| /* | 
 |  * Copyright (C) 2003 Jana Saout <jana@saout.de> | 
 |  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org> | 
 |  * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved. | 
 |  * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com> | 
 |  * | 
 |  * This file is released under the GPL. | 
 |  */ | 
 |  | 
 | #include <linux/completion.h> | 
 | #include <linux/err.h> | 
 | #include <linux/module.h> | 
 | #include <linux/init.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/key.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/blk-integrity.h> | 
 | #include <linux/mempool.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/crypto.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/atomic.h> | 
 | #include <linux/scatterlist.h> | 
 | #include <linux/rbtree.h> | 
 | #include <linux/ctype.h> | 
 | #include <asm/page.h> | 
 | #include <asm/unaligned.h> | 
 | #include <crypto/hash.h> | 
 | #include <crypto/md5.h> | 
 | #include <crypto/algapi.h> | 
 | #include <crypto/skcipher.h> | 
 | #include <crypto/aead.h> | 
 | #include <crypto/authenc.h> | 
 | #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */ | 
 | #include <linux/key-type.h> | 
 | #include <keys/user-type.h> | 
 | #include <keys/encrypted-type.h> | 
 | #include <keys/trusted-type.h> | 
 |  | 
 | #include <linux/device-mapper.h> | 
 |  | 
 | #include "dm-audit.h" | 
 |  | 
 | #define DM_MSG_PREFIX "crypt" | 
 |  | 
 | /* | 
 |  * context holding the current state of a multi-part conversion | 
 |  */ | 
 | struct convert_context { | 
 | 	struct completion restart; | 
 | 	struct bio *bio_in; | 
 | 	struct bvec_iter iter_in; | 
 | 	struct bio *bio_out; | 
 | 	struct bvec_iter iter_out; | 
 | 	atomic_t cc_pending; | 
 | 	u64 cc_sector; | 
 | 	union { | 
 | 		struct skcipher_request *req; | 
 | 		struct aead_request *req_aead; | 
 | 	} r; | 
 | 	bool aead_recheck; | 
 | 	bool aead_failed; | 
 |  | 
 | }; | 
 |  | 
 | /* | 
 |  * per bio private data | 
 |  */ | 
 | struct dm_crypt_io { | 
 | 	struct crypt_config *cc; | 
 | 	struct bio *base_bio; | 
 | 	u8 *integrity_metadata; | 
 | 	bool integrity_metadata_from_pool:1; | 
 |  | 
 | 	struct work_struct work; | 
 |  | 
 | 	struct convert_context ctx; | 
 |  | 
 | 	atomic_t io_pending; | 
 | 	blk_status_t error; | 
 | 	sector_t sector; | 
 |  | 
 | 	struct bvec_iter saved_bi_iter; | 
 |  | 
 | 	struct rb_node rb_node; | 
 | } CRYPTO_MINALIGN_ATTR; | 
 |  | 
 | struct dm_crypt_request { | 
 | 	struct convert_context *ctx; | 
 | 	struct scatterlist sg_in[4]; | 
 | 	struct scatterlist sg_out[4]; | 
 | 	u64 iv_sector; | 
 | }; | 
 |  | 
 | struct crypt_config; | 
 |  | 
 | struct crypt_iv_operations { | 
 | 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti, | 
 | 		   const char *opts); | 
 | 	void (*dtr)(struct crypt_config *cc); | 
 | 	int (*init)(struct crypt_config *cc); | 
 | 	int (*wipe)(struct crypt_config *cc); | 
 | 	int (*generator)(struct crypt_config *cc, u8 *iv, | 
 | 			 struct dm_crypt_request *dmreq); | 
 | 	int (*post)(struct crypt_config *cc, u8 *iv, | 
 | 		    struct dm_crypt_request *dmreq); | 
 | }; | 
 |  | 
 | struct iv_benbi_private { | 
 | 	int shift; | 
 | }; | 
 |  | 
 | #define LMK_SEED_SIZE 64 /* hash + 0 */ | 
 | struct iv_lmk_private { | 
 | 	struct crypto_shash *hash_tfm; | 
 | 	u8 *seed; | 
 | }; | 
 |  | 
 | #define TCW_WHITENING_SIZE 16 | 
 | struct iv_tcw_private { | 
 | 	struct crypto_shash *crc32_tfm; | 
 | 	u8 *iv_seed; | 
 | 	u8 *whitening; | 
 | }; | 
 |  | 
 | #define ELEPHANT_MAX_KEY_SIZE 32 | 
 | struct iv_elephant_private { | 
 | 	struct crypto_skcipher *tfm; | 
 | }; | 
 |  | 
 | /* | 
 |  * Crypt: maps a linear range of a block device | 
 |  * and encrypts / decrypts at the same time. | 
 |  */ | 
 | enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID, | 
 | 	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD, | 
 | 	     DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE, | 
 | 	     DM_CRYPT_WRITE_INLINE }; | 
 |  | 
 | enum cipher_flags { | 
 | 	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cipher */ | 
 | 	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */ | 
 | 	CRYPT_ENCRYPT_PREPROCESS,	/* Must preprocess data for encryption (elephant) */ | 
 | }; | 
 |  | 
 | /* | 
 |  * The fields in here must be read only after initialization. | 
 |  */ | 
 | struct crypt_config { | 
 | 	struct dm_dev *dev; | 
 | 	sector_t start; | 
 |  | 
 | 	struct percpu_counter n_allocated_pages; | 
 |  | 
 | 	struct workqueue_struct *io_queue; | 
 | 	struct workqueue_struct *crypt_queue; | 
 |  | 
 | 	spinlock_t write_thread_lock; | 
 | 	struct task_struct *write_thread; | 
 | 	struct rb_root write_tree; | 
 |  | 
 | 	char *cipher_string; | 
 | 	char *cipher_auth; | 
 | 	char *key_string; | 
 |  | 
 | 	const struct crypt_iv_operations *iv_gen_ops; | 
 | 	union { | 
 | 		struct iv_benbi_private benbi; | 
 | 		struct iv_lmk_private lmk; | 
 | 		struct iv_tcw_private tcw; | 
 | 		struct iv_elephant_private elephant; | 
 | 	} iv_gen_private; | 
 | 	u64 iv_offset; | 
 | 	unsigned int iv_size; | 
 | 	unsigned short sector_size; | 
 | 	unsigned char sector_shift; | 
 |  | 
 | 	union { | 
 | 		struct crypto_skcipher **tfms; | 
 | 		struct crypto_aead **tfms_aead; | 
 | 	} cipher_tfm; | 
 | 	unsigned int tfms_count; | 
 | 	unsigned long cipher_flags; | 
 |  | 
 | 	/* | 
 | 	 * Layout of each crypto request: | 
 | 	 * | 
 | 	 *   struct skcipher_request | 
 | 	 *      context | 
 | 	 *      padding | 
 | 	 *   struct dm_crypt_request | 
 | 	 *      padding | 
 | 	 *   IV | 
 | 	 * | 
 | 	 * The padding is added so that dm_crypt_request and the IV are | 
 | 	 * correctly aligned. | 
 | 	 */ | 
 | 	unsigned int dmreq_start; | 
 |  | 
 | 	unsigned int per_bio_data_size; | 
 |  | 
 | 	unsigned long flags; | 
 | 	unsigned int key_size; | 
 | 	unsigned int key_parts;      /* independent parts in key buffer */ | 
 | 	unsigned int key_extra_size; /* additional keys length */ | 
 | 	unsigned int key_mac_size;   /* MAC key size for authenc(...) */ | 
 |  | 
 | 	unsigned int integrity_tag_size; | 
 | 	unsigned int integrity_iv_size; | 
 | 	unsigned int on_disk_tag_size; | 
 |  | 
 | 	/* | 
 | 	 * pool for per bio private data, crypto requests, | 
 | 	 * encryption requeusts/buffer pages and integrity tags | 
 | 	 */ | 
 | 	unsigned int tag_pool_max_sectors; | 
 | 	mempool_t tag_pool; | 
 | 	mempool_t req_pool; | 
 | 	mempool_t page_pool; | 
 |  | 
 | 	struct bio_set bs; | 
 | 	struct mutex bio_alloc_lock; | 
 |  | 
 | 	u8 *authenc_key; /* space for keys in authenc() format (if used) */ | 
 | 	u8 key[]; | 
 | }; | 
 |  | 
 | #define MIN_IOS		64 | 
 | #define MAX_TAG_SIZE	480 | 
 | #define POOL_ENTRY_SIZE	512 | 
 |  | 
 | static DEFINE_SPINLOCK(dm_crypt_clients_lock); | 
 | static unsigned int dm_crypt_clients_n = 0; | 
 | static volatile unsigned long dm_crypt_pages_per_client; | 
 | #define DM_CRYPT_MEMORY_PERCENT			2 | 
 | #define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_VECS * 16) | 
 |  | 
 | static void crypt_endio(struct bio *clone); | 
 | static void kcryptd_queue_crypt(struct dm_crypt_io *io); | 
 | static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc, | 
 | 					     struct scatterlist *sg); | 
 |  | 
 | static bool crypt_integrity_aead(struct crypt_config *cc); | 
 |  | 
 | /* | 
 |  * Use this to access cipher attributes that are independent of the key. | 
 |  */ | 
 | static struct crypto_skcipher *any_tfm(struct crypt_config *cc) | 
 | { | 
 | 	return cc->cipher_tfm.tfms[0]; | 
 | } | 
 |  | 
 | static struct crypto_aead *any_tfm_aead(struct crypt_config *cc) | 
 | { | 
 | 	return cc->cipher_tfm.tfms_aead[0]; | 
 | } | 
 |  | 
 | /* | 
 |  * Different IV generation algorithms: | 
 |  * | 
 |  * plain: the initial vector is the 32-bit little-endian version of the sector | 
 |  *        number, padded with zeros if necessary. | 
 |  * | 
 |  * plain64: the initial vector is the 64-bit little-endian version of the sector | 
 |  *        number, padded with zeros if necessary. | 
 |  * | 
 |  * plain64be: the initial vector is the 64-bit big-endian version of the sector | 
 |  *        number, padded with zeros if necessary. | 
 |  * | 
 |  * essiv: "encrypted sector|salt initial vector", the sector number is | 
 |  *        encrypted with the bulk cipher using a salt as key. The salt | 
 |  *        should be derived from the bulk cipher's key via hashing. | 
 |  * | 
 |  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1 | 
 |  *        (needed for LRW-32-AES and possible other narrow block modes) | 
 |  * | 
 |  * null: the initial vector is always zero.  Provides compatibility with | 
 |  *       obsolete loop_fish2 devices.  Do not use for new devices. | 
 |  * | 
 |  * lmk:  Compatible implementation of the block chaining mode used | 
 |  *       by the Loop-AES block device encryption system | 
 |  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/ | 
 |  *       It operates on full 512 byte sectors and uses CBC | 
 |  *       with an IV derived from the sector number, the data and | 
 |  *       optionally extra IV seed. | 
 |  *       This means that after decryption the first block | 
 |  *       of sector must be tweaked according to decrypted data. | 
 |  *       Loop-AES can use three encryption schemes: | 
 |  *         version 1: is plain aes-cbc mode | 
 |  *         version 2: uses 64 multikey scheme with lmk IV generator | 
 |  *         version 3: the same as version 2 with additional IV seed | 
 |  *                   (it uses 65 keys, last key is used as IV seed) | 
 |  * | 
 |  * tcw:  Compatible implementation of the block chaining mode used | 
 |  *       by the TrueCrypt device encryption system (prior to version 4.1). | 
 |  *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat | 
 |  *       It operates on full 512 byte sectors and uses CBC | 
 |  *       with an IV derived from initial key and the sector number. | 
 |  *       In addition, whitening value is applied on every sector, whitening | 
 |  *       is calculated from initial key, sector number and mixed using CRC32. | 
 |  *       Note that this encryption scheme is vulnerable to watermarking attacks | 
 |  *       and should be used for old compatible containers access only. | 
 |  * | 
 |  * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode) | 
 |  *        The IV is encrypted little-endian byte-offset (with the same key | 
 |  *        and cipher as the volume). | 
 |  * | 
 |  * elephant: The extended version of eboiv with additional Elephant diffuser | 
 |  *           used with Bitlocker CBC mode. | 
 |  *           This mode was used in older Windows systems | 
 |  *           https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf | 
 |  */ | 
 |  | 
 | static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, | 
 | 			      struct dm_crypt_request *dmreq) | 
 | { | 
 | 	memset(iv, 0, cc->iv_size); | 
 | 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv, | 
 | 				struct dm_crypt_request *dmreq) | 
 | { | 
 | 	memset(iv, 0, cc->iv_size); | 
 | 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv, | 
 | 				  struct dm_crypt_request *dmreq) | 
 | { | 
 | 	memset(iv, 0, cc->iv_size); | 
 | 	/* iv_size is at least of size u64; usually it is 16 bytes */ | 
 | 	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, | 
 | 			      struct dm_crypt_request *dmreq) | 
 | { | 
 | 	/* | 
 | 	 * ESSIV encryption of the IV is now handled by the crypto API, | 
 | 	 * so just pass the plain sector number here. | 
 | 	 */ | 
 | 	memset(iv, 0, cc->iv_size); | 
 | 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti, | 
 | 			      const char *opts) | 
 | { | 
 | 	unsigned int bs; | 
 | 	int log; | 
 |  | 
 | 	if (crypt_integrity_aead(cc)) | 
 | 		bs = crypto_aead_blocksize(any_tfm_aead(cc)); | 
 | 	else | 
 | 		bs = crypto_skcipher_blocksize(any_tfm(cc)); | 
 | 	log = ilog2(bs); | 
 |  | 
 | 	/* we need to calculate how far we must shift the sector count | 
 | 	 * to get the cipher block count, we use this shift in _gen */ | 
 |  | 
 | 	if (1 << log != bs) { | 
 | 		ti->error = "cypher blocksize is not a power of 2"; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (log > 9) { | 
 | 		ti->error = "cypher blocksize is > 512"; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	cc->iv_gen_private.benbi.shift = 9 - log; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void crypt_iv_benbi_dtr(struct crypt_config *cc) | 
 | { | 
 | } | 
 |  | 
 | static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, | 
 | 			      struct dm_crypt_request *dmreq) | 
 | { | 
 | 	__be64 val; | 
 |  | 
 | 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */ | 
 |  | 
 | 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1); | 
 | 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64))); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, | 
 | 			     struct dm_crypt_request *dmreq) | 
 | { | 
 | 	memset(iv, 0, cc->iv_size); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void crypt_iv_lmk_dtr(struct crypt_config *cc) | 
 | { | 
 | 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; | 
 |  | 
 | 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm)) | 
 | 		crypto_free_shash(lmk->hash_tfm); | 
 | 	lmk->hash_tfm = NULL; | 
 |  | 
 | 	kfree_sensitive(lmk->seed); | 
 | 	lmk->seed = NULL; | 
 | } | 
 |  | 
 | static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti, | 
 | 			    const char *opts) | 
 | { | 
 | 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; | 
 |  | 
 | 	if (cc->sector_size != (1 << SECTOR_SHIFT)) { | 
 | 		ti->error = "Unsupported sector size for LMK"; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	lmk->hash_tfm = crypto_alloc_shash("md5", 0, | 
 | 					   CRYPTO_ALG_ALLOCATES_MEMORY); | 
 | 	if (IS_ERR(lmk->hash_tfm)) { | 
 | 		ti->error = "Error initializing LMK hash"; | 
 | 		return PTR_ERR(lmk->hash_tfm); | 
 | 	} | 
 |  | 
 | 	/* No seed in LMK version 2 */ | 
 | 	if (cc->key_parts == cc->tfms_count) { | 
 | 		lmk->seed = NULL; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL); | 
 | 	if (!lmk->seed) { | 
 | 		crypt_iv_lmk_dtr(cc); | 
 | 		ti->error = "Error kmallocing seed storage in LMK"; | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int crypt_iv_lmk_init(struct crypt_config *cc) | 
 | { | 
 | 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; | 
 | 	int subkey_size = cc->key_size / cc->key_parts; | 
 |  | 
 | 	/* LMK seed is on the position of LMK_KEYS + 1 key */ | 
 | 	if (lmk->seed) | 
 | 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size), | 
 | 		       crypto_shash_digestsize(lmk->hash_tfm)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int crypt_iv_lmk_wipe(struct crypt_config *cc) | 
 | { | 
 | 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; | 
 |  | 
 | 	if (lmk->seed) | 
 | 		memset(lmk->seed, 0, LMK_SEED_SIZE); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv, | 
 | 			    struct dm_crypt_request *dmreq, | 
 | 			    u8 *data) | 
 | { | 
 | 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; | 
 | 	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm); | 
 | 	struct md5_state md5state; | 
 | 	__le32 buf[4]; | 
 | 	int i, r; | 
 |  | 
 | 	desc->tfm = lmk->hash_tfm; | 
 |  | 
 | 	r = crypto_shash_init(desc); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	if (lmk->seed) { | 
 | 		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE); | 
 | 		if (r) | 
 | 			return r; | 
 | 	} | 
 |  | 
 | 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */ | 
 | 	r = crypto_shash_update(desc, data + 16, 16 * 31); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	/* Sector is cropped to 56 bits here */ | 
 | 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF); | 
 | 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000); | 
 | 	buf[2] = cpu_to_le32(4024); | 
 | 	buf[3] = 0; | 
 | 	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf)); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	/* No MD5 padding here */ | 
 | 	r = crypto_shash_export(desc, &md5state); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	for (i = 0; i < MD5_HASH_WORDS; i++) | 
 | 		__cpu_to_le32s(&md5state.hash[i]); | 
 | 	memcpy(iv, &md5state.hash, cc->iv_size); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv, | 
 | 			    struct dm_crypt_request *dmreq) | 
 | { | 
 | 	struct scatterlist *sg; | 
 | 	u8 *src; | 
 | 	int r = 0; | 
 |  | 
 | 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { | 
 | 		sg = crypt_get_sg_data(cc, dmreq->sg_in); | 
 | 		src = kmap_atomic(sg_page(sg)); | 
 | 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset); | 
 | 		kunmap_atomic(src); | 
 | 	} else | 
 | 		memset(iv, 0, cc->iv_size); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv, | 
 | 			     struct dm_crypt_request *dmreq) | 
 | { | 
 | 	struct scatterlist *sg; | 
 | 	u8 *dst; | 
 | 	int r; | 
 |  | 
 | 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) | 
 | 		return 0; | 
 |  | 
 | 	sg = crypt_get_sg_data(cc, dmreq->sg_out); | 
 | 	dst = kmap_atomic(sg_page(sg)); | 
 | 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset); | 
 |  | 
 | 	/* Tweak the first block of plaintext sector */ | 
 | 	if (!r) | 
 | 		crypto_xor(dst + sg->offset, iv, cc->iv_size); | 
 |  | 
 | 	kunmap_atomic(dst); | 
 | 	return r; | 
 | } | 
 |  | 
 | static void crypt_iv_tcw_dtr(struct crypt_config *cc) | 
 | { | 
 | 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; | 
 |  | 
 | 	kfree_sensitive(tcw->iv_seed); | 
 | 	tcw->iv_seed = NULL; | 
 | 	kfree_sensitive(tcw->whitening); | 
 | 	tcw->whitening = NULL; | 
 |  | 
 | 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm)) | 
 | 		crypto_free_shash(tcw->crc32_tfm); | 
 | 	tcw->crc32_tfm = NULL; | 
 | } | 
 |  | 
 | static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti, | 
 | 			    const char *opts) | 
 | { | 
 | 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; | 
 |  | 
 | 	if (cc->sector_size != (1 << SECTOR_SHIFT)) { | 
 | 		ti->error = "Unsupported sector size for TCW"; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) { | 
 | 		ti->error = "Wrong key size for TCW"; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, | 
 | 					    CRYPTO_ALG_ALLOCATES_MEMORY); | 
 | 	if (IS_ERR(tcw->crc32_tfm)) { | 
 | 		ti->error = "Error initializing CRC32 in TCW"; | 
 | 		return PTR_ERR(tcw->crc32_tfm); | 
 | 	} | 
 |  | 
 | 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL); | 
 | 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL); | 
 | 	if (!tcw->iv_seed || !tcw->whitening) { | 
 | 		crypt_iv_tcw_dtr(cc); | 
 | 		ti->error = "Error allocating seed storage in TCW"; | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int crypt_iv_tcw_init(struct crypt_config *cc) | 
 | { | 
 | 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; | 
 | 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE; | 
 |  | 
 | 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size); | 
 | 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size], | 
 | 	       TCW_WHITENING_SIZE); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int crypt_iv_tcw_wipe(struct crypt_config *cc) | 
 | { | 
 | 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; | 
 |  | 
 | 	memset(tcw->iv_seed, 0, cc->iv_size); | 
 | 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int crypt_iv_tcw_whitening(struct crypt_config *cc, | 
 | 				  struct dm_crypt_request *dmreq, | 
 | 				  u8 *data) | 
 | { | 
 | 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; | 
 | 	__le64 sector = cpu_to_le64(dmreq->iv_sector); | 
 | 	u8 buf[TCW_WHITENING_SIZE]; | 
 | 	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm); | 
 | 	int i, r; | 
 |  | 
 | 	/* xor whitening with sector number */ | 
 | 	crypto_xor_cpy(buf, tcw->whitening, (u8 *)§or, 8); | 
 | 	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)§or, 8); | 
 |  | 
 | 	/* calculate crc32 for every 32bit part and xor it */ | 
 | 	desc->tfm = tcw->crc32_tfm; | 
 | 	for (i = 0; i < 4; i++) { | 
 | 		r = crypto_shash_init(desc); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		r = crypto_shash_update(desc, &buf[i * 4], 4); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		r = crypto_shash_final(desc, &buf[i * 4]); | 
 | 		if (r) | 
 | 			goto out; | 
 | 	} | 
 | 	crypto_xor(&buf[0], &buf[12], 4); | 
 | 	crypto_xor(&buf[4], &buf[8], 4); | 
 |  | 
 | 	/* apply whitening (8 bytes) to whole sector */ | 
 | 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++) | 
 | 		crypto_xor(data + i * 8, buf, 8); | 
 | out: | 
 | 	memzero_explicit(buf, sizeof(buf)); | 
 | 	return r; | 
 | } | 
 |  | 
 | static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv, | 
 | 			    struct dm_crypt_request *dmreq) | 
 | { | 
 | 	struct scatterlist *sg; | 
 | 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; | 
 | 	__le64 sector = cpu_to_le64(dmreq->iv_sector); | 
 | 	u8 *src; | 
 | 	int r = 0; | 
 |  | 
 | 	/* Remove whitening from ciphertext */ | 
 | 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { | 
 | 		sg = crypt_get_sg_data(cc, dmreq->sg_in); | 
 | 		src = kmap_atomic(sg_page(sg)); | 
 | 		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset); | 
 | 		kunmap_atomic(src); | 
 | 	} | 
 |  | 
 | 	/* Calculate IV */ | 
 | 	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)§or, 8); | 
 | 	if (cc->iv_size > 8) | 
 | 		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)§or, | 
 | 			       cc->iv_size - 8); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv, | 
 | 			     struct dm_crypt_request *dmreq) | 
 | { | 
 | 	struct scatterlist *sg; | 
 | 	u8 *dst; | 
 | 	int r; | 
 |  | 
 | 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) | 
 | 		return 0; | 
 |  | 
 | 	/* Apply whitening on ciphertext */ | 
 | 	sg = crypt_get_sg_data(cc, dmreq->sg_out); | 
 | 	dst = kmap_atomic(sg_page(sg)); | 
 | 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset); | 
 | 	kunmap_atomic(dst); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv, | 
 | 				struct dm_crypt_request *dmreq) | 
 | { | 
 | 	/* Used only for writes, there must be an additional space to store IV */ | 
 | 	get_random_bytes(iv, cc->iv_size); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti, | 
 | 			    const char *opts) | 
 | { | 
 | 	if (crypt_integrity_aead(cc)) { | 
 | 		ti->error = "AEAD transforms not supported for EBOIV"; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) { | 
 | 		ti->error = "Block size of EBOIV cipher does not match IV size of block cipher"; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv, | 
 | 			    struct dm_crypt_request *dmreq) | 
 | { | 
 | 	u8 buf[MAX_CIPHER_BLOCKSIZE] __aligned(__alignof__(__le64)); | 
 | 	struct skcipher_request *req; | 
 | 	struct scatterlist src, dst; | 
 | 	DECLARE_CRYPTO_WAIT(wait); | 
 | 	int err; | 
 |  | 
 | 	req = skcipher_request_alloc(any_tfm(cc), GFP_NOIO); | 
 | 	if (!req) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	memset(buf, 0, cc->iv_size); | 
 | 	*(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size); | 
 |  | 
 | 	sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size); | 
 | 	sg_init_one(&dst, iv, cc->iv_size); | 
 | 	skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf); | 
 | 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait); | 
 | 	err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); | 
 | 	skcipher_request_free(req); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void crypt_iv_elephant_dtr(struct crypt_config *cc) | 
 | { | 
 | 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; | 
 |  | 
 | 	crypto_free_skcipher(elephant->tfm); | 
 | 	elephant->tfm = NULL; | 
 | } | 
 |  | 
 | static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti, | 
 | 			    const char *opts) | 
 | { | 
 | 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; | 
 | 	int r; | 
 |  | 
 | 	elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0, | 
 | 					      CRYPTO_ALG_ALLOCATES_MEMORY); | 
 | 	if (IS_ERR(elephant->tfm)) { | 
 | 		r = PTR_ERR(elephant->tfm); | 
 | 		elephant->tfm = NULL; | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	r = crypt_iv_eboiv_ctr(cc, ti, NULL); | 
 | 	if (r) | 
 | 		crypt_iv_elephant_dtr(cc); | 
 | 	return r; | 
 | } | 
 |  | 
 | static void diffuser_disk_to_cpu(u32 *d, size_t n) | 
 | { | 
 | #ifndef __LITTLE_ENDIAN | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < n; i++) | 
 | 		d[i] = le32_to_cpu((__le32)d[i]); | 
 | #endif | 
 | } | 
 |  | 
 | static void diffuser_cpu_to_disk(__le32 *d, size_t n) | 
 | { | 
 | #ifndef __LITTLE_ENDIAN | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < n; i++) | 
 | 		d[i] = cpu_to_le32((u32)d[i]); | 
 | #endif | 
 | } | 
 |  | 
 | static void diffuser_a_decrypt(u32 *d, size_t n) | 
 | { | 
 | 	int i, i1, i2, i3; | 
 |  | 
 | 	for (i = 0; i < 5; i++) { | 
 | 		i1 = 0; | 
 | 		i2 = n - 2; | 
 | 		i3 = n - 5; | 
 |  | 
 | 		while (i1 < (n - 1)) { | 
 | 			d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23); | 
 | 			i1++; i2++; i3++; | 
 |  | 
 | 			if (i3 >= n) | 
 | 				i3 -= n; | 
 |  | 
 | 			d[i1] += d[i2] ^ d[i3]; | 
 | 			i1++; i2++; i3++; | 
 |  | 
 | 			if (i2 >= n) | 
 | 				i2 -= n; | 
 |  | 
 | 			d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19); | 
 | 			i1++; i2++; i3++; | 
 |  | 
 | 			d[i1] += d[i2] ^ d[i3]; | 
 | 			i1++; i2++; i3++; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void diffuser_a_encrypt(u32 *d, size_t n) | 
 | { | 
 | 	int i, i1, i2, i3; | 
 |  | 
 | 	for (i = 0; i < 5; i++) { | 
 | 		i1 = n - 1; | 
 | 		i2 = n - 2 - 1; | 
 | 		i3 = n - 5 - 1; | 
 |  | 
 | 		while (i1 > 0) { | 
 | 			d[i1] -= d[i2] ^ d[i3]; | 
 | 			i1--; i2--; i3--; | 
 |  | 
 | 			d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19); | 
 | 			i1--; i2--; i3--; | 
 |  | 
 | 			if (i2 < 0) | 
 | 				i2 += n; | 
 |  | 
 | 			d[i1] -= d[i2] ^ d[i3]; | 
 | 			i1--; i2--; i3--; | 
 |  | 
 | 			if (i3 < 0) | 
 | 				i3 += n; | 
 |  | 
 | 			d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23); | 
 | 			i1--; i2--; i3--; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void diffuser_b_decrypt(u32 *d, size_t n) | 
 | { | 
 | 	int i, i1, i2, i3; | 
 |  | 
 | 	for (i = 0; i < 3; i++) { | 
 | 		i1 = 0; | 
 | 		i2 = 2; | 
 | 		i3 = 5; | 
 |  | 
 | 		while (i1 < (n - 1)) { | 
 | 			d[i1] += d[i2] ^ d[i3]; | 
 | 			i1++; i2++; i3++; | 
 |  | 
 | 			d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22); | 
 | 			i1++; i2++; i3++; | 
 |  | 
 | 			if (i2 >= n) | 
 | 				i2 -= n; | 
 |  | 
 | 			d[i1] += d[i2] ^ d[i3]; | 
 | 			i1++; i2++; i3++; | 
 |  | 
 | 			if (i3 >= n) | 
 | 				i3 -= n; | 
 |  | 
 | 			d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7); | 
 | 			i1++; i2++; i3++; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void diffuser_b_encrypt(u32 *d, size_t n) | 
 | { | 
 | 	int i, i1, i2, i3; | 
 |  | 
 | 	for (i = 0; i < 3; i++) { | 
 | 		i1 = n - 1; | 
 | 		i2 = 2 - 1; | 
 | 		i3 = 5 - 1; | 
 |  | 
 | 		while (i1 > 0) { | 
 | 			d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7); | 
 | 			i1--; i2--; i3--; | 
 |  | 
 | 			if (i3 < 0) | 
 | 				i3 += n; | 
 |  | 
 | 			d[i1] -= d[i2] ^ d[i3]; | 
 | 			i1--; i2--; i3--; | 
 |  | 
 | 			if (i2 < 0) | 
 | 				i2 += n; | 
 |  | 
 | 			d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22); | 
 | 			i1--; i2--; i3--; | 
 |  | 
 | 			d[i1] -= d[i2] ^ d[i3]; | 
 | 			i1--; i2--; i3--; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq) | 
 | { | 
 | 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; | 
 | 	u8 *es, *ks, *data, *data2, *data_offset; | 
 | 	struct skcipher_request *req; | 
 | 	struct scatterlist *sg, *sg2, src, dst; | 
 | 	DECLARE_CRYPTO_WAIT(wait); | 
 | 	int i, r; | 
 |  | 
 | 	req = skcipher_request_alloc(elephant->tfm, GFP_NOIO); | 
 | 	es = kzalloc(16, GFP_NOIO); /* Key for AES */ | 
 | 	ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */ | 
 |  | 
 | 	if (!req || !es || !ks) { | 
 | 		r = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	*(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size); | 
 |  | 
 | 	/* E(Ks, e(s)) */ | 
 | 	sg_init_one(&src, es, 16); | 
 | 	sg_init_one(&dst, ks, 16); | 
 | 	skcipher_request_set_crypt(req, &src, &dst, 16, NULL); | 
 | 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait); | 
 | 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); | 
 | 	if (r) | 
 | 		goto out; | 
 |  | 
 | 	/* E(Ks, e'(s)) */ | 
 | 	es[15] = 0x80; | 
 | 	sg_init_one(&dst, &ks[16], 16); | 
 | 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); | 
 | 	if (r) | 
 | 		goto out; | 
 |  | 
 | 	sg = crypt_get_sg_data(cc, dmreq->sg_out); | 
 | 	data = kmap_atomic(sg_page(sg)); | 
 | 	data_offset = data + sg->offset; | 
 |  | 
 | 	/* Cannot modify original bio, copy to sg_out and apply Elephant to it */ | 
 | 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { | 
 | 		sg2 = crypt_get_sg_data(cc, dmreq->sg_in); | 
 | 		data2 = kmap_atomic(sg_page(sg2)); | 
 | 		memcpy(data_offset, data2 + sg2->offset, cc->sector_size); | 
 | 		kunmap_atomic(data2); | 
 | 	} | 
 |  | 
 | 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { | 
 | 		diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32)); | 
 | 		diffuser_b_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32)); | 
 | 		diffuser_a_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32)); | 
 | 		diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32)); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < (cc->sector_size / 32); i++) | 
 | 		crypto_xor(data_offset + i * 32, ks, 32); | 
 |  | 
 | 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { | 
 | 		diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32)); | 
 | 		diffuser_a_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32)); | 
 | 		diffuser_b_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32)); | 
 | 		diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32)); | 
 | 	} | 
 |  | 
 | 	kunmap_atomic(data); | 
 | out: | 
 | 	kfree_sensitive(ks); | 
 | 	kfree_sensitive(es); | 
 | 	skcipher_request_free(req); | 
 | 	return r; | 
 | } | 
 |  | 
 | static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv, | 
 | 			    struct dm_crypt_request *dmreq) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { | 
 | 		r = crypt_iv_elephant(cc, dmreq); | 
 | 		if (r) | 
 | 			return r; | 
 | 	} | 
 |  | 
 | 	return crypt_iv_eboiv_gen(cc, iv, dmreq); | 
 | } | 
 |  | 
 | static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv, | 
 | 				  struct dm_crypt_request *dmreq) | 
 | { | 
 | 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) | 
 | 		return crypt_iv_elephant(cc, dmreq); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int crypt_iv_elephant_init(struct crypt_config *cc) | 
 | { | 
 | 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; | 
 | 	int key_offset = cc->key_size - cc->key_extra_size; | 
 |  | 
 | 	return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size); | 
 | } | 
 |  | 
 | static int crypt_iv_elephant_wipe(struct crypt_config *cc) | 
 | { | 
 | 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; | 
 | 	u8 key[ELEPHANT_MAX_KEY_SIZE]; | 
 |  | 
 | 	memset(key, 0, cc->key_extra_size); | 
 | 	return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size); | 
 | } | 
 |  | 
 | static const struct crypt_iv_operations crypt_iv_plain_ops = { | 
 | 	.generator = crypt_iv_plain_gen | 
 | }; | 
 |  | 
 | static const struct crypt_iv_operations crypt_iv_plain64_ops = { | 
 | 	.generator = crypt_iv_plain64_gen | 
 | }; | 
 |  | 
 | static const struct crypt_iv_operations crypt_iv_plain64be_ops = { | 
 | 	.generator = crypt_iv_plain64be_gen | 
 | }; | 
 |  | 
 | static const struct crypt_iv_operations crypt_iv_essiv_ops = { | 
 | 	.generator = crypt_iv_essiv_gen | 
 | }; | 
 |  | 
 | static const struct crypt_iv_operations crypt_iv_benbi_ops = { | 
 | 	.ctr	   = crypt_iv_benbi_ctr, | 
 | 	.dtr	   = crypt_iv_benbi_dtr, | 
 | 	.generator = crypt_iv_benbi_gen | 
 | }; | 
 |  | 
 | static const struct crypt_iv_operations crypt_iv_null_ops = { | 
 | 	.generator = crypt_iv_null_gen | 
 | }; | 
 |  | 
 | static const struct crypt_iv_operations crypt_iv_lmk_ops = { | 
 | 	.ctr	   = crypt_iv_lmk_ctr, | 
 | 	.dtr	   = crypt_iv_lmk_dtr, | 
 | 	.init	   = crypt_iv_lmk_init, | 
 | 	.wipe	   = crypt_iv_lmk_wipe, | 
 | 	.generator = crypt_iv_lmk_gen, | 
 | 	.post	   = crypt_iv_lmk_post | 
 | }; | 
 |  | 
 | static const struct crypt_iv_operations crypt_iv_tcw_ops = { | 
 | 	.ctr	   = crypt_iv_tcw_ctr, | 
 | 	.dtr	   = crypt_iv_tcw_dtr, | 
 | 	.init	   = crypt_iv_tcw_init, | 
 | 	.wipe	   = crypt_iv_tcw_wipe, | 
 | 	.generator = crypt_iv_tcw_gen, | 
 | 	.post	   = crypt_iv_tcw_post | 
 | }; | 
 |  | 
 | static const struct crypt_iv_operations crypt_iv_random_ops = { | 
 | 	.generator = crypt_iv_random_gen | 
 | }; | 
 |  | 
 | static const struct crypt_iv_operations crypt_iv_eboiv_ops = { | 
 | 	.ctr	   = crypt_iv_eboiv_ctr, | 
 | 	.generator = crypt_iv_eboiv_gen | 
 | }; | 
 |  | 
 | static const struct crypt_iv_operations crypt_iv_elephant_ops = { | 
 | 	.ctr	   = crypt_iv_elephant_ctr, | 
 | 	.dtr	   = crypt_iv_elephant_dtr, | 
 | 	.init	   = crypt_iv_elephant_init, | 
 | 	.wipe	   = crypt_iv_elephant_wipe, | 
 | 	.generator = crypt_iv_elephant_gen, | 
 | 	.post	   = crypt_iv_elephant_post | 
 | }; | 
 |  | 
 | /* | 
 |  * Integrity extensions | 
 |  */ | 
 | static bool crypt_integrity_aead(struct crypt_config *cc) | 
 | { | 
 | 	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags); | 
 | } | 
 |  | 
 | static bool crypt_integrity_hmac(struct crypt_config *cc) | 
 | { | 
 | 	return crypt_integrity_aead(cc) && cc->key_mac_size; | 
 | } | 
 |  | 
 | /* Get sg containing data */ | 
 | static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc, | 
 | 					     struct scatterlist *sg) | 
 | { | 
 | 	if (unlikely(crypt_integrity_aead(cc))) | 
 | 		return &sg[2]; | 
 |  | 
 | 	return sg; | 
 | } | 
 |  | 
 | static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio) | 
 | { | 
 | 	struct bio_integrity_payload *bip; | 
 | 	unsigned int tag_len; | 
 | 	int ret; | 
 |  | 
 | 	if (!bio_sectors(bio) || !io->cc->on_disk_tag_size) | 
 | 		return 0; | 
 |  | 
 | 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1); | 
 | 	if (IS_ERR(bip)) | 
 | 		return PTR_ERR(bip); | 
 |  | 
 | 	tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift); | 
 |  | 
 | 	bip->bip_iter.bi_size = tag_len; | 
 | 	bip->bip_iter.bi_sector = io->cc->start + io->sector; | 
 |  | 
 | 	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata), | 
 | 				     tag_len, offset_in_page(io->integrity_metadata)); | 
 | 	if (unlikely(ret != tag_len)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti) | 
 | { | 
 | #ifdef CONFIG_BLK_DEV_INTEGRITY | 
 | 	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk); | 
 | 	struct mapped_device *md = dm_table_get_md(ti->table); | 
 |  | 
 | 	/* From now we require underlying device with our integrity profile */ | 
 | 	if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) { | 
 | 		ti->error = "Integrity profile not supported."; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (bi->tag_size != cc->on_disk_tag_size || | 
 | 	    bi->tuple_size != cc->on_disk_tag_size) { | 
 | 		ti->error = "Integrity profile tag size mismatch."; | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if (1 << bi->interval_exp != cc->sector_size) { | 
 | 		ti->error = "Integrity profile sector size mismatch."; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (crypt_integrity_aead(cc)) { | 
 | 		cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size; | 
 | 		DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md), | 
 | 		       cc->integrity_tag_size, cc->integrity_iv_size); | 
 |  | 
 | 		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) { | 
 | 			ti->error = "Integrity AEAD auth tag size is not supported."; | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} else if (cc->integrity_iv_size) | 
 | 		DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md), | 
 | 		       cc->integrity_iv_size); | 
 |  | 
 | 	if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) { | 
 | 		ti->error = "Not enough space for integrity tag in the profile."; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | #else | 
 | 	ti->error = "Integrity profile not supported."; | 
 | 	return -EINVAL; | 
 | #endif | 
 | } | 
 |  | 
 | static void crypt_convert_init(struct crypt_config *cc, | 
 | 			       struct convert_context *ctx, | 
 | 			       struct bio *bio_out, struct bio *bio_in, | 
 | 			       sector_t sector) | 
 | { | 
 | 	ctx->bio_in = bio_in; | 
 | 	ctx->bio_out = bio_out; | 
 | 	if (bio_in) | 
 | 		ctx->iter_in = bio_in->bi_iter; | 
 | 	if (bio_out) | 
 | 		ctx->iter_out = bio_out->bi_iter; | 
 | 	ctx->cc_sector = sector + cc->iv_offset; | 
 | 	init_completion(&ctx->restart); | 
 | } | 
 |  | 
 | static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc, | 
 | 					     void *req) | 
 | { | 
 | 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start); | 
 | } | 
 |  | 
 | static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq) | 
 | { | 
 | 	return (void *)((char *)dmreq - cc->dmreq_start); | 
 | } | 
 |  | 
 | static u8 *iv_of_dmreq(struct crypt_config *cc, | 
 | 		       struct dm_crypt_request *dmreq) | 
 | { | 
 | 	if (crypt_integrity_aead(cc)) | 
 | 		return (u8 *)ALIGN((unsigned long)(dmreq + 1), | 
 | 			crypto_aead_alignmask(any_tfm_aead(cc)) + 1); | 
 | 	else | 
 | 		return (u8 *)ALIGN((unsigned long)(dmreq + 1), | 
 | 			crypto_skcipher_alignmask(any_tfm(cc)) + 1); | 
 | } | 
 |  | 
 | static u8 *org_iv_of_dmreq(struct crypt_config *cc, | 
 | 		       struct dm_crypt_request *dmreq) | 
 | { | 
 | 	return iv_of_dmreq(cc, dmreq) + cc->iv_size; | 
 | } | 
 |  | 
 | static __le64 *org_sector_of_dmreq(struct crypt_config *cc, | 
 | 		       struct dm_crypt_request *dmreq) | 
 | { | 
 | 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size; | 
 | 	return (__le64 *) ptr; | 
 | } | 
 |  | 
 | static unsigned int *org_tag_of_dmreq(struct crypt_config *cc, | 
 | 		       struct dm_crypt_request *dmreq) | 
 | { | 
 | 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + | 
 | 		  cc->iv_size + sizeof(uint64_t); | 
 | 	return (unsigned int*)ptr; | 
 | } | 
 |  | 
 | static void *tag_from_dmreq(struct crypt_config *cc, | 
 | 				struct dm_crypt_request *dmreq) | 
 | { | 
 | 	struct convert_context *ctx = dmreq->ctx; | 
 | 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); | 
 |  | 
 | 	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) * | 
 | 		cc->on_disk_tag_size]; | 
 | } | 
 |  | 
 | static void *iv_tag_from_dmreq(struct crypt_config *cc, | 
 | 			       struct dm_crypt_request *dmreq) | 
 | { | 
 | 	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size; | 
 | } | 
 |  | 
 | static int crypt_convert_block_aead(struct crypt_config *cc, | 
 | 				     struct convert_context *ctx, | 
 | 				     struct aead_request *req, | 
 | 				     unsigned int tag_offset) | 
 | { | 
 | 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); | 
 | 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); | 
 | 	struct dm_crypt_request *dmreq; | 
 | 	u8 *iv, *org_iv, *tag_iv, *tag; | 
 | 	__le64 *sector; | 
 | 	int r = 0; | 
 |  | 
 | 	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size); | 
 |  | 
 | 	/* Reject unexpected unaligned bio. */ | 
 | 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1))) | 
 | 		return -EIO; | 
 |  | 
 | 	dmreq = dmreq_of_req(cc, req); | 
 | 	dmreq->iv_sector = ctx->cc_sector; | 
 | 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) | 
 | 		dmreq->iv_sector >>= cc->sector_shift; | 
 | 	dmreq->ctx = ctx; | 
 |  | 
 | 	*org_tag_of_dmreq(cc, dmreq) = tag_offset; | 
 |  | 
 | 	sector = org_sector_of_dmreq(cc, dmreq); | 
 | 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset); | 
 |  | 
 | 	iv = iv_of_dmreq(cc, dmreq); | 
 | 	org_iv = org_iv_of_dmreq(cc, dmreq); | 
 | 	tag = tag_from_dmreq(cc, dmreq); | 
 | 	tag_iv = iv_tag_from_dmreq(cc, dmreq); | 
 |  | 
 | 	/* AEAD request: | 
 | 	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --| | 
 | 	 *  | (authenticated) | (auth+encryption) |              | | 
 | 	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  | | 
 | 	 */ | 
 | 	sg_init_table(dmreq->sg_in, 4); | 
 | 	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t)); | 
 | 	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size); | 
 | 	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset); | 
 | 	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size); | 
 |  | 
 | 	sg_init_table(dmreq->sg_out, 4); | 
 | 	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t)); | 
 | 	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size); | 
 | 	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset); | 
 | 	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size); | 
 |  | 
 | 	if (cc->iv_gen_ops) { | 
 | 		/* For READs use IV stored in integrity metadata */ | 
 | 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) { | 
 | 			memcpy(org_iv, tag_iv, cc->iv_size); | 
 | 		} else { | 
 | 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq); | 
 | 			if (r < 0) | 
 | 				return r; | 
 | 			/* Store generated IV in integrity metadata */ | 
 | 			if (cc->integrity_iv_size) | 
 | 				memcpy(tag_iv, org_iv, cc->iv_size); | 
 | 		} | 
 | 		/* Working copy of IV, to be modified in crypto API */ | 
 | 		memcpy(iv, org_iv, cc->iv_size); | 
 | 	} | 
 |  | 
 | 	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size); | 
 | 	if (bio_data_dir(ctx->bio_in) == WRITE) { | 
 | 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out, | 
 | 				       cc->sector_size, iv); | 
 | 		r = crypto_aead_encrypt(req); | 
 | 		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size) | 
 | 			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0, | 
 | 			       cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size)); | 
 | 	} else { | 
 | 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out, | 
 | 				       cc->sector_size + cc->integrity_tag_size, iv); | 
 | 		r = crypto_aead_decrypt(req); | 
 | 	} | 
 |  | 
 | 	if (r == -EBADMSG) { | 
 | 		sector_t s = le64_to_cpu(*sector); | 
 |  | 
 | 		ctx->aead_failed = true; | 
 | 		if (ctx->aead_recheck) { | 
 | 			DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu", | 
 | 				    ctx->bio_in->bi_bdev, s); | 
 | 			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead", | 
 | 					 ctx->bio_in, s, 0); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) | 
 | 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq); | 
 |  | 
 | 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size); | 
 | 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int crypt_convert_block_skcipher(struct crypt_config *cc, | 
 | 					struct convert_context *ctx, | 
 | 					struct skcipher_request *req, | 
 | 					unsigned int tag_offset) | 
 | { | 
 | 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); | 
 | 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); | 
 | 	struct scatterlist *sg_in, *sg_out; | 
 | 	struct dm_crypt_request *dmreq; | 
 | 	u8 *iv, *org_iv, *tag_iv; | 
 | 	__le64 *sector; | 
 | 	int r = 0; | 
 |  | 
 | 	/* Reject unexpected unaligned bio. */ | 
 | 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1))) | 
 | 		return -EIO; | 
 |  | 
 | 	dmreq = dmreq_of_req(cc, req); | 
 | 	dmreq->iv_sector = ctx->cc_sector; | 
 | 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) | 
 | 		dmreq->iv_sector >>= cc->sector_shift; | 
 | 	dmreq->ctx = ctx; | 
 |  | 
 | 	*org_tag_of_dmreq(cc, dmreq) = tag_offset; | 
 |  | 
 | 	iv = iv_of_dmreq(cc, dmreq); | 
 | 	org_iv = org_iv_of_dmreq(cc, dmreq); | 
 | 	tag_iv = iv_tag_from_dmreq(cc, dmreq); | 
 |  | 
 | 	sector = org_sector_of_dmreq(cc, dmreq); | 
 | 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset); | 
 |  | 
 | 	/* For skcipher we use only the first sg item */ | 
 | 	sg_in  = &dmreq->sg_in[0]; | 
 | 	sg_out = &dmreq->sg_out[0]; | 
 |  | 
 | 	sg_init_table(sg_in, 1); | 
 | 	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset); | 
 |  | 
 | 	sg_init_table(sg_out, 1); | 
 | 	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset); | 
 |  | 
 | 	if (cc->iv_gen_ops) { | 
 | 		/* For READs use IV stored in integrity metadata */ | 
 | 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) { | 
 | 			memcpy(org_iv, tag_iv, cc->integrity_iv_size); | 
 | 		} else { | 
 | 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq); | 
 | 			if (r < 0) | 
 | 				return r; | 
 | 			/* Data can be already preprocessed in generator */ | 
 | 			if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags)) | 
 | 				sg_in = sg_out; | 
 | 			/* Store generated IV in integrity metadata */ | 
 | 			if (cc->integrity_iv_size) | 
 | 				memcpy(tag_iv, org_iv, cc->integrity_iv_size); | 
 | 		} | 
 | 		/* Working copy of IV, to be modified in crypto API */ | 
 | 		memcpy(iv, org_iv, cc->iv_size); | 
 | 	} | 
 |  | 
 | 	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv); | 
 |  | 
 | 	if (bio_data_dir(ctx->bio_in) == WRITE) | 
 | 		r = crypto_skcipher_encrypt(req); | 
 | 	else | 
 | 		r = crypto_skcipher_decrypt(req); | 
 |  | 
 | 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) | 
 | 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq); | 
 |  | 
 | 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size); | 
 | 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static void kcryptd_async_done(struct crypto_async_request *async_req, | 
 | 			       int error); | 
 |  | 
 | static int crypt_alloc_req_skcipher(struct crypt_config *cc, | 
 | 				     struct convert_context *ctx) | 
 | { | 
 | 	unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1); | 
 |  | 
 | 	if (!ctx->r.req) { | 
 | 		ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO); | 
 | 		if (!ctx->r.req) | 
 | 			return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]); | 
 |  | 
 | 	/* | 
 | 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs | 
 | 	 * requests if driver request queue is full. | 
 | 	 */ | 
 | 	skcipher_request_set_callback(ctx->r.req, | 
 | 	    CRYPTO_TFM_REQ_MAY_BACKLOG, | 
 | 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int crypt_alloc_req_aead(struct crypt_config *cc, | 
 | 				 struct convert_context *ctx) | 
 | { | 
 | 	if (!ctx->r.req_aead) { | 
 | 		ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO); | 
 | 		if (!ctx->r.req_aead) | 
 | 			return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]); | 
 |  | 
 | 	/* | 
 | 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs | 
 | 	 * requests if driver request queue is full. | 
 | 	 */ | 
 | 	aead_request_set_callback(ctx->r.req_aead, | 
 | 	    CRYPTO_TFM_REQ_MAY_BACKLOG, | 
 | 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int crypt_alloc_req(struct crypt_config *cc, | 
 | 			    struct convert_context *ctx) | 
 | { | 
 | 	if (crypt_integrity_aead(cc)) | 
 | 		return crypt_alloc_req_aead(cc, ctx); | 
 | 	else | 
 | 		return crypt_alloc_req_skcipher(cc, ctx); | 
 | } | 
 |  | 
 | static void crypt_free_req_skcipher(struct crypt_config *cc, | 
 | 				    struct skcipher_request *req, struct bio *base_bio) | 
 | { | 
 | 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size); | 
 |  | 
 | 	if ((struct skcipher_request *)(io + 1) != req) | 
 | 		mempool_free(req, &cc->req_pool); | 
 | } | 
 |  | 
 | static void crypt_free_req_aead(struct crypt_config *cc, | 
 | 				struct aead_request *req, struct bio *base_bio) | 
 | { | 
 | 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size); | 
 |  | 
 | 	if ((struct aead_request *)(io + 1) != req) | 
 | 		mempool_free(req, &cc->req_pool); | 
 | } | 
 |  | 
 | static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio) | 
 | { | 
 | 	if (crypt_integrity_aead(cc)) | 
 | 		crypt_free_req_aead(cc, req, base_bio); | 
 | 	else | 
 | 		crypt_free_req_skcipher(cc, req, base_bio); | 
 | } | 
 |  | 
 | /* | 
 |  * Encrypt / decrypt data from one bio to another one (can be the same one) | 
 |  */ | 
 | static blk_status_t crypt_convert(struct crypt_config *cc, | 
 | 			 struct convert_context *ctx, bool atomic, bool reset_pending) | 
 | { | 
 | 	unsigned int tag_offset = 0; | 
 | 	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT; | 
 | 	int r; | 
 |  | 
 | 	/* | 
 | 	 * if reset_pending is set we are dealing with the bio for the first time, | 
 | 	 * else we're continuing to work on the previous bio, so don't mess with | 
 | 	 * the cc_pending counter | 
 | 	 */ | 
 | 	if (reset_pending) | 
 | 		atomic_set(&ctx->cc_pending, 1); | 
 |  | 
 | 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) { | 
 |  | 
 | 		r = crypt_alloc_req(cc, ctx); | 
 | 		if (r) { | 
 | 			complete(&ctx->restart); | 
 | 			return BLK_STS_DEV_RESOURCE; | 
 | 		} | 
 |  | 
 | 		atomic_inc(&ctx->cc_pending); | 
 |  | 
 | 		if (crypt_integrity_aead(cc)) | 
 | 			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset); | 
 | 		else | 
 | 			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset); | 
 |  | 
 | 		switch (r) { | 
 | 		/* | 
 | 		 * The request was queued by a crypto driver | 
 | 		 * but the driver request queue is full, let's wait. | 
 | 		 */ | 
 | 		case -EBUSY: | 
 | 			if (in_interrupt()) { | 
 | 				if (try_wait_for_completion(&ctx->restart)) { | 
 | 					/* | 
 | 					 * we don't have to block to wait for completion, | 
 | 					 * so proceed | 
 | 					 */ | 
 | 				} else { | 
 | 					/* | 
 | 					 * we can't wait for completion without blocking | 
 | 					 * exit and continue processing in a workqueue | 
 | 					 */ | 
 | 					ctx->r.req = NULL; | 
 | 					ctx->cc_sector += sector_step; | 
 | 					tag_offset++; | 
 | 					return BLK_STS_DEV_RESOURCE; | 
 | 				} | 
 | 			} else { | 
 | 				wait_for_completion(&ctx->restart); | 
 | 			} | 
 | 			reinit_completion(&ctx->restart); | 
 | 			fallthrough; | 
 | 		/* | 
 | 		 * The request is queued and processed asynchronously, | 
 | 		 * completion function kcryptd_async_done() will be called. | 
 | 		 */ | 
 | 		case -EINPROGRESS: | 
 | 			ctx->r.req = NULL; | 
 | 			ctx->cc_sector += sector_step; | 
 | 			tag_offset++; | 
 | 			continue; | 
 | 		/* | 
 | 		 * The request was already processed (synchronously). | 
 | 		 */ | 
 | 		case 0: | 
 | 			atomic_dec(&ctx->cc_pending); | 
 | 			ctx->cc_sector += sector_step; | 
 | 			tag_offset++; | 
 | 			if (!atomic) | 
 | 				cond_resched(); | 
 | 			continue; | 
 | 		/* | 
 | 		 * There was a data integrity error. | 
 | 		 */ | 
 | 		case -EBADMSG: | 
 | 			atomic_dec(&ctx->cc_pending); | 
 | 			return BLK_STS_PROTECTION; | 
 | 		/* | 
 | 		 * There was an error while processing the request. | 
 | 		 */ | 
 | 		default: | 
 | 			atomic_dec(&ctx->cc_pending); | 
 | 			return BLK_STS_IOERR; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone); | 
 |  | 
 | /* | 
 |  * Generate a new unfragmented bio with the given size | 
 |  * This should never violate the device limitations (but only because | 
 |  * max_segment_size is being constrained to PAGE_SIZE). | 
 |  * | 
 |  * This function may be called concurrently. If we allocate from the mempool | 
 |  * concurrently, there is a possibility of deadlock. For example, if we have | 
 |  * mempool of 256 pages, two processes, each wanting 256, pages allocate from | 
 |  * the mempool concurrently, it may deadlock in a situation where both processes | 
 |  * have allocated 128 pages and the mempool is exhausted. | 
 |  * | 
 |  * In order to avoid this scenario we allocate the pages under a mutex. | 
 |  * | 
 |  * In order to not degrade performance with excessive locking, we try | 
 |  * non-blocking allocations without a mutex first but on failure we fallback | 
 |  * to blocking allocations with a mutex. | 
 |  */ | 
 | static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size) | 
 | { | 
 | 	struct crypt_config *cc = io->cc; | 
 | 	struct bio *clone; | 
 | 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
 | 	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM; | 
 | 	unsigned int i, len, remaining_size; | 
 | 	struct page *page; | 
 |  | 
 | retry: | 
 | 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) | 
 | 		mutex_lock(&cc->bio_alloc_lock); | 
 |  | 
 | 	clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf, | 
 | 				 GFP_NOIO, &cc->bs); | 
 | 	clone->bi_private = io; | 
 | 	clone->bi_end_io = crypt_endio; | 
 |  | 
 | 	remaining_size = size; | 
 |  | 
 | 	for (i = 0; i < nr_iovecs; i++) { | 
 | 		page = mempool_alloc(&cc->page_pool, gfp_mask); | 
 | 		if (!page) { | 
 | 			crypt_free_buffer_pages(cc, clone); | 
 | 			bio_put(clone); | 
 | 			gfp_mask |= __GFP_DIRECT_RECLAIM; | 
 | 			goto retry; | 
 | 		} | 
 |  | 
 | 		len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size; | 
 |  | 
 | 		bio_add_page(clone, page, len, 0); | 
 |  | 
 | 		remaining_size -= len; | 
 | 	} | 
 |  | 
 | 	/* Allocate space for integrity tags */ | 
 | 	if (dm_crypt_integrity_io_alloc(io, clone)) { | 
 | 		crypt_free_buffer_pages(cc, clone); | 
 | 		bio_put(clone); | 
 | 		clone = NULL; | 
 | 	} | 
 |  | 
 | 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) | 
 | 		mutex_unlock(&cc->bio_alloc_lock); | 
 |  | 
 | 	return clone; | 
 | } | 
 |  | 
 | static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone) | 
 | { | 
 | 	struct bio_vec *bv; | 
 | 	struct bvec_iter_all iter_all; | 
 |  | 
 | 	bio_for_each_segment_all(bv, clone, iter_all) { | 
 | 		BUG_ON(!bv->bv_page); | 
 | 		mempool_free(bv->bv_page, &cc->page_pool); | 
 | 	} | 
 | } | 
 |  | 
 | static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc, | 
 | 			  struct bio *bio, sector_t sector) | 
 | { | 
 | 	io->cc = cc; | 
 | 	io->base_bio = bio; | 
 | 	io->sector = sector; | 
 | 	io->error = 0; | 
 | 	io->ctx.aead_recheck = false; | 
 | 	io->ctx.aead_failed = false; | 
 | 	io->ctx.r.req = NULL; | 
 | 	io->integrity_metadata = NULL; | 
 | 	io->integrity_metadata_from_pool = false; | 
 | 	atomic_set(&io->io_pending, 0); | 
 | } | 
 |  | 
 | static void crypt_inc_pending(struct dm_crypt_io *io) | 
 | { | 
 | 	atomic_inc(&io->io_pending); | 
 | } | 
 |  | 
 | static void kcryptd_queue_read(struct dm_crypt_io *io); | 
 |  | 
 | /* | 
 |  * One of the bios was finished. Check for completion of | 
 |  * the whole request and correctly clean up the buffer. | 
 |  */ | 
 | static void crypt_dec_pending(struct dm_crypt_io *io) | 
 | { | 
 | 	struct crypt_config *cc = io->cc; | 
 | 	struct bio *base_bio = io->base_bio; | 
 | 	blk_status_t error = io->error; | 
 |  | 
 | 	if (!atomic_dec_and_test(&io->io_pending)) | 
 | 		return; | 
 |  | 
 | 	if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) && | 
 | 	    cc->on_disk_tag_size && bio_data_dir(base_bio) == READ) { | 
 | 		io->ctx.aead_recheck = true; | 
 | 		io->ctx.aead_failed = false; | 
 | 		io->error = 0; | 
 | 		kcryptd_queue_read(io); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (io->ctx.r.req) | 
 | 		crypt_free_req(cc, io->ctx.r.req, base_bio); | 
 |  | 
 | 	if (unlikely(io->integrity_metadata_from_pool)) | 
 | 		mempool_free(io->integrity_metadata, &io->cc->tag_pool); | 
 | 	else | 
 | 		kfree(io->integrity_metadata); | 
 |  | 
 | 	base_bio->bi_status = error; | 
 |  | 
 | 	bio_endio(base_bio); | 
 | } | 
 |  | 
 | /* | 
 |  * kcryptd/kcryptd_io: | 
 |  * | 
 |  * Needed because it would be very unwise to do decryption in an | 
 |  * interrupt context. | 
 |  * | 
 |  * kcryptd performs the actual encryption or decryption. | 
 |  * | 
 |  * kcryptd_io performs the IO submission. | 
 |  * | 
 |  * They must be separated as otherwise the final stages could be | 
 |  * starved by new requests which can block in the first stages due | 
 |  * to memory allocation. | 
 |  * | 
 |  * The work is done per CPU global for all dm-crypt instances. | 
 |  * They should not depend on each other and do not block. | 
 |  */ | 
 | static void crypt_endio(struct bio *clone) | 
 | { | 
 | 	struct dm_crypt_io *io = clone->bi_private; | 
 | 	struct crypt_config *cc = io->cc; | 
 | 	unsigned int rw = bio_data_dir(clone); | 
 | 	blk_status_t error = clone->bi_status; | 
 |  | 
 | 	if (io->ctx.aead_recheck && !error) { | 
 | 		kcryptd_queue_crypt(io); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * free the processed pages | 
 | 	 */ | 
 | 	if (rw == WRITE || io->ctx.aead_recheck) | 
 | 		crypt_free_buffer_pages(cc, clone); | 
 |  | 
 | 	bio_put(clone); | 
 |  | 
 | 	if (rw == READ && !error) { | 
 | 		kcryptd_queue_crypt(io); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (unlikely(error)) | 
 | 		io->error = error; | 
 |  | 
 | 	crypt_dec_pending(io); | 
 | } | 
 |  | 
 | #define CRYPT_MAP_READ_GFP GFP_NOWAIT | 
 |  | 
 | static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp) | 
 | { | 
 | 	struct crypt_config *cc = io->cc; | 
 | 	struct bio *clone; | 
 |  | 
 | 	if (io->ctx.aead_recheck) { | 
 | 		if (!(gfp & __GFP_DIRECT_RECLAIM)) | 
 | 			return 1; | 
 | 		crypt_inc_pending(io); | 
 | 		clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size); | 
 | 		if (unlikely(!clone)) { | 
 | 			crypt_dec_pending(io); | 
 | 			return 1; | 
 | 		} | 
 | 		clone->bi_iter.bi_sector = cc->start + io->sector; | 
 | 		crypt_convert_init(cc, &io->ctx, clone, clone, io->sector); | 
 | 		io->saved_bi_iter = clone->bi_iter; | 
 | 		dm_submit_bio_remap(io->base_bio, clone); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We need the original biovec array in order to decrypt the whole bio | 
 | 	 * data *afterwards* -- thanks to immutable biovecs we don't need to | 
 | 	 * worry about the block layer modifying the biovec array; so leverage | 
 | 	 * bio_alloc_clone(). | 
 | 	 */ | 
 | 	clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs); | 
 | 	if (!clone) | 
 | 		return 1; | 
 | 	clone->bi_private = io; | 
 | 	clone->bi_end_io = crypt_endio; | 
 |  | 
 | 	crypt_inc_pending(io); | 
 |  | 
 | 	clone->bi_iter.bi_sector = cc->start + io->sector; | 
 |  | 
 | 	if (dm_crypt_integrity_io_alloc(io, clone)) { | 
 | 		crypt_dec_pending(io); | 
 | 		bio_put(clone); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	dm_submit_bio_remap(io->base_bio, clone); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void kcryptd_io_read_work(struct work_struct *work) | 
 | { | 
 | 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); | 
 |  | 
 | 	crypt_inc_pending(io); | 
 | 	if (kcryptd_io_read(io, GFP_NOIO)) | 
 | 		io->error = BLK_STS_RESOURCE; | 
 | 	crypt_dec_pending(io); | 
 | } | 
 |  | 
 | static void kcryptd_queue_read(struct dm_crypt_io *io) | 
 | { | 
 | 	struct crypt_config *cc = io->cc; | 
 |  | 
 | 	INIT_WORK(&io->work, kcryptd_io_read_work); | 
 | 	queue_work(cc->io_queue, &io->work); | 
 | } | 
 |  | 
 | static void kcryptd_io_write(struct dm_crypt_io *io) | 
 | { | 
 | 	struct bio *clone = io->ctx.bio_out; | 
 |  | 
 | 	dm_submit_bio_remap(io->base_bio, clone); | 
 | } | 
 |  | 
 | #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node) | 
 |  | 
 | static int dmcrypt_write(void *data) | 
 | { | 
 | 	struct crypt_config *cc = data; | 
 | 	struct dm_crypt_io *io; | 
 |  | 
 | 	while (1) { | 
 | 		struct rb_root write_tree; | 
 | 		struct blk_plug plug; | 
 |  | 
 | 		spin_lock_irq(&cc->write_thread_lock); | 
 | continue_locked: | 
 |  | 
 | 		if (!RB_EMPTY_ROOT(&cc->write_tree)) | 
 | 			goto pop_from_list; | 
 |  | 
 | 		set_current_state(TASK_INTERRUPTIBLE); | 
 |  | 
 | 		spin_unlock_irq(&cc->write_thread_lock); | 
 |  | 
 | 		if (unlikely(kthread_should_stop())) { | 
 | 			set_current_state(TASK_RUNNING); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		schedule(); | 
 |  | 
 | 		set_current_state(TASK_RUNNING); | 
 | 		spin_lock_irq(&cc->write_thread_lock); | 
 | 		goto continue_locked; | 
 |  | 
 | pop_from_list: | 
 | 		write_tree = cc->write_tree; | 
 | 		cc->write_tree = RB_ROOT; | 
 | 		spin_unlock_irq(&cc->write_thread_lock); | 
 |  | 
 | 		BUG_ON(rb_parent(write_tree.rb_node)); | 
 |  | 
 | 		/* | 
 | 		 * Note: we cannot walk the tree here with rb_next because | 
 | 		 * the structures may be freed when kcryptd_io_write is called. | 
 | 		 */ | 
 | 		blk_start_plug(&plug); | 
 | 		do { | 
 | 			io = crypt_io_from_node(rb_first(&write_tree)); | 
 | 			rb_erase(&io->rb_node, &write_tree); | 
 | 			kcryptd_io_write(io); | 
 | 			cond_resched(); | 
 | 		} while (!RB_EMPTY_ROOT(&write_tree)); | 
 | 		blk_finish_plug(&plug); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async) | 
 | { | 
 | 	struct bio *clone = io->ctx.bio_out; | 
 | 	struct crypt_config *cc = io->cc; | 
 | 	unsigned long flags; | 
 | 	sector_t sector; | 
 | 	struct rb_node **rbp, *parent; | 
 |  | 
 | 	if (unlikely(io->error)) { | 
 | 		crypt_free_buffer_pages(cc, clone); | 
 | 		bio_put(clone); | 
 | 		crypt_dec_pending(io); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* crypt_convert should have filled the clone bio */ | 
 | 	BUG_ON(io->ctx.iter_out.bi_size); | 
 |  | 
 | 	clone->bi_iter.bi_sector = cc->start + io->sector; | 
 |  | 
 | 	if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) || | 
 | 	    test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) { | 
 | 		dm_submit_bio_remap(io->base_bio, clone); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	spin_lock_irqsave(&cc->write_thread_lock, flags); | 
 | 	if (RB_EMPTY_ROOT(&cc->write_tree)) | 
 | 		wake_up_process(cc->write_thread); | 
 | 	rbp = &cc->write_tree.rb_node; | 
 | 	parent = NULL; | 
 | 	sector = io->sector; | 
 | 	while (*rbp) { | 
 | 		parent = *rbp; | 
 | 		if (sector < crypt_io_from_node(parent)->sector) | 
 | 			rbp = &(*rbp)->rb_left; | 
 | 		else | 
 | 			rbp = &(*rbp)->rb_right; | 
 | 	} | 
 | 	rb_link_node(&io->rb_node, parent, rbp); | 
 | 	rb_insert_color(&io->rb_node, &cc->write_tree); | 
 | 	spin_unlock_irqrestore(&cc->write_thread_lock, flags); | 
 | } | 
 |  | 
 | static bool kcryptd_crypt_write_inline(struct crypt_config *cc, | 
 | 				       struct convert_context *ctx) | 
 |  | 
 | { | 
 | 	if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering | 
 | 	 * constraints so they do not need to be issued inline by | 
 | 	 * kcryptd_crypt_write_convert(). | 
 | 	 */ | 
 | 	switch (bio_op(ctx->bio_in)) { | 
 | 	case REQ_OP_WRITE: | 
 | 	case REQ_OP_WRITE_ZEROES: | 
 | 		return true; | 
 | 	default: | 
 | 		return false; | 
 | 	} | 
 | } | 
 |  | 
 | static void kcryptd_crypt_write_continue(struct work_struct *work) | 
 | { | 
 | 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); | 
 | 	struct crypt_config *cc = io->cc; | 
 | 	struct convert_context *ctx = &io->ctx; | 
 | 	int crypt_finished; | 
 | 	sector_t sector = io->sector; | 
 | 	blk_status_t r; | 
 |  | 
 | 	wait_for_completion(&ctx->restart); | 
 | 	reinit_completion(&ctx->restart); | 
 |  | 
 | 	r = crypt_convert(cc, &io->ctx, true, false); | 
 | 	if (r) | 
 | 		io->error = r; | 
 | 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending); | 
 | 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) { | 
 | 		/* Wait for completion signaled by kcryptd_async_done() */ | 
 | 		wait_for_completion(&ctx->restart); | 
 | 		crypt_finished = 1; | 
 | 	} | 
 |  | 
 | 	/* Encryption was already finished, submit io now */ | 
 | 	if (crypt_finished) { | 
 | 		kcryptd_crypt_write_io_submit(io, 0); | 
 | 		io->sector = sector; | 
 | 	} | 
 |  | 
 | 	crypt_dec_pending(io); | 
 | } | 
 |  | 
 | static void kcryptd_crypt_write_convert(struct dm_crypt_io *io) | 
 | { | 
 | 	struct crypt_config *cc = io->cc; | 
 | 	struct convert_context *ctx = &io->ctx; | 
 | 	struct bio *clone; | 
 | 	int crypt_finished; | 
 | 	sector_t sector = io->sector; | 
 | 	blk_status_t r; | 
 |  | 
 | 	/* | 
 | 	 * Prevent io from disappearing until this function completes. | 
 | 	 */ | 
 | 	crypt_inc_pending(io); | 
 | 	crypt_convert_init(cc, ctx, NULL, io->base_bio, sector); | 
 |  | 
 | 	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size); | 
 | 	if (unlikely(!clone)) { | 
 | 		io->error = BLK_STS_IOERR; | 
 | 		goto dec; | 
 | 	} | 
 |  | 
 | 	io->ctx.bio_out = clone; | 
 | 	io->ctx.iter_out = clone->bi_iter; | 
 |  | 
 | 	if (crypt_integrity_aead(cc)) { | 
 | 		bio_copy_data(clone, io->base_bio); | 
 | 		io->ctx.bio_in = clone; | 
 | 		io->ctx.iter_in = clone->bi_iter; | 
 | 	} | 
 |  | 
 | 	sector += bio_sectors(clone); | 
 |  | 
 | 	crypt_inc_pending(io); | 
 | 	r = crypt_convert(cc, ctx, | 
 | 			  test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true); | 
 | 	/* | 
 | 	 * Crypto API backlogged the request, because its queue was full | 
 | 	 * and we're in softirq context, so continue from a workqueue | 
 | 	 * (TODO: is it actually possible to be in softirq in the write path?) | 
 | 	 */ | 
 | 	if (r == BLK_STS_DEV_RESOURCE) { | 
 | 		INIT_WORK(&io->work, kcryptd_crypt_write_continue); | 
 | 		queue_work(cc->crypt_queue, &io->work); | 
 | 		return; | 
 | 	} | 
 | 	if (r) | 
 | 		io->error = r; | 
 | 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending); | 
 | 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) { | 
 | 		/* Wait for completion signaled by kcryptd_async_done() */ | 
 | 		wait_for_completion(&ctx->restart); | 
 | 		crypt_finished = 1; | 
 | 	} | 
 |  | 
 | 	/* Encryption was already finished, submit io now */ | 
 | 	if (crypt_finished) { | 
 | 		kcryptd_crypt_write_io_submit(io, 0); | 
 | 		io->sector = sector; | 
 | 	} | 
 |  | 
 | dec: | 
 | 	crypt_dec_pending(io); | 
 | } | 
 |  | 
 | static void kcryptd_crypt_read_done(struct dm_crypt_io *io) | 
 | { | 
 | 	if (io->ctx.aead_recheck) { | 
 | 		if (!io->error) { | 
 | 			io->ctx.bio_in->bi_iter = io->saved_bi_iter; | 
 | 			bio_copy_data(io->base_bio, io->ctx.bio_in); | 
 | 		} | 
 | 		crypt_free_buffer_pages(io->cc, io->ctx.bio_in); | 
 | 		bio_put(io->ctx.bio_in); | 
 | 	} | 
 | 	crypt_dec_pending(io); | 
 | } | 
 |  | 
 | static void kcryptd_crypt_read_continue(struct work_struct *work) | 
 | { | 
 | 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); | 
 | 	struct crypt_config *cc = io->cc; | 
 | 	blk_status_t r; | 
 |  | 
 | 	wait_for_completion(&io->ctx.restart); | 
 | 	reinit_completion(&io->ctx.restart); | 
 |  | 
 | 	r = crypt_convert(cc, &io->ctx, true, false); | 
 | 	if (r) | 
 | 		io->error = r; | 
 |  | 
 | 	if (atomic_dec_and_test(&io->ctx.cc_pending)) | 
 | 		kcryptd_crypt_read_done(io); | 
 |  | 
 | 	crypt_dec_pending(io); | 
 | } | 
 |  | 
 | static void kcryptd_crypt_read_convert(struct dm_crypt_io *io) | 
 | { | 
 | 	struct crypt_config *cc = io->cc; | 
 | 	blk_status_t r; | 
 |  | 
 | 	crypt_inc_pending(io); | 
 |  | 
 | 	if (io->ctx.aead_recheck) { | 
 | 		io->ctx.cc_sector = io->sector + cc->iv_offset; | 
 | 		r = crypt_convert(cc, &io->ctx, | 
 | 				  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true); | 
 | 	} else { | 
 | 		crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio, | 
 | 				   io->sector); | 
 |  | 
 | 		r = crypt_convert(cc, &io->ctx, | 
 | 				  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true); | 
 | 	} | 
 | 	/* | 
 | 	 * Crypto API backlogged the request, because its queue was full | 
 | 	 * and we're in softirq context, so continue from a workqueue | 
 | 	 */ | 
 | 	if (r == BLK_STS_DEV_RESOURCE) { | 
 | 		INIT_WORK(&io->work, kcryptd_crypt_read_continue); | 
 | 		queue_work(cc->crypt_queue, &io->work); | 
 | 		return; | 
 | 	} | 
 | 	if (r) | 
 | 		io->error = r; | 
 |  | 
 | 	if (atomic_dec_and_test(&io->ctx.cc_pending)) | 
 | 		kcryptd_crypt_read_done(io); | 
 |  | 
 | 	crypt_dec_pending(io); | 
 | } | 
 |  | 
 | static void kcryptd_async_done(struct crypto_async_request *async_req, | 
 | 			       int error) | 
 | { | 
 | 	struct dm_crypt_request *dmreq = async_req->data; | 
 | 	struct convert_context *ctx = dmreq->ctx; | 
 | 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); | 
 | 	struct crypt_config *cc = io->cc; | 
 |  | 
 | 	/* | 
 | 	 * A request from crypto driver backlog is going to be processed now, | 
 | 	 * finish the completion and continue in crypt_convert(). | 
 | 	 * (Callback will be called for the second time for this request.) | 
 | 	 */ | 
 | 	if (error == -EINPROGRESS) { | 
 | 		complete(&ctx->restart); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post) | 
 | 		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq); | 
 |  | 
 | 	if (error == -EBADMSG) { | 
 | 		sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)); | 
 |  | 
 | 		ctx->aead_failed = true; | 
 | 		if (ctx->aead_recheck) { | 
 | 			DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu", | 
 | 				    ctx->bio_in->bi_bdev, s); | 
 | 			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead", | 
 | 					 ctx->bio_in, s, 0); | 
 | 		} | 
 | 		io->error = BLK_STS_PROTECTION; | 
 | 	} else if (error < 0) | 
 | 		io->error = BLK_STS_IOERR; | 
 |  | 
 | 	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio); | 
 |  | 
 | 	if (!atomic_dec_and_test(&ctx->cc_pending)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * The request is fully completed: for inline writes, let | 
 | 	 * kcryptd_crypt_write_convert() do the IO submission. | 
 | 	 */ | 
 | 	if (bio_data_dir(io->base_bio) == READ) { | 
 | 		kcryptd_crypt_read_done(io); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (kcryptd_crypt_write_inline(cc, ctx)) { | 
 | 		complete(&ctx->restart); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	kcryptd_crypt_write_io_submit(io, 1); | 
 | } | 
 |  | 
 | static void kcryptd_crypt(struct work_struct *work) | 
 | { | 
 | 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); | 
 |  | 
 | 	if (bio_data_dir(io->base_bio) == READ) | 
 | 		kcryptd_crypt_read_convert(io); | 
 | 	else | 
 | 		kcryptd_crypt_write_convert(io); | 
 | } | 
 |  | 
 | static void kcryptd_queue_crypt(struct dm_crypt_io *io) | 
 | { | 
 | 	struct crypt_config *cc = io->cc; | 
 |  | 
 | 	if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) || | 
 | 	    (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) { | 
 | 		/* | 
 | 		 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context. | 
 | 		 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but | 
 | 		 * it is being executed with irqs disabled. | 
 | 		 */ | 
 | 		if (!(in_hardirq() || irqs_disabled())) { | 
 | 			kcryptd_crypt(&io->work); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	INIT_WORK(&io->work, kcryptd_crypt); | 
 | 	queue_work(cc->crypt_queue, &io->work); | 
 | } | 
 |  | 
 | static void crypt_free_tfms_aead(struct crypt_config *cc) | 
 | { | 
 | 	if (!cc->cipher_tfm.tfms_aead) | 
 | 		return; | 
 |  | 
 | 	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) { | 
 | 		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]); | 
 | 		cc->cipher_tfm.tfms_aead[0] = NULL; | 
 | 	} | 
 |  | 
 | 	kfree(cc->cipher_tfm.tfms_aead); | 
 | 	cc->cipher_tfm.tfms_aead = NULL; | 
 | } | 
 |  | 
 | static void crypt_free_tfms_skcipher(struct crypt_config *cc) | 
 | { | 
 | 	unsigned int i; | 
 |  | 
 | 	if (!cc->cipher_tfm.tfms) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < cc->tfms_count; i++) | 
 | 		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) { | 
 | 			crypto_free_skcipher(cc->cipher_tfm.tfms[i]); | 
 | 			cc->cipher_tfm.tfms[i] = NULL; | 
 | 		} | 
 |  | 
 | 	kfree(cc->cipher_tfm.tfms); | 
 | 	cc->cipher_tfm.tfms = NULL; | 
 | } | 
 |  | 
 | static void crypt_free_tfms(struct crypt_config *cc) | 
 | { | 
 | 	if (crypt_integrity_aead(cc)) | 
 | 		crypt_free_tfms_aead(cc); | 
 | 	else | 
 | 		crypt_free_tfms_skcipher(cc); | 
 | } | 
 |  | 
 | static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode) | 
 | { | 
 | 	unsigned int i; | 
 | 	int err; | 
 |  | 
 | 	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count, | 
 | 				      sizeof(struct crypto_skcipher *), | 
 | 				      GFP_KERNEL); | 
 | 	if (!cc->cipher_tfm.tfms) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for (i = 0; i < cc->tfms_count; i++) { | 
 | 		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, | 
 | 						CRYPTO_ALG_ALLOCATES_MEMORY); | 
 | 		if (IS_ERR(cc->cipher_tfm.tfms[i])) { | 
 | 			err = PTR_ERR(cc->cipher_tfm.tfms[i]); | 
 | 			crypt_free_tfms(cc); | 
 | 			return err; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * dm-crypt performance can vary greatly depending on which crypto | 
 | 	 * algorithm implementation is used.  Help people debug performance | 
 | 	 * problems by logging the ->cra_driver_name. | 
 | 	 */ | 
 | 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode, | 
 | 	       crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL); | 
 | 	if (!cc->cipher_tfm.tfms) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, | 
 | 						CRYPTO_ALG_ALLOCATES_MEMORY); | 
 | 	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) { | 
 | 		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]); | 
 | 		crypt_free_tfms(cc); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode, | 
 | 	       crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode) | 
 | { | 
 | 	if (crypt_integrity_aead(cc)) | 
 | 		return crypt_alloc_tfms_aead(cc, ciphermode); | 
 | 	else | 
 | 		return crypt_alloc_tfms_skcipher(cc, ciphermode); | 
 | } | 
 |  | 
 | static unsigned int crypt_subkey_size(struct crypt_config *cc) | 
 | { | 
 | 	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count); | 
 | } | 
 |  | 
 | static unsigned int crypt_authenckey_size(struct crypt_config *cc) | 
 | { | 
 | 	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param)); | 
 | } | 
 |  | 
 | /* | 
 |  * If AEAD is composed like authenc(hmac(sha256),xts(aes)), | 
 |  * the key must be for some reason in special format. | 
 |  * This funcion converts cc->key to this special format. | 
 |  */ | 
 | static void crypt_copy_authenckey(char *p, const void *key, | 
 | 				  unsigned int enckeylen, unsigned int authkeylen) | 
 | { | 
 | 	struct crypto_authenc_key_param *param; | 
 | 	struct rtattr *rta; | 
 |  | 
 | 	rta = (struct rtattr *)p; | 
 | 	param = RTA_DATA(rta); | 
 | 	param->enckeylen = cpu_to_be32(enckeylen); | 
 | 	rta->rta_len = RTA_LENGTH(sizeof(*param)); | 
 | 	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM; | 
 | 	p += RTA_SPACE(sizeof(*param)); | 
 | 	memcpy(p, key + enckeylen, authkeylen); | 
 | 	p += authkeylen; | 
 | 	memcpy(p, key, enckeylen); | 
 | } | 
 |  | 
 | static int crypt_setkey(struct crypt_config *cc) | 
 | { | 
 | 	unsigned int subkey_size; | 
 | 	int err = 0, i, r; | 
 |  | 
 | 	/* Ignore extra keys (which are used for IV etc) */ | 
 | 	subkey_size = crypt_subkey_size(cc); | 
 |  | 
 | 	if (crypt_integrity_hmac(cc)) { | 
 | 		if (subkey_size < cc->key_mac_size) | 
 | 			return -EINVAL; | 
 |  | 
 | 		crypt_copy_authenckey(cc->authenc_key, cc->key, | 
 | 				      subkey_size - cc->key_mac_size, | 
 | 				      cc->key_mac_size); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < cc->tfms_count; i++) { | 
 | 		if (crypt_integrity_hmac(cc)) | 
 | 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i], | 
 | 				cc->authenc_key, crypt_authenckey_size(cc)); | 
 | 		else if (crypt_integrity_aead(cc)) | 
 | 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i], | 
 | 					       cc->key + (i * subkey_size), | 
 | 					       subkey_size); | 
 | 		else | 
 | 			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i], | 
 | 						   cc->key + (i * subkey_size), | 
 | 						   subkey_size); | 
 | 		if (r) | 
 | 			err = r; | 
 | 	} | 
 |  | 
 | 	if (crypt_integrity_hmac(cc)) | 
 | 		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc)); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | #ifdef CONFIG_KEYS | 
 |  | 
 | static bool contains_whitespace(const char *str) | 
 | { | 
 | 	while (*str) | 
 | 		if (isspace(*str++)) | 
 | 			return true; | 
 | 	return false; | 
 | } | 
 |  | 
 | static int set_key_user(struct crypt_config *cc, struct key *key) | 
 | { | 
 | 	const struct user_key_payload *ukp; | 
 |  | 
 | 	ukp = user_key_payload_locked(key); | 
 | 	if (!ukp) | 
 | 		return -EKEYREVOKED; | 
 |  | 
 | 	if (cc->key_size != ukp->datalen) | 
 | 		return -EINVAL; | 
 |  | 
 | 	memcpy(cc->key, ukp->data, cc->key_size); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int set_key_encrypted(struct crypt_config *cc, struct key *key) | 
 | { | 
 | 	const struct encrypted_key_payload *ekp; | 
 |  | 
 | 	ekp = key->payload.data[0]; | 
 | 	if (!ekp) | 
 | 		return -EKEYREVOKED; | 
 |  | 
 | 	if (cc->key_size != ekp->decrypted_datalen) | 
 | 		return -EINVAL; | 
 |  | 
 | 	memcpy(cc->key, ekp->decrypted_data, cc->key_size); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int set_key_trusted(struct crypt_config *cc, struct key *key) | 
 | { | 
 | 	const struct trusted_key_payload *tkp; | 
 |  | 
 | 	tkp = key->payload.data[0]; | 
 | 	if (!tkp) | 
 | 		return -EKEYREVOKED; | 
 |  | 
 | 	if (cc->key_size != tkp->key_len) | 
 | 		return -EINVAL; | 
 |  | 
 | 	memcpy(cc->key, tkp->key, cc->key_size); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string) | 
 | { | 
 | 	char *new_key_string, *key_desc; | 
 | 	int ret; | 
 | 	struct key_type *type; | 
 | 	struct key *key; | 
 | 	int (*set_key)(struct crypt_config *cc, struct key *key); | 
 |  | 
 | 	/* | 
 | 	 * Reject key_string with whitespace. dm core currently lacks code for | 
 | 	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path. | 
 | 	 */ | 
 | 	if (contains_whitespace(key_string)) { | 
 | 		DMERR("whitespace chars not allowed in key string"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* look for next ':' separating key_type from key_description */ | 
 | 	key_desc = strpbrk(key_string, ":"); | 
 | 	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) { | 
 | 		type = &key_type_logon; | 
 | 		set_key = set_key_user; | 
 | 	} else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) { | 
 | 		type = &key_type_user; | 
 | 		set_key = set_key_user; | 
 | 	} else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) && | 
 | 		   !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) { | 
 | 		type = &key_type_encrypted; | 
 | 		set_key = set_key_encrypted; | 
 | 	} else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) && | 
 | 		   !strncmp(key_string, "trusted:", key_desc - key_string + 1)) { | 
 | 		type = &key_type_trusted; | 
 | 		set_key = set_key_trusted; | 
 | 	} else { | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	new_key_string = kstrdup(key_string, GFP_KERNEL); | 
 | 	if (!new_key_string) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key = request_key(type, key_desc + 1, NULL); | 
 | 	if (IS_ERR(key)) { | 
 | 		kfree_sensitive(new_key_string); | 
 | 		return PTR_ERR(key); | 
 | 	} | 
 |  | 
 | 	down_read(&key->sem); | 
 |  | 
 | 	ret = set_key(cc, key); | 
 | 	if (ret < 0) { | 
 | 		up_read(&key->sem); | 
 | 		key_put(key); | 
 | 		kfree_sensitive(new_key_string); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	up_read(&key->sem); | 
 | 	key_put(key); | 
 |  | 
 | 	/* clear the flag since following operations may invalidate previously valid key */ | 
 | 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); | 
 |  | 
 | 	ret = crypt_setkey(cc); | 
 |  | 
 | 	if (!ret) { | 
 | 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags); | 
 | 		kfree_sensitive(cc->key_string); | 
 | 		cc->key_string = new_key_string; | 
 | 	} else | 
 | 		kfree_sensitive(new_key_string); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int get_key_size(char **key_string) | 
 | { | 
 | 	char *colon, dummy; | 
 | 	int ret; | 
 |  | 
 | 	if (*key_string[0] != ':') | 
 | 		return strlen(*key_string) >> 1; | 
 |  | 
 | 	/* look for next ':' in key string */ | 
 | 	colon = strpbrk(*key_string + 1, ":"); | 
 | 	if (!colon) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':') | 
 | 		return -EINVAL; | 
 |  | 
 | 	*key_string = colon; | 
 |  | 
 | 	/* remaining key string should be :<logon|user>:<key_desc> */ | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string) | 
 | { | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static int get_key_size(char **key_string) | 
 | { | 
 | 	return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1); | 
 | } | 
 |  | 
 | #endif /* CONFIG_KEYS */ | 
 |  | 
 | static int crypt_set_key(struct crypt_config *cc, char *key) | 
 | { | 
 | 	int r = -EINVAL; | 
 | 	int key_string_len = strlen(key); | 
 |  | 
 | 	/* Hyphen (which gives a key_size of zero) means there is no key. */ | 
 | 	if (!cc->key_size && strcmp(key, "-")) | 
 | 		goto out; | 
 |  | 
 | 	/* ':' means the key is in kernel keyring, short-circuit normal key processing */ | 
 | 	if (key[0] == ':') { | 
 | 		r = crypt_set_keyring_key(cc, key + 1); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* clear the flag since following operations may invalidate previously valid key */ | 
 | 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); | 
 |  | 
 | 	/* wipe references to any kernel keyring key */ | 
 | 	kfree_sensitive(cc->key_string); | 
 | 	cc->key_string = NULL; | 
 |  | 
 | 	/* Decode key from its hex representation. */ | 
 | 	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0) | 
 | 		goto out; | 
 |  | 
 | 	r = crypt_setkey(cc); | 
 | 	if (!r) | 
 | 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags); | 
 |  | 
 | out: | 
 | 	/* Hex key string not needed after here, so wipe it. */ | 
 | 	memset(key, '0', key_string_len); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int crypt_wipe_key(struct crypt_config *cc) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); | 
 | 	get_random_bytes(&cc->key, cc->key_size); | 
 |  | 
 | 	/* Wipe IV private keys */ | 
 | 	if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) { | 
 | 		r = cc->iv_gen_ops->wipe(cc); | 
 | 		if (r) | 
 | 			return r; | 
 | 	} | 
 |  | 
 | 	kfree_sensitive(cc->key_string); | 
 | 	cc->key_string = NULL; | 
 | 	r = crypt_setkey(cc); | 
 | 	memset(&cc->key, 0, cc->key_size * sizeof(u8)); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static void crypt_calculate_pages_per_client(void) | 
 | { | 
 | 	unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100; | 
 |  | 
 | 	if (!dm_crypt_clients_n) | 
 | 		return; | 
 |  | 
 | 	pages /= dm_crypt_clients_n; | 
 | 	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT) | 
 | 		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT; | 
 | 	dm_crypt_pages_per_client = pages; | 
 | } | 
 |  | 
 | static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data) | 
 | { | 
 | 	struct crypt_config *cc = pool_data; | 
 | 	struct page *page; | 
 |  | 
 | 	/* | 
 | 	 * Note, percpu_counter_read_positive() may over (and under) estimate | 
 | 	 * the current usage by at most (batch - 1) * num_online_cpus() pages, | 
 | 	 * but avoids potential spinlock contention of an exact result. | 
 | 	 */ | 
 | 	if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) && | 
 | 	    likely(gfp_mask & __GFP_NORETRY)) | 
 | 		return NULL; | 
 |  | 
 | 	page = alloc_page(gfp_mask); | 
 | 	if (likely(page != NULL)) | 
 | 		percpu_counter_add(&cc->n_allocated_pages, 1); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | static void crypt_page_free(void *page, void *pool_data) | 
 | { | 
 | 	struct crypt_config *cc = pool_data; | 
 |  | 
 | 	__free_page(page); | 
 | 	percpu_counter_sub(&cc->n_allocated_pages, 1); | 
 | } | 
 |  | 
 | static void crypt_dtr(struct dm_target *ti) | 
 | { | 
 | 	struct crypt_config *cc = ti->private; | 
 |  | 
 | 	ti->private = NULL; | 
 |  | 
 | 	if (!cc) | 
 | 		return; | 
 |  | 
 | 	if (cc->write_thread) | 
 | 		kthread_stop(cc->write_thread); | 
 |  | 
 | 	if (cc->io_queue) | 
 | 		destroy_workqueue(cc->io_queue); | 
 | 	if (cc->crypt_queue) | 
 | 		destroy_workqueue(cc->crypt_queue); | 
 |  | 
 | 	crypt_free_tfms(cc); | 
 |  | 
 | 	bioset_exit(&cc->bs); | 
 |  | 
 | 	mempool_exit(&cc->page_pool); | 
 | 	mempool_exit(&cc->req_pool); | 
 | 	mempool_exit(&cc->tag_pool); | 
 |  | 
 | 	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0); | 
 | 	percpu_counter_destroy(&cc->n_allocated_pages); | 
 |  | 
 | 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) | 
 | 		cc->iv_gen_ops->dtr(cc); | 
 |  | 
 | 	if (cc->dev) | 
 | 		dm_put_device(ti, cc->dev); | 
 |  | 
 | 	kfree_sensitive(cc->cipher_string); | 
 | 	kfree_sensitive(cc->key_string); | 
 | 	kfree_sensitive(cc->cipher_auth); | 
 | 	kfree_sensitive(cc->authenc_key); | 
 |  | 
 | 	mutex_destroy(&cc->bio_alloc_lock); | 
 |  | 
 | 	/* Must zero key material before freeing */ | 
 | 	kfree_sensitive(cc); | 
 |  | 
 | 	spin_lock(&dm_crypt_clients_lock); | 
 | 	WARN_ON(!dm_crypt_clients_n); | 
 | 	dm_crypt_clients_n--; | 
 | 	crypt_calculate_pages_per_client(); | 
 | 	spin_unlock(&dm_crypt_clients_lock); | 
 |  | 
 | 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1); | 
 | } | 
 |  | 
 | static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode) | 
 | { | 
 | 	struct crypt_config *cc = ti->private; | 
 |  | 
 | 	if (crypt_integrity_aead(cc)) | 
 | 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc)); | 
 | 	else | 
 | 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc)); | 
 |  | 
 | 	if (cc->iv_size) | 
 | 		/* at least a 64 bit sector number should fit in our buffer */ | 
 | 		cc->iv_size = max(cc->iv_size, | 
 | 				  (unsigned int)(sizeof(u64) / sizeof(u8))); | 
 | 	else if (ivmode) { | 
 | 		DMWARN("Selected cipher does not support IVs"); | 
 | 		ivmode = NULL; | 
 | 	} | 
 |  | 
 | 	/* Choose ivmode, see comments at iv code. */ | 
 | 	if (ivmode == NULL) | 
 | 		cc->iv_gen_ops = NULL; | 
 | 	else if (strcmp(ivmode, "plain") == 0) | 
 | 		cc->iv_gen_ops = &crypt_iv_plain_ops; | 
 | 	else if (strcmp(ivmode, "plain64") == 0) | 
 | 		cc->iv_gen_ops = &crypt_iv_plain64_ops; | 
 | 	else if (strcmp(ivmode, "plain64be") == 0) | 
 | 		cc->iv_gen_ops = &crypt_iv_plain64be_ops; | 
 | 	else if (strcmp(ivmode, "essiv") == 0) | 
 | 		cc->iv_gen_ops = &crypt_iv_essiv_ops; | 
 | 	else if (strcmp(ivmode, "benbi") == 0) | 
 | 		cc->iv_gen_ops = &crypt_iv_benbi_ops; | 
 | 	else if (strcmp(ivmode, "null") == 0) | 
 | 		cc->iv_gen_ops = &crypt_iv_null_ops; | 
 | 	else if (strcmp(ivmode, "eboiv") == 0) | 
 | 		cc->iv_gen_ops = &crypt_iv_eboiv_ops; | 
 | 	else if (strcmp(ivmode, "elephant") == 0) { | 
 | 		cc->iv_gen_ops = &crypt_iv_elephant_ops; | 
 | 		cc->key_parts = 2; | 
 | 		cc->key_extra_size = cc->key_size / 2; | 
 | 		if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE) | 
 | 			return -EINVAL; | 
 | 		set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags); | 
 | 	} else if (strcmp(ivmode, "lmk") == 0) { | 
 | 		cc->iv_gen_ops = &crypt_iv_lmk_ops; | 
 | 		/* | 
 | 		 * Version 2 and 3 is recognised according | 
 | 		 * to length of provided multi-key string. | 
 | 		 * If present (version 3), last key is used as IV seed. | 
 | 		 * All keys (including IV seed) are always the same size. | 
 | 		 */ | 
 | 		if (cc->key_size % cc->key_parts) { | 
 | 			cc->key_parts++; | 
 | 			cc->key_extra_size = cc->key_size / cc->key_parts; | 
 | 		} | 
 | 	} else if (strcmp(ivmode, "tcw") == 0) { | 
 | 		cc->iv_gen_ops = &crypt_iv_tcw_ops; | 
 | 		cc->key_parts += 2; /* IV + whitening */ | 
 | 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE; | 
 | 	} else if (strcmp(ivmode, "random") == 0) { | 
 | 		cc->iv_gen_ops = &crypt_iv_random_ops; | 
 | 		/* Need storage space in integrity fields. */ | 
 | 		cc->integrity_iv_size = cc->iv_size; | 
 | 	} else { | 
 | 		ti->error = "Invalid IV mode"; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Workaround to parse HMAC algorithm from AEAD crypto API spec. | 
 |  * The HMAC is needed to calculate tag size (HMAC digest size). | 
 |  * This should be probably done by crypto-api calls (once available...) | 
 |  */ | 
 | static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api) | 
 | { | 
 | 	char *start, *end, *mac_alg = NULL; | 
 | 	struct crypto_ahash *mac; | 
 |  | 
 | 	if (!strstarts(cipher_api, "authenc(")) | 
 | 		return 0; | 
 |  | 
 | 	start = strchr(cipher_api, '('); | 
 | 	end = strchr(cipher_api, ','); | 
 | 	if (!start || !end || ++start > end) | 
 | 		return -EINVAL; | 
 |  | 
 | 	mac_alg = kzalloc(end - start + 1, GFP_KERNEL); | 
 | 	if (!mac_alg) | 
 | 		return -ENOMEM; | 
 | 	strncpy(mac_alg, start, end - start); | 
 |  | 
 | 	mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY); | 
 | 	kfree(mac_alg); | 
 |  | 
 | 	if (IS_ERR(mac)) | 
 | 		return PTR_ERR(mac); | 
 |  | 
 | 	cc->key_mac_size = crypto_ahash_digestsize(mac); | 
 | 	crypto_free_ahash(mac); | 
 |  | 
 | 	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL); | 
 | 	if (!cc->authenc_key) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key, | 
 | 				char **ivmode, char **ivopts) | 
 | { | 
 | 	struct crypt_config *cc = ti->private; | 
 | 	char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME]; | 
 | 	int ret = -EINVAL; | 
 |  | 
 | 	cc->tfms_count = 1; | 
 |  | 
 | 	/* | 
 | 	 * New format (capi: prefix) | 
 | 	 * capi:cipher_api_spec-iv:ivopts | 
 | 	 */ | 
 | 	tmp = &cipher_in[strlen("capi:")]; | 
 |  | 
 | 	/* Separate IV options if present, it can contain another '-' in hash name */ | 
 | 	*ivopts = strrchr(tmp, ':'); | 
 | 	if (*ivopts) { | 
 | 		**ivopts = '\0'; | 
 | 		(*ivopts)++; | 
 | 	} | 
 | 	/* Parse IV mode */ | 
 | 	*ivmode = strrchr(tmp, '-'); | 
 | 	if (*ivmode) { | 
 | 		**ivmode = '\0'; | 
 | 		(*ivmode)++; | 
 | 	} | 
 | 	/* The rest is crypto API spec */ | 
 | 	cipher_api = tmp; | 
 |  | 
 | 	/* Alloc AEAD, can be used only in new format. */ | 
 | 	if (crypt_integrity_aead(cc)) { | 
 | 		ret = crypt_ctr_auth_cipher(cc, cipher_api); | 
 | 		if (ret < 0) { | 
 | 			ti->error = "Invalid AEAD cipher spec"; | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (*ivmode && !strcmp(*ivmode, "lmk")) | 
 | 		cc->tfms_count = 64; | 
 |  | 
 | 	if (*ivmode && !strcmp(*ivmode, "essiv")) { | 
 | 		if (!*ivopts) { | 
 | 			ti->error = "Digest algorithm missing for ESSIV mode"; | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)", | 
 | 			       cipher_api, *ivopts); | 
 | 		if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) { | 
 | 			ti->error = "Cannot allocate cipher string"; | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		cipher_api = buf; | 
 | 	} | 
 |  | 
 | 	cc->key_parts = cc->tfms_count; | 
 |  | 
 | 	/* Allocate cipher */ | 
 | 	ret = crypt_alloc_tfms(cc, cipher_api); | 
 | 	if (ret < 0) { | 
 | 		ti->error = "Error allocating crypto tfm"; | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	if (crypt_integrity_aead(cc)) | 
 | 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc)); | 
 | 	else | 
 | 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key, | 
 | 				char **ivmode, char **ivopts) | 
 | { | 
 | 	struct crypt_config *cc = ti->private; | 
 | 	char *tmp, *cipher, *chainmode, *keycount; | 
 | 	char *cipher_api = NULL; | 
 | 	int ret = -EINVAL; | 
 | 	char dummy; | 
 |  | 
 | 	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) { | 
 | 		ti->error = "Bad cipher specification"; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Legacy dm-crypt cipher specification | 
 | 	 * cipher[:keycount]-mode-iv:ivopts | 
 | 	 */ | 
 | 	tmp = cipher_in; | 
 | 	keycount = strsep(&tmp, "-"); | 
 | 	cipher = strsep(&keycount, ":"); | 
 |  | 
 | 	if (!keycount) | 
 | 		cc->tfms_count = 1; | 
 | 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 || | 
 | 		 !is_power_of_2(cc->tfms_count)) { | 
 | 		ti->error = "Bad cipher key count specification"; | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	cc->key_parts = cc->tfms_count; | 
 |  | 
 | 	chainmode = strsep(&tmp, "-"); | 
 | 	*ivmode = strsep(&tmp, ":"); | 
 | 	*ivopts = tmp; | 
 |  | 
 | 	/* | 
 | 	 * For compatibility with the original dm-crypt mapping format, if | 
 | 	 * only the cipher name is supplied, use cbc-plain. | 
 | 	 */ | 
 | 	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) { | 
 | 		chainmode = "cbc"; | 
 | 		*ivmode = "plain"; | 
 | 	} | 
 |  | 
 | 	if (strcmp(chainmode, "ecb") && !*ivmode) { | 
 | 		ti->error = "IV mechanism required"; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL); | 
 | 	if (!cipher_api) | 
 | 		goto bad_mem; | 
 |  | 
 | 	if (*ivmode && !strcmp(*ivmode, "essiv")) { | 
 | 		if (!*ivopts) { | 
 | 			ti->error = "Digest algorithm missing for ESSIV mode"; | 
 | 			kfree(cipher_api); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME, | 
 | 			       "essiv(%s(%s),%s)", chainmode, cipher, *ivopts); | 
 | 	} else { | 
 | 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME, | 
 | 			       "%s(%s)", chainmode, cipher); | 
 | 	} | 
 | 	if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) { | 
 | 		kfree(cipher_api); | 
 | 		goto bad_mem; | 
 | 	} | 
 |  | 
 | 	/* Allocate cipher */ | 
 | 	ret = crypt_alloc_tfms(cc, cipher_api); | 
 | 	if (ret < 0) { | 
 | 		ti->error = "Error allocating crypto tfm"; | 
 | 		kfree(cipher_api); | 
 | 		return ret; | 
 | 	} | 
 | 	kfree(cipher_api); | 
 |  | 
 | 	return 0; | 
 | bad_mem: | 
 | 	ti->error = "Cannot allocate cipher strings"; | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key) | 
 | { | 
 | 	struct crypt_config *cc = ti->private; | 
 | 	char *ivmode = NULL, *ivopts = NULL; | 
 | 	int ret; | 
 |  | 
 | 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL); | 
 | 	if (!cc->cipher_string) { | 
 | 		ti->error = "Cannot allocate cipher strings"; | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	if (strstarts(cipher_in, "capi:")) | 
 | 		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts); | 
 | 	else | 
 | 		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* Initialize IV */ | 
 | 	ret = crypt_ctr_ivmode(ti, ivmode); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	/* Initialize and set key */ | 
 | 	ret = crypt_set_key(cc, key); | 
 | 	if (ret < 0) { | 
 | 		ti->error = "Error decoding and setting key"; | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* Allocate IV */ | 
 | 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) { | 
 | 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts); | 
 | 		if (ret < 0) { | 
 | 			ti->error = "Error creating IV"; | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Initialize IV (set keys for ESSIV etc) */ | 
 | 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) { | 
 | 		ret = cc->iv_gen_ops->init(cc); | 
 | 		if (ret < 0) { | 
 | 			ti->error = "Error initialising IV"; | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* wipe the kernel key payload copy */ | 
 | 	if (cc->key_string) | 
 | 		memset(cc->key, 0, cc->key_size * sizeof(u8)); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv) | 
 | { | 
 | 	struct crypt_config *cc = ti->private; | 
 | 	struct dm_arg_set as; | 
 | 	static const struct dm_arg _args[] = { | 
 | 		{0, 8, "Invalid number of feature args"}, | 
 | 	}; | 
 | 	unsigned int opt_params, val; | 
 | 	const char *opt_string, *sval; | 
 | 	char dummy; | 
 | 	int ret; | 
 |  | 
 | 	/* Optional parameters */ | 
 | 	as.argc = argc; | 
 | 	as.argv = argv; | 
 |  | 
 | 	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	while (opt_params--) { | 
 | 		opt_string = dm_shift_arg(&as); | 
 | 		if (!opt_string) { | 
 | 			ti->error = "Not enough feature arguments"; | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (!strcasecmp(opt_string, "allow_discards")) | 
 | 			ti->num_discard_bios = 1; | 
 |  | 
 | 		else if (!strcasecmp(opt_string, "same_cpu_crypt")) | 
 | 			set_bit(DM_CRYPT_SAME_CPU, &cc->flags); | 
 |  | 
 | 		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus")) | 
 | 			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); | 
 | 		else if (!strcasecmp(opt_string, "no_read_workqueue")) | 
 | 			set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags); | 
 | 		else if (!strcasecmp(opt_string, "no_write_workqueue")) | 
 | 			set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); | 
 | 		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) { | 
 | 			if (val == 0 || val > MAX_TAG_SIZE) { | 
 | 				ti->error = "Invalid integrity arguments"; | 
 | 				return -EINVAL; | 
 | 			} | 
 | 			cc->on_disk_tag_size = val; | 
 | 			sval = strchr(opt_string + strlen("integrity:"), ':') + 1; | 
 | 			if (!strcasecmp(sval, "aead")) { | 
 | 				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags); | 
 | 			} else if (strcasecmp(sval, "none")) { | 
 | 				ti->error = "Unknown integrity profile"; | 
 | 				return -EINVAL; | 
 | 			} | 
 |  | 
 | 			cc->cipher_auth = kstrdup(sval, GFP_KERNEL); | 
 | 			if (!cc->cipher_auth) | 
 | 				return -ENOMEM; | 
 | 		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) { | 
 | 			if (cc->sector_size < (1 << SECTOR_SHIFT) || | 
 | 			    cc->sector_size > 4096 || | 
 | 			    (cc->sector_size & (cc->sector_size - 1))) { | 
 | 				ti->error = "Invalid feature value for sector_size"; | 
 | 				return -EINVAL; | 
 | 			} | 
 | 			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) { | 
 | 				ti->error = "Device size is not multiple of sector_size feature"; | 
 | 				return -EINVAL; | 
 | 			} | 
 | 			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT; | 
 | 		} else if (!strcasecmp(opt_string, "iv_large_sectors")) | 
 | 			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags); | 
 | 		else { | 
 | 			ti->error = "Invalid feature arguments"; | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_BLK_DEV_ZONED | 
 | static int crypt_report_zones(struct dm_target *ti, | 
 | 		struct dm_report_zones_args *args, unsigned int nr_zones) | 
 | { | 
 | 	struct crypt_config *cc = ti->private; | 
 |  | 
 | 	return dm_report_zones(cc->dev->bdev, cc->start, | 
 | 			cc->start + dm_target_offset(ti, args->next_sector), | 
 | 			args, nr_zones); | 
 | } | 
 | #else | 
 | #define crypt_report_zones NULL | 
 | #endif | 
 |  | 
 | /* | 
 |  * Construct an encryption mapping: | 
 |  * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start> | 
 |  */ | 
 | static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv) | 
 | { | 
 | 	struct crypt_config *cc; | 
 | 	const char *devname = dm_table_device_name(ti->table); | 
 | 	int key_size; | 
 | 	unsigned int align_mask; | 
 | 	unsigned long long tmpll; | 
 | 	int ret; | 
 | 	size_t iv_size_padding, additional_req_size; | 
 | 	char dummy; | 
 |  | 
 | 	if (argc < 5) { | 
 | 		ti->error = "Not enough arguments"; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	key_size = get_key_size(&argv[1]); | 
 | 	if (key_size < 0) { | 
 | 		ti->error = "Cannot parse key size"; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL); | 
 | 	if (!cc) { | 
 | 		ti->error = "Cannot allocate encryption context"; | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	cc->key_size = key_size; | 
 | 	cc->sector_size = (1 << SECTOR_SHIFT); | 
 | 	cc->sector_shift = 0; | 
 |  | 
 | 	ti->private = cc; | 
 |  | 
 | 	spin_lock(&dm_crypt_clients_lock); | 
 | 	dm_crypt_clients_n++; | 
 | 	crypt_calculate_pages_per_client(); | 
 | 	spin_unlock(&dm_crypt_clients_lock); | 
 |  | 
 | 	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL); | 
 | 	if (ret < 0) | 
 | 		goto bad; | 
 |  | 
 | 	/* Optional parameters need to be read before cipher constructor */ | 
 | 	if (argc > 5) { | 
 | 		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]); | 
 | 		if (ret) | 
 | 			goto bad; | 
 | 	} | 
 |  | 
 | 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]); | 
 | 	if (ret < 0) | 
 | 		goto bad; | 
 |  | 
 | 	if (crypt_integrity_aead(cc)) { | 
 | 		cc->dmreq_start = sizeof(struct aead_request); | 
 | 		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc)); | 
 | 		align_mask = crypto_aead_alignmask(any_tfm_aead(cc)); | 
 | 	} else { | 
 | 		cc->dmreq_start = sizeof(struct skcipher_request); | 
 | 		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc)); | 
 | 		align_mask = crypto_skcipher_alignmask(any_tfm(cc)); | 
 | 	} | 
 | 	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request)); | 
 |  | 
 | 	if (align_mask < CRYPTO_MINALIGN) { | 
 | 		/* Allocate the padding exactly */ | 
 | 		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request)) | 
 | 				& align_mask; | 
 | 	} else { | 
 | 		/* | 
 | 		 * If the cipher requires greater alignment than kmalloc | 
 | 		 * alignment, we don't know the exact position of the | 
 | 		 * initialization vector. We must assume worst case. | 
 | 		 */ | 
 | 		iv_size_padding = align_mask; | 
 | 	} | 
 |  | 
 | 	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */ | 
 | 	additional_req_size = sizeof(struct dm_crypt_request) + | 
 | 		iv_size_padding + cc->iv_size + | 
 | 		cc->iv_size + | 
 | 		sizeof(uint64_t) + | 
 | 		sizeof(unsigned int); | 
 |  | 
 | 	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size); | 
 | 	if (ret) { | 
 | 		ti->error = "Cannot allocate crypt request mempool"; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	cc->per_bio_data_size = ti->per_io_data_size = | 
 | 		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size, | 
 | 		      ARCH_KMALLOC_MINALIGN); | 
 |  | 
 | 	ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc); | 
 | 	if (ret) { | 
 | 		ti->error = "Cannot allocate page mempool"; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS); | 
 | 	if (ret) { | 
 | 		ti->error = "Cannot allocate crypt bioset"; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	mutex_init(&cc->bio_alloc_lock); | 
 |  | 
 | 	ret = -EINVAL; | 
 | 	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) || | 
 | 	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) { | 
 | 		ti->error = "Invalid iv_offset sector"; | 
 | 		goto bad; | 
 | 	} | 
 | 	cc->iv_offset = tmpll; | 
 |  | 
 | 	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev); | 
 | 	if (ret) { | 
 | 		ti->error = "Device lookup failed"; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	ret = -EINVAL; | 
 | 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) { | 
 | 		ti->error = "Invalid device sector"; | 
 | 		goto bad; | 
 | 	} | 
 | 	cc->start = tmpll; | 
 |  | 
 | 	if (bdev_is_zoned(cc->dev->bdev)) { | 
 | 		/* | 
 | 		 * For zoned block devices, we need to preserve the issuer write | 
 | 		 * ordering. To do so, disable write workqueues and force inline | 
 | 		 * encryption completion. | 
 | 		 */ | 
 | 		set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); | 
 | 		set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags); | 
 |  | 
 | 		/* | 
 | 		 * All zone append writes to a zone of a zoned block device will | 
 | 		 * have the same BIO sector, the start of the zone. When the | 
 | 		 * cypher IV mode uses sector values, all data targeting a | 
 | 		 * zone will be encrypted using the first sector numbers of the | 
 | 		 * zone. This will not result in write errors but will | 
 | 		 * cause most reads to fail as reads will use the sector values | 
 | 		 * for the actual data locations, resulting in IV mismatch. | 
 | 		 * To avoid this problem, ask DM core to emulate zone append | 
 | 		 * operations with regular writes. | 
 | 		 */ | 
 | 		DMDEBUG("Zone append operations will be emulated"); | 
 | 		ti->emulate_zone_append = true; | 
 | 	} | 
 |  | 
 | 	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) { | 
 | 		ret = crypt_integrity_ctr(cc, ti); | 
 | 		if (ret) | 
 | 			goto bad; | 
 |  | 
 | 		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size; | 
 | 		if (!cc->tag_pool_max_sectors) | 
 | 			cc->tag_pool_max_sectors = 1; | 
 |  | 
 | 		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS, | 
 | 			cc->tag_pool_max_sectors * cc->on_disk_tag_size); | 
 | 		if (ret) { | 
 | 			ti->error = "Cannot allocate integrity tags mempool"; | 
 | 			goto bad; | 
 | 		} | 
 |  | 
 | 		cc->tag_pool_max_sectors <<= cc->sector_shift; | 
 | 	} | 
 |  | 
 | 	ret = -ENOMEM; | 
 | 	cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname); | 
 | 	if (!cc->io_queue) { | 
 | 		ti->error = "Couldn't create kcryptd io queue"; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) | 
 | 		cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, | 
 | 						  1, devname); | 
 | 	else | 
 | 		cc->crypt_queue = alloc_workqueue("kcryptd/%s", | 
 | 						  WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, | 
 | 						  num_online_cpus(), devname); | 
 | 	if (!cc->crypt_queue) { | 
 | 		ti->error = "Couldn't create kcryptd queue"; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	spin_lock_init(&cc->write_thread_lock); | 
 | 	cc->write_tree = RB_ROOT; | 
 |  | 
 | 	cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname); | 
 | 	if (IS_ERR(cc->write_thread)) { | 
 | 		ret = PTR_ERR(cc->write_thread); | 
 | 		cc->write_thread = NULL; | 
 | 		ti->error = "Couldn't spawn write thread"; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	ti->num_flush_bios = 1; | 
 | 	ti->limit_swap_bios = true; | 
 | 	ti->accounts_remapped_io = true; | 
 |  | 
 | 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1); | 
 | 	return 0; | 
 |  | 
 | bad: | 
 | 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0); | 
 | 	crypt_dtr(ti); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int crypt_map(struct dm_target *ti, struct bio *bio) | 
 | { | 
 | 	struct dm_crypt_io *io; | 
 | 	struct crypt_config *cc = ti->private; | 
 |  | 
 | 	/* | 
 | 	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues. | 
 | 	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight | 
 | 	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters | 
 | 	 */ | 
 | 	if (unlikely(bio->bi_opf & REQ_PREFLUSH || | 
 | 	    bio_op(bio) == REQ_OP_DISCARD)) { | 
 | 		bio_set_dev(bio, cc->dev->bdev); | 
 | 		if (bio_sectors(bio)) | 
 | 			bio->bi_iter.bi_sector = cc->start + | 
 | 				dm_target_offset(ti, bio->bi_iter.bi_sector); | 
 | 		return DM_MAPIO_REMAPPED; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check if bio is too large, split as needed. | 
 | 	 */ | 
 | 	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) && | 
 | 	    (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size)) | 
 | 		dm_accept_partial_bio(bio, ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT)); | 
 |  | 
 | 	/* | 
 | 	 * Ensure that bio is a multiple of internal sector encryption size | 
 | 	 * and is aligned to this size as defined in IO hints. | 
 | 	 */ | 
 | 	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0)) | 
 | 		return DM_MAPIO_KILL; | 
 |  | 
 | 	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1))) | 
 | 		return DM_MAPIO_KILL; | 
 |  | 
 | 	io = dm_per_bio_data(bio, cc->per_bio_data_size); | 
 | 	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector)); | 
 |  | 
 | 	if (cc->on_disk_tag_size) { | 
 | 		unsigned int tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift); | 
 |  | 
 | 		if (unlikely(tag_len > KMALLOC_MAX_SIZE) || | 
 | 		    unlikely(!(io->integrity_metadata = kmalloc(tag_len, | 
 | 				GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) { | 
 | 			if (bio_sectors(bio) > cc->tag_pool_max_sectors) | 
 | 				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors); | 
 | 			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO); | 
 | 			io->integrity_metadata_from_pool = true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (crypt_integrity_aead(cc)) | 
 | 		io->ctx.r.req_aead = (struct aead_request *)(io + 1); | 
 | 	else | 
 | 		io->ctx.r.req = (struct skcipher_request *)(io + 1); | 
 |  | 
 | 	if (bio_data_dir(io->base_bio) == READ) { | 
 | 		if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP)) | 
 | 			kcryptd_queue_read(io); | 
 | 	} else | 
 | 		kcryptd_queue_crypt(io); | 
 |  | 
 | 	return DM_MAPIO_SUBMITTED; | 
 | } | 
 |  | 
 | static char hex2asc(unsigned char c) | 
 | { | 
 | 	return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27); | 
 | } | 
 |  | 
 | static void crypt_status(struct dm_target *ti, status_type_t type, | 
 | 			 unsigned int status_flags, char *result, unsigned int maxlen) | 
 | { | 
 | 	struct crypt_config *cc = ti->private; | 
 | 	unsigned int i, sz = 0; | 
 | 	int num_feature_args = 0; | 
 |  | 
 | 	switch (type) { | 
 | 	case STATUSTYPE_INFO: | 
 | 		result[0] = '\0'; | 
 | 		break; | 
 |  | 
 | 	case STATUSTYPE_TABLE: | 
 | 		DMEMIT("%s ", cc->cipher_string); | 
 |  | 
 | 		if (cc->key_size > 0) { | 
 | 			if (cc->key_string) | 
 | 				DMEMIT(":%u:%s", cc->key_size, cc->key_string); | 
 | 			else { | 
 | 				for (i = 0; i < cc->key_size; i++) { | 
 | 					DMEMIT("%c%c", hex2asc(cc->key[i] >> 4), | 
 | 					       hex2asc(cc->key[i] & 0xf)); | 
 | 				} | 
 | 			} | 
 | 		} else | 
 | 			DMEMIT("-"); | 
 |  | 
 | 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset, | 
 | 				cc->dev->name, (unsigned long long)cc->start); | 
 |  | 
 | 		num_feature_args += !!ti->num_discard_bios; | 
 | 		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags); | 
 | 		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); | 
 | 		num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags); | 
 | 		num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); | 
 | 		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT); | 
 | 		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags); | 
 | 		if (cc->on_disk_tag_size) | 
 | 			num_feature_args++; | 
 | 		if (num_feature_args) { | 
 | 			DMEMIT(" %d", num_feature_args); | 
 | 			if (ti->num_discard_bios) | 
 | 				DMEMIT(" allow_discards"); | 
 | 			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) | 
 | 				DMEMIT(" same_cpu_crypt"); | 
 | 			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) | 
 | 				DMEMIT(" submit_from_crypt_cpus"); | 
 | 			if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) | 
 | 				DMEMIT(" no_read_workqueue"); | 
 | 			if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) | 
 | 				DMEMIT(" no_write_workqueue"); | 
 | 			if (cc->on_disk_tag_size) | 
 | 				DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth); | 
 | 			if (cc->sector_size != (1 << SECTOR_SHIFT)) | 
 | 				DMEMIT(" sector_size:%d", cc->sector_size); | 
 | 			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) | 
 | 				DMEMIT(" iv_large_sectors"); | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case STATUSTYPE_IMA: | 
 | 		DMEMIT_TARGET_NAME_VERSION(ti->type); | 
 | 		DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n'); | 
 | 		DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n'); | 
 | 		DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ? | 
 | 		       'y' : 'n'); | 
 | 		DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ? | 
 | 		       'y' : 'n'); | 
 | 		DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ? | 
 | 		       'y' : 'n'); | 
 | 		DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ? | 
 | 		       'y' : 'n'); | 
 |  | 
 | 		if (cc->on_disk_tag_size) | 
 | 			DMEMIT(",integrity_tag_size=%u,cipher_auth=%s", | 
 | 			       cc->on_disk_tag_size, cc->cipher_auth); | 
 | 		if (cc->sector_size != (1 << SECTOR_SHIFT)) | 
 | 			DMEMIT(",sector_size=%d", cc->sector_size); | 
 | 		if (cc->cipher_string) | 
 | 			DMEMIT(",cipher_string=%s", cc->cipher_string); | 
 |  | 
 | 		DMEMIT(",key_size=%u", cc->key_size); | 
 | 		DMEMIT(",key_parts=%u", cc->key_parts); | 
 | 		DMEMIT(",key_extra_size=%u", cc->key_extra_size); | 
 | 		DMEMIT(",key_mac_size=%u", cc->key_mac_size); | 
 | 		DMEMIT(";"); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static void crypt_postsuspend(struct dm_target *ti) | 
 | { | 
 | 	struct crypt_config *cc = ti->private; | 
 |  | 
 | 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags); | 
 | } | 
 |  | 
 | static int crypt_preresume(struct dm_target *ti) | 
 | { | 
 | 	struct crypt_config *cc = ti->private; | 
 |  | 
 | 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) { | 
 | 		DMERR("aborting resume - crypt key is not set."); | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void crypt_resume(struct dm_target *ti) | 
 | { | 
 | 	struct crypt_config *cc = ti->private; | 
 |  | 
 | 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags); | 
 | } | 
 |  | 
 | /* Message interface | 
 |  *	key set <key> | 
 |  *	key wipe | 
 |  */ | 
 | static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv, | 
 | 			 char *result, unsigned int maxlen) | 
 | { | 
 | 	struct crypt_config *cc = ti->private; | 
 | 	int key_size, ret = -EINVAL; | 
 |  | 
 | 	if (argc < 2) | 
 | 		goto error; | 
 |  | 
 | 	if (!strcasecmp(argv[0], "key")) { | 
 | 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) { | 
 | 			DMWARN("not suspended during key manipulation."); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		if (argc == 3 && !strcasecmp(argv[1], "set")) { | 
 | 			/* The key size may not be changed. */ | 
 | 			key_size = get_key_size(&argv[2]); | 
 | 			if (key_size < 0 || cc->key_size != key_size) { | 
 | 				memset(argv[2], '0', strlen(argv[2])); | 
 | 				return -EINVAL; | 
 | 			} | 
 |  | 
 | 			ret = crypt_set_key(cc, argv[2]); | 
 | 			if (ret) | 
 | 				return ret; | 
 | 			if (cc->iv_gen_ops && cc->iv_gen_ops->init) | 
 | 				ret = cc->iv_gen_ops->init(cc); | 
 | 			/* wipe the kernel key payload copy */ | 
 | 			if (cc->key_string) | 
 | 				memset(cc->key, 0, cc->key_size * sizeof(u8)); | 
 | 			return ret; | 
 | 		} | 
 | 		if (argc == 2 && !strcasecmp(argv[1], "wipe")) | 
 | 			return crypt_wipe_key(cc); | 
 | 	} | 
 |  | 
 | error: | 
 | 	DMWARN("unrecognised message received."); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static int crypt_iterate_devices(struct dm_target *ti, | 
 | 				 iterate_devices_callout_fn fn, void *data) | 
 | { | 
 | 	struct crypt_config *cc = ti->private; | 
 |  | 
 | 	return fn(ti, cc->dev, cc->start, ti->len, data); | 
 | } | 
 |  | 
 | static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits) | 
 | { | 
 | 	struct crypt_config *cc = ti->private; | 
 |  | 
 | 	/* | 
 | 	 * Unfortunate constraint that is required to avoid the potential | 
 | 	 * for exceeding underlying device's max_segments limits -- due to | 
 | 	 * crypt_alloc_buffer() possibly allocating pages for the encryption | 
 | 	 * bio that are not as physically contiguous as the original bio. | 
 | 	 */ | 
 | 	limits->max_segment_size = PAGE_SIZE; | 
 |  | 
 | 	limits->logical_block_size = | 
 | 		max_t(unsigned int, limits->logical_block_size, cc->sector_size); | 
 | 	limits->physical_block_size = | 
 | 		max_t(unsigned int, limits->physical_block_size, cc->sector_size); | 
 | 	limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size); | 
 | 	limits->dma_alignment = limits->logical_block_size - 1; | 
 | } | 
 |  | 
 | static struct target_type crypt_target = { | 
 | 	.name   = "crypt", | 
 | 	.version = {1, 24, 0}, | 
 | 	.module = THIS_MODULE, | 
 | 	.ctr    = crypt_ctr, | 
 | 	.dtr    = crypt_dtr, | 
 | 	.features = DM_TARGET_ZONED_HM, | 
 | 	.report_zones = crypt_report_zones, | 
 | 	.map    = crypt_map, | 
 | 	.status = crypt_status, | 
 | 	.postsuspend = crypt_postsuspend, | 
 | 	.preresume = crypt_preresume, | 
 | 	.resume = crypt_resume, | 
 | 	.message = crypt_message, | 
 | 	.iterate_devices = crypt_iterate_devices, | 
 | 	.io_hints = crypt_io_hints, | 
 | }; | 
 |  | 
 | static int __init dm_crypt_init(void) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	r = dm_register_target(&crypt_target); | 
 | 	if (r < 0) | 
 | 		DMERR("register failed %d", r); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static void __exit dm_crypt_exit(void) | 
 | { | 
 | 	dm_unregister_target(&crypt_target); | 
 | } | 
 |  | 
 | module_init(dm_crypt_init); | 
 | module_exit(dm_crypt_exit); | 
 |  | 
 | MODULE_AUTHOR("Jana Saout <jana@saout.de>"); | 
 | MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption"); | 
 | MODULE_LICENSE("GPL"); |