggering erase of erasable block at 0x%08x\n", | 
|  | __func__, ejeb->offset); | 
|  | } | 
|  |  | 
|  | if (!c->nr_erasing_blocks && | 
|  | !list_empty(&c->erasable_pending_wbuf_list)) { | 
|  | jffs2_dbg(1, "%s(): Flushing write buffer\n", | 
|  | __func__); | 
|  | /* c->nextblock is NULL, no update to c->nextblock allowed */ | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | jffs2_flush_wbuf_pad(c); | 
|  | spin_lock(&c->erase_completion_lock); | 
|  | /* Have another go. It'll be on the erasable_list now */ | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | if (!c->nr_erasing_blocks) { | 
|  | /* Ouch. We're in GC, or we wouldn't have got here. | 
|  | And there's no space left. At all. */ | 
|  | pr_crit("Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n", | 
|  | c->nr_erasing_blocks, c->nr_free_blocks, | 
|  | list_empty(&c->erasable_list) ? "yes" : "no", | 
|  | list_empty(&c->erasing_list) ? "yes" : "no", | 
|  | list_empty(&c->erase_pending_list) ? "yes" : "no"); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | /* Don't wait for it; just erase one right now */ | 
|  | jffs2_erase_pending_blocks(c, 1); | 
|  | spin_lock(&c->erase_completion_lock); | 
|  |  | 
|  | /* An erase may have failed, decreasing the | 
|  | amount of free space available. So we must | 
|  | restart from the beginning */ | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | next = c->free_list.next; | 
|  | list_del(next); | 
|  | c->nextblock = list_entry(next, struct jffs2_eraseblock, list); | 
|  | c->nr_free_blocks--; | 
|  |  | 
|  | jffs2_sum_reset_collected(c->summary); /* reset collected summary */ | 
|  |  | 
|  | #ifdef CONFIG_JFFS2_FS_WRITEBUFFER | 
|  | /* adjust write buffer offset, else we get a non contiguous write bug */ | 
|  | if (!(c->wbuf_ofs % c->sector_size) && !c->wbuf_len) | 
|  | c->wbuf_ofs = 0xffffffff; | 
|  | #endif | 
|  |  | 
|  | jffs2_dbg(1, "%s(): new nextblock = 0x%08x\n", | 
|  | __func__, c->nextblock->offset); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Called with alloc sem _and_ erase_completion_lock */ | 
|  | static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, | 
|  | uint32_t *len, uint32_t sumsize) | 
|  | { | 
|  | struct jffs2_eraseblock *jeb = c->nextblock; | 
|  | uint32_t reserved_size;				/* for summary information at the end of the jeb */ | 
|  | int ret; | 
|  |  | 
|  | restart: | 
|  | reserved_size = 0; | 
|  |  | 
|  | if (jffs2_sum_active() && (sumsize != JFFS2_SUMMARY_NOSUM_SIZE)) { | 
|  | /* NOSUM_SIZE means not to generate summary */ | 
|  |  | 
|  | if (jeb) { | 
|  | reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE); | 
|  | dbg_summary("minsize=%d , jeb->free=%d ," | 
|  | "summary->size=%d , sumsize=%d\n", | 
|  | minsize, jeb->free_size, | 
|  | c->summary->sum_size, sumsize); | 
|  | } | 
|  |  | 
|  | /* Is there enough space for writing out the current node, or we have to | 
|  | write out summary information now, close this jeb and select new nextblock? */ | 
|  | if (jeb && (PAD(minsize) + PAD(c->summary->sum_size + sumsize + | 
|  | JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size)) { | 
|  |  | 
|  | /* Has summary been disabled for this jeb? */ | 
|  | if (jffs2_sum_is_disabled(c->summary)) { | 
|  | sumsize = JFFS2_SUMMARY_NOSUM_SIZE; | 
|  | goto restart; | 
|  | } | 
|  |  | 
|  | /* Writing out the collected summary information */ | 
|  | dbg_summary("generating summary for 0x%08x.\n", jeb->offset); | 
|  | ret = jffs2_sum_write_sumnode(c); | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (jffs2_sum_is_disabled(c->summary)) { | 
|  | /* jffs2_write_sumnode() couldn't write out the summary information | 
|  | diabling summary for this jeb and free the collected information | 
|  | */ | 
|  | sumsize = JFFS2_SUMMARY_NOSUM_SIZE; | 
|  | goto restart; | 
|  | } | 
|  |  | 
|  | jffs2_close_nextblock(c, jeb); | 
|  | jeb = NULL; | 
|  | /* keep always valid value in reserved_size */ | 
|  | reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE); | 
|  | } | 
|  | } else { | 
|  | if (jeb && minsize > jeb->free_size) { | 
|  | uint32_t waste; | 
|  |  | 
|  | /* Skip the end of this block and file it as having some dirty space */ | 
|  | /* If there's a pending write to it, flush now */ | 
|  |  | 
|  | if (jffs2_wbuf_dirty(c)) { | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | jffs2_dbg(1, "%s(): Flushing write buffer\n", | 
|  | __func__); | 
|  | jffs2_flush_wbuf_pad(c); | 
|  | spin_lock(&c->erase_completion_lock); | 
|  | jeb = c->nextblock; | 
|  | goto restart; | 
|  | } | 
|  |  | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  |  | 
|  | ret = jffs2_prealloc_raw_node_refs(c, jeb, 1); | 
|  |  | 
|  | /* Just lock it again and continue. Nothing much can change because | 
|  | we hold c->alloc_sem anyway. In fact, it's not entirely clear why | 
|  | we hold c->erase_completion_lock in the majority of this function... | 
|  | but that's a question for another (more caffeine-rich) day. */ | 
|  | spin_lock(&c->erase_completion_lock); | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | waste = jeb->free_size; | 
|  | jffs2_link_node_ref(c, jeb, | 
|  | (jeb->offset + c->sector_size - waste) | REF_OBSOLETE, | 
|  | waste, NULL); | 
|  | /* FIXME: that made it count as dirty. Convert to wasted */ | 
|  | jeb->dirty_size -= waste; | 
|  | c->dirty_size -= waste; | 
|  | jeb->wasted_size += waste; | 
|  | c->wasted_size += waste; | 
|  |  | 
|  | jffs2_close_nextblock(c, jeb); | 
|  | jeb = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!jeb) { | 
|  |  | 
|  | ret = jffs2_find_nextblock(c); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | jeb = c->nextblock; | 
|  |  | 
|  | if (jeb->free_size != c->sector_size - c->cleanmarker_size) { | 
|  | pr_warn("Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", | 
|  | jeb->offset, jeb->free_size); | 
|  | goto restart; | 
|  | } | 
|  | } | 
|  | /* OK, jeb (==c->nextblock) is now pointing at a block which definitely has | 
|  | enough space */ | 
|  | *len = jeb->free_size - reserved_size; | 
|  |  | 
|  | if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size && | 
|  | !jeb->first_node->next_in_ino) { | 
|  | /* Only node in it beforehand was a CLEANMARKER node (we think). | 
|  | So mark it obsolete now that there's going to be another node | 
|  | in the block. This will reduce used_size to zero but We've | 
|  | already set c->nextblock so that jffs2_mark_node_obsolete() | 
|  | won't try to refile it to the dirty_list. | 
|  | */ | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | jffs2_mark_node_obsolete(c, jeb->first_node); | 
|  | spin_lock(&c->erase_completion_lock); | 
|  | } | 
|  |  | 
|  | jffs2_dbg(1, "%s(): Giving 0x%x bytes at 0x%x\n", | 
|  | __func__, | 
|  | *len, jeb->offset + (c->sector_size - jeb->free_size)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	jffs2_add_physical_node_ref - add a physical node reference to the list | 
|  | *	@c: superblock info | 
|  | *	@new: new node reference to add | 
|  | *	@len: length of this physical node | 
|  | * | 
|  | *	Should only be used to report nodes for which space has been allocated | 
|  | *	by jffs2_reserve_space. | 
|  | * | 
|  | *	Must be called with the alloc_sem held. | 
|  | */ | 
|  |  | 
|  | struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c, | 
|  | uint32_t ofs, uint32_t len, | 
|  | struct jffs2_inode_cache *ic) | 
|  | { | 
|  | struct jffs2_eraseblock *jeb; | 
|  | struct jffs2_raw_node_ref *new; | 
|  |  | 
|  | jeb = &c->blocks[ofs / c->sector_size]; | 
|  |  | 
|  | jffs2_dbg(1, "%s(): Node at 0x%x(%d), size 0x%x\n", | 
|  | __func__, ofs & ~3, ofs & 3, len); | 
|  | #if 1 | 
|  | /* Allow non-obsolete nodes only to be added at the end of c->nextblock, | 
|  | if c->nextblock is set. Note that wbuf.c will file obsolete nodes | 
|  | even after refiling c->nextblock */ | 
|  | if ((c->nextblock || ((ofs & 3) != REF_OBSOLETE)) | 
|  | && (jeb != c->nextblock || (ofs & ~3) != jeb->offset + (c->sector_size - jeb->free_size))) { | 
|  | pr_warn("argh. node added in wrong place at 0x%08x(%d)\n", | 
|  | ofs & ~3, ofs & 3); | 
|  | if (c->nextblock) | 
|  | pr_warn("nextblock 0x%08x", c->nextblock->offset); | 
|  | else | 
|  | pr_warn("No nextblock"); | 
|  | pr_cont(", expected at %08x\n", | 
|  | jeb->offset + (c->sector_size - jeb->free_size)); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  | #endif | 
|  | spin_lock(&c->erase_completion_lock); | 
|  |  | 
|  | new = jffs2_link_node_ref(c, jeb, ofs, len, ic); | 
|  |  | 
|  | if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) { | 
|  | /* If it lives on the dirty_list, jffs2_reserve_space will put it there */ | 
|  | jffs2_dbg(1, "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", | 
|  | jeb->offset, jeb->free_size, jeb->dirty_size, | 
|  | jeb->used_size); | 
|  | if (jffs2_wbuf_dirty(c)) { | 
|  | /* Flush the last write in the block if it's outstanding */ | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | jffs2_flush_wbuf_pad(c); | 
|  | spin_lock(&c->erase_completion_lock); | 
|  | } | 
|  |  | 
|  | list_add_tail(&jeb->list, &c->clean_list); | 
|  | c->nextblock = NULL; | 
|  | } | 
|  | jffs2_dbg_acct_sanity_check_nolock(c,jeb); | 
|  | jffs2_dbg_acct_paranoia_check_nolock(c, jeb); | 
|  |  | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  |  | 
|  | return new; | 
|  | } | 
|  |  | 
|  |  | 
|  | void jffs2_complete_reservation(struct jffs2_sb_info *c) | 
|  | { | 
|  | jffs2_dbg(1, "jffs2_complete_reservation()\n"); | 
|  | spin_lock(&c->erase_completion_lock); | 
|  | jffs2_garbage_collect_trigger(c); | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | mutex_unlock(&c->alloc_sem); | 
|  | } | 
|  |  | 
|  | static inline int on_list(struct list_head *obj, struct list_head *head) | 
|  | { | 
|  | struct list_head *this; | 
|  |  | 
|  | list_for_each(this, head) { | 
|  | if (this == obj) { | 
|  | jffs2_dbg(1, "%p is on list at %p\n", obj, head); | 
|  | return 1; | 
|  |  | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref) | 
|  | { | 
|  | struct jffs2_eraseblock *jeb; | 
|  | int blocknr; | 
|  | struct jffs2_unknown_node n; | 
|  | int ret, addedsize; | 
|  | size_t retlen; | 
|  | uint32_t freed_len; | 
|  |  | 
|  | if(unlikely(!ref)) { | 
|  | pr_notice("EEEEEK. jffs2_mark_node_obsolete called with NULL node\n"); | 
|  | return; | 
|  | } | 
|  | if (ref_obsolete(ref)) { | 
|  | jffs2_dbg(1, "%s(): called with already obsolete node at 0x%08x\n", | 
|  | __func__, ref_offset(ref)); | 
|  | return; | 
|  | } | 
|  | blocknr = ref->flash_offset / c->sector_size; | 
|  | if (blocknr >= c->nr_blocks) { | 
|  | pr_notice("raw node at 0x%08x is off the end of device!\n", | 
|  | ref->flash_offset); | 
|  | BUG(); | 
|  | } | 
|  | jeb = &c->blocks[blocknr]; | 
|  |  | 
|  | if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) && | 
|  | !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) { | 
|  | /* Hm. This may confuse static lock analysis. If any of the above | 
|  | three conditions is false, we're going to return from this | 
|  | function without actually obliterating any nodes or freeing | 
|  | any jffs2_raw_node_refs. So we don't need to stop erases from | 
|  | happening, or protect against people holding an obsolete | 
|  | jffs2_raw_node_ref without the erase_completion_lock. */ | 
|  | mutex_lock(&c->erase_free_sem); | 
|  | } | 
|  |  | 
|  | spin_lock(&c->erase_completion_lock); | 
|  |  | 
|  | freed_len = ref_totlen(c, jeb, ref); | 
|  |  | 
|  | if (ref_flags(ref) == REF_UNCHECKED) { | 
|  | D1(if (unlikely(jeb->unchecked_size < freed_len)) { | 
|  | pr_notice("raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n", | 
|  | freed_len, blocknr, | 
|  | ref->flash_offset, jeb->used_size); | 
|  | BUG(); | 
|  | }) | 
|  | jffs2_dbg(1, "Obsoleting previously unchecked node at 0x%08x of len %x\n", | 
|  | ref_offset(ref), freed_len); | 
|  | jeb->unchecked_size -= freed_len; | 
|  | c->unchecked_size -= freed_len; | 
|  | } else { | 
|  | D1(if (unlikely(jeb->used_size < freed_len)) { | 
|  | pr_notice("raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n", | 
|  | freed_len, blocknr, | 
|  | ref->flash_offset, jeb->used_size); | 
|  | BUG(); | 
|  | }) | 
|  | jffs2_dbg(1, "Obsoleting node at 0x%08x of len %#x: ", | 
|  | ref_offset(ref), freed_len); | 
|  | jeb->used_size -= freed_len; | 
|  | c->used_size -= freed_len; | 
|  | } | 
|  |  | 
|  | // Take care, that wasted size is taken into concern | 
|  | if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) { | 
|  | jffs2_dbg(1, "Dirtying\n"); | 
|  | addedsize = freed_len; | 
|  | jeb->dirty_size += freed_len; | 
|  | c->dirty_size += freed_len; | 
|  |  | 
|  | /* Convert wasted space to dirty, if not a bad block */ | 
|  | if (jeb->wasted_size) { | 
|  | if (on_list(&jeb->list, &c->bad_used_list)) { | 
|  | jffs2_dbg(1, "Leaving block at %08x on the bad_used_list\n", | 
|  | jeb->offset); | 
|  | addedsize = 0; /* To fool the refiling code later */ | 
|  | } else { | 
|  | jffs2_dbg(1, "Converting %d bytes of wasted space to dirty in block at %08x\n", | 
|  | jeb->wasted_size, jeb->offset); | 
|  | addedsize += jeb->wasted_size; | 
|  | jeb->dirty_size += jeb->wasted_size; | 
|  | c->dirty_size += jeb->wasted_size; | 
|  | c->wasted_size -= jeb->wasted_size; | 
|  | jeb->wasted_size = 0; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | jffs2_dbg(1, "Wasting\n"); | 
|  | addedsize = 0; | 
|  | jeb->wasted_size += freed_len; | 
|  | c->wasted_size += freed_len; | 
|  | } | 
|  | ref->flash_offset = ref_offset(ref) | REF_OBSOLETE; | 
|  |  | 
|  | jffs2_dbg_acct_sanity_check_nolock(c, jeb); | 
|  | jffs2_dbg_acct_paranoia_check_nolock(c, jeb); | 
|  |  | 
|  | if (c->flags & JFFS2_SB_FLAG_SCANNING) { | 
|  | /* Flash scanning is in progress. Don't muck about with the block | 
|  | lists because they're not ready yet, and don't actually | 
|  | obliterate nodes that look obsolete. If they weren't | 
|  | marked obsolete on the flash at the time they _became_ | 
|  | obsolete, there was probably a reason for that. */ | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | /* We didn't lock the erase_free_sem */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (jeb == c->nextblock) { | 
|  | jffs2_dbg(2, "Not moving nextblock 0x%08x to dirty/erase_pending list\n", | 
|  | jeb->offset); | 
|  | } else if (!jeb->used_size && !jeb->unchecked_size) { | 
|  | if (jeb == c->gcblock) { | 
|  | jffs2_dbg(1, "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", | 
|  | jeb->offset); | 
|  | c->gcblock = NULL; | 
|  | } else { | 
|  | jffs2_dbg(1, "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", | 
|  | jeb->offset); | 
|  | list_del(&jeb->list); | 
|  | } | 
|  | if (jffs2_wbuf_dirty(c)) { | 
|  | jffs2_dbg(1, "...and adding to erasable_pending_wbuf_list\n"); | 
|  | list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list); | 
|  | } else { | 
|  | if (jiffies & 127) { | 
|  | /* Most of the time, we just erase it immediately. Otherwise we | 
|  | spend ages scanning it on mount, etc. */ | 
|  | jffs2_dbg(1, "...and adding to erase_pending_list\n"); | 
|  | list_add_tail(&jeb->list, &c->erase_pending_list); | 
|  | c->nr_erasing_blocks++; | 
|  | jffs2_garbage_collect_trigger(c); | 
|  | } else { | 
|  | /* Sometimes, however, we leave it elsewhere so it doesn't get | 
|  | immediately reused, and we spread the load a bit. */ | 
|  | jffs2_dbg(1, "...and adding to erasable_list\n"); | 
|  | list_add_tail(&jeb->list, &c->erasable_list); | 
|  | } | 
|  | } | 
|  | jffs2_dbg(1, "Done OK\n"); | 
|  | } else if (jeb == c->gcblock) { | 
|  | jffs2_dbg(2, "Not moving gcblock 0x%08x to dirty_list\n", | 
|  | jeb->offset); | 
|  | } else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) { | 
|  | jffs2_dbg(1, "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", | 
|  | jeb->offset); | 
|  | list_del(&jeb->list); | 
|  | jffs2_dbg(1, "...and adding to dirty_list\n"); | 
|  | list_add_tail(&jeb->list, &c->dirty_list); | 
|  | } else if (VERYDIRTY(c, jeb->dirty_size) && | 
|  | !VERYDIRTY(c, jeb->dirty_size - addedsize)) { | 
|  | jffs2_dbg(1, "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", | 
|  | jeb->offset); | 
|  | list_del(&jeb->list); | 
|  | jffs2_dbg(1, "...and adding to very_dirty_list\n"); | 
|  | list_add_tail(&jeb->list, &c->very_dirty_list); | 
|  | } else { | 
|  | jffs2_dbg(1, "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n", | 
|  | jeb->offset, jeb->free_size, jeb->dirty_size, | 
|  | jeb->used_size); | 
|  | } | 
|  |  | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  |  | 
|  | if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) || | 
|  | (c->flags & JFFS2_SB_FLAG_BUILDING)) { | 
|  | /* We didn't lock the erase_free_sem */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* The erase_free_sem is locked, and has been since before we marked the node obsolete | 
|  | and potentially put its eraseblock onto the erase_pending_list. Thus, we know that | 
|  | the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet | 
|  | by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */ | 
|  |  | 
|  | jffs2_dbg(1, "obliterating obsoleted node at 0x%08x\n", | 
|  | ref_offset(ref)); | 
|  | ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n); | 
|  | if (ret) { | 
|  | pr_warn("Read error reading from obsoleted node at 0x%08x: %d\n", | 
|  | ref_offset(ref), ret); | 
|  | goto out_erase_sem; | 
|  | } | 
|  | if (retlen != sizeof(n)) { | 
|  | pr_warn("Short read from obsoleted node at 0x%08x: %zd\n", | 
|  | ref_offset(ref), retlen); | 
|  | goto out_erase_sem; | 
|  | } | 
|  | if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) { | 
|  | pr_warn("Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", | 
|  | je32_to_cpu(n.totlen), freed_len); | 
|  | goto out_erase_sem; | 
|  | } | 
|  | if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) { | 
|  | jffs2_dbg(1, "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", | 
|  | ref_offset(ref), je16_to_cpu(n.nodetype)); | 
|  | goto out_erase_sem; | 
|  | } | 
|  | /* XXX FIXME: This is ugly now */ | 
|  | n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE); | 
|  | ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n); | 
|  | if (ret) { | 
|  | pr_warn("Write error in obliterating obsoleted node at 0x%08x: %d\n", | 
|  | ref_offset(ref), ret); | 
|  | goto out_erase_sem; | 
|  | } | 
|  | if (retlen != sizeof(n)) { | 
|  | pr_warn("Short write in obliterating obsoleted node at 0x%08x: %zd\n", | 
|  | ref_offset(ref), retlen); | 
|  | goto out_erase_sem; | 
|  | } | 
|  |  | 
|  | /* Nodes which have been marked obsolete no longer need to be | 
|  | associated with any inode. Remove them from the per-inode list. | 
|  |  | 
|  | Note we can't do this for NAND at the moment because we need | 
|  | obsolete dirent nodes to stay on the lists, because of the | 
|  | horridness in jffs2_garbage_collect_deletion_dirent(). Also | 
|  | because we delete the inocache, and on NAND we need that to | 
|  | stay around until all the nodes are actually erased, in order | 
|  | to stop us from giving the same inode number to another newly | 
|  | created inode. */ | 
|  | if (ref->next_in_ino) { | 
|  | struct jffs2_inode_cache *ic; | 
|  | struct jffs2_raw_node_ref **p; | 
|  |  | 
|  | spin_lock(&c->erase_completion_lock); | 
|  |  | 
|  | ic = jffs2_raw_ref_to_ic(ref); | 
|  | for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino)) | 
|  | ; | 
|  |  | 
|  | *p = ref->next_in_ino; | 
|  | ref->next_in_ino = NULL; | 
|  |  | 
|  | switch (ic->class) { | 
|  | #ifdef CONFIG_JFFS2_FS_XATTR | 
|  | case RAWNODE_CLASS_XATTR_DATUM: | 
|  | jffs2_release_xattr_datum(c, (struct jffs2_xattr_datum *)ic); | 
|  | break; | 
|  | case RAWNODE_CLASS_XATTR_REF: | 
|  | jffs2_release_xattr_ref(c, (struct jffs2_xattr_ref *)ic); | 
|  | break; | 
|  | #endif | 
|  | default: | 
|  | if (ic->nodes == (void *)ic && ic->pino_nlink == 0) | 
|  | jffs2_del_ino_cache(c, ic); | 
|  | break; | 
|  | } | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | } | 
|  |  | 
|  | out_erase_sem: | 
|  | mutex_unlock(&c->erase_free_sem); | 
|  | } | 
|  |  | 
|  | int jffs2_thread_should_wake(struct jffs2_sb_info *c) | 
|  | { | 
|  | int ret = 0; | 
|  | uint32_t dirty; | 
|  | int nr_very_dirty = 0; | 
|  | struct jffs2_eraseblock *jeb; | 
|  |  | 
|  | if (!list_empty(&c->erase_complete_list) || | 
|  | !list_empty(&c->erase_pending_list)) | 
|  | return 1; | 
|  |  | 
|  | if (c->unchecked_size) { | 
|  | jffs2_dbg(1, "jffs2_thread_should_wake(): unchecked_size %d, check_ino #%d\n", | 
|  | c->unchecked_size, c->check_ino); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* dirty_size contains blocks on erase_pending_list | 
|  | * those blocks are counted in c->nr_erasing_blocks. | 
|  | * If one block is actually erased, it is not longer counted as dirty_space | 
|  | * but it is counted in c->nr_erasing_blocks, so we add it and subtract it | 
|  | * with c->nr_erasing_blocks * c->sector_size again. | 
|  | * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks | 
|  | * This helps us to force gc and pick eventually a clean block to spread the load. | 
|  | */ | 
|  | dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size; | 
|  |  | 
|  | if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger && | 
|  | (dirty > c->nospc_dirty_size)) | 
|  | ret = 1; | 
|  |  | 
|  | list_for_each_entry(jeb, &c->very_dirty_list, list) { | 
|  | nr_very_dirty++; | 
|  | if (nr_very_dirty == c->vdirty_blocks_gctrigger) { | 
|  | ret = 1; | 
|  | /* In debug mode, actually go through and count them all */ | 
|  | D1(continue); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | jffs2_dbg(1, "%s(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x, vdirty_blocks %d: %s\n", | 
|  | __func__, c->nr_free_blocks, c->nr_erasing_blocks, | 
|  | c->dirty_size, nr_very_dirty, ret ? "yes" : "no"); | 
|  |  | 
|  | return ret; | 
|  | } |