| /* | 
 |  * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved. | 
 |  * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org> | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions are | 
 |  * met: | 
 |  *  * Redistributions of source code must retain the above copyright | 
 |  *   notice, this list of conditions and the following disclaimer. | 
 |  *  * Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in the | 
 |  *    documentation and/or other materials provided with the distribution. | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 |  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 |  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 |  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 |  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 |  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 |  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 |  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 |  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 |  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 |  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  */ | 
 |  | 
 | #include <crypto/ecc_curve.h> | 
 | #include <linux/module.h> | 
 | #include <linux/random.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/swab.h> | 
 | #include <linux/fips.h> | 
 | #include <crypto/ecdh.h> | 
 | #include <crypto/rng.h> | 
 | #include <asm/unaligned.h> | 
 | #include <linux/ratelimit.h> | 
 |  | 
 | #include "ecc.h" | 
 | #include "ecc_curve_defs.h" | 
 |  | 
 | typedef struct { | 
 | 	u64 m_low; | 
 | 	u64 m_high; | 
 | } uint128_t; | 
 |  | 
 | /* Returns curv25519 curve param */ | 
 | const struct ecc_curve *ecc_get_curve25519(void) | 
 | { | 
 | 	return &ecc_25519; | 
 | } | 
 | EXPORT_SYMBOL(ecc_get_curve25519); | 
 |  | 
 | const struct ecc_curve *ecc_get_curve(unsigned int curve_id) | 
 | { | 
 | 	switch (curve_id) { | 
 | 	/* In FIPS mode only allow P256 and higher */ | 
 | 	case ECC_CURVE_NIST_P192: | 
 | 		return fips_enabled ? NULL : &nist_p192; | 
 | 	case ECC_CURVE_NIST_P256: | 
 | 		return &nist_p256; | 
 | 	case ECC_CURVE_NIST_P384: | 
 | 		return &nist_p384; | 
 | 	default: | 
 | 		return NULL; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(ecc_get_curve); | 
 |  | 
 | static u64 *ecc_alloc_digits_space(unsigned int ndigits) | 
 | { | 
 | 	size_t len = ndigits * sizeof(u64); | 
 |  | 
 | 	if (!len) | 
 | 		return NULL; | 
 |  | 
 | 	return kmalloc(len, GFP_KERNEL); | 
 | } | 
 |  | 
 | static void ecc_free_digits_space(u64 *space) | 
 | { | 
 | 	kfree_sensitive(space); | 
 | } | 
 |  | 
 | static struct ecc_point *ecc_alloc_point(unsigned int ndigits) | 
 | { | 
 | 	struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL); | 
 |  | 
 | 	if (!p) | 
 | 		return NULL; | 
 |  | 
 | 	p->x = ecc_alloc_digits_space(ndigits); | 
 | 	if (!p->x) | 
 | 		goto err_alloc_x; | 
 |  | 
 | 	p->y = ecc_alloc_digits_space(ndigits); | 
 | 	if (!p->y) | 
 | 		goto err_alloc_y; | 
 |  | 
 | 	p->ndigits = ndigits; | 
 |  | 
 | 	return p; | 
 |  | 
 | err_alloc_y: | 
 | 	ecc_free_digits_space(p->x); | 
 | err_alloc_x: | 
 | 	kfree(p); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void ecc_free_point(struct ecc_point *p) | 
 | { | 
 | 	if (!p) | 
 | 		return; | 
 |  | 
 | 	kfree_sensitive(p->x); | 
 | 	kfree_sensitive(p->y); | 
 | 	kfree_sensitive(p); | 
 | } | 
 |  | 
 | static void vli_clear(u64 *vli, unsigned int ndigits) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < ndigits; i++) | 
 | 		vli[i] = 0; | 
 | } | 
 |  | 
 | /* Returns true if vli == 0, false otherwise. */ | 
 | bool vli_is_zero(const u64 *vli, unsigned int ndigits) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < ndigits; i++) { | 
 | 		if (vli[i]) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 | EXPORT_SYMBOL(vli_is_zero); | 
 |  | 
 | /* Returns nonzero if bit of vli is set. */ | 
 | static u64 vli_test_bit(const u64 *vli, unsigned int bit) | 
 | { | 
 | 	return (vli[bit / 64] & ((u64)1 << (bit % 64))); | 
 | } | 
 |  | 
 | static bool vli_is_negative(const u64 *vli, unsigned int ndigits) | 
 | { | 
 | 	return vli_test_bit(vli, ndigits * 64 - 1); | 
 | } | 
 |  | 
 | /* Counts the number of 64-bit "digits" in vli. */ | 
 | static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	/* Search from the end until we find a non-zero digit. | 
 | 	 * We do it in reverse because we expect that most digits will | 
 | 	 * be nonzero. | 
 | 	 */ | 
 | 	for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--); | 
 |  | 
 | 	return (i + 1); | 
 | } | 
 |  | 
 | /* Counts the number of bits required for vli. */ | 
 | static unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits) | 
 | { | 
 | 	unsigned int i, num_digits; | 
 | 	u64 digit; | 
 |  | 
 | 	num_digits = vli_num_digits(vli, ndigits); | 
 | 	if (num_digits == 0) | 
 | 		return 0; | 
 |  | 
 | 	digit = vli[num_digits - 1]; | 
 | 	for (i = 0; digit; i++) | 
 | 		digit >>= 1; | 
 |  | 
 | 	return ((num_digits - 1) * 64 + i); | 
 | } | 
 |  | 
 | /* Set dest from unaligned bit string src. */ | 
 | void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits) | 
 | { | 
 | 	int i; | 
 | 	const u64 *from = src; | 
 |  | 
 | 	for (i = 0; i < ndigits; i++) | 
 | 		dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]); | 
 | } | 
 | EXPORT_SYMBOL(vli_from_be64); | 
 |  | 
 | void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits) | 
 | { | 
 | 	int i; | 
 | 	const u64 *from = src; | 
 |  | 
 | 	for (i = 0; i < ndigits; i++) | 
 | 		dest[i] = get_unaligned_le64(&from[i]); | 
 | } | 
 | EXPORT_SYMBOL(vli_from_le64); | 
 |  | 
 | /* Sets dest = src. */ | 
 | static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < ndigits; i++) | 
 | 		dest[i] = src[i]; | 
 | } | 
 |  | 
 | /* Returns sign of left - right. */ | 
 | int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = ndigits - 1; i >= 0; i--) { | 
 | 		if (left[i] > right[i]) | 
 | 			return 1; | 
 | 		else if (left[i] < right[i]) | 
 | 			return -1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(vli_cmp); | 
 |  | 
 | /* Computes result = in << c, returning carry. Can modify in place | 
 |  * (if result == in). 0 < shift < 64. | 
 |  */ | 
 | static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift, | 
 | 		      unsigned int ndigits) | 
 | { | 
 | 	u64 carry = 0; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < ndigits; i++) { | 
 | 		u64 temp = in[i]; | 
 |  | 
 | 		result[i] = (temp << shift) | carry; | 
 | 		carry = temp >> (64 - shift); | 
 | 	} | 
 |  | 
 | 	return carry; | 
 | } | 
 |  | 
 | /* Computes vli = vli >> 1. */ | 
 | static void vli_rshift1(u64 *vli, unsigned int ndigits) | 
 | { | 
 | 	u64 *end = vli; | 
 | 	u64 carry = 0; | 
 |  | 
 | 	vli += ndigits; | 
 |  | 
 | 	while (vli-- > end) { | 
 | 		u64 temp = *vli; | 
 | 		*vli = (temp >> 1) | carry; | 
 | 		carry = temp << 63; | 
 | 	} | 
 | } | 
 |  | 
 | /* Computes result = left + right, returning carry. Can modify in place. */ | 
 | static u64 vli_add(u64 *result, const u64 *left, const u64 *right, | 
 | 		   unsigned int ndigits) | 
 | { | 
 | 	u64 carry = 0; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < ndigits; i++) { | 
 | 		u64 sum; | 
 |  | 
 | 		sum = left[i] + right[i] + carry; | 
 | 		if (sum != left[i]) | 
 | 			carry = (sum < left[i]); | 
 |  | 
 | 		result[i] = sum; | 
 | 	} | 
 |  | 
 | 	return carry; | 
 | } | 
 |  | 
 | /* Computes result = left + right, returning carry. Can modify in place. */ | 
 | static u64 vli_uadd(u64 *result, const u64 *left, u64 right, | 
 | 		    unsigned int ndigits) | 
 | { | 
 | 	u64 carry = right; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < ndigits; i++) { | 
 | 		u64 sum; | 
 |  | 
 | 		sum = left[i] + carry; | 
 | 		if (sum != left[i]) | 
 | 			carry = (sum < left[i]); | 
 | 		else | 
 | 			carry = !!carry; | 
 |  | 
 | 		result[i] = sum; | 
 | 	} | 
 |  | 
 | 	return carry; | 
 | } | 
 |  | 
 | /* Computes result = left - right, returning borrow. Can modify in place. */ | 
 | u64 vli_sub(u64 *result, const u64 *left, const u64 *right, | 
 | 		   unsigned int ndigits) | 
 | { | 
 | 	u64 borrow = 0; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < ndigits; i++) { | 
 | 		u64 diff; | 
 |  | 
 | 		diff = left[i] - right[i] - borrow; | 
 | 		if (diff != left[i]) | 
 | 			borrow = (diff > left[i]); | 
 |  | 
 | 		result[i] = diff; | 
 | 	} | 
 |  | 
 | 	return borrow; | 
 | } | 
 | EXPORT_SYMBOL(vli_sub); | 
 |  | 
 | /* Computes result = left - right, returning borrow. Can modify in place. */ | 
 | static u64 vli_usub(u64 *result, const u64 *left, u64 right, | 
 | 	     unsigned int ndigits) | 
 | { | 
 | 	u64 borrow = right; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < ndigits; i++) { | 
 | 		u64 diff; | 
 |  | 
 | 		diff = left[i] - borrow; | 
 | 		if (diff != left[i]) | 
 | 			borrow = (diff > left[i]); | 
 |  | 
 | 		result[i] = diff; | 
 | 	} | 
 |  | 
 | 	return borrow; | 
 | } | 
 |  | 
 | static uint128_t mul_64_64(u64 left, u64 right) | 
 | { | 
 | 	uint128_t result; | 
 | #if defined(CONFIG_ARCH_SUPPORTS_INT128) | 
 | 	unsigned __int128 m = (unsigned __int128)left * right; | 
 |  | 
 | 	result.m_low  = m; | 
 | 	result.m_high = m >> 64; | 
 | #else | 
 | 	u64 a0 = left & 0xffffffffull; | 
 | 	u64 a1 = left >> 32; | 
 | 	u64 b0 = right & 0xffffffffull; | 
 | 	u64 b1 = right >> 32; | 
 | 	u64 m0 = a0 * b0; | 
 | 	u64 m1 = a0 * b1; | 
 | 	u64 m2 = a1 * b0; | 
 | 	u64 m3 = a1 * b1; | 
 |  | 
 | 	m2 += (m0 >> 32); | 
 | 	m2 += m1; | 
 |  | 
 | 	/* Overflow */ | 
 | 	if (m2 < m1) | 
 | 		m3 += 0x100000000ull; | 
 |  | 
 | 	result.m_low = (m0 & 0xffffffffull) | (m2 << 32); | 
 | 	result.m_high = m3 + (m2 >> 32); | 
 | #endif | 
 | 	return result; | 
 | } | 
 |  | 
 | static uint128_t add_128_128(uint128_t a, uint128_t b) | 
 | { | 
 | 	uint128_t result; | 
 |  | 
 | 	result.m_low = a.m_low + b.m_low; | 
 | 	result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low); | 
 |  | 
 | 	return result; | 
 | } | 
 |  | 
 | static void vli_mult(u64 *result, const u64 *left, const u64 *right, | 
 | 		     unsigned int ndigits) | 
 | { | 
 | 	uint128_t r01 = { 0, 0 }; | 
 | 	u64 r2 = 0; | 
 | 	unsigned int i, k; | 
 |  | 
 | 	/* Compute each digit of result in sequence, maintaining the | 
 | 	 * carries. | 
 | 	 */ | 
 | 	for (k = 0; k < ndigits * 2 - 1; k++) { | 
 | 		unsigned int min; | 
 |  | 
 | 		if (k < ndigits) | 
 | 			min = 0; | 
 | 		else | 
 | 			min = (k + 1) - ndigits; | 
 |  | 
 | 		for (i = min; i <= k && i < ndigits; i++) { | 
 | 			uint128_t product; | 
 |  | 
 | 			product = mul_64_64(left[i], right[k - i]); | 
 |  | 
 | 			r01 = add_128_128(r01, product); | 
 | 			r2 += (r01.m_high < product.m_high); | 
 | 		} | 
 |  | 
 | 		result[k] = r01.m_low; | 
 | 		r01.m_low = r01.m_high; | 
 | 		r01.m_high = r2; | 
 | 		r2 = 0; | 
 | 	} | 
 |  | 
 | 	result[ndigits * 2 - 1] = r01.m_low; | 
 | } | 
 |  | 
 | /* Compute product = left * right, for a small right value. */ | 
 | static void vli_umult(u64 *result, const u64 *left, u32 right, | 
 | 		      unsigned int ndigits) | 
 | { | 
 | 	uint128_t r01 = { 0 }; | 
 | 	unsigned int k; | 
 |  | 
 | 	for (k = 0; k < ndigits; k++) { | 
 | 		uint128_t product; | 
 |  | 
 | 		product = mul_64_64(left[k], right); | 
 | 		r01 = add_128_128(r01, product); | 
 | 		/* no carry */ | 
 | 		result[k] = r01.m_low; | 
 | 		r01.m_low = r01.m_high; | 
 | 		r01.m_high = 0; | 
 | 	} | 
 | 	result[k] = r01.m_low; | 
 | 	for (++k; k < ndigits * 2; k++) | 
 | 		result[k] = 0; | 
 | } | 
 |  | 
 | static void vli_square(u64 *result, const u64 *left, unsigned int ndigits) | 
 | { | 
 | 	uint128_t r01 = { 0, 0 }; | 
 | 	u64 r2 = 0; | 
 | 	int i, k; | 
 |  | 
 | 	for (k = 0; k < ndigits * 2 - 1; k++) { | 
 | 		unsigned int min; | 
 |  | 
 | 		if (k < ndigits) | 
 | 			min = 0; | 
 | 		else | 
 | 			min = (k + 1) - ndigits; | 
 |  | 
 | 		for (i = min; i <= k && i <= k - i; i++) { | 
 | 			uint128_t product; | 
 |  | 
 | 			product = mul_64_64(left[i], left[k - i]); | 
 |  | 
 | 			if (i < k - i) { | 
 | 				r2 += product.m_high >> 63; | 
 | 				product.m_high = (product.m_high << 1) | | 
 | 						 (product.m_low >> 63); | 
 | 				product.m_low <<= 1; | 
 | 			} | 
 |  | 
 | 			r01 = add_128_128(r01, product); | 
 | 			r2 += (r01.m_high < product.m_high); | 
 | 		} | 
 |  | 
 | 		result[k] = r01.m_low; | 
 | 		r01.m_low = r01.m_high; | 
 | 		r01.m_high = r2; | 
 | 		r2 = 0; | 
 | 	} | 
 |  | 
 | 	result[ndigits * 2 - 1] = r01.m_low; | 
 | } | 
 |  | 
 | /* Computes result = (left + right) % mod. | 
 |  * Assumes that left < mod and right < mod, result != mod. | 
 |  */ | 
 | static void vli_mod_add(u64 *result, const u64 *left, const u64 *right, | 
 | 			const u64 *mod, unsigned int ndigits) | 
 | { | 
 | 	u64 carry; | 
 |  | 
 | 	carry = vli_add(result, left, right, ndigits); | 
 |  | 
 | 	/* result > mod (result = mod + remainder), so subtract mod to | 
 | 	 * get remainder. | 
 | 	 */ | 
 | 	if (carry || vli_cmp(result, mod, ndigits) >= 0) | 
 | 		vli_sub(result, result, mod, ndigits); | 
 | } | 
 |  | 
 | /* Computes result = (left - right) % mod. | 
 |  * Assumes that left < mod and right < mod, result != mod. | 
 |  */ | 
 | static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right, | 
 | 			const u64 *mod, unsigned int ndigits) | 
 | { | 
 | 	u64 borrow = vli_sub(result, left, right, ndigits); | 
 |  | 
 | 	/* In this case, p_result == -diff == (max int) - diff. | 
 | 	 * Since -x % d == d - x, we can get the correct result from | 
 | 	 * result + mod (with overflow). | 
 | 	 */ | 
 | 	if (borrow) | 
 | 		vli_add(result, result, mod, ndigits); | 
 | } | 
 |  | 
 | /* | 
 |  * Computes result = product % mod | 
 |  * for special form moduli: p = 2^k-c, for small c (note the minus sign) | 
 |  * | 
 |  * References: | 
 |  * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective. | 
 |  * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form | 
 |  * Algorithm 9.2.13 (Fast mod operation for special-form moduli). | 
 |  */ | 
 | static void vli_mmod_special(u64 *result, const u64 *product, | 
 | 			      const u64 *mod, unsigned int ndigits) | 
 | { | 
 | 	u64 c = -mod[0]; | 
 | 	u64 t[ECC_MAX_DIGITS * 2]; | 
 | 	u64 r[ECC_MAX_DIGITS * 2]; | 
 |  | 
 | 	vli_set(r, product, ndigits * 2); | 
 | 	while (!vli_is_zero(r + ndigits, ndigits)) { | 
 | 		vli_umult(t, r + ndigits, c, ndigits); | 
 | 		vli_clear(r + ndigits, ndigits); | 
 | 		vli_add(r, r, t, ndigits * 2); | 
 | 	} | 
 | 	vli_set(t, mod, ndigits); | 
 | 	vli_clear(t + ndigits, ndigits); | 
 | 	while (vli_cmp(r, t, ndigits * 2) >= 0) | 
 | 		vli_sub(r, r, t, ndigits * 2); | 
 | 	vli_set(result, r, ndigits); | 
 | } | 
 |  | 
 | /* | 
 |  * Computes result = product % mod | 
 |  * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign) | 
 |  * where k-1 does not fit into qword boundary by -1 bit (such as 255). | 
 |  | 
 |  * References (loosely based on): | 
 |  * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography. | 
 |  * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47. | 
 |  * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf | 
 |  * | 
 |  * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren. | 
 |  * Handbook of Elliptic and Hyperelliptic Curve Cryptography. | 
 |  * Algorithm 10.25 Fast reduction for special form moduli | 
 |  */ | 
 | static void vli_mmod_special2(u64 *result, const u64 *product, | 
 | 			       const u64 *mod, unsigned int ndigits) | 
 | { | 
 | 	u64 c2 = mod[0] * 2; | 
 | 	u64 q[ECC_MAX_DIGITS]; | 
 | 	u64 r[ECC_MAX_DIGITS * 2]; | 
 | 	u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */ | 
 | 	int carry; /* last bit that doesn't fit into q */ | 
 | 	int i; | 
 |  | 
 | 	vli_set(m, mod, ndigits); | 
 | 	vli_clear(m + ndigits, ndigits); | 
 |  | 
 | 	vli_set(r, product, ndigits); | 
 | 	/* q and carry are top bits */ | 
 | 	vli_set(q, product + ndigits, ndigits); | 
 | 	vli_clear(r + ndigits, ndigits); | 
 | 	carry = vli_is_negative(r, ndigits); | 
 | 	if (carry) | 
 | 		r[ndigits - 1] &= (1ull << 63) - 1; | 
 | 	for (i = 1; carry || !vli_is_zero(q, ndigits); i++) { | 
 | 		u64 qc[ECC_MAX_DIGITS * 2]; | 
 |  | 
 | 		vli_umult(qc, q, c2, ndigits); | 
 | 		if (carry) | 
 | 			vli_uadd(qc, qc, mod[0], ndigits * 2); | 
 | 		vli_set(q, qc + ndigits, ndigits); | 
 | 		vli_clear(qc + ndigits, ndigits); | 
 | 		carry = vli_is_negative(qc, ndigits); | 
 | 		if (carry) | 
 | 			qc[ndigits - 1] &= (1ull << 63) - 1; | 
 | 		if (i & 1) | 
 | 			vli_sub(r, r, qc, ndigits * 2); | 
 | 		else | 
 | 			vli_add(r, r, qc, ndigits * 2); | 
 | 	} | 
 | 	while (vli_is_negative(r, ndigits * 2)) | 
 | 		vli_add(r, r, m, ndigits * 2); | 
 | 	while (vli_cmp(r, m, ndigits * 2) >= 0) | 
 | 		vli_sub(r, r, m, ndigits * 2); | 
 |  | 
 | 	vli_set(result, r, ndigits); | 
 | } | 
 |  | 
 | /* | 
 |  * Computes result = product % mod, where product is 2N words long. | 
 |  * Reference: Ken MacKay's micro-ecc. | 
 |  * Currently only designed to work for curve_p or curve_n. | 
 |  */ | 
 | static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod, | 
 | 			  unsigned int ndigits) | 
 | { | 
 | 	u64 mod_m[2 * ECC_MAX_DIGITS]; | 
 | 	u64 tmp[2 * ECC_MAX_DIGITS]; | 
 | 	u64 *v[2] = { tmp, product }; | 
 | 	u64 carry = 0; | 
 | 	unsigned int i; | 
 | 	/* Shift mod so its highest set bit is at the maximum position. */ | 
 | 	int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits); | 
 | 	int word_shift = shift / 64; | 
 | 	int bit_shift = shift % 64; | 
 |  | 
 | 	vli_clear(mod_m, word_shift); | 
 | 	if (bit_shift > 0) { | 
 | 		for (i = 0; i < ndigits; ++i) { | 
 | 			mod_m[word_shift + i] = (mod[i] << bit_shift) | carry; | 
 | 			carry = mod[i] >> (64 - bit_shift); | 
 | 		} | 
 | 	} else | 
 | 		vli_set(mod_m + word_shift, mod, ndigits); | 
 |  | 
 | 	for (i = 1; shift >= 0; --shift) { | 
 | 		u64 borrow = 0; | 
 | 		unsigned int j; | 
 |  | 
 | 		for (j = 0; j < ndigits * 2; ++j) { | 
 | 			u64 diff = v[i][j] - mod_m[j] - borrow; | 
 |  | 
 | 			if (diff != v[i][j]) | 
 | 				borrow = (diff > v[i][j]); | 
 | 			v[1 - i][j] = diff; | 
 | 		} | 
 | 		i = !(i ^ borrow); /* Swap the index if there was no borrow */ | 
 | 		vli_rshift1(mod_m, ndigits); | 
 | 		mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1); | 
 | 		vli_rshift1(mod_m + ndigits, ndigits); | 
 | 	} | 
 | 	vli_set(result, v[i], ndigits); | 
 | } | 
 |  | 
 | /* Computes result = product % mod using Barrett's reduction with precomputed | 
 |  * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have | 
 |  * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits | 
 |  * boundary. | 
 |  * | 
 |  * Reference: | 
 |  * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010. | 
 |  * 2.4.1 Barrett's algorithm. Algorithm 2.5. | 
 |  */ | 
 | static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod, | 
 | 			     unsigned int ndigits) | 
 | { | 
 | 	u64 q[ECC_MAX_DIGITS * 2]; | 
 | 	u64 r[ECC_MAX_DIGITS * 2]; | 
 | 	const u64 *mu = mod + ndigits; | 
 |  | 
 | 	vli_mult(q, product + ndigits, mu, ndigits); | 
 | 	if (mu[ndigits]) | 
 | 		vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits); | 
 | 	vli_mult(r, mod, q + ndigits, ndigits); | 
 | 	vli_sub(r, product, r, ndigits * 2); | 
 | 	while (!vli_is_zero(r + ndigits, ndigits) || | 
 | 	       vli_cmp(r, mod, ndigits) != -1) { | 
 | 		u64 carry; | 
 |  | 
 | 		carry = vli_sub(r, r, mod, ndigits); | 
 | 		vli_usub(r + ndigits, r + ndigits, carry, ndigits); | 
 | 	} | 
 | 	vli_set(result, r, ndigits); | 
 | } | 
 |  | 
 | /* Computes p_result = p_product % curve_p. | 
 |  * See algorithm 5 and 6 from | 
 |  * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf | 
 |  */ | 
 | static void vli_mmod_fast_192(u64 *result, const u64 *product, | 
 | 			      const u64 *curve_prime, u64 *tmp) | 
 | { | 
 | 	const unsigned int ndigits = 3; | 
 | 	int carry; | 
 |  | 
 | 	vli_set(result, product, ndigits); | 
 |  | 
 | 	vli_set(tmp, &product[3], ndigits); | 
 | 	carry = vli_add(result, result, tmp, ndigits); | 
 |  | 
 | 	tmp[0] = 0; | 
 | 	tmp[1] = product[3]; | 
 | 	tmp[2] = product[4]; | 
 | 	carry += vli_add(result, result, tmp, ndigits); | 
 |  | 
 | 	tmp[0] = tmp[1] = product[5]; | 
 | 	tmp[2] = 0; | 
 | 	carry += vli_add(result, result, tmp, ndigits); | 
 |  | 
 | 	while (carry || vli_cmp(curve_prime, result, ndigits) != 1) | 
 | 		carry -= vli_sub(result, result, curve_prime, ndigits); | 
 | } | 
 |  | 
 | /* Computes result = product % curve_prime | 
 |  * from http://www.nsa.gov/ia/_files/nist-routines.pdf | 
 |  */ | 
 | static void vli_mmod_fast_256(u64 *result, const u64 *product, | 
 | 			      const u64 *curve_prime, u64 *tmp) | 
 | { | 
 | 	int carry; | 
 | 	const unsigned int ndigits = 4; | 
 |  | 
 | 	/* t */ | 
 | 	vli_set(result, product, ndigits); | 
 |  | 
 | 	/* s1 */ | 
 | 	tmp[0] = 0; | 
 | 	tmp[1] = product[5] & 0xffffffff00000000ull; | 
 | 	tmp[2] = product[6]; | 
 | 	tmp[3] = product[7]; | 
 | 	carry = vli_lshift(tmp, tmp, 1, ndigits); | 
 | 	carry += vli_add(result, result, tmp, ndigits); | 
 |  | 
 | 	/* s2 */ | 
 | 	tmp[1] = product[6] << 32; | 
 | 	tmp[2] = (product[6] >> 32) | (product[7] << 32); | 
 | 	tmp[3] = product[7] >> 32; | 
 | 	carry += vli_lshift(tmp, tmp, 1, ndigits); | 
 | 	carry += vli_add(result, result, tmp, ndigits); | 
 |  | 
 | 	/* s3 */ | 
 | 	tmp[0] = product[4]; | 
 | 	tmp[1] = product[5] & 0xffffffff; | 
 | 	tmp[2] = 0; | 
 | 	tmp[3] = product[7]; | 
 | 	carry += vli_add(result, result, tmp, ndigits); | 
 |  | 
 | 	/* s4 */ | 
 | 	tmp[0] = (product[4] >> 32) | (product[5] << 32); | 
 | 	tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull); | 
 | 	tmp[2] = product[7]; | 
 | 	tmp[3] = (product[6] >> 32) | (product[4] << 32); | 
 | 	carry += vli_add(result, result, tmp, ndigits); | 
 |  | 
 | 	/* d1 */ | 
 | 	tmp[0] = (product[5] >> 32) | (product[6] << 32); | 
 | 	tmp[1] = (product[6] >> 32); | 
 | 	tmp[2] = 0; | 
 | 	tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32); | 
 | 	carry -= vli_sub(result, result, tmp, ndigits); | 
 |  | 
 | 	/* d2 */ | 
 | 	tmp[0] = product[6]; | 
 | 	tmp[1] = product[7]; | 
 | 	tmp[2] = 0; | 
 | 	tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull); | 
 | 	carry -= vli_sub(result, result, tmp, ndigits); | 
 |  | 
 | 	/* d3 */ | 
 | 	tmp[0] = (product[6] >> 32) | (product[7] << 32); | 
 | 	tmp[1] = (product[7] >> 32) | (product[4] << 32); | 
 | 	tmp[2] = (product[4] >> 32) | (product[5] << 32); | 
 | 	tmp[3] = (product[6] << 32); | 
 | 	carry -= vli_sub(result, result, tmp, ndigits); | 
 |  | 
 | 	/* d4 */ | 
 | 	tmp[0] = product[7]; | 
 | 	tmp[1] = product[4] & 0xffffffff00000000ull; | 
 | 	tmp[2] = product[5]; | 
 | 	tmp[3] = product[6] & 0xffffffff00000000ull; | 
 | 	carry -= vli_sub(result, result, tmp, ndigits); | 
 |  | 
 | 	if (carry < 0) { | 
 | 		do { | 
 | 			carry += vli_add(result, result, curve_prime, ndigits); | 
 | 		} while (carry < 0); | 
 | 	} else { | 
 | 		while (carry || vli_cmp(curve_prime, result, ndigits) != 1) | 
 | 			carry -= vli_sub(result, result, curve_prime, ndigits); | 
 | 	} | 
 | } | 
 |  | 
 | #define SL32OR32(x32, y32) (((u64)x32 << 32) | y32) | 
 | #define AND64H(x64)  (x64 & 0xffFFffFF00000000ull) | 
 | #define AND64L(x64)  (x64 & 0x00000000ffFFffFFull) | 
 |  | 
 | /* Computes result = product % curve_prime | 
 |  * from "Mathematical routines for the NIST prime elliptic curves" | 
 |  */ | 
 | static void vli_mmod_fast_384(u64 *result, const u64 *product, | 
 | 				const u64 *curve_prime, u64 *tmp) | 
 | { | 
 | 	int carry; | 
 | 	const unsigned int ndigits = 6; | 
 |  | 
 | 	/* t */ | 
 | 	vli_set(result, product, ndigits); | 
 |  | 
 | 	/* s1 */ | 
 | 	tmp[0] = 0;		// 0 || 0 | 
 | 	tmp[1] = 0;		// 0 || 0 | 
 | 	tmp[2] = SL32OR32(product[11], (product[10]>>32));	//a22||a21 | 
 | 	tmp[3] = product[11]>>32;	// 0 ||a23 | 
 | 	tmp[4] = 0;		// 0 || 0 | 
 | 	tmp[5] = 0;		// 0 || 0 | 
 | 	carry = vli_lshift(tmp, tmp, 1, ndigits); | 
 | 	carry += vli_add(result, result, tmp, ndigits); | 
 |  | 
 | 	/* s2 */ | 
 | 	tmp[0] = product[6];	//a13||a12 | 
 | 	tmp[1] = product[7];	//a15||a14 | 
 | 	tmp[2] = product[8];	//a17||a16 | 
 | 	tmp[3] = product[9];	//a19||a18 | 
 | 	tmp[4] = product[10];	//a21||a20 | 
 | 	tmp[5] = product[11];	//a23||a22 | 
 | 	carry += vli_add(result, result, tmp, ndigits); | 
 |  | 
 | 	/* s3 */ | 
 | 	tmp[0] = SL32OR32(product[11], (product[10]>>32));	//a22||a21 | 
 | 	tmp[1] = SL32OR32(product[6], (product[11]>>32));	//a12||a23 | 
 | 	tmp[2] = SL32OR32(product[7], (product[6])>>32);	//a14||a13 | 
 | 	tmp[3] = SL32OR32(product[8], (product[7]>>32));	//a16||a15 | 
 | 	tmp[4] = SL32OR32(product[9], (product[8]>>32));	//a18||a17 | 
 | 	tmp[5] = SL32OR32(product[10], (product[9]>>32));	//a20||a19 | 
 | 	carry += vli_add(result, result, tmp, ndigits); | 
 |  | 
 | 	/* s4 */ | 
 | 	tmp[0] = AND64H(product[11]);	//a23|| 0 | 
 | 	tmp[1] = (product[10]<<32);	//a20|| 0 | 
 | 	tmp[2] = product[6];	//a13||a12 | 
 | 	tmp[3] = product[7];	//a15||a14 | 
 | 	tmp[4] = product[8];	//a17||a16 | 
 | 	tmp[5] = product[9];	//a19||a18 | 
 | 	carry += vli_add(result, result, tmp, ndigits); | 
 |  | 
 | 	/* s5 */ | 
 | 	tmp[0] = 0;		//  0|| 0 | 
 | 	tmp[1] = 0;		//  0|| 0 | 
 | 	tmp[2] = product[10];	//a21||a20 | 
 | 	tmp[3] = product[11];	//a23||a22 | 
 | 	tmp[4] = 0;		//  0|| 0 | 
 | 	tmp[5] = 0;		//  0|| 0 | 
 | 	carry += vli_add(result, result, tmp, ndigits); | 
 |  | 
 | 	/* s6 */ | 
 | 	tmp[0] = AND64L(product[10]);	// 0 ||a20 | 
 | 	tmp[1] = AND64H(product[10]);	//a21|| 0 | 
 | 	tmp[2] = product[11];	//a23||a22 | 
 | 	tmp[3] = 0;		// 0 || 0 | 
 | 	tmp[4] = 0;		// 0 || 0 | 
 | 	tmp[5] = 0;		// 0 || 0 | 
 | 	carry += vli_add(result, result, tmp, ndigits); | 
 |  | 
 | 	/* d1 */ | 
 | 	tmp[0] = SL32OR32(product[6], (product[11]>>32));	//a12||a23 | 
 | 	tmp[1] = SL32OR32(product[7], (product[6]>>32));	//a14||a13 | 
 | 	tmp[2] = SL32OR32(product[8], (product[7]>>32));	//a16||a15 | 
 | 	tmp[3] = SL32OR32(product[9], (product[8]>>32));	//a18||a17 | 
 | 	tmp[4] = SL32OR32(product[10], (product[9]>>32));	//a20||a19 | 
 | 	tmp[5] = SL32OR32(product[11], (product[10]>>32));	//a22||a21 | 
 | 	carry -= vli_sub(result, result, tmp, ndigits); | 
 |  | 
 | 	/* d2 */ | 
 | 	tmp[0] = (product[10]<<32);	//a20|| 0 | 
 | 	tmp[1] = SL32OR32(product[11], (product[10]>>32));	//a22||a21 | 
 | 	tmp[2] = (product[11]>>32);	// 0 ||a23 | 
 | 	tmp[3] = 0;		// 0 || 0 | 
 | 	tmp[4] = 0;		// 0 || 0 | 
 | 	tmp[5] = 0;		// 0 || 0 | 
 | 	carry -= vli_sub(result, result, tmp, ndigits); | 
 |  | 
 | 	/* d3 */ | 
 | 	tmp[0] = 0;		// 0 || 0 | 
 | 	tmp[1] = AND64H(product[11]);	//a23|| 0 | 
 | 	tmp[2] = product[11]>>32;	// 0 ||a23 | 
 | 	tmp[3] = 0;		// 0 || 0 | 
 | 	tmp[4] = 0;		// 0 || 0 | 
 | 	tmp[5] = 0;		// 0 || 0 | 
 | 	carry -= vli_sub(result, result, tmp, ndigits); | 
 |  | 
 | 	if (carry < 0) { | 
 | 		do { | 
 | 			carry += vli_add(result, result, curve_prime, ndigits); | 
 | 		} while (carry < 0); | 
 | 	} else { | 
 | 		while (carry || vli_cmp(curve_prime, result, ndigits) != 1) | 
 | 			carry -= vli_sub(result, result, curve_prime, ndigits); | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | #undef SL32OR32 | 
 | #undef AND64H | 
 | #undef AND64L | 
 |  | 
 | /* Computes result = product % curve_prime for different curve_primes. | 
 |  * | 
 |  * Note that curve_primes are distinguished just by heuristic check and | 
 |  * not by complete conformance check. | 
 |  */ | 
 | static bool vli_mmod_fast(u64 *result, u64 *product, | 
 | 			  const struct ecc_curve *curve) | 
 | { | 
 | 	u64 tmp[2 * ECC_MAX_DIGITS]; | 
 | 	const u64 *curve_prime = curve->p; | 
 | 	const unsigned int ndigits = curve->g.ndigits; | 
 |  | 
 | 	/* All NIST curves have name prefix 'nist_' */ | 
 | 	if (strncmp(curve->name, "nist_", 5) != 0) { | 
 | 		/* Try to handle Pseudo-Marsenne primes. */ | 
 | 		if (curve_prime[ndigits - 1] == -1ull) { | 
 | 			vli_mmod_special(result, product, curve_prime, | 
 | 					 ndigits); | 
 | 			return true; | 
 | 		} else if (curve_prime[ndigits - 1] == 1ull << 63 && | 
 | 			   curve_prime[ndigits - 2] == 0) { | 
 | 			vli_mmod_special2(result, product, curve_prime, | 
 | 					  ndigits); | 
 | 			return true; | 
 | 		} | 
 | 		vli_mmod_barrett(result, product, curve_prime, ndigits); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	switch (ndigits) { | 
 | 	case 3: | 
 | 		vli_mmod_fast_192(result, product, curve_prime, tmp); | 
 | 		break; | 
 | 	case 4: | 
 | 		vli_mmod_fast_256(result, product, curve_prime, tmp); | 
 | 		break; | 
 | 	case 6: | 
 | 		vli_mmod_fast_384(result, product, curve_prime, tmp); | 
 | 		break; | 
 | 	default: | 
 | 		pr_err_ratelimited("ecc: unsupported digits size!\n"); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* Computes result = (left * right) % mod. | 
 |  * Assumes that mod is big enough curve order. | 
 |  */ | 
 | void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right, | 
 | 		       const u64 *mod, unsigned int ndigits) | 
 | { | 
 | 	u64 product[ECC_MAX_DIGITS * 2]; | 
 |  | 
 | 	vli_mult(product, left, right, ndigits); | 
 | 	vli_mmod_slow(result, product, mod, ndigits); | 
 | } | 
 | EXPORT_SYMBOL(vli_mod_mult_slow); | 
 |  | 
 | /* Computes result = (left * right) % curve_prime. */ | 
 | static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right, | 
 | 			      const struct ecc_curve *curve) | 
 | { | 
 | 	u64 product[2 * ECC_MAX_DIGITS]; | 
 |  | 
 | 	vli_mult(product, left, right, curve->g.ndigits); | 
 | 	vli_mmod_fast(result, product, curve); | 
 | } | 
 |  | 
 | /* Computes result = left^2 % curve_prime. */ | 
 | static void vli_mod_square_fast(u64 *result, const u64 *left, | 
 | 				const struct ecc_curve *curve) | 
 | { | 
 | 	u64 product[2 * ECC_MAX_DIGITS]; | 
 |  | 
 | 	vli_square(product, left, curve->g.ndigits); | 
 | 	vli_mmod_fast(result, product, curve); | 
 | } | 
 |  | 
 | #define EVEN(vli) (!(vli[0] & 1)) | 
 | /* Computes result = (1 / p_input) % mod. All VLIs are the same size. | 
 |  * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide" | 
 |  * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf | 
 |  */ | 
 | void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod, | 
 | 			unsigned int ndigits) | 
 | { | 
 | 	u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS]; | 
 | 	u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS]; | 
 | 	u64 carry; | 
 | 	int cmp_result; | 
 |  | 
 | 	if (vli_is_zero(input, ndigits)) { | 
 | 		vli_clear(result, ndigits); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	vli_set(a, input, ndigits); | 
 | 	vli_set(b, mod, ndigits); | 
 | 	vli_clear(u, ndigits); | 
 | 	u[0] = 1; | 
 | 	vli_clear(v, ndigits); | 
 |  | 
 | 	while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) { | 
 | 		carry = 0; | 
 |  | 
 | 		if (EVEN(a)) { | 
 | 			vli_rshift1(a, ndigits); | 
 |  | 
 | 			if (!EVEN(u)) | 
 | 				carry = vli_add(u, u, mod, ndigits); | 
 |  | 
 | 			vli_rshift1(u, ndigits); | 
 | 			if (carry) | 
 | 				u[ndigits - 1] |= 0x8000000000000000ull; | 
 | 		} else if (EVEN(b)) { | 
 | 			vli_rshift1(b, ndigits); | 
 |  | 
 | 			if (!EVEN(v)) | 
 | 				carry = vli_add(v, v, mod, ndigits); | 
 |  | 
 | 			vli_rshift1(v, ndigits); | 
 | 			if (carry) | 
 | 				v[ndigits - 1] |= 0x8000000000000000ull; | 
 | 		} else if (cmp_result > 0) { | 
 | 			vli_sub(a, a, b, ndigits); | 
 | 			vli_rshift1(a, ndigits); | 
 |  | 
 | 			if (vli_cmp(u, v, ndigits) < 0) | 
 | 				vli_add(u, u, mod, ndigits); | 
 |  | 
 | 			vli_sub(u, u, v, ndigits); | 
 | 			if (!EVEN(u)) | 
 | 				carry = vli_add(u, u, mod, ndigits); | 
 |  | 
 | 			vli_rshift1(u, ndigits); | 
 | 			if (carry) | 
 | 				u[ndigits - 1] |= 0x8000000000000000ull; | 
 | 		} else { | 
 | 			vli_sub(b, b, a, ndigits); | 
 | 			vli_rshift1(b, ndigits); | 
 |  | 
 | 			if (vli_cmp(v, u, ndigits) < 0) | 
 | 				vli_add(v, v, mod, ndigits); | 
 |  | 
 | 			vli_sub(v, v, u, ndigits); | 
 | 			if (!EVEN(v)) | 
 | 				carry = vli_add(v, v, mod, ndigits); | 
 |  | 
 | 			vli_rshift1(v, ndigits); | 
 | 			if (carry) | 
 | 				v[ndigits - 1] |= 0x8000000000000000ull; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	vli_set(result, u, ndigits); | 
 | } | 
 | EXPORT_SYMBOL(vli_mod_inv); | 
 |  | 
 | /* ------ Point operations ------ */ | 
 |  | 
 | /* Returns true if p_point is the point at infinity, false otherwise. */ | 
 | static bool ecc_point_is_zero(const struct ecc_point *point) | 
 | { | 
 | 	return (vli_is_zero(point->x, point->ndigits) && | 
 | 		vli_is_zero(point->y, point->ndigits)); | 
 | } | 
 |  | 
 | /* Point multiplication algorithm using Montgomery's ladder with co-Z | 
 |  * coordinates. From https://eprint.iacr.org/2011/338.pdf | 
 |  */ | 
 |  | 
 | /* Double in place */ | 
 | static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1, | 
 | 					const struct ecc_curve *curve) | 
 | { | 
 | 	/* t1 = x, t2 = y, t3 = z */ | 
 | 	u64 t4[ECC_MAX_DIGITS]; | 
 | 	u64 t5[ECC_MAX_DIGITS]; | 
 | 	const u64 *curve_prime = curve->p; | 
 | 	const unsigned int ndigits = curve->g.ndigits; | 
 |  | 
 | 	if (vli_is_zero(z1, ndigits)) | 
 | 		return; | 
 |  | 
 | 	/* t4 = y1^2 */ | 
 | 	vli_mod_square_fast(t4, y1, curve); | 
 | 	/* t5 = x1*y1^2 = A */ | 
 | 	vli_mod_mult_fast(t5, x1, t4, curve); | 
 | 	/* t4 = y1^4 */ | 
 | 	vli_mod_square_fast(t4, t4, curve); | 
 | 	/* t2 = y1*z1 = z3 */ | 
 | 	vli_mod_mult_fast(y1, y1, z1, curve); | 
 | 	/* t3 = z1^2 */ | 
 | 	vli_mod_square_fast(z1, z1, curve); | 
 |  | 
 | 	/* t1 = x1 + z1^2 */ | 
 | 	vli_mod_add(x1, x1, z1, curve_prime, ndigits); | 
 | 	/* t3 = 2*z1^2 */ | 
 | 	vli_mod_add(z1, z1, z1, curve_prime, ndigits); | 
 | 	/* t3 = x1 - z1^2 */ | 
 | 	vli_mod_sub(z1, x1, z1, curve_prime, ndigits); | 
 | 	/* t1 = x1^2 - z1^4 */ | 
 | 	vli_mod_mult_fast(x1, x1, z1, curve); | 
 |  | 
 | 	/* t3 = 2*(x1^2 - z1^4) */ | 
 | 	vli_mod_add(z1, x1, x1, curve_prime, ndigits); | 
 | 	/* t1 = 3*(x1^2 - z1^4) */ | 
 | 	vli_mod_add(x1, x1, z1, curve_prime, ndigits); | 
 | 	if (vli_test_bit(x1, 0)) { | 
 | 		u64 carry = vli_add(x1, x1, curve_prime, ndigits); | 
 |  | 
 | 		vli_rshift1(x1, ndigits); | 
 | 		x1[ndigits - 1] |= carry << 63; | 
 | 	} else { | 
 | 		vli_rshift1(x1, ndigits); | 
 | 	} | 
 | 	/* t1 = 3/2*(x1^2 - z1^4) = B */ | 
 |  | 
 | 	/* t3 = B^2 */ | 
 | 	vli_mod_square_fast(z1, x1, curve); | 
 | 	/* t3 = B^2 - A */ | 
 | 	vli_mod_sub(z1, z1, t5, curve_prime, ndigits); | 
 | 	/* t3 = B^2 - 2A = x3 */ | 
 | 	vli_mod_sub(z1, z1, t5, curve_prime, ndigits); | 
 | 	/* t5 = A - x3 */ | 
 | 	vli_mod_sub(t5, t5, z1, curve_prime, ndigits); | 
 | 	/* t1 = B * (A - x3) */ | 
 | 	vli_mod_mult_fast(x1, x1, t5, curve); | 
 | 	/* t4 = B * (A - x3) - y1^4 = y3 */ | 
 | 	vli_mod_sub(t4, x1, t4, curve_prime, ndigits); | 
 |  | 
 | 	vli_set(x1, z1, ndigits); | 
 | 	vli_set(z1, y1, ndigits); | 
 | 	vli_set(y1, t4, ndigits); | 
 | } | 
 |  | 
 | /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */ | 
 | static void apply_z(u64 *x1, u64 *y1, u64 *z, const struct ecc_curve *curve) | 
 | { | 
 | 	u64 t1[ECC_MAX_DIGITS]; | 
 |  | 
 | 	vli_mod_square_fast(t1, z, curve);		/* z^2 */ | 
 | 	vli_mod_mult_fast(x1, x1, t1, curve);	/* x1 * z^2 */ | 
 | 	vli_mod_mult_fast(t1, t1, z, curve);	/* z^3 */ | 
 | 	vli_mod_mult_fast(y1, y1, t1, curve);	/* y1 * z^3 */ | 
 | } | 
 |  | 
 | /* P = (x1, y1) => 2P, (x2, y2) => P' */ | 
 | static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2, | 
 | 				u64 *p_initial_z, const struct ecc_curve *curve) | 
 | { | 
 | 	u64 z[ECC_MAX_DIGITS]; | 
 | 	const unsigned int ndigits = curve->g.ndigits; | 
 |  | 
 | 	vli_set(x2, x1, ndigits); | 
 | 	vli_set(y2, y1, ndigits); | 
 |  | 
 | 	vli_clear(z, ndigits); | 
 | 	z[0] = 1; | 
 |  | 
 | 	if (p_initial_z) | 
 | 		vli_set(z, p_initial_z, ndigits); | 
 |  | 
 | 	apply_z(x1, y1, z, curve); | 
 |  | 
 | 	ecc_point_double_jacobian(x1, y1, z, curve); | 
 |  | 
 | 	apply_z(x2, y2, z, curve); | 
 | } | 
 |  | 
 | /* Input P = (x1, y1, Z), Q = (x2, y2, Z) | 
 |  * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) | 
 |  * or P => P', Q => P + Q | 
 |  */ | 
 | static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2, | 
 | 			const struct ecc_curve *curve) | 
 | { | 
 | 	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ | 
 | 	u64 t5[ECC_MAX_DIGITS]; | 
 | 	const u64 *curve_prime = curve->p; | 
 | 	const unsigned int ndigits = curve->g.ndigits; | 
 |  | 
 | 	/* t5 = x2 - x1 */ | 
 | 	vli_mod_sub(t5, x2, x1, curve_prime, ndigits); | 
 | 	/* t5 = (x2 - x1)^2 = A */ | 
 | 	vli_mod_square_fast(t5, t5, curve); | 
 | 	/* t1 = x1*A = B */ | 
 | 	vli_mod_mult_fast(x1, x1, t5, curve); | 
 | 	/* t3 = x2*A = C */ | 
 | 	vli_mod_mult_fast(x2, x2, t5, curve); | 
 | 	/* t4 = y2 - y1 */ | 
 | 	vli_mod_sub(y2, y2, y1, curve_prime, ndigits); | 
 | 	/* t5 = (y2 - y1)^2 = D */ | 
 | 	vli_mod_square_fast(t5, y2, curve); | 
 |  | 
 | 	/* t5 = D - B */ | 
 | 	vli_mod_sub(t5, t5, x1, curve_prime, ndigits); | 
 | 	/* t5 = D - B - C = x3 */ | 
 | 	vli_mod_sub(t5, t5, x2, curve_prime, ndigits); | 
 | 	/* t3 = C - B */ | 
 | 	vli_mod_sub(x2, x2, x1, curve_prime, ndigits); | 
 | 	/* t2 = y1*(C - B) */ | 
 | 	vli_mod_mult_fast(y1, y1, x2, curve); | 
 | 	/* t3 = B - x3 */ | 
 | 	vli_mod_sub(x2, x1, t5, curve_prime, ndigits); | 
 | 	/* t4 = (y2 - y1)*(B - x3) */ | 
 | 	vli_mod_mult_fast(y2, y2, x2, curve); | 
 | 	/* t4 = y3 */ | 
 | 	vli_mod_sub(y2, y2, y1, curve_prime, ndigits); | 
 |  | 
 | 	vli_set(x2, t5, ndigits); | 
 | } | 
 |  | 
 | /* Input P = (x1, y1, Z), Q = (x2, y2, Z) | 
 |  * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3) | 
 |  * or P => P - Q, Q => P + Q | 
 |  */ | 
 | static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2, | 
 | 			const struct ecc_curve *curve) | 
 | { | 
 | 	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ | 
 | 	u64 t5[ECC_MAX_DIGITS]; | 
 | 	u64 t6[ECC_MAX_DIGITS]; | 
 | 	u64 t7[ECC_MAX_DIGITS]; | 
 | 	const u64 *curve_prime = curve->p; | 
 | 	const unsigned int ndigits = curve->g.ndigits; | 
 |  | 
 | 	/* t5 = x2 - x1 */ | 
 | 	vli_mod_sub(t5, x2, x1, curve_prime, ndigits); | 
 | 	/* t5 = (x2 - x1)^2 = A */ | 
 | 	vli_mod_square_fast(t5, t5, curve); | 
 | 	/* t1 = x1*A = B */ | 
 | 	vli_mod_mult_fast(x1, x1, t5, curve); | 
 | 	/* t3 = x2*A = C */ | 
 | 	vli_mod_mult_fast(x2, x2, t5, curve); | 
 | 	/* t4 = y2 + y1 */ | 
 | 	vli_mod_add(t5, y2, y1, curve_prime, ndigits); | 
 | 	/* t4 = y2 - y1 */ | 
 | 	vli_mod_sub(y2, y2, y1, curve_prime, ndigits); | 
 |  | 
 | 	/* t6 = C - B */ | 
 | 	vli_mod_sub(t6, x2, x1, curve_prime, ndigits); | 
 | 	/* t2 = y1 * (C - B) */ | 
 | 	vli_mod_mult_fast(y1, y1, t6, curve); | 
 | 	/* t6 = B + C */ | 
 | 	vli_mod_add(t6, x1, x2, curve_prime, ndigits); | 
 | 	/* t3 = (y2 - y1)^2 */ | 
 | 	vli_mod_square_fast(x2, y2, curve); | 
 | 	/* t3 = x3 */ | 
 | 	vli_mod_sub(x2, x2, t6, curve_prime, ndigits); | 
 |  | 
 | 	/* t7 = B - x3 */ | 
 | 	vli_mod_sub(t7, x1, x2, curve_prime, ndigits); | 
 | 	/* t4 = (y2 - y1)*(B - x3) */ | 
 | 	vli_mod_mult_fast(y2, y2, t7, curve); | 
 | 	/* t4 = y3 */ | 
 | 	vli_mod_sub(y2, y2, y1, curve_prime, ndigits); | 
 |  | 
 | 	/* t7 = (y2 + y1)^2 = F */ | 
 | 	vli_mod_square_fast(t7, t5, curve); | 
 | 	/* t7 = x3' */ | 
 | 	vli_mod_sub(t7, t7, t6, curve_prime, ndigits); | 
 | 	/* t6 = x3' - B */ | 
 | 	vli_mod_sub(t6, t7, x1, curve_prime, ndigits); | 
 | 	/* t6 = (y2 + y1)*(x3' - B) */ | 
 | 	vli_mod_mult_fast(t6, t6, t5, curve); | 
 | 	/* t2 = y3' */ | 
 | 	vli_mod_sub(y1, t6, y1, curve_prime, ndigits); | 
 |  | 
 | 	vli_set(x1, t7, ndigits); | 
 | } | 
 |  | 
 | static void ecc_point_mult(struct ecc_point *result, | 
 | 			   const struct ecc_point *point, const u64 *scalar, | 
 | 			   u64 *initial_z, const struct ecc_curve *curve, | 
 | 			   unsigned int ndigits) | 
 | { | 
 | 	/* R0 and R1 */ | 
 | 	u64 rx[2][ECC_MAX_DIGITS]; | 
 | 	u64 ry[2][ECC_MAX_DIGITS]; | 
 | 	u64 z[ECC_MAX_DIGITS]; | 
 | 	u64 sk[2][ECC_MAX_DIGITS]; | 
 | 	u64 *curve_prime = curve->p; | 
 | 	int i, nb; | 
 | 	int num_bits; | 
 | 	int carry; | 
 |  | 
 | 	carry = vli_add(sk[0], scalar, curve->n, ndigits); | 
 | 	vli_add(sk[1], sk[0], curve->n, ndigits); | 
 | 	scalar = sk[!carry]; | 
 | 	num_bits = sizeof(u64) * ndigits * 8 + 1; | 
 |  | 
 | 	vli_set(rx[1], point->x, ndigits); | 
 | 	vli_set(ry[1], point->y, ndigits); | 
 |  | 
 | 	xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve); | 
 |  | 
 | 	for (i = num_bits - 2; i > 0; i--) { | 
 | 		nb = !vli_test_bit(scalar, i); | 
 | 		xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve); | 
 | 		xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve); | 
 | 	} | 
 |  | 
 | 	nb = !vli_test_bit(scalar, 0); | 
 | 	xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve); | 
 |  | 
 | 	/* Find final 1/Z value. */ | 
 | 	/* X1 - X0 */ | 
 | 	vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits); | 
 | 	/* Yb * (X1 - X0) */ | 
 | 	vli_mod_mult_fast(z, z, ry[1 - nb], curve); | 
 | 	/* xP * Yb * (X1 - X0) */ | 
 | 	vli_mod_mult_fast(z, z, point->x, curve); | 
 |  | 
 | 	/* 1 / (xP * Yb * (X1 - X0)) */ | 
 | 	vli_mod_inv(z, z, curve_prime, point->ndigits); | 
 |  | 
 | 	/* yP / (xP * Yb * (X1 - X0)) */ | 
 | 	vli_mod_mult_fast(z, z, point->y, curve); | 
 | 	/* Xb * yP / (xP * Yb * (X1 - X0)) */ | 
 | 	vli_mod_mult_fast(z, z, rx[1 - nb], curve); | 
 | 	/* End 1/Z calculation */ | 
 |  | 
 | 	xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve); | 
 |  | 
 | 	apply_z(rx[0], ry[0], z, curve); | 
 |  | 
 | 	vli_set(result->x, rx[0], ndigits); | 
 | 	vli_set(result->y, ry[0], ndigits); | 
 | } | 
 |  | 
 | /* Computes R = P + Q mod p */ | 
 | static void ecc_point_add(const struct ecc_point *result, | 
 | 		   const struct ecc_point *p, const struct ecc_point *q, | 
 | 		   const struct ecc_curve *curve) | 
 | { | 
 | 	u64 z[ECC_MAX_DIGITS]; | 
 | 	u64 px[ECC_MAX_DIGITS]; | 
 | 	u64 py[ECC_MAX_DIGITS]; | 
 | 	unsigned int ndigits = curve->g.ndigits; | 
 |  | 
 | 	vli_set(result->x, q->x, ndigits); | 
 | 	vli_set(result->y, q->y, ndigits); | 
 | 	vli_mod_sub(z, result->x, p->x, curve->p, ndigits); | 
 | 	vli_set(px, p->x, ndigits); | 
 | 	vli_set(py, p->y, ndigits); | 
 | 	xycz_add(px, py, result->x, result->y, curve); | 
 | 	vli_mod_inv(z, z, curve->p, ndigits); | 
 | 	apply_z(result->x, result->y, z, curve); | 
 | } | 
 |  | 
 | /* Computes R = u1P + u2Q mod p using Shamir's trick. | 
 |  * Based on: Kenneth MacKay's micro-ecc (2014). | 
 |  */ | 
 | void ecc_point_mult_shamir(const struct ecc_point *result, | 
 | 			   const u64 *u1, const struct ecc_point *p, | 
 | 			   const u64 *u2, const struct ecc_point *q, | 
 | 			   const struct ecc_curve *curve) | 
 | { | 
 | 	u64 z[ECC_MAX_DIGITS]; | 
 | 	u64 sump[2][ECC_MAX_DIGITS]; | 
 | 	u64 *rx = result->x; | 
 | 	u64 *ry = result->y; | 
 | 	unsigned int ndigits = curve->g.ndigits; | 
 | 	unsigned int num_bits; | 
 | 	struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits); | 
 | 	const struct ecc_point *points[4]; | 
 | 	const struct ecc_point *point; | 
 | 	unsigned int idx; | 
 | 	int i; | 
 |  | 
 | 	ecc_point_add(&sum, p, q, curve); | 
 | 	points[0] = NULL; | 
 | 	points[1] = p; | 
 | 	points[2] = q; | 
 | 	points[3] = ∑ | 
 |  | 
 | 	num_bits = max(vli_num_bits(u1, ndigits), vli_num_bits(u2, ndigits)); | 
 | 	i = num_bits - 1; | 
 | 	idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1); | 
 | 	point = points[idx]; | 
 |  | 
 | 	vli_set(rx, point->x, ndigits); | 
 | 	vli_set(ry, point->y, ndigits); | 
 | 	vli_clear(z + 1, ndigits - 1); | 
 | 	z[0] = 1; | 
 |  | 
 | 	for (--i; i >= 0; i--) { | 
 | 		ecc_point_double_jacobian(rx, ry, z, curve); | 
 | 		idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1); | 
 | 		point = points[idx]; | 
 | 		if (point) { | 
 | 			u64 tx[ECC_MAX_DIGITS]; | 
 | 			u64 ty[ECC_MAX_DIGITS]; | 
 | 			u64 tz[ECC_MAX_DIGITS]; | 
 |  | 
 | 			vli_set(tx, point->x, ndigits); | 
 | 			vli_set(ty, point->y, ndigits); | 
 | 			apply_z(tx, ty, z, curve); | 
 | 			vli_mod_sub(tz, rx, tx, curve->p, ndigits); | 
 | 			xycz_add(tx, ty, rx, ry, curve); | 
 | 			vli_mod_mult_fast(z, z, tz, curve); | 
 | 		} | 
 | 	} | 
 | 	vli_mod_inv(z, z, curve->p, ndigits); | 
 | 	apply_z(rx, ry, z, curve); | 
 | } | 
 | EXPORT_SYMBOL(ecc_point_mult_shamir); | 
 |  | 
 | static int __ecc_is_key_valid(const struct ecc_curve *curve, | 
 | 			      const u64 *private_key, unsigned int ndigits) | 
 | { | 
 | 	u64 one[ECC_MAX_DIGITS] = { 1, }; | 
 | 	u64 res[ECC_MAX_DIGITS]; | 
 |  | 
 | 	if (!private_key) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (curve->g.ndigits != ndigits) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Make sure the private key is in the range [2, n-3]. */ | 
 | 	if (vli_cmp(one, private_key, ndigits) != -1) | 
 | 		return -EINVAL; | 
 | 	vli_sub(res, curve->n, one, ndigits); | 
 | 	vli_sub(res, res, one, ndigits); | 
 | 	if (vli_cmp(res, private_key, ndigits) != 1) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits, | 
 | 		     const u64 *private_key, unsigned int private_key_len) | 
 | { | 
 | 	int nbytes; | 
 | 	const struct ecc_curve *curve = ecc_get_curve(curve_id); | 
 |  | 
 | 	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; | 
 |  | 
 | 	if (private_key_len != nbytes) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return __ecc_is_key_valid(curve, private_key, ndigits); | 
 | } | 
 | EXPORT_SYMBOL(ecc_is_key_valid); | 
 |  | 
 | /* | 
 |  * ECC private keys are generated using the method of extra random bits, | 
 |  * equivalent to that described in FIPS 186-4, Appendix B.4.1. | 
 |  * | 
 |  * d = (c mod(n–1)) + 1    where c is a string of random bits, 64 bits longer | 
 |  *                         than requested | 
 |  * 0 <= c mod(n-1) <= n-2  and implies that | 
 |  * 1 <= d <= n-1 | 
 |  * | 
 |  * This method generates a private key uniformly distributed in the range | 
 |  * [1, n-1]. | 
 |  */ | 
 | int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey) | 
 | { | 
 | 	const struct ecc_curve *curve = ecc_get_curve(curve_id); | 
 | 	u64 priv[ECC_MAX_DIGITS]; | 
 | 	unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; | 
 | 	unsigned int nbits = vli_num_bits(curve->n, ndigits); | 
 | 	int err; | 
 |  | 
 | 	/* Check that N is included in Table 1 of FIPS 186-4, section 6.1.1 */ | 
 | 	if (nbits < 160 || ndigits > ARRAY_SIZE(priv)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * FIPS 186-4 recommends that the private key should be obtained from a | 
 | 	 * RBG with a security strength equal to or greater than the security | 
 | 	 * strength associated with N. | 
 | 	 * | 
 | 	 * The maximum security strength identified by NIST SP800-57pt1r4 for | 
 | 	 * ECC is 256 (N >= 512). | 
 | 	 * | 
 | 	 * This condition is met by the default RNG because it selects a favored | 
 | 	 * DRBG with a security strength of 256. | 
 | 	 */ | 
 | 	if (crypto_get_default_rng()) | 
 | 		return -EFAULT; | 
 |  | 
 | 	err = crypto_rng_get_bytes(crypto_default_rng, (u8 *)priv, nbytes); | 
 | 	crypto_put_default_rng(); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* Make sure the private key is in the valid range. */ | 
 | 	if (__ecc_is_key_valid(curve, priv, ndigits)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ecc_swap_digits(priv, privkey, ndigits); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(ecc_gen_privkey); | 
 |  | 
 | int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits, | 
 | 		     const u64 *private_key, u64 *public_key) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct ecc_point *pk; | 
 | 	u64 priv[ECC_MAX_DIGITS]; | 
 | 	const struct ecc_curve *curve = ecc_get_curve(curve_id); | 
 |  | 
 | 	if (!private_key || !curve || ndigits > ARRAY_SIZE(priv)) { | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ecc_swap_digits(private_key, priv, ndigits); | 
 |  | 
 | 	pk = ecc_alloc_point(ndigits); | 
 | 	if (!pk) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ecc_point_mult(pk, &curve->g, priv, NULL, curve, ndigits); | 
 |  | 
 | 	/* SP800-56A rev 3 5.6.2.1.3 key check */ | 
 | 	if (ecc_is_pubkey_valid_full(curve, pk)) { | 
 | 		ret = -EAGAIN; | 
 | 		goto err_free_point; | 
 | 	} | 
 |  | 
 | 	ecc_swap_digits(pk->x, public_key, ndigits); | 
 | 	ecc_swap_digits(pk->y, &public_key[ndigits], ndigits); | 
 |  | 
 | err_free_point: | 
 | 	ecc_free_point(pk); | 
 | out: | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(ecc_make_pub_key); | 
 |  | 
 | /* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */ | 
 | int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve, | 
 | 				struct ecc_point *pk) | 
 | { | 
 | 	u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS]; | 
 |  | 
 | 	if (WARN_ON(pk->ndigits != curve->g.ndigits)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Check 1: Verify key is not the zero point. */ | 
 | 	if (ecc_point_is_zero(pk)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Check 2: Verify key is in the range [1, p-1]. */ | 
 | 	if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1) | 
 | 		return -EINVAL; | 
 | 	if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */ | 
 | 	vli_mod_square_fast(yy, pk->y, curve); /* y^2 */ | 
 | 	vli_mod_square_fast(xxx, pk->x, curve); /* x^2 */ | 
 | 	vli_mod_mult_fast(xxx, xxx, pk->x, curve); /* x^3 */ | 
 | 	vli_mod_mult_fast(w, curve->a, pk->x, curve); /* a·x */ | 
 | 	vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a·x + b */ | 
 | 	vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a·x + b */ | 
 | 	if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */ | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(ecc_is_pubkey_valid_partial); | 
 |  | 
 | /* SP800-56A section 5.6.2.3.3 full verification */ | 
 | int ecc_is_pubkey_valid_full(const struct ecc_curve *curve, | 
 | 			     struct ecc_point *pk) | 
 | { | 
 | 	struct ecc_point *nQ; | 
 |  | 
 | 	/* Checks 1 through 3 */ | 
 | 	int ret = ecc_is_pubkey_valid_partial(curve, pk); | 
 |  | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* Check 4: Verify that nQ is the zero point. */ | 
 | 	nQ = ecc_alloc_point(pk->ndigits); | 
 | 	if (!nQ) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ecc_point_mult(nQ, pk, curve->n, NULL, curve, pk->ndigits); | 
 | 	if (!ecc_point_is_zero(nQ)) | 
 | 		ret = -EINVAL; | 
 |  | 
 | 	ecc_free_point(nQ); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(ecc_is_pubkey_valid_full); | 
 |  | 
 | int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits, | 
 | 			      const u64 *private_key, const u64 *public_key, | 
 | 			      u64 *secret) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct ecc_point *product, *pk; | 
 | 	u64 priv[ECC_MAX_DIGITS]; | 
 | 	u64 rand_z[ECC_MAX_DIGITS]; | 
 | 	unsigned int nbytes; | 
 | 	const struct ecc_curve *curve = ecc_get_curve(curve_id); | 
 |  | 
 | 	if (!private_key || !public_key || !curve || | 
 | 	    ndigits > ARRAY_SIZE(priv) || ndigits > ARRAY_SIZE(rand_z)) { | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; | 
 |  | 
 | 	get_random_bytes(rand_z, nbytes); | 
 |  | 
 | 	pk = ecc_alloc_point(ndigits); | 
 | 	if (!pk) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ecc_swap_digits(public_key, pk->x, ndigits); | 
 | 	ecc_swap_digits(&public_key[ndigits], pk->y, ndigits); | 
 | 	ret = ecc_is_pubkey_valid_partial(curve, pk); | 
 | 	if (ret) | 
 | 		goto err_alloc_product; | 
 |  | 
 | 	ecc_swap_digits(private_key, priv, ndigits); | 
 |  | 
 | 	product = ecc_alloc_point(ndigits); | 
 | 	if (!product) { | 
 | 		ret = -ENOMEM; | 
 | 		goto err_alloc_product; | 
 | 	} | 
 |  | 
 | 	ecc_point_mult(product, pk, priv, rand_z, curve, ndigits); | 
 |  | 
 | 	if (ecc_point_is_zero(product)) { | 
 | 		ret = -EFAULT; | 
 | 		goto err_validity; | 
 | 	} | 
 |  | 
 | 	ecc_swap_digits(product->x, secret, ndigits); | 
 |  | 
 | err_validity: | 
 | 	memzero_explicit(priv, sizeof(priv)); | 
 | 	memzero_explicit(rand_z, sizeof(rand_z)); | 
 | 	ecc_free_point(product); | 
 | err_alloc_product: | 
 | 	ecc_free_point(pk); | 
 | out: | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(crypto_ecdh_shared_secret); | 
 |  | 
 | MODULE_LICENSE("Dual BSD/GPL"); |