| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * This file is part of UBIFS. | 
 |  * | 
 |  * Copyright (C) 2006-2008 Nokia Corporation | 
 |  * | 
 |  * Authors: Artem Bityutskiy (Битюцкий Артём) | 
 |  *          Adrian Hunter | 
 |  */ | 
 |  | 
 | /* | 
 |  * This file implements most of the debugging stuff which is compiled in only | 
 |  * when it is enabled. But some debugging check functions are implemented in | 
 |  * corresponding subsystem, just because they are closely related and utilize | 
 |  * various local functions of those subsystems. | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/debugfs.h> | 
 | #include <linux/math64.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/random.h> | 
 | #include <linux/ctype.h> | 
 | #include "ubifs.h" | 
 |  | 
 | static DEFINE_SPINLOCK(dbg_lock); | 
 |  | 
 | static const char *get_key_fmt(int fmt) | 
 | { | 
 | 	switch (fmt) { | 
 | 	case UBIFS_SIMPLE_KEY_FMT: | 
 | 		return "simple"; | 
 | 	default: | 
 | 		return "unknown/invalid format"; | 
 | 	} | 
 | } | 
 |  | 
 | static const char *get_key_hash(int hash) | 
 | { | 
 | 	switch (hash) { | 
 | 	case UBIFS_KEY_HASH_R5: | 
 | 		return "R5"; | 
 | 	case UBIFS_KEY_HASH_TEST: | 
 | 		return "test"; | 
 | 	default: | 
 | 		return "unknown/invalid name hash"; | 
 | 	} | 
 | } | 
 |  | 
 | static const char *get_key_type(int type) | 
 | { | 
 | 	switch (type) { | 
 | 	case UBIFS_INO_KEY: | 
 | 		return "inode"; | 
 | 	case UBIFS_DENT_KEY: | 
 | 		return "direntry"; | 
 | 	case UBIFS_XENT_KEY: | 
 | 		return "xentry"; | 
 | 	case UBIFS_DATA_KEY: | 
 | 		return "data"; | 
 | 	case UBIFS_TRUN_KEY: | 
 | 		return "truncate"; | 
 | 	default: | 
 | 		return "unknown/invalid key"; | 
 | 	} | 
 | } | 
 |  | 
 | static const char *get_dent_type(int type) | 
 | { | 
 | 	switch (type) { | 
 | 	case UBIFS_ITYPE_REG: | 
 | 		return "file"; | 
 | 	case UBIFS_ITYPE_DIR: | 
 | 		return "dir"; | 
 | 	case UBIFS_ITYPE_LNK: | 
 | 		return "symlink"; | 
 | 	case UBIFS_ITYPE_BLK: | 
 | 		return "blkdev"; | 
 | 	case UBIFS_ITYPE_CHR: | 
 | 		return "char dev"; | 
 | 	case UBIFS_ITYPE_FIFO: | 
 | 		return "fifo"; | 
 | 	case UBIFS_ITYPE_SOCK: | 
 | 		return "socket"; | 
 | 	default: | 
 | 		return "unknown/invalid type"; | 
 | 	} | 
 | } | 
 |  | 
 | const char *dbg_snprintf_key(const struct ubifs_info *c, | 
 | 			     const union ubifs_key *key, char *buffer, int len) | 
 | { | 
 | 	char *p = buffer; | 
 | 	int type = key_type(c, key); | 
 |  | 
 | 	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { | 
 | 		switch (type) { | 
 | 		case UBIFS_INO_KEY: | 
 | 			len -= snprintf(p, len, "(%lu, %s)", | 
 | 					(unsigned long)key_inum(c, key), | 
 | 					get_key_type(type)); | 
 | 			break; | 
 | 		case UBIFS_DENT_KEY: | 
 | 		case UBIFS_XENT_KEY: | 
 | 			len -= snprintf(p, len, "(%lu, %s, %#08x)", | 
 | 					(unsigned long)key_inum(c, key), | 
 | 					get_key_type(type), key_hash(c, key)); | 
 | 			break; | 
 | 		case UBIFS_DATA_KEY: | 
 | 			len -= snprintf(p, len, "(%lu, %s, %u)", | 
 | 					(unsigned long)key_inum(c, key), | 
 | 					get_key_type(type), key_block(c, key)); | 
 | 			break; | 
 | 		case UBIFS_TRUN_KEY: | 
 | 			len -= snprintf(p, len, "(%lu, %s)", | 
 | 					(unsigned long)key_inum(c, key), | 
 | 					get_key_type(type)); | 
 | 			break; | 
 | 		default: | 
 | 			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)", | 
 | 					key->u32[0], key->u32[1]); | 
 | 		} | 
 | 	} else | 
 | 		len -= snprintf(p, len, "bad key format %d", c->key_fmt); | 
 | 	ubifs_assert(c, len > 0); | 
 | 	return p; | 
 | } | 
 |  | 
 | const char *dbg_ntype(int type) | 
 | { | 
 | 	switch (type) { | 
 | 	case UBIFS_PAD_NODE: | 
 | 		return "padding node"; | 
 | 	case UBIFS_SB_NODE: | 
 | 		return "superblock node"; | 
 | 	case UBIFS_MST_NODE: | 
 | 		return "master node"; | 
 | 	case UBIFS_REF_NODE: | 
 | 		return "reference node"; | 
 | 	case UBIFS_INO_NODE: | 
 | 		return "inode node"; | 
 | 	case UBIFS_DENT_NODE: | 
 | 		return "direntry node"; | 
 | 	case UBIFS_XENT_NODE: | 
 | 		return "xentry node"; | 
 | 	case UBIFS_DATA_NODE: | 
 | 		return "data node"; | 
 | 	case UBIFS_TRUN_NODE: | 
 | 		return "truncate node"; | 
 | 	case UBIFS_IDX_NODE: | 
 | 		return "indexing node"; | 
 | 	case UBIFS_CS_NODE: | 
 | 		return "commit start node"; | 
 | 	case UBIFS_ORPH_NODE: | 
 | 		return "orphan node"; | 
 | 	case UBIFS_AUTH_NODE: | 
 | 		return "auth node"; | 
 | 	default: | 
 | 		return "unknown node"; | 
 | 	} | 
 | } | 
 |  | 
 | static const char *dbg_gtype(int type) | 
 | { | 
 | 	switch (type) { | 
 | 	case UBIFS_NO_NODE_GROUP: | 
 | 		return "no node group"; | 
 | 	case UBIFS_IN_NODE_GROUP: | 
 | 		return "in node group"; | 
 | 	case UBIFS_LAST_OF_NODE_GROUP: | 
 | 		return "last of node group"; | 
 | 	default: | 
 | 		return "unknown"; | 
 | 	} | 
 | } | 
 |  | 
 | const char *dbg_cstate(int cmt_state) | 
 | { | 
 | 	switch (cmt_state) { | 
 | 	case COMMIT_RESTING: | 
 | 		return "commit resting"; | 
 | 	case COMMIT_BACKGROUND: | 
 | 		return "background commit requested"; | 
 | 	case COMMIT_REQUIRED: | 
 | 		return "commit required"; | 
 | 	case COMMIT_RUNNING_BACKGROUND: | 
 | 		return "BACKGROUND commit running"; | 
 | 	case COMMIT_RUNNING_REQUIRED: | 
 | 		return "commit running and required"; | 
 | 	case COMMIT_BROKEN: | 
 | 		return "broken commit"; | 
 | 	default: | 
 | 		return "unknown commit state"; | 
 | 	} | 
 | } | 
 |  | 
 | const char *dbg_jhead(int jhead) | 
 | { | 
 | 	switch (jhead) { | 
 | 	case GCHD: | 
 | 		return "0 (GC)"; | 
 | 	case BASEHD: | 
 | 		return "1 (base)"; | 
 | 	case DATAHD: | 
 | 		return "2 (data)"; | 
 | 	default: | 
 | 		return "unknown journal head"; | 
 | 	} | 
 | } | 
 |  | 
 | static void dump_ch(const struct ubifs_ch *ch) | 
 | { | 
 | 	pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic)); | 
 | 	pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc)); | 
 | 	pr_err("\tnode_type      %d (%s)\n", ch->node_type, | 
 | 	       dbg_ntype(ch->node_type)); | 
 | 	pr_err("\tgroup_type     %d (%s)\n", ch->group_type, | 
 | 	       dbg_gtype(ch->group_type)); | 
 | 	pr_err("\tsqnum          %llu\n", | 
 | 	       (unsigned long long)le64_to_cpu(ch->sqnum)); | 
 | 	pr_err("\tlen            %u\n", le32_to_cpu(ch->len)); | 
 | } | 
 |  | 
 | void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode) | 
 | { | 
 | 	const struct ubifs_inode *ui = ubifs_inode(inode); | 
 | 	struct fscrypt_name nm = {0}; | 
 | 	union ubifs_key key; | 
 | 	struct ubifs_dent_node *dent, *pdent = NULL; | 
 | 	int count = 2; | 
 |  | 
 | 	pr_err("Dump in-memory inode:"); | 
 | 	pr_err("\tinode          %lu\n", inode->i_ino); | 
 | 	pr_err("\tsize           %llu\n", | 
 | 	       (unsigned long long)i_size_read(inode)); | 
 | 	pr_err("\tnlink          %u\n", inode->i_nlink); | 
 | 	pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode)); | 
 | 	pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode)); | 
 | 	pr_err("\tatime          %u.%u\n", | 
 | 	       (unsigned int)inode->i_atime.tv_sec, | 
 | 	       (unsigned int)inode->i_atime.tv_nsec); | 
 | 	pr_err("\tmtime          %u.%u\n", | 
 | 	       (unsigned int)inode->i_mtime.tv_sec, | 
 | 	       (unsigned int)inode->i_mtime.tv_nsec); | 
 | 	pr_err("\tctime          %u.%u\n", | 
 | 	       (unsigned int)inode->i_ctime.tv_sec, | 
 | 	       (unsigned int)inode->i_ctime.tv_nsec); | 
 | 	pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum); | 
 | 	pr_err("\txattr_size     %u\n", ui->xattr_size); | 
 | 	pr_err("\txattr_cnt      %u\n", ui->xattr_cnt); | 
 | 	pr_err("\txattr_names    %u\n", ui->xattr_names); | 
 | 	pr_err("\tdirty          %u\n", ui->dirty); | 
 | 	pr_err("\txattr          %u\n", ui->xattr); | 
 | 	pr_err("\tbulk_read      %u\n", ui->bulk_read); | 
 | 	pr_err("\tsynced_i_size  %llu\n", | 
 | 	       (unsigned long long)ui->synced_i_size); | 
 | 	pr_err("\tui_size        %llu\n", | 
 | 	       (unsigned long long)ui->ui_size); | 
 | 	pr_err("\tflags          %d\n", ui->flags); | 
 | 	pr_err("\tcompr_type     %d\n", ui->compr_type); | 
 | 	pr_err("\tlast_page_read %lu\n", ui->last_page_read); | 
 | 	pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row); | 
 | 	pr_err("\tdata_len       %d\n", ui->data_len); | 
 |  | 
 | 	if (!S_ISDIR(inode->i_mode)) | 
 | 		return; | 
 |  | 
 | 	pr_err("List of directory entries:\n"); | 
 | 	ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex)); | 
 |  | 
 | 	lowest_dent_key(c, &key, inode->i_ino); | 
 | 	while (1) { | 
 | 		dent = ubifs_tnc_next_ent(c, &key, &nm); | 
 | 		if (IS_ERR(dent)) { | 
 | 			if (PTR_ERR(dent) != -ENOENT) | 
 | 				pr_err("error %ld\n", PTR_ERR(dent)); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		pr_err("\t%d: inode %llu, type %s, len %d\n", | 
 | 		       count++, (unsigned long long) le64_to_cpu(dent->inum), | 
 | 		       get_dent_type(dent->type), | 
 | 		       le16_to_cpu(dent->nlen)); | 
 |  | 
 | 		fname_name(&nm) = dent->name; | 
 | 		fname_len(&nm) = le16_to_cpu(dent->nlen); | 
 | 		kfree(pdent); | 
 | 		pdent = dent; | 
 | 		key_read(c, &dent->key, &key); | 
 | 	} | 
 | 	kfree(pdent); | 
 | } | 
 |  | 
 | void ubifs_dump_node(const struct ubifs_info *c, const void *node, int node_len) | 
 | { | 
 | 	int i, n, type, safe_len, max_node_len, min_node_len; | 
 | 	union ubifs_key key; | 
 | 	const struct ubifs_ch *ch = node; | 
 | 	char key_buf[DBG_KEY_BUF_LEN]; | 
 |  | 
 | 	/* If the magic is incorrect, just hexdump the first bytes */ | 
 | 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { | 
 | 		pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ); | 
 | 		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1, | 
 | 			       (void *)node, UBIFS_CH_SZ, 1); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Skip dumping unknown type node */ | 
 | 	type = ch->node_type; | 
 | 	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) { | 
 | 		pr_err("node type %d was not recognized\n", type); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	spin_lock(&dbg_lock); | 
 | 	dump_ch(node); | 
 |  | 
 | 	if (c->ranges[type].max_len == 0) { | 
 | 		max_node_len = min_node_len = c->ranges[type].len; | 
 | 	} else { | 
 | 		max_node_len = c->ranges[type].max_len; | 
 | 		min_node_len = c->ranges[type].min_len; | 
 | 	} | 
 | 	safe_len = le32_to_cpu(ch->len); | 
 | 	safe_len = safe_len > 0 ? safe_len : 0; | 
 | 	safe_len = min3(safe_len, max_node_len, node_len); | 
 | 	if (safe_len < min_node_len) { | 
 | 		pr_err("node len(%d) is too short for %s, left %d bytes:\n", | 
 | 		       safe_len, dbg_ntype(type), | 
 | 		       safe_len > UBIFS_CH_SZ ? | 
 | 		       safe_len - (int)UBIFS_CH_SZ : 0); | 
 | 		if (safe_len > UBIFS_CH_SZ) | 
 | 			print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1, | 
 | 				       (void *)node + UBIFS_CH_SZ, | 
 | 				       safe_len - UBIFS_CH_SZ, 0); | 
 | 		goto out_unlock; | 
 | 	} | 
 | 	if (safe_len != le32_to_cpu(ch->len)) | 
 | 		pr_err("\ttruncated node length      %d\n", safe_len); | 
 |  | 
 | 	switch (type) { | 
 | 	case UBIFS_PAD_NODE: | 
 | 	{ | 
 | 		const struct ubifs_pad_node *pad = node; | 
 |  | 
 | 		pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len)); | 
 | 		break; | 
 | 	} | 
 | 	case UBIFS_SB_NODE: | 
 | 	{ | 
 | 		const struct ubifs_sb_node *sup = node; | 
 | 		unsigned int sup_flags = le32_to_cpu(sup->flags); | 
 |  | 
 | 		pr_err("\tkey_hash       %d (%s)\n", | 
 | 		       (int)sup->key_hash, get_key_hash(sup->key_hash)); | 
 | 		pr_err("\tkey_fmt        %d (%s)\n", | 
 | 		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); | 
 | 		pr_err("\tflags          %#x\n", sup_flags); | 
 | 		pr_err("\tbig_lpt        %u\n", | 
 | 		       !!(sup_flags & UBIFS_FLG_BIGLPT)); | 
 | 		pr_err("\tspace_fixup    %u\n", | 
 | 		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP)); | 
 | 		pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size)); | 
 | 		pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size)); | 
 | 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt)); | 
 | 		pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt)); | 
 | 		pr_err("\tmax_bud_bytes  %llu\n", | 
 | 		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); | 
 | 		pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs)); | 
 | 		pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs)); | 
 | 		pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs)); | 
 | 		pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt)); | 
 | 		pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout)); | 
 | 		pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt)); | 
 | 		pr_err("\tdefault_compr  %u\n", | 
 | 		       (int)le16_to_cpu(sup->default_compr)); | 
 | 		pr_err("\trp_size        %llu\n", | 
 | 		       (unsigned long long)le64_to_cpu(sup->rp_size)); | 
 | 		pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid)); | 
 | 		pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid)); | 
 | 		pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version)); | 
 | 		pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran)); | 
 | 		pr_err("\tUUID           %pUB\n", sup->uuid); | 
 | 		break; | 
 | 	} | 
 | 	case UBIFS_MST_NODE: | 
 | 	{ | 
 | 		const struct ubifs_mst_node *mst = node; | 
 |  | 
 | 		pr_err("\thighest_inum   %llu\n", | 
 | 		       (unsigned long long)le64_to_cpu(mst->highest_inum)); | 
 | 		pr_err("\tcommit number  %llu\n", | 
 | 		       (unsigned long long)le64_to_cpu(mst->cmt_no)); | 
 | 		pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags)); | 
 | 		pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum)); | 
 | 		pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum)); | 
 | 		pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs)); | 
 | 		pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len)); | 
 | 		pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum)); | 
 | 		pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum)); | 
 | 		pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs)); | 
 | 		pr_err("\tindex_size     %llu\n", | 
 | 		       (unsigned long long)le64_to_cpu(mst->index_size)); | 
 | 		pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum)); | 
 | 		pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs)); | 
 | 		pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum)); | 
 | 		pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs)); | 
 | 		pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum)); | 
 | 		pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs)); | 
 | 		pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum)); | 
 | 		pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs)); | 
 | 		pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum)); | 
 | 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt)); | 
 | 		pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs)); | 
 | 		pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs)); | 
 | 		pr_err("\ttotal_free     %llu\n", | 
 | 		       (unsigned long long)le64_to_cpu(mst->total_free)); | 
 | 		pr_err("\ttotal_dirty    %llu\n", | 
 | 		       (unsigned long long)le64_to_cpu(mst->total_dirty)); | 
 | 		pr_err("\ttotal_used     %llu\n", | 
 | 		       (unsigned long long)le64_to_cpu(mst->total_used)); | 
 | 		pr_err("\ttotal_dead     %llu\n", | 
 | 		       (unsigned long long)le64_to_cpu(mst->total_dead)); | 
 | 		pr_err("\ttotal_dark     %llu\n", | 
 | 		       (unsigned long long)le64_to_cpu(mst->total_dark)); | 
 | 		break; | 
 | 	} | 
 | 	case UBIFS_REF_NODE: | 
 | 	{ | 
 | 		const struct ubifs_ref_node *ref = node; | 
 |  | 
 | 		pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum)); | 
 | 		pr_err("\toffs           %u\n", le32_to_cpu(ref->offs)); | 
 | 		pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead)); | 
 | 		break; | 
 | 	} | 
 | 	case UBIFS_INO_NODE: | 
 | 	{ | 
 | 		const struct ubifs_ino_node *ino = node; | 
 |  | 
 | 		key_read(c, &ino->key, &key); | 
 | 		pr_err("\tkey            %s\n", | 
 | 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); | 
 | 		pr_err("\tcreat_sqnum    %llu\n", | 
 | 		       (unsigned long long)le64_to_cpu(ino->creat_sqnum)); | 
 | 		pr_err("\tsize           %llu\n", | 
 | 		       (unsigned long long)le64_to_cpu(ino->size)); | 
 | 		pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink)); | 
 | 		pr_err("\tatime          %lld.%u\n", | 
 | 		       (long long)le64_to_cpu(ino->atime_sec), | 
 | 		       le32_to_cpu(ino->atime_nsec)); | 
 | 		pr_err("\tmtime          %lld.%u\n", | 
 | 		       (long long)le64_to_cpu(ino->mtime_sec), | 
 | 		       le32_to_cpu(ino->mtime_nsec)); | 
 | 		pr_err("\tctime          %lld.%u\n", | 
 | 		       (long long)le64_to_cpu(ino->ctime_sec), | 
 | 		       le32_to_cpu(ino->ctime_nsec)); | 
 | 		pr_err("\tuid            %u\n", le32_to_cpu(ino->uid)); | 
 | 		pr_err("\tgid            %u\n", le32_to_cpu(ino->gid)); | 
 | 		pr_err("\tmode           %u\n", le32_to_cpu(ino->mode)); | 
 | 		pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags)); | 
 | 		pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt)); | 
 | 		pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size)); | 
 | 		pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names)); | 
 | 		pr_err("\tcompr_type     %#x\n", | 
 | 		       (int)le16_to_cpu(ino->compr_type)); | 
 | 		pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len)); | 
 | 		break; | 
 | 	} | 
 | 	case UBIFS_DENT_NODE: | 
 | 	case UBIFS_XENT_NODE: | 
 | 	{ | 
 | 		const struct ubifs_dent_node *dent = node; | 
 | 		int nlen = le16_to_cpu(dent->nlen); | 
 |  | 
 | 		key_read(c, &dent->key, &key); | 
 | 		pr_err("\tkey            %s\n", | 
 | 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); | 
 | 		pr_err("\tinum           %llu\n", | 
 | 		       (unsigned long long)le64_to_cpu(dent->inum)); | 
 | 		pr_err("\ttype           %d\n", (int)dent->type); | 
 | 		pr_err("\tnlen           %d\n", nlen); | 
 | 		pr_err("\tname           "); | 
 |  | 
 | 		if (nlen > UBIFS_MAX_NLEN || | 
 | 		    nlen > safe_len - UBIFS_DENT_NODE_SZ) | 
 | 			pr_err("(bad name length, not printing, bad or corrupted node)"); | 
 | 		else { | 
 | 			for (i = 0; i < nlen && dent->name[i]; i++) | 
 | 				pr_cont("%c", isprint(dent->name[i]) ? | 
 | 					dent->name[i] : '?'); | 
 | 		} | 
 | 		pr_cont("\n"); | 
 |  | 
 | 		break; | 
 | 	} | 
 | 	case UBIFS_DATA_NODE: | 
 | 	{ | 
 | 		const struct ubifs_data_node *dn = node; | 
 |  | 
 | 		key_read(c, &dn->key, &key); | 
 | 		pr_err("\tkey            %s\n", | 
 | 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); | 
 | 		pr_err("\tsize           %u\n", le32_to_cpu(dn->size)); | 
 | 		pr_err("\tcompr_typ      %d\n", | 
 | 		       (int)le16_to_cpu(dn->compr_type)); | 
 | 		pr_err("\tdata size      %u\n", | 
 | 		       le32_to_cpu(ch->len) - (unsigned int)UBIFS_DATA_NODE_SZ); | 
 | 		pr_err("\tdata (length = %d):\n", | 
 | 		       safe_len - (int)UBIFS_DATA_NODE_SZ); | 
 | 		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1, | 
 | 			       (void *)&dn->data, | 
 | 			       safe_len - (int)UBIFS_DATA_NODE_SZ, 0); | 
 | 		break; | 
 | 	} | 
 | 	case UBIFS_TRUN_NODE: | 
 | 	{ | 
 | 		const struct ubifs_trun_node *trun = node; | 
 |  | 
 | 		pr_err("\tinum           %u\n", le32_to_cpu(trun->inum)); | 
 | 		pr_err("\told_size       %llu\n", | 
 | 		       (unsigned long long)le64_to_cpu(trun->old_size)); | 
 | 		pr_err("\tnew_size       %llu\n", | 
 | 		       (unsigned long long)le64_to_cpu(trun->new_size)); | 
 | 		break; | 
 | 	} | 
 | 	case UBIFS_IDX_NODE: | 
 | 	{ | 
 | 		const struct ubifs_idx_node *idx = node; | 
 | 		int max_child_cnt = (safe_len - UBIFS_IDX_NODE_SZ) / | 
 | 				    (ubifs_idx_node_sz(c, 1) - | 
 | 				    UBIFS_IDX_NODE_SZ); | 
 |  | 
 | 		n = min_t(int, le16_to_cpu(idx->child_cnt), max_child_cnt); | 
 | 		pr_err("\tchild_cnt      %d\n", (int)le16_to_cpu(idx->child_cnt)); | 
 | 		pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level)); | 
 | 		pr_err("\tBranches:\n"); | 
 |  | 
 | 		for (i = 0; i < n && i < c->fanout; i++) { | 
 | 			const struct ubifs_branch *br; | 
 |  | 
 | 			br = ubifs_idx_branch(c, idx, i); | 
 | 			key_read(c, &br->key, &key); | 
 | 			pr_err("\t%d: LEB %d:%d len %d key %s\n", | 
 | 			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), | 
 | 			       le32_to_cpu(br->len), | 
 | 			       dbg_snprintf_key(c, &key, key_buf, | 
 | 						DBG_KEY_BUF_LEN)); | 
 | 		} | 
 | 		break; | 
 | 	} | 
 | 	case UBIFS_CS_NODE: | 
 | 		break; | 
 | 	case UBIFS_ORPH_NODE: | 
 | 	{ | 
 | 		const struct ubifs_orph_node *orph = node; | 
 |  | 
 | 		pr_err("\tcommit number  %llu\n", | 
 | 		       (unsigned long long) | 
 | 				le64_to_cpu(orph->cmt_no) & LLONG_MAX); | 
 | 		pr_err("\tlast node flag %llu\n", | 
 | 		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); | 
 | 		n = (safe_len - UBIFS_ORPH_NODE_SZ) >> 3; | 
 | 		pr_err("\t%d orphan inode numbers:\n", n); | 
 | 		for (i = 0; i < n; i++) | 
 | 			pr_err("\t  ino %llu\n", | 
 | 			       (unsigned long long)le64_to_cpu(orph->inos[i])); | 
 | 		break; | 
 | 	} | 
 | 	case UBIFS_AUTH_NODE: | 
 | 	{ | 
 | 		break; | 
 | 	} | 
 | 	default: | 
 | 		pr_err("node type %d was not recognized\n", type); | 
 | 	} | 
 |  | 
 | out_unlock: | 
 | 	spin_unlock(&dbg_lock); | 
 | } | 
 |  | 
 | void ubifs_dump_budget_req(const struct ubifs_budget_req *req) | 
 | { | 
 | 	spin_lock(&dbg_lock); | 
 | 	pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n", | 
 | 	       req->new_ino, req->dirtied_ino); | 
 | 	pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n", | 
 | 	       req->new_ino_d, req->dirtied_ino_d); | 
 | 	pr_err("\tnew_page    %d, dirtied_page %d\n", | 
 | 	       req->new_page, req->dirtied_page); | 
 | 	pr_err("\tnew_dent    %d, mod_dent     %d\n", | 
 | 	       req->new_dent, req->mod_dent); | 
 | 	pr_err("\tidx_growth  %d\n", req->idx_growth); | 
 | 	pr_err("\tdata_growth %d dd_growth     %d\n", | 
 | 	       req->data_growth, req->dd_growth); | 
 | 	spin_unlock(&dbg_lock); | 
 | } | 
 |  | 
 | void ubifs_dump_lstats(const struct ubifs_lp_stats *lst) | 
 | { | 
 | 	spin_lock(&dbg_lock); | 
 | 	pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n", | 
 | 	       current->pid, lst->empty_lebs, lst->idx_lebs); | 
 | 	pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n", | 
 | 	       lst->taken_empty_lebs, lst->total_free, lst->total_dirty); | 
 | 	pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n", | 
 | 	       lst->total_used, lst->total_dark, lst->total_dead); | 
 | 	spin_unlock(&dbg_lock); | 
 | } | 
 |  | 
 | void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) | 
 | { | 
 | 	int i; | 
 | 	struct rb_node *rb; | 
 | 	struct ubifs_bud *bud; | 
 | 	struct ubifs_gced_idx_leb *idx_gc; | 
 | 	long long available, outstanding, free; | 
 |  | 
 | 	spin_lock(&c->space_lock); | 
 | 	spin_lock(&dbg_lock); | 
 | 	pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n", | 
 | 	       current->pid, bi->data_growth + bi->dd_growth, | 
 | 	       bi->data_growth + bi->dd_growth + bi->idx_growth); | 
 | 	pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n", | 
 | 	       bi->data_growth, bi->dd_growth, bi->idx_growth); | 
 | 	pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n", | 
 | 	       bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx); | 
 | 	pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n", | 
 | 	       bi->page_budget, bi->inode_budget, bi->dent_budget); | 
 | 	pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp); | 
 | 	pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", | 
 | 	       c->dark_wm, c->dead_wm, c->max_idx_node_sz); | 
 |  | 
 | 	if (bi != &c->bi) | 
 | 		/* | 
 | 		 * If we are dumping saved budgeting data, do not print | 
 | 		 * additional information which is about the current state, not | 
 | 		 * the old one which corresponded to the saved budgeting data. | 
 | 		 */ | 
 | 		goto out_unlock; | 
 |  | 
 | 	pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n", | 
 | 	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt); | 
 | 	pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n", | 
 | 	       atomic_long_read(&c->dirty_pg_cnt), | 
 | 	       atomic_long_read(&c->dirty_zn_cnt), | 
 | 	       atomic_long_read(&c->clean_zn_cnt)); | 
 | 	pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum); | 
 |  | 
 | 	/* If we are in R/O mode, journal heads do not exist */ | 
 | 	if (c->jheads) | 
 | 		for (i = 0; i < c->jhead_cnt; i++) | 
 | 			pr_err("\tjhead %s\t LEB %d\n", | 
 | 			       dbg_jhead(c->jheads[i].wbuf.jhead), | 
 | 			       c->jheads[i].wbuf.lnum); | 
 | 	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { | 
 | 		bud = rb_entry(rb, struct ubifs_bud, rb); | 
 | 		pr_err("\tbud LEB %d\n", bud->lnum); | 
 | 	} | 
 | 	list_for_each_entry(bud, &c->old_buds, list) | 
 | 		pr_err("\told bud LEB %d\n", bud->lnum); | 
 | 	list_for_each_entry(idx_gc, &c->idx_gc, list) | 
 | 		pr_err("\tGC'ed idx LEB %d unmap %d\n", | 
 | 		       idx_gc->lnum, idx_gc->unmap); | 
 | 	pr_err("\tcommit state %d\n", c->cmt_state); | 
 |  | 
 | 	/* Print budgeting predictions */ | 
 | 	available = ubifs_calc_available(c, c->bi.min_idx_lebs); | 
 | 	outstanding = c->bi.data_growth + c->bi.dd_growth; | 
 | 	free = ubifs_get_free_space_nolock(c); | 
 | 	pr_err("Budgeting predictions:\n"); | 
 | 	pr_err("\tavailable: %lld, outstanding %lld, free %lld\n", | 
 | 	       available, outstanding, free); | 
 | out_unlock: | 
 | 	spin_unlock(&dbg_lock); | 
 | 	spin_unlock(&c->space_lock); | 
 | } | 
 |  | 
 | void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) | 
 | { | 
 | 	int i, spc, dark = 0, dead = 0; | 
 | 	struct rb_node *rb; | 
 | 	struct ubifs_bud *bud; | 
 |  | 
 | 	spc = lp->free + lp->dirty; | 
 | 	if (spc < c->dead_wm) | 
 | 		dead = spc; | 
 | 	else | 
 | 		dark = ubifs_calc_dark(c, spc); | 
 |  | 
 | 	if (lp->flags & LPROPS_INDEX) | 
 | 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (", | 
 | 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, | 
 | 		       lp->flags); | 
 | 	else | 
 | 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (", | 
 | 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, | 
 | 		       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags); | 
 |  | 
 | 	if (lp->flags & LPROPS_TAKEN) { | 
 | 		if (lp->flags & LPROPS_INDEX) | 
 | 			pr_cont("index, taken"); | 
 | 		else | 
 | 			pr_cont("taken"); | 
 | 	} else { | 
 | 		const char *s; | 
 |  | 
 | 		if (lp->flags & LPROPS_INDEX) { | 
 | 			switch (lp->flags & LPROPS_CAT_MASK) { | 
 | 			case LPROPS_DIRTY_IDX: | 
 | 				s = "dirty index"; | 
 | 				break; | 
 | 			case LPROPS_FRDI_IDX: | 
 | 				s = "freeable index"; | 
 | 				break; | 
 | 			default: | 
 | 				s = "index"; | 
 | 			} | 
 | 		} else { | 
 | 			switch (lp->flags & LPROPS_CAT_MASK) { | 
 | 			case LPROPS_UNCAT: | 
 | 				s = "not categorized"; | 
 | 				break; | 
 | 			case LPROPS_DIRTY: | 
 | 				s = "dirty"; | 
 | 				break; | 
 | 			case LPROPS_FREE: | 
 | 				s = "free"; | 
 | 				break; | 
 | 			case LPROPS_EMPTY: | 
 | 				s = "empty"; | 
 | 				break; | 
 | 			case LPROPS_FREEABLE: | 
 | 				s = "freeable"; | 
 | 				break; | 
 | 			default: | 
 | 				s = NULL; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		pr_cont("%s", s); | 
 | 	} | 
 |  | 
 | 	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) { | 
 | 		bud = rb_entry(rb, struct ubifs_bud, rb); | 
 | 		if (bud->lnum == lp->lnum) { | 
 | 			int head = 0; | 
 | 			for (i = 0; i < c->jhead_cnt; i++) { | 
 | 				/* | 
 | 				 * Note, if we are in R/O mode or in the middle | 
 | 				 * of mounting/re-mounting, the write-buffers do | 
 | 				 * not exist. | 
 | 				 */ | 
 | 				if (c->jheads && | 
 | 				    lp->lnum == c->jheads[i].wbuf.lnum) { | 
 | 					pr_cont(", jhead %s", dbg_jhead(i)); | 
 | 					head = 1; | 
 | 				} | 
 | 			} | 
 | 			if (!head) | 
 | 				pr_cont(", bud of jhead %s", | 
 | 				       dbg_jhead(bud->jhead)); | 
 | 		} | 
 | 	} | 
 | 	if (lp->lnum == c->gc_lnum) | 
 | 		pr_cont(", GC LEB"); | 
 | 	pr_cont(")\n"); | 
 | } | 
 |  | 
 | void ubifs_dump_lprops(struct ubifs_info *c) | 
 | { | 
 | 	int lnum, err; | 
 | 	struct ubifs_lprops lp; | 
 | 	struct ubifs_lp_stats lst; | 
 |  | 
 | 	pr_err("(pid %d) start dumping LEB properties\n", current->pid); | 
 | 	ubifs_get_lp_stats(c, &lst); | 
 | 	ubifs_dump_lstats(&lst); | 
 |  | 
 | 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { | 
 | 		err = ubifs_read_one_lp(c, lnum, &lp); | 
 | 		if (err) { | 
 | 			ubifs_err(c, "cannot read lprops for LEB %d", lnum); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		ubifs_dump_lprop(c, &lp); | 
 | 	} | 
 | 	pr_err("(pid %d) finish dumping LEB properties\n", current->pid); | 
 | } | 
 |  | 
 | void ubifs_dump_lpt_info(struct ubifs_info *c) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	spin_lock(&dbg_lock); | 
 | 	pr_err("(pid %d) dumping LPT information\n", current->pid); | 
 | 	pr_err("\tlpt_sz:        %lld\n", c->lpt_sz); | 
 | 	pr_err("\tpnode_sz:      %d\n", c->pnode_sz); | 
 | 	pr_err("\tnnode_sz:      %d\n", c->nnode_sz); | 
 | 	pr_err("\tltab_sz:       %d\n", c->ltab_sz); | 
 | 	pr_err("\tlsave_sz:      %d\n", c->lsave_sz); | 
 | 	pr_err("\tbig_lpt:       %u\n", c->big_lpt); | 
 | 	pr_err("\tlpt_hght:      %d\n", c->lpt_hght); | 
 | 	pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt); | 
 | 	pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt); | 
 | 	pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt); | 
 | 	pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt); | 
 | 	pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt); | 
 | 	pr_err("\tspace_bits:    %d\n", c->space_bits); | 
 | 	pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); | 
 | 	pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits); | 
 | 	pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits); | 
 | 	pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits); | 
 | 	pr_err("\tlnum_bits:     %d\n", c->lnum_bits); | 
 | 	pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); | 
 | 	pr_err("\tLPT head is at %d:%d\n", | 
 | 	       c->nhead_lnum, c->nhead_offs); | 
 | 	pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs); | 
 | 	if (c->big_lpt) | 
 | 		pr_err("\tLPT lsave is at %d:%d\n", | 
 | 		       c->lsave_lnum, c->lsave_offs); | 
 | 	for (i = 0; i < c->lpt_lebs; i++) | 
 | 		pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n", | 
 | 		       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty, | 
 | 		       c->ltab[i].tgc, c->ltab[i].cmt); | 
 | 	spin_unlock(&dbg_lock); | 
 | } | 
 |  | 
 | void ubifs_dump_leb(const struct ubifs_info *c, int lnum) | 
 | { | 
 | 	struct ubifs_scan_leb *sleb; | 
 | 	struct ubifs_scan_node *snod; | 
 | 	void *buf; | 
 |  | 
 | 	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum); | 
 |  | 
 | 	buf = __vmalloc(c->leb_size, GFP_NOFS); | 
 | 	if (!buf) { | 
 | 		ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	sleb = ubifs_scan(c, lnum, 0, buf, 0); | 
 | 	if (IS_ERR(sleb)) { | 
 | 		ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb)); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	pr_err("LEB %d has %d nodes ending at %d\n", lnum, | 
 | 	       sleb->nodes_cnt, sleb->endpt); | 
 |  | 
 | 	list_for_each_entry(snod, &sleb->nodes, list) { | 
 | 		cond_resched(); | 
 | 		pr_err("Dumping node at LEB %d:%d len %d\n", lnum, | 
 | 		       snod->offs, snod->len); | 
 | 		ubifs_dump_node(c, snod->node, c->leb_size - snod->offs); | 
 | 	} | 
 |  | 
 | 	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum); | 
 | 	ubifs_scan_destroy(sleb); | 
 |  | 
 | out: | 
 | 	vfree(buf); | 
 | 	return; | 
 | } | 
 |  | 
 | void ubifs_dump_znode(const struct ubifs_info *c, | 
 | 		      const struct ubifs_znode *znode) | 
 | { | 
 | 	int n; | 
 | 	const struct ubifs_zbranch *zbr; | 
 | 	char key_buf[DBG_KEY_BUF_LEN]; | 
 |  | 
 | 	spin_lock(&dbg_lock); | 
 | 	if (znode->parent) | 
 | 		zbr = &znode->parent->zbranch[znode->iip]; | 
 | 	else | 
 | 		zbr = &c->zroot; | 
 |  | 
 | 	pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n", | 
 | 	       znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip, | 
 | 	       znode->level, znode->child_cnt, znode->flags); | 
 |  | 
 | 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { | 
 | 		spin_unlock(&dbg_lock); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	pr_err("zbranches:\n"); | 
 | 	for (n = 0; n < znode->child_cnt; n++) { | 
 | 		zbr = &znode->zbranch[n]; | 
 | 		if (znode->level > 0) | 
 | 			pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n", | 
 | 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, | 
 | 			       dbg_snprintf_key(c, &zbr->key, key_buf, | 
 | 						DBG_KEY_BUF_LEN)); | 
 | 		else | 
 | 			pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n", | 
 | 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, | 
 | 			       dbg_snprintf_key(c, &zbr->key, key_buf, | 
 | 						DBG_KEY_BUF_LEN)); | 
 | 	} | 
 | 	spin_unlock(&dbg_lock); | 
 | } | 
 |  | 
 | void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	pr_err("(pid %d) start dumping heap cat %d (%d elements)\n", | 
 | 	       current->pid, cat, heap->cnt); | 
 | 	for (i = 0; i < heap->cnt; i++) { | 
 | 		struct ubifs_lprops *lprops = heap->arr[i]; | 
 |  | 
 | 		pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n", | 
 | 		       i, lprops->lnum, lprops->hpos, lprops->free, | 
 | 		       lprops->dirty, lprops->flags); | 
 | 	} | 
 | 	pr_err("(pid %d) finish dumping heap\n", current->pid); | 
 | } | 
 |  | 
 | void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, | 
 | 		      struct ubifs_nnode *parent, int iip) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	pr_err("(pid %d) dumping pnode:\n", current->pid); | 
 | 	pr_err("\taddress %zx parent %zx cnext %zx\n", | 
 | 	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); | 
 | 	pr_err("\tflags %lu iip %d level %d num %d\n", | 
 | 	       pnode->flags, iip, pnode->level, pnode->num); | 
 | 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | 
 | 		struct ubifs_lprops *lp = &pnode->lprops[i]; | 
 |  | 
 | 		pr_err("\t%d: free %d dirty %d flags %d lnum %d\n", | 
 | 		       i, lp->free, lp->dirty, lp->flags, lp->lnum); | 
 | 	} | 
 | } | 
 |  | 
 | void ubifs_dump_tnc(struct ubifs_info *c) | 
 | { | 
 | 	struct ubifs_znode *znode; | 
 | 	int level; | 
 |  | 
 | 	pr_err("\n"); | 
 | 	pr_err("(pid %d) start dumping TNC tree\n", current->pid); | 
 | 	znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL); | 
 | 	level = znode->level; | 
 | 	pr_err("== Level %d ==\n", level); | 
 | 	while (znode) { | 
 | 		if (level != znode->level) { | 
 | 			level = znode->level; | 
 | 			pr_err("== Level %d ==\n", level); | 
 | 		} | 
 | 		ubifs_dump_znode(c, znode); | 
 | 		znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode); | 
 | 	} | 
 | 	pr_err("(pid %d) finish dumping TNC tree\n", current->pid); | 
 | } | 
 |  | 
 | static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, | 
 | 		      void *priv) | 
 | { | 
 | 	ubifs_dump_znode(c, znode); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_dump_index - dump the on-flash index. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()' | 
 |  * which dumps only in-memory znodes and does not read znodes which from flash. | 
 |  */ | 
 | void ubifs_dump_index(struct ubifs_info *c) | 
 | { | 
 | 	dbg_walk_index(c, NULL, dump_znode, NULL); | 
 | } | 
 |  | 
 | /** | 
 |  * dbg_save_space_info - save information about flash space. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * This function saves information about UBIFS free space, dirty space, etc, in | 
 |  * order to check it later. | 
 |  */ | 
 | void dbg_save_space_info(struct ubifs_info *c) | 
 | { | 
 | 	struct ubifs_debug_info *d = c->dbg; | 
 | 	int freeable_cnt; | 
 |  | 
 | 	spin_lock(&c->space_lock); | 
 | 	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats)); | 
 | 	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info)); | 
 | 	d->saved_idx_gc_cnt = c->idx_gc_cnt; | 
 |  | 
 | 	/* | 
 | 	 * We use a dirty hack here and zero out @c->freeable_cnt, because it | 
 | 	 * affects the free space calculations, and UBIFS might not know about | 
 | 	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks | 
 | 	 * only when we read their lprops, and we do this only lazily, upon the | 
 | 	 * need. So at any given point of time @c->freeable_cnt might be not | 
 | 	 * exactly accurate. | 
 | 	 * | 
 | 	 * Just one example about the issue we hit when we did not zero | 
 | 	 * @c->freeable_cnt. | 
 | 	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the | 
 | 	 *    amount of free space in @d->saved_free | 
 | 	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave" | 
 | 	 *    information from flash, where we cache LEBs from various | 
 | 	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()' | 
 | 	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()' | 
 | 	 *    -> 'ubifs_get_pnode()' -> 'update_cats()' | 
 | 	 *    -> 'ubifs_add_to_cat()'). | 
 | 	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt | 
 | 	 *    becomes %1. | 
 | 	 * 4. We calculate the amount of free space when the re-mount is | 
 | 	 *    finished in 'dbg_check_space_info()' and it does not match | 
 | 	 *    @d->saved_free. | 
 | 	 */ | 
 | 	freeable_cnt = c->freeable_cnt; | 
 | 	c->freeable_cnt = 0; | 
 | 	d->saved_free = ubifs_get_free_space_nolock(c); | 
 | 	c->freeable_cnt = freeable_cnt; | 
 | 	spin_unlock(&c->space_lock); | 
 | } | 
 |  | 
 | /** | 
 |  * dbg_check_space_info - check flash space information. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * This function compares current flash space information with the information | 
 |  * which was saved when the 'dbg_save_space_info()' function was called. | 
 |  * Returns zero if the information has not changed, and %-EINVAL if it has | 
 |  * changed. | 
 |  */ | 
 | int dbg_check_space_info(struct ubifs_info *c) | 
 | { | 
 | 	struct ubifs_debug_info *d = c->dbg; | 
 | 	struct ubifs_lp_stats lst; | 
 | 	long long free; | 
 | 	int freeable_cnt; | 
 |  | 
 | 	spin_lock(&c->space_lock); | 
 | 	freeable_cnt = c->freeable_cnt; | 
 | 	c->freeable_cnt = 0; | 
 | 	free = ubifs_get_free_space_nolock(c); | 
 | 	c->freeable_cnt = freeable_cnt; | 
 | 	spin_unlock(&c->space_lock); | 
 |  | 
 | 	if (free != d->saved_free) { | 
 | 		ubifs_err(c, "free space changed from %lld to %lld", | 
 | 			  d->saved_free, free); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | out: | 
 | 	ubifs_msg(c, "saved lprops statistics dump"); | 
 | 	ubifs_dump_lstats(&d->saved_lst); | 
 | 	ubifs_msg(c, "saved budgeting info dump"); | 
 | 	ubifs_dump_budg(c, &d->saved_bi); | 
 | 	ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt); | 
 | 	ubifs_msg(c, "current lprops statistics dump"); | 
 | 	ubifs_get_lp_stats(c, &lst); | 
 | 	ubifs_dump_lstats(&lst); | 
 | 	ubifs_msg(c, "current budgeting info dump"); | 
 | 	ubifs_dump_budg(c, &c->bi); | 
 | 	dump_stack(); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | /** | 
 |  * dbg_check_synced_i_size - check synchronized inode size. | 
 |  * @c: UBIFS file-system description object | 
 |  * @inode: inode to check | 
 |  * | 
 |  * If inode is clean, synchronized inode size has to be equivalent to current | 
 |  * inode size. This function has to be called only for locked inodes (@i_mutex | 
 |  * has to be locked). Returns %0 if synchronized inode size if correct, and | 
 |  * %-EINVAL if not. | 
 |  */ | 
 | int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode) | 
 | { | 
 | 	int err = 0; | 
 | 	struct ubifs_inode *ui = ubifs_inode(inode); | 
 |  | 
 | 	if (!dbg_is_chk_gen(c)) | 
 | 		return 0; | 
 | 	if (!S_ISREG(inode->i_mode)) | 
 | 		return 0; | 
 |  | 
 | 	mutex_lock(&ui->ui_mutex); | 
 | 	spin_lock(&ui->ui_lock); | 
 | 	if (ui->ui_size != ui->synced_i_size && !ui->dirty) { | 
 | 		ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean", | 
 | 			  ui->ui_size, ui->synced_i_size); | 
 | 		ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, | 
 | 			  inode->i_mode, i_size_read(inode)); | 
 | 		dump_stack(); | 
 | 		err = -EINVAL; | 
 | 	} | 
 | 	spin_unlock(&ui->ui_lock); | 
 | 	mutex_unlock(&ui->ui_mutex); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * dbg_check_dir - check directory inode size and link count. | 
 |  * @c: UBIFS file-system description object | 
 |  * @dir: the directory to calculate size for | 
 |  * @size: the result is returned here | 
 |  * | 
 |  * This function makes sure that directory size and link count are correct. | 
 |  * Returns zero in case of success and a negative error code in case of | 
 |  * failure. | 
 |  * | 
 |  * Note, it is good idea to make sure the @dir->i_mutex is locked before | 
 |  * calling this function. | 
 |  */ | 
 | int dbg_check_dir(struct ubifs_info *c, const struct inode *dir) | 
 | { | 
 | 	unsigned int nlink = 2; | 
 | 	union ubifs_key key; | 
 | 	struct ubifs_dent_node *dent, *pdent = NULL; | 
 | 	struct fscrypt_name nm = {0}; | 
 | 	loff_t size = UBIFS_INO_NODE_SZ; | 
 |  | 
 | 	if (!dbg_is_chk_gen(c)) | 
 | 		return 0; | 
 |  | 
 | 	if (!S_ISDIR(dir->i_mode)) | 
 | 		return 0; | 
 |  | 
 | 	lowest_dent_key(c, &key, dir->i_ino); | 
 | 	while (1) { | 
 | 		int err; | 
 |  | 
 | 		dent = ubifs_tnc_next_ent(c, &key, &nm); | 
 | 		if (IS_ERR(dent)) { | 
 | 			err = PTR_ERR(dent); | 
 | 			if (err == -ENOENT) | 
 | 				break; | 
 | 			kfree(pdent); | 
 | 			return err; | 
 | 		} | 
 |  | 
 | 		fname_name(&nm) = dent->name; | 
 | 		fname_len(&nm) = le16_to_cpu(dent->nlen); | 
 | 		size += CALC_DENT_SIZE(fname_len(&nm)); | 
 | 		if (dent->type == UBIFS_ITYPE_DIR) | 
 | 			nlink += 1; | 
 | 		kfree(pdent); | 
 | 		pdent = dent; | 
 | 		key_read(c, &dent->key, &key); | 
 | 	} | 
 | 	kfree(pdent); | 
 |  | 
 | 	if (i_size_read(dir) != size) { | 
 | 		ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu", | 
 | 			  dir->i_ino, (unsigned long long)i_size_read(dir), | 
 | 			  (unsigned long long)size); | 
 | 		ubifs_dump_inode(c, dir); | 
 | 		dump_stack(); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if (dir->i_nlink != nlink) { | 
 | 		ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u", | 
 | 			  dir->i_ino, dir->i_nlink, nlink); | 
 | 		ubifs_dump_inode(c, dir); | 
 | 		dump_stack(); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * dbg_check_key_order - make sure that colliding keys are properly ordered. | 
 |  * @c: UBIFS file-system description object | 
 |  * @zbr1: first zbranch | 
 |  * @zbr2: following zbranch | 
 |  * | 
 |  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of | 
 |  * names of the direntries/xentries which are referred by the keys. This | 
 |  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes | 
 |  * sure the name of direntry/xentry referred by @zbr1 is less than | 
 |  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, | 
 |  * and a negative error code in case of failure. | 
 |  */ | 
 | static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, | 
 | 			       struct ubifs_zbranch *zbr2) | 
 | { | 
 | 	int err, nlen1, nlen2, cmp; | 
 | 	struct ubifs_dent_node *dent1, *dent2; | 
 | 	union ubifs_key key; | 
 | 	char key_buf[DBG_KEY_BUF_LEN]; | 
 |  | 
 | 	ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key)); | 
 | 	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); | 
 | 	if (!dent1) | 
 | 		return -ENOMEM; | 
 | 	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); | 
 | 	if (!dent2) { | 
 | 		err = -ENOMEM; | 
 | 		goto out_free; | 
 | 	} | 
 |  | 
 | 	err = ubifs_tnc_read_node(c, zbr1, dent1); | 
 | 	if (err) | 
 | 		goto out_free; | 
 | 	err = ubifs_validate_entry(c, dent1); | 
 | 	if (err) | 
 | 		goto out_free; | 
 |  | 
 | 	err = ubifs_tnc_read_node(c, zbr2, dent2); | 
 | 	if (err) | 
 | 		goto out_free; | 
 | 	err = ubifs_validate_entry(c, dent2); | 
 | 	if (err) | 
 | 		goto out_free; | 
 |  | 
 | 	/* Make sure node keys are the same as in zbranch */ | 
 | 	err = 1; | 
 | 	key_read(c, &dent1->key, &key); | 
 | 	if (keys_cmp(c, &zbr1->key, &key)) { | 
 | 		ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum, | 
 | 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf, | 
 | 						       DBG_KEY_BUF_LEN)); | 
 | 		ubifs_err(c, "but it should have key %s according to tnc", | 
 | 			  dbg_snprintf_key(c, &zbr1->key, key_buf, | 
 | 					   DBG_KEY_BUF_LEN)); | 
 | 		ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ); | 
 | 		goto out_free; | 
 | 	} | 
 |  | 
 | 	key_read(c, &dent2->key, &key); | 
 | 	if (keys_cmp(c, &zbr2->key, &key)) { | 
 | 		ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum, | 
 | 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf, | 
 | 						       DBG_KEY_BUF_LEN)); | 
 | 		ubifs_err(c, "but it should have key %s according to tnc", | 
 | 			  dbg_snprintf_key(c, &zbr2->key, key_buf, | 
 | 					   DBG_KEY_BUF_LEN)); | 
 | 		ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ); | 
 | 		goto out_free; | 
 | 	} | 
 |  | 
 | 	nlen1 = le16_to_cpu(dent1->nlen); | 
 | 	nlen2 = le16_to_cpu(dent2->nlen); | 
 |  | 
 | 	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); | 
 | 	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { | 
 | 		err = 0; | 
 | 		goto out_free; | 
 | 	} | 
 | 	if (cmp == 0 && nlen1 == nlen2) | 
 | 		ubifs_err(c, "2 xent/dent nodes with the same name"); | 
 | 	else | 
 | 		ubifs_err(c, "bad order of colliding key %s", | 
 | 			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); | 
 |  | 
 | 	ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs); | 
 | 	ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ); | 
 | 	ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs); | 
 | 	ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ); | 
 |  | 
 | out_free: | 
 | 	kfree(dent2); | 
 | 	kfree(dent1); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * dbg_check_znode - check if znode is all right. | 
 |  * @c: UBIFS file-system description object | 
 |  * @zbr: zbranch which points to this znode | 
 |  * | 
 |  * This function makes sure that znode referred to by @zbr is all right. | 
 |  * Returns zero if it is, and %-EINVAL if it is not. | 
 |  */ | 
 | static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) | 
 | { | 
 | 	struct ubifs_znode *znode = zbr->znode; | 
 | 	struct ubifs_znode *zp = znode->parent; | 
 | 	int n, err, cmp; | 
 |  | 
 | 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { | 
 | 		err = 1; | 
 | 		goto out; | 
 | 	} | 
 | 	if (znode->level < 0) { | 
 | 		err = 2; | 
 | 		goto out; | 
 | 	} | 
 | 	if (znode->iip < 0 || znode->iip >= c->fanout) { | 
 | 		err = 3; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (zbr->len == 0) | 
 | 		/* Only dirty zbranch may have no on-flash nodes */ | 
 | 		if (!ubifs_zn_dirty(znode)) { | 
 | 			err = 4; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 	if (ubifs_zn_dirty(znode)) { | 
 | 		/* | 
 | 		 * If znode is dirty, its parent has to be dirty as well. The | 
 | 		 * order of the operation is important, so we have to have | 
 | 		 * memory barriers. | 
 | 		 */ | 
 | 		smp_mb(); | 
 | 		if (zp && !ubifs_zn_dirty(zp)) { | 
 | 			/* | 
 | 			 * The dirty flag is atomic and is cleared outside the | 
 | 			 * TNC mutex, so znode's dirty flag may now have | 
 | 			 * been cleared. The child is always cleared before the | 
 | 			 * parent, so we just need to check again. | 
 | 			 */ | 
 | 			smp_mb(); | 
 | 			if (ubifs_zn_dirty(znode)) { | 
 | 				err = 5; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (zp) { | 
 | 		const union ubifs_key *min, *max; | 
 |  | 
 | 		if (znode->level != zp->level - 1) { | 
 | 			err = 6; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* Make sure the 'parent' pointer in our znode is correct */ | 
 | 		err = ubifs_search_zbranch(c, zp, &zbr->key, &n); | 
 | 		if (!err) { | 
 | 			/* This zbranch does not exist in the parent */ | 
 | 			err = 7; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (znode->iip >= zp->child_cnt) { | 
 | 			err = 8; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (znode->iip != n) { | 
 | 			/* This may happen only in case of collisions */ | 
 | 			if (keys_cmp(c, &zp->zbranch[n].key, | 
 | 				     &zp->zbranch[znode->iip].key)) { | 
 | 				err = 9; | 
 | 				goto out; | 
 | 			} | 
 | 			n = znode->iip; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Make sure that the first key in our znode is greater than or | 
 | 		 * equal to the key in the pointing zbranch. | 
 | 		 */ | 
 | 		min = &zbr->key; | 
 | 		cmp = keys_cmp(c, min, &znode->zbranch[0].key); | 
 | 		if (cmp == 1) { | 
 | 			err = 10; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (n + 1 < zp->child_cnt) { | 
 | 			max = &zp->zbranch[n + 1].key; | 
 |  | 
 | 			/* | 
 | 			 * Make sure the last key in our znode is less or | 
 | 			 * equivalent than the key in the zbranch which goes | 
 | 			 * after our pointing zbranch. | 
 | 			 */ | 
 | 			cmp = keys_cmp(c, max, | 
 | 				&znode->zbranch[znode->child_cnt - 1].key); | 
 | 			if (cmp == -1) { | 
 | 				err = 11; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		/* This may only be root znode */ | 
 | 		if (zbr != &c->zroot) { | 
 | 			err = 12; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Make sure that next key is greater or equivalent then the previous | 
 | 	 * one. | 
 | 	 */ | 
 | 	for (n = 1; n < znode->child_cnt; n++) { | 
 | 		cmp = keys_cmp(c, &znode->zbranch[n - 1].key, | 
 | 			       &znode->zbranch[n].key); | 
 | 		if (cmp > 0) { | 
 | 			err = 13; | 
 | 			goto out; | 
 | 		} | 
 | 		if (cmp == 0) { | 
 | 			/* This can only be keys with colliding hash */ | 
 | 			if (!is_hash_key(c, &znode->zbranch[n].key)) { | 
 | 				err = 14; | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			if (znode->level != 0 || c->replaying) | 
 | 				continue; | 
 |  | 
 | 			/* | 
 | 			 * Colliding keys should follow binary order of | 
 | 			 * corresponding xentry/dentry names. | 
 | 			 */ | 
 | 			err = dbg_check_key_order(c, &znode->zbranch[n - 1], | 
 | 						  &znode->zbranch[n]); | 
 | 			if (err < 0) | 
 | 				return err; | 
 | 			if (err) { | 
 | 				err = 15; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for (n = 0; n < znode->child_cnt; n++) { | 
 | 		if (!znode->zbranch[n].znode && | 
 | 		    (znode->zbranch[n].lnum == 0 || | 
 | 		     znode->zbranch[n].len == 0)) { | 
 | 			err = 16; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (znode->zbranch[n].lnum != 0 && | 
 | 		    znode->zbranch[n].len == 0) { | 
 | 			err = 17; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (znode->zbranch[n].lnum == 0 && | 
 | 		    znode->zbranch[n].len != 0) { | 
 | 			err = 18; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (znode->zbranch[n].lnum == 0 && | 
 | 		    znode->zbranch[n].offs != 0) { | 
 | 			err = 19; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (znode->level != 0 && znode->zbranch[n].znode) | 
 | 			if (znode->zbranch[n].znode->parent != znode) { | 
 | 				err = 20; | 
 | 				goto out; | 
 | 			} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | out: | 
 | 	ubifs_err(c, "failed, error %d", err); | 
 | 	ubifs_msg(c, "dump of the znode"); | 
 | 	ubifs_dump_znode(c, znode); | 
 | 	if (zp) { | 
 | 		ubifs_msg(c, "dump of the parent znode"); | 
 | 		ubifs_dump_znode(c, zp); | 
 | 	} | 
 | 	dump_stack(); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | /** | 
 |  * dbg_check_tnc - check TNC tree. | 
 |  * @c: UBIFS file-system description object | 
 |  * @extra: do extra checks that are possible at start commit | 
 |  * | 
 |  * This function traverses whole TNC tree and checks every znode. Returns zero | 
 |  * if everything is all right and %-EINVAL if something is wrong with TNC. | 
 |  */ | 
 | int dbg_check_tnc(struct ubifs_info *c, int extra) | 
 | { | 
 | 	struct ubifs_znode *znode; | 
 | 	long clean_cnt = 0, dirty_cnt = 0; | 
 | 	int err, last; | 
 |  | 
 | 	if (!dbg_is_chk_index(c)) | 
 | 		return 0; | 
 |  | 
 | 	ubifs_assert(c, mutex_is_locked(&c->tnc_mutex)); | 
 | 	if (!c->zroot.znode) | 
 | 		return 0; | 
 |  | 
 | 	znode = ubifs_tnc_postorder_first(c->zroot.znode); | 
 | 	while (1) { | 
 | 		struct ubifs_znode *prev; | 
 | 		struct ubifs_zbranch *zbr; | 
 |  | 
 | 		if (!znode->parent) | 
 | 			zbr = &c->zroot; | 
 | 		else | 
 | 			zbr = &znode->parent->zbranch[znode->iip]; | 
 |  | 
 | 		err = dbg_check_znode(c, zbr); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		if (extra) { | 
 | 			if (ubifs_zn_dirty(znode)) | 
 | 				dirty_cnt += 1; | 
 | 			else | 
 | 				clean_cnt += 1; | 
 | 		} | 
 |  | 
 | 		prev = znode; | 
 | 		znode = ubifs_tnc_postorder_next(c, znode); | 
 | 		if (!znode) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * If the last key of this znode is equivalent to the first key | 
 | 		 * of the next znode (collision), then check order of the keys. | 
 | 		 */ | 
 | 		last = prev->child_cnt - 1; | 
 | 		if (prev->level == 0 && znode->level == 0 && !c->replaying && | 
 | 		    !keys_cmp(c, &prev->zbranch[last].key, | 
 | 			      &znode->zbranch[0].key)) { | 
 | 			err = dbg_check_key_order(c, &prev->zbranch[last], | 
 | 						  &znode->zbranch[0]); | 
 | 			if (err < 0) | 
 | 				return err; | 
 | 			if (err) { | 
 | 				ubifs_msg(c, "first znode"); | 
 | 				ubifs_dump_znode(c, prev); | 
 | 				ubifs_msg(c, "second znode"); | 
 | 				ubifs_dump_znode(c, znode); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (extra) { | 
 | 		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { | 
 | 			ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld", | 
 | 				  atomic_long_read(&c->clean_zn_cnt), | 
 | 				  clean_cnt); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { | 
 | 			ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld", | 
 | 				  atomic_long_read(&c->dirty_zn_cnt), | 
 | 				  dirty_cnt); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * dbg_walk_index - walk the on-flash index. | 
 |  * @c: UBIFS file-system description object | 
 |  * @leaf_cb: called for each leaf node | 
 |  * @znode_cb: called for each indexing node | 
 |  * @priv: private data which is passed to callbacks | 
 |  * | 
 |  * This function walks the UBIFS index and calls the @leaf_cb for each leaf | 
 |  * node and @znode_cb for each indexing node. Returns zero in case of success | 
 |  * and a negative error code in case of failure. | 
 |  * | 
 |  * It would be better if this function removed every znode it pulled to into | 
 |  * the TNC, so that the behavior more closely matched the non-debugging | 
 |  * behavior. | 
 |  */ | 
 | int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, | 
 | 		   dbg_znode_callback znode_cb, void *priv) | 
 | { | 
 | 	int err; | 
 | 	struct ubifs_zbranch *zbr; | 
 | 	struct ubifs_znode *znode, *child; | 
 |  | 
 | 	mutex_lock(&c->tnc_mutex); | 
 | 	/* If the root indexing node is not in TNC - pull it */ | 
 | 	if (!c->zroot.znode) { | 
 | 		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); | 
 | 		if (IS_ERR(c->zroot.znode)) { | 
 | 			err = PTR_ERR(c->zroot.znode); | 
 | 			c->zroot.znode = NULL; | 
 | 			goto out_unlock; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We are going to traverse the indexing tree in the postorder manner. | 
 | 	 * Go down and find the leftmost indexing node where we are going to | 
 | 	 * start from. | 
 | 	 */ | 
 | 	znode = c->zroot.znode; | 
 | 	while (znode->level > 0) { | 
 | 		zbr = &znode->zbranch[0]; | 
 | 		child = zbr->znode; | 
 | 		if (!child) { | 
 | 			child = ubifs_load_znode(c, zbr, znode, 0); | 
 | 			if (IS_ERR(child)) { | 
 | 				err = PTR_ERR(child); | 
 | 				goto out_unlock; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		znode = child; | 
 | 	} | 
 |  | 
 | 	/* Iterate over all indexing nodes */ | 
 | 	while (1) { | 
 | 		int idx; | 
 |  | 
 | 		cond_resched(); | 
 |  | 
 | 		if (znode_cb) { | 
 | 			err = znode_cb(c, znode, priv); | 
 | 			if (err) { | 
 | 				ubifs_err(c, "znode checking function returned error %d", | 
 | 					  err); | 
 | 				ubifs_dump_znode(c, znode); | 
 | 				goto out_dump; | 
 | 			} | 
 | 		} | 
 | 		if (leaf_cb && znode->level == 0) { | 
 | 			for (idx = 0; idx < znode->child_cnt; idx++) { | 
 | 				zbr = &znode->zbranch[idx]; | 
 | 				err = leaf_cb(c, zbr, priv); | 
 | 				if (err) { | 
 | 					ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d", | 
 | 						  err, zbr->lnum, zbr->offs); | 
 | 					goto out_dump; | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (!znode->parent) | 
 | 			break; | 
 |  | 
 | 		idx = znode->iip + 1; | 
 | 		znode = znode->parent; | 
 | 		if (idx < znode->child_cnt) { | 
 | 			/* Switch to the next index in the parent */ | 
 | 			zbr = &znode->zbranch[idx]; | 
 | 			child = zbr->znode; | 
 | 			if (!child) { | 
 | 				child = ubifs_load_znode(c, zbr, znode, idx); | 
 | 				if (IS_ERR(child)) { | 
 | 					err = PTR_ERR(child); | 
 | 					goto out_unlock; | 
 | 				} | 
 | 				zbr->znode = child; | 
 | 			} | 
 | 			znode = child; | 
 | 		} else | 
 | 			/* | 
 | 			 * This is the last child, switch to the parent and | 
 | 			 * continue. | 
 | 			 */ | 
 | 			continue; | 
 |  | 
 | 		/* Go to the lowest leftmost znode in the new sub-tree */ | 
 | 		while (znode->level > 0) { | 
 | 			zbr = &znode->zbranch[0]; | 
 | 			child = zbr->znode; | 
 | 			if (!child) { | 
 | 				child = ubifs_load_znode(c, zbr, znode, 0); | 
 | 				if (IS_ERR(child)) { | 
 | 					err = PTR_ERR(child); | 
 | 					goto out_unlock; | 
 | 				} | 
 | 				zbr->znode = child; | 
 | 			} | 
 | 			znode = child; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&c->tnc_mutex); | 
 | 	return 0; | 
 |  | 
 | out_dump: | 
 | 	if (znode->parent) | 
 | 		zbr = &znode->parent->zbranch[znode->iip]; | 
 | 	else | 
 | 		zbr = &c->zroot; | 
 | 	ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); | 
 | 	ubifs_dump_znode(c, znode); | 
 | out_unlock: | 
 | 	mutex_unlock(&c->tnc_mutex); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * add_size - add znode size to partially calculated index size. | 
 |  * @c: UBIFS file-system description object | 
 |  * @znode: znode to add size for | 
 |  * @priv: partially calculated index size | 
 |  * | 
 |  * This is a helper function for 'dbg_check_idx_size()' which is called for | 
 |  * every indexing node and adds its size to the 'long long' variable pointed to | 
 |  * by @priv. | 
 |  */ | 
 | static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) | 
 | { | 
 | 	long long *idx_size = priv; | 
 | 	int add; | 
 |  | 
 | 	add = ubifs_idx_node_sz(c, znode->child_cnt); | 
 | 	add = ALIGN(add, 8); | 
 | 	*idx_size += add; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * dbg_check_idx_size - check index size. | 
 |  * @c: UBIFS file-system description object | 
 |  * @idx_size: size to check | 
 |  * | 
 |  * This function walks the UBIFS index, calculates its size and checks that the | 
 |  * size is equivalent to @idx_size. Returns zero in case of success and a | 
 |  * negative error code in case of failure. | 
 |  */ | 
 | int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) | 
 | { | 
 | 	int err; | 
 | 	long long calc = 0; | 
 |  | 
 | 	if (!dbg_is_chk_index(c)) | 
 | 		return 0; | 
 |  | 
 | 	err = dbg_walk_index(c, NULL, add_size, &calc); | 
 | 	if (err) { | 
 | 		ubifs_err(c, "error %d while walking the index", err); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	if (calc != idx_size) { | 
 | 		ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld", | 
 | 			  calc, idx_size); | 
 | 		dump_stack(); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * struct fsck_inode - information about an inode used when checking the file-system. | 
 |  * @rb: link in the RB-tree of inodes | 
 |  * @inum: inode number | 
 |  * @mode: inode type, permissions, etc | 
 |  * @nlink: inode link count | 
 |  * @xattr_cnt: count of extended attributes | 
 |  * @references: how many directory/xattr entries refer this inode (calculated | 
 |  *              while walking the index) | 
 |  * @calc_cnt: for directory inode count of child directories | 
 |  * @size: inode size (read from on-flash inode) | 
 |  * @xattr_sz: summary size of all extended attributes (read from on-flash | 
 |  *            inode) | 
 |  * @calc_sz: for directories calculated directory size | 
 |  * @calc_xcnt: count of extended attributes | 
 |  * @calc_xsz: calculated summary size of all extended attributes | 
 |  * @xattr_nms: sum of lengths of all extended attribute names belonging to this | 
 |  *             inode (read from on-flash inode) | 
 |  * @calc_xnms: calculated sum of lengths of all extended attribute names | 
 |  */ | 
 | struct fsck_inode { | 
 | 	struct rb_node rb; | 
 | 	ino_t inum; | 
 | 	umode_t mode; | 
 | 	unsigned int nlink; | 
 | 	unsigned int xattr_cnt; | 
 | 	int references; | 
 | 	int calc_cnt; | 
 | 	long long size; | 
 | 	unsigned int xattr_sz; | 
 | 	long long calc_sz; | 
 | 	long long calc_xcnt; | 
 | 	long long calc_xsz; | 
 | 	unsigned int xattr_nms; | 
 | 	long long calc_xnms; | 
 | }; | 
 |  | 
 | /** | 
 |  * struct fsck_data - private FS checking information. | 
 |  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) | 
 |  */ | 
 | struct fsck_data { | 
 | 	struct rb_root inodes; | 
 | }; | 
 |  | 
 | /** | 
 |  * add_inode - add inode information to RB-tree of inodes. | 
 |  * @c: UBIFS file-system description object | 
 |  * @fsckd: FS checking information | 
 |  * @ino: raw UBIFS inode to add | 
 |  * | 
 |  * This is a helper function for 'check_leaf()' which adds information about | 
 |  * inode @ino to the RB-tree of inodes. Returns inode information pointer in | 
 |  * case of success and a negative error code in case of failure. | 
 |  */ | 
 | static struct fsck_inode *add_inode(struct ubifs_info *c, | 
 | 				    struct fsck_data *fsckd, | 
 | 				    struct ubifs_ino_node *ino) | 
 | { | 
 | 	struct rb_node **p, *parent = NULL; | 
 | 	struct fsck_inode *fscki; | 
 | 	ino_t inum = key_inum_flash(c, &ino->key); | 
 | 	struct inode *inode; | 
 | 	struct ubifs_inode *ui; | 
 |  | 
 | 	p = &fsckd->inodes.rb_node; | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		fscki = rb_entry(parent, struct fsck_inode, rb); | 
 | 		if (inum < fscki->inum) | 
 | 			p = &(*p)->rb_left; | 
 | 		else if (inum > fscki->inum) | 
 | 			p = &(*p)->rb_right; | 
 | 		else | 
 | 			return fscki; | 
 | 	} | 
 |  | 
 | 	if (inum > c->highest_inum) { | 
 | 		ubifs_err(c, "too high inode number, max. is %lu", | 
 | 			  (unsigned long)c->highest_inum); | 
 | 		return ERR_PTR(-EINVAL); | 
 | 	} | 
 |  | 
 | 	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); | 
 | 	if (!fscki) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	inode = ilookup(c->vfs_sb, inum); | 
 |  | 
 | 	fscki->inum = inum; | 
 | 	/* | 
 | 	 * If the inode is present in the VFS inode cache, use it instead of | 
 | 	 * the on-flash inode which might be out-of-date. E.g., the size might | 
 | 	 * be out-of-date. If we do not do this, the following may happen, for | 
 | 	 * example: | 
 | 	 *   1. A power cut happens | 
 | 	 *   2. We mount the file-system R/O, the replay process fixes up the | 
 | 	 *      inode size in the VFS cache, but on on-flash. | 
 | 	 *   3. 'check_leaf()' fails because it hits a data node beyond inode | 
 | 	 *      size. | 
 | 	 */ | 
 | 	if (!inode) { | 
 | 		fscki->nlink = le32_to_cpu(ino->nlink); | 
 | 		fscki->size = le64_to_cpu(ino->size); | 
 | 		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); | 
 | 		fscki->xattr_sz = le32_to_cpu(ino->xattr_size); | 
 | 		fscki->xattr_nms = le32_to_cpu(ino->xattr_names); | 
 | 		fscki->mode = le32_to_cpu(ino->mode); | 
 | 	} else { | 
 | 		ui = ubifs_inode(inode); | 
 | 		fscki->nlink = inode->i_nlink; | 
 | 		fscki->size = inode->i_size; | 
 | 		fscki->xattr_cnt = ui->xattr_cnt; | 
 | 		fscki->xattr_sz = ui->xattr_size; | 
 | 		fscki->xattr_nms = ui->xattr_names; | 
 | 		fscki->mode = inode->i_mode; | 
 | 		iput(inode); | 
 | 	} | 
 |  | 
 | 	if (S_ISDIR(fscki->mode)) { | 
 | 		fscki->calc_sz = UBIFS_INO_NODE_SZ; | 
 | 		fscki->calc_cnt = 2; | 
 | 	} | 
 |  | 
 | 	rb_link_node(&fscki->rb, parent, p); | 
 | 	rb_insert_color(&fscki->rb, &fsckd->inodes); | 
 |  | 
 | 	return fscki; | 
 | } | 
 |  | 
 | /** | 
 |  * search_inode - search inode in the RB-tree of inodes. | 
 |  * @fsckd: FS checking information | 
 |  * @inum: inode number to search | 
 |  * | 
 |  * This is a helper function for 'check_leaf()' which searches inode @inum in | 
 |  * the RB-tree of inodes and returns an inode information pointer or %NULL if | 
 |  * the inode was not found. | 
 |  */ | 
 | static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) | 
 | { | 
 | 	struct rb_node *p; | 
 | 	struct fsck_inode *fscki; | 
 |  | 
 | 	p = fsckd->inodes.rb_node; | 
 | 	while (p) { | 
 | 		fscki = rb_entry(p, struct fsck_inode, rb); | 
 | 		if (inum < fscki->inum) | 
 | 			p = p->rb_left; | 
 | 		else if (inum > fscki->inum) | 
 | 			p = p->rb_right; | 
 | 		else | 
 | 			return fscki; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * read_add_inode - read inode node and add it to RB-tree of inodes. | 
 |  * @c: UBIFS file-system description object | 
 |  * @fsckd: FS checking information | 
 |  * @inum: inode number to read | 
 |  * | 
 |  * This is a helper function for 'check_leaf()' which finds inode node @inum in | 
 |  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode | 
 |  * information pointer in case of success and a negative error code in case of | 
 |  * failure. | 
 |  */ | 
 | static struct fsck_inode *read_add_inode(struct ubifs_info *c, | 
 | 					 struct fsck_data *fsckd, ino_t inum) | 
 | { | 
 | 	int n, err; | 
 | 	union ubifs_key key; | 
 | 	struct ubifs_znode *znode; | 
 | 	struct ubifs_zbranch *zbr; | 
 | 	struct ubifs_ino_node *ino; | 
 | 	struct fsck_inode *fscki; | 
 |  | 
 | 	fscki = search_inode(fsckd, inum); | 
 | 	if (fscki) | 
 | 		return fscki; | 
 |  | 
 | 	ino_key_init(c, &key, inum); | 
 | 	err = ubifs_lookup_level0(c, &key, &znode, &n); | 
 | 	if (!err) { | 
 | 		ubifs_err(c, "inode %lu not found in index", (unsigned long)inum); | 
 | 		return ERR_PTR(-ENOENT); | 
 | 	} else if (err < 0) { | 
 | 		ubifs_err(c, "error %d while looking up inode %lu", | 
 | 			  err, (unsigned long)inum); | 
 | 		return ERR_PTR(err); | 
 | 	} | 
 |  | 
 | 	zbr = &znode->zbranch[n]; | 
 | 	if (zbr->len < UBIFS_INO_NODE_SZ) { | 
 | 		ubifs_err(c, "bad node %lu node length %d", | 
 | 			  (unsigned long)inum, zbr->len); | 
 | 		return ERR_PTR(-EINVAL); | 
 | 	} | 
 |  | 
 | 	ino = kmalloc(zbr->len, GFP_NOFS); | 
 | 	if (!ino) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	err = ubifs_tnc_read_node(c, zbr, ino); | 
 | 	if (err) { | 
 | 		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d", | 
 | 			  zbr->lnum, zbr->offs, err); | 
 | 		kfree(ino); | 
 | 		return ERR_PTR(err); | 
 | 	} | 
 |  | 
 | 	fscki = add_inode(c, fsckd, ino); | 
 | 	kfree(ino); | 
 | 	if (IS_ERR(fscki)) { | 
 | 		ubifs_err(c, "error %ld while adding inode %lu node", | 
 | 			  PTR_ERR(fscki), (unsigned long)inum); | 
 | 		return fscki; | 
 | 	} | 
 |  | 
 | 	return fscki; | 
 | } | 
 |  | 
 | /** | 
 |  * check_leaf - check leaf node. | 
 |  * @c: UBIFS file-system description object | 
 |  * @zbr: zbranch of the leaf node to check | 
 |  * @priv: FS checking information | 
 |  * | 
 |  * This is a helper function for 'dbg_check_filesystem()' which is called for | 
 |  * every single leaf node while walking the indexing tree. It checks that the | 
 |  * leaf node referred from the indexing tree exists, has correct CRC, and does | 
 |  * some other basic validation. This function is also responsible for building | 
 |  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also | 
 |  * calculates reference count, size, etc for each inode in order to later | 
 |  * compare them to the information stored inside the inodes and detect possible | 
 |  * inconsistencies. Returns zero in case of success and a negative error code | 
 |  * in case of failure. | 
 |  */ | 
 | static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, | 
 | 		      void *priv) | 
 | { | 
 | 	ino_t inum; | 
 | 	void *node; | 
 | 	struct ubifs_ch *ch; | 
 | 	int err, type = key_type(c, &zbr->key); | 
 | 	struct fsck_inode *fscki; | 
 |  | 
 | 	if (zbr->len < UBIFS_CH_SZ) { | 
 | 		ubifs_err(c, "bad leaf length %d (LEB %d:%d)", | 
 | 			  zbr->len, zbr->lnum, zbr->offs); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	node = kmalloc(zbr->len, GFP_NOFS); | 
 | 	if (!node) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	err = ubifs_tnc_read_node(c, zbr, node); | 
 | 	if (err) { | 
 | 		ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d", | 
 | 			  zbr->lnum, zbr->offs, err); | 
 | 		goto out_free; | 
 | 	} | 
 |  | 
 | 	/* If this is an inode node, add it to RB-tree of inodes */ | 
 | 	if (type == UBIFS_INO_KEY) { | 
 | 		fscki = add_inode(c, priv, node); | 
 | 		if (IS_ERR(fscki)) { | 
 | 			err = PTR_ERR(fscki); | 
 | 			ubifs_err(c, "error %d while adding inode node", err); | 
 | 			goto out_dump; | 
 | 		} | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && | 
 | 	    type != UBIFS_DATA_KEY) { | 
 | 		ubifs_err(c, "unexpected node type %d at LEB %d:%d", | 
 | 			  type, zbr->lnum, zbr->offs); | 
 | 		err = -EINVAL; | 
 | 		goto out_free; | 
 | 	} | 
 |  | 
 | 	ch = node; | 
 | 	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { | 
 | 		ubifs_err(c, "too high sequence number, max. is %llu", | 
 | 			  c->max_sqnum); | 
 | 		err = -EINVAL; | 
 | 		goto out_dump; | 
 | 	} | 
 |  | 
 | 	if (type == UBIFS_DATA_KEY) { | 
 | 		long long blk_offs; | 
 | 		struct ubifs_data_node *dn = node; | 
 |  | 
 | 		ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ); | 
 |  | 
 | 		/* | 
 | 		 * Search the inode node this data node belongs to and insert | 
 | 		 * it to the RB-tree of inodes. | 
 | 		 */ | 
 | 		inum = key_inum_flash(c, &dn->key); | 
 | 		fscki = read_add_inode(c, priv, inum); | 
 | 		if (IS_ERR(fscki)) { | 
 | 			err = PTR_ERR(fscki); | 
 | 			ubifs_err(c, "error %d while processing data node and trying to find inode node %lu", | 
 | 				  err, (unsigned long)inum); | 
 | 			goto out_dump; | 
 | 		} | 
 |  | 
 | 		/* Make sure the data node is within inode size */ | 
 | 		blk_offs = key_block_flash(c, &dn->key); | 
 | 		blk_offs <<= UBIFS_BLOCK_SHIFT; | 
 | 		blk_offs += le32_to_cpu(dn->size); | 
 | 		if (blk_offs > fscki->size) { | 
 | 			ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld", | 
 | 				  zbr->lnum, zbr->offs, fscki->size); | 
 | 			err = -EINVAL; | 
 | 			goto out_dump; | 
 | 		} | 
 | 	} else { | 
 | 		int nlen; | 
 | 		struct ubifs_dent_node *dent = node; | 
 | 		struct fsck_inode *fscki1; | 
 |  | 
 | 		ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ); | 
 |  | 
 | 		err = ubifs_validate_entry(c, dent); | 
 | 		if (err) | 
 | 			goto out_dump; | 
 |  | 
 | 		/* | 
 | 		 * Search the inode node this entry refers to and the parent | 
 | 		 * inode node and insert them to the RB-tree of inodes. | 
 | 		 */ | 
 | 		inum = le64_to_cpu(dent->inum); | 
 | 		fscki = read_add_inode(c, priv, inum); | 
 | 		if (IS_ERR(fscki)) { | 
 | 			err = PTR_ERR(fscki); | 
 | 			ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu", | 
 | 				  err, (unsigned long)inum); | 
 | 			goto out_dump; | 
 | 		} | 
 |  | 
 | 		/* Count how many direntries or xentries refers this inode */ | 
 | 		fscki->references += 1; | 
 |  | 
 | 		inum = key_inum_flash(c, &dent->key); | 
 | 		fscki1 = read_add_inode(c, priv, inum); | 
 | 		if (IS_ERR(fscki1)) { | 
 | 			err = PTR_ERR(fscki1); | 
 | 			ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu", | 
 | 				  err, (unsigned long)inum); | 
 | 			goto out_dump; | 
 | 		} | 
 |  | 
 | 		nlen = le16_to_cpu(dent->nlen); | 
 | 		if (type == UBIFS_XENT_KEY) { | 
 | 			fscki1->calc_xcnt += 1; | 
 | 			fscki1->calc_xsz += CALC_DENT_SIZE(nlen); | 
 | 			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); | 
 | 			fscki1->calc_xnms += nlen; | 
 | 		} else { | 
 | 			fscki1->calc_sz += CALC_DENT_SIZE(nlen); | 
 | 			if (dent->type == UBIFS_ITYPE_DIR) | 
 | 				fscki1->calc_cnt += 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	kfree(node); | 
 | 	return 0; | 
 |  | 
 | out_dump: | 
 | 	ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs); | 
 | 	ubifs_dump_node(c, node, zbr->len); | 
 | out_free: | 
 | 	kfree(node); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * free_inodes - free RB-tree of inodes. | 
 |  * @fsckd: FS checking information | 
 |  */ | 
 | static void free_inodes(struct fsck_data *fsckd) | 
 | { | 
 | 	struct fsck_inode *fscki, *n; | 
 |  | 
 | 	rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb) | 
 | 		kfree(fscki); | 
 | } | 
 |  | 
 | /** | 
 |  * check_inodes - checks all inodes. | 
 |  * @c: UBIFS file-system description object | 
 |  * @fsckd: FS checking information | 
 |  * | 
 |  * This is a helper function for 'dbg_check_filesystem()' which walks the | 
 |  * RB-tree of inodes after the index scan has been finished, and checks that | 
 |  * inode nlink, size, etc are correct. Returns zero if inodes are fine, | 
 |  * %-EINVAL if not, and a negative error code in case of failure. | 
 |  */ | 
 | static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) | 
 | { | 
 | 	int n, err; | 
 | 	union ubifs_key key; | 
 | 	struct ubifs_znode *znode; | 
 | 	struct ubifs_zbranch *zbr; | 
 | 	struct ubifs_ino_node *ino; | 
 | 	struct fsck_inode *fscki; | 
 | 	struct rb_node *this = rb_first(&fsckd->inodes); | 
 |  | 
 | 	while (this) { | 
 | 		fscki = rb_entry(this, struct fsck_inode, rb); | 
 | 		this = rb_next(this); | 
 |  | 
 | 		if (S_ISDIR(fscki->mode)) { | 
 | 			/* | 
 | 			 * Directories have to have exactly one reference (they | 
 | 			 * cannot have hardlinks), although root inode is an | 
 | 			 * exception. | 
 | 			 */ | 
 | 			if (fscki->inum != UBIFS_ROOT_INO && | 
 | 			    fscki->references != 1) { | 
 | 				ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1", | 
 | 					  (unsigned long)fscki->inum, | 
 | 					  fscki->references); | 
 | 				goto out_dump; | 
 | 			} | 
 | 			if (fscki->inum == UBIFS_ROOT_INO && | 
 | 			    fscki->references != 0) { | 
 | 				ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it", | 
 | 					  (unsigned long)fscki->inum, | 
 | 					  fscki->references); | 
 | 				goto out_dump; | 
 | 			} | 
 | 			if (fscki->calc_sz != fscki->size) { | 
 | 				ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld", | 
 | 					  (unsigned long)fscki->inum, | 
 | 					  fscki->size, fscki->calc_sz); | 
 | 				goto out_dump; | 
 | 			} | 
 | 			if (fscki->calc_cnt != fscki->nlink) { | 
 | 				ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d", | 
 | 					  (unsigned long)fscki->inum, | 
 | 					  fscki->nlink, fscki->calc_cnt); | 
 | 				goto out_dump; | 
 | 			} | 
 | 		} else { | 
 | 			if (fscki->references != fscki->nlink) { | 
 | 				ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d", | 
 | 					  (unsigned long)fscki->inum, | 
 | 					  fscki->nlink, fscki->references); | 
 | 				goto out_dump; | 
 | 			} | 
 | 		} | 
 | 		if (fscki->xattr_sz != fscki->calc_xsz) { | 
 | 			ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld", | 
 | 				  (unsigned long)fscki->inum, fscki->xattr_sz, | 
 | 				  fscki->calc_xsz); | 
 | 			goto out_dump; | 
 | 		} | 
 | 		if (fscki->xattr_cnt != fscki->calc_xcnt) { | 
 | 			ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld", | 
 | 				  (unsigned long)fscki->inum, | 
 | 				  fscki->xattr_cnt, fscki->calc_xcnt); | 
 | 			goto out_dump; | 
 | 		} | 
 | 		if (fscki->xattr_nms != fscki->calc_xnms) { | 
 | 			ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld", | 
 | 				  (unsigned long)fscki->inum, fscki->xattr_nms, | 
 | 				  fscki->calc_xnms); | 
 | 			goto out_dump; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_dump: | 
 | 	/* Read the bad inode and dump it */ | 
 | 	ino_key_init(c, &key, fscki->inum); | 
 | 	err = ubifs_lookup_level0(c, &key, &znode, &n); | 
 | 	if (!err) { | 
 | 		ubifs_err(c, "inode %lu not found in index", | 
 | 			  (unsigned long)fscki->inum); | 
 | 		return -ENOENT; | 
 | 	} else if (err < 0) { | 
 | 		ubifs_err(c, "error %d while looking up inode %lu", | 
 | 			  err, (unsigned long)fscki->inum); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	zbr = &znode->zbranch[n]; | 
 | 	ino = kmalloc(zbr->len, GFP_NOFS); | 
 | 	if (!ino) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	err = ubifs_tnc_read_node(c, zbr, ino); | 
 | 	if (err) { | 
 | 		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d", | 
 | 			  zbr->lnum, zbr->offs, err); | 
 | 		kfree(ino); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d", | 
 | 		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs); | 
 | 	ubifs_dump_node(c, ino, zbr->len); | 
 | 	kfree(ino); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | /** | 
 |  * dbg_check_filesystem - check the file-system. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * This function checks the file system, namely: | 
 |  * o makes sure that all leaf nodes exist and their CRCs are correct; | 
 |  * o makes sure inode nlink, size, xattr size/count are correct (for all | 
 |  *   inodes). | 
 |  * | 
 |  * The function reads whole indexing tree and all nodes, so it is pretty | 
 |  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if | 
 |  * not, and a negative error code in case of failure. | 
 |  */ | 
 | int dbg_check_filesystem(struct ubifs_info *c) | 
 | { | 
 | 	int err; | 
 | 	struct fsck_data fsckd; | 
 |  | 
 | 	if (!dbg_is_chk_fs(c)) | 
 | 		return 0; | 
 |  | 
 | 	fsckd.inodes = RB_ROOT; | 
 | 	err = dbg_walk_index(c, check_leaf, NULL, &fsckd); | 
 | 	if (err) | 
 | 		goto out_free; | 
 |  | 
 | 	err = check_inodes(c, &fsckd); | 
 | 	if (err) | 
 | 		goto out_free; | 
 |  | 
 | 	free_inodes(&fsckd); | 
 | 	return 0; | 
 |  | 
 | out_free: | 
 | 	ubifs_err(c, "file-system check failed with error %d", err); | 
 | 	dump_stack(); | 
 | 	free_inodes(&fsckd); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * dbg_check_data_nodes_order - check that list of data nodes is sorted. | 
 |  * @c: UBIFS file-system description object | 
 |  * @head: the list of nodes ('struct ubifs_scan_node' objects) | 
 |  * | 
 |  * This function returns zero if the list of data nodes is sorted correctly, | 
 |  * and %-EINVAL if not. | 
 |  */ | 
 | int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head) | 
 | { | 
 | 	struct list_head *cur; | 
 | 	struct ubifs_scan_node *sa, *sb; | 
 |  | 
 | 	if (!dbg_is_chk_gen(c)) | 
 | 		return 0; | 
 |  | 
 | 	for (cur = head->next; cur->next != head; cur = cur->next) { | 
 | 		ino_t inuma, inumb; | 
 | 		uint32_t blka, blkb; | 
 |  | 
 | 		cond_resched(); | 
 | 		sa = container_of(cur, struct ubifs_scan_node, list); | 
 | 		sb = container_of(cur->next, struct ubifs_scan_node, list); | 
 |  | 
 | 		if (sa->type != UBIFS_DATA_NODE) { | 
 | 			ubifs_err(c, "bad node type %d", sa->type); | 
 | 			ubifs_dump_node(c, sa->node, c->leb_size - sa->offs); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		if (sb->type != UBIFS_DATA_NODE) { | 
 | 			ubifs_err(c, "bad node type %d", sb->type); | 
 | 			ubifs_dump_node(c, sb->node, c->leb_size - sb->offs); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		inuma = key_inum(c, &sa->key); | 
 | 		inumb = key_inum(c, &sb->key); | 
 |  | 
 | 		if (inuma < inumb) | 
 | 			continue; | 
 | 		if (inuma > inumb) { | 
 | 			ubifs_err(c, "larger inum %lu goes before inum %lu", | 
 | 				  (unsigned long)inuma, (unsigned long)inumb); | 
 | 			goto error_dump; | 
 | 		} | 
 |  | 
 | 		blka = key_block(c, &sa->key); | 
 | 		blkb = key_block(c, &sb->key); | 
 |  | 
 | 		if (blka > blkb) { | 
 | 			ubifs_err(c, "larger block %u goes before %u", blka, blkb); | 
 | 			goto error_dump; | 
 | 		} | 
 | 		if (blka == blkb) { | 
 | 			ubifs_err(c, "two data nodes for the same block"); | 
 | 			goto error_dump; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | error_dump: | 
 | 	ubifs_dump_node(c, sa->node, c->leb_size - sa->offs); | 
 | 	ubifs_dump_node(c, sb->node, c->leb_size - sb->offs); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | /** | 
 |  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted. | 
 |  * @c: UBIFS file-system description object | 
 |  * @head: the list of nodes ('struct ubifs_scan_node' objects) | 
 |  * | 
 |  * This function returns zero if the list of non-data nodes is sorted correctly, | 
 |  * and %-EINVAL if not. | 
 |  */ | 
 | int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head) | 
 | { | 
 | 	struct list_head *cur; | 
 | 	struct ubifs_scan_node *sa, *sb; | 
 |  | 
 | 	if (!dbg_is_chk_gen(c)) | 
 | 		return 0; | 
 |  | 
 | 	for (cur = head->next; cur->next != head; cur = cur->next) { | 
 | 		ino_t inuma, inumb; | 
 | 		uint32_t hasha, hashb; | 
 |  | 
 | 		cond_resched(); | 
 | 		sa = container_of(cur, struct ubifs_scan_node, list); | 
 | 		sb = container_of(cur->next, struct ubifs_scan_node, list); | 
 |  | 
 | 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && | 
 | 		    sa->type != UBIFS_XENT_NODE) { | 
 | 			ubifs_err(c, "bad node type %d", sa->type); | 
 | 			ubifs_dump_node(c, sa->node, c->leb_size - sa->offs); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE && | 
 | 		    sb->type != UBIFS_XENT_NODE) { | 
 | 			ubifs_err(c, "bad node type %d", sb->type); | 
 | 			ubifs_dump_node(c, sb->node, c->leb_size - sb->offs); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { | 
 | 			ubifs_err(c, "non-inode node goes before inode node"); | 
 | 			goto error_dump; | 
 | 		} | 
 |  | 
 | 		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE) | 
 | 			continue; | 
 |  | 
 | 		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { | 
 | 			/* Inode nodes are sorted in descending size order */ | 
 | 			if (sa->len < sb->len) { | 
 | 				ubifs_err(c, "smaller inode node goes first"); | 
 | 				goto error_dump; | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * This is either a dentry or xentry, which should be sorted in | 
 | 		 * ascending (parent ino, hash) order. | 
 | 		 */ | 
 | 		inuma = key_inum(c, &sa->key); | 
 | 		inumb = key_inum(c, &sb->key); | 
 |  | 
 | 		if (inuma < inumb) | 
 | 			continue; | 
 | 		if (inuma > inumb) { | 
 | 			ubifs_err(c, "larger inum %lu goes before inum %lu", | 
 | 				  (unsigned long)inuma, (unsigned long)inumb); | 
 | 			goto error_dump; | 
 | 		} | 
 |  | 
 | 		hasha = key_block(c, &sa->key); | 
 | 		hashb = key_block(c, &sb->key); | 
 |  | 
 | 		if (hasha > hashb) { | 
 | 			ubifs_err(c, "larger hash %u goes before %u", | 
 | 				  hasha, hashb); | 
 | 			goto error_dump; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | error_dump: | 
 | 	ubifs_msg(c, "dumping first node"); | 
 | 	ubifs_dump_node(c, sa->node, c->leb_size - sa->offs); | 
 | 	ubifs_msg(c, "dumping second node"); | 
 | 	ubifs_dump_node(c, sb->node, c->leb_size - sb->offs); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static inline int chance(unsigned int n, unsigned int out_of) | 
 | { | 
 | 	return !!(prandom_u32_max(out_of) + 1 <= n); | 
 |  | 
 | } | 
 |  | 
 | static int power_cut_emulated(struct ubifs_info *c, int lnum, int write) | 
 | { | 
 | 	struct ubifs_debug_info *d = c->dbg; | 
 |  | 
 | 	ubifs_assert(c, dbg_is_tst_rcvry(c)); | 
 |  | 
 | 	if (!d->pc_cnt) { | 
 | 		/* First call - decide delay to the power cut */ | 
 | 		if (chance(1, 2)) { | 
 | 			unsigned long delay; | 
 |  | 
 | 			if (chance(1, 2)) { | 
 | 				d->pc_delay = 1; | 
 | 				/* Fail within 1 minute */ | 
 | 				delay = prandom_u32_max(60000); | 
 | 				d->pc_timeout = jiffies; | 
 | 				d->pc_timeout += msecs_to_jiffies(delay); | 
 | 				ubifs_warn(c, "failing after %lums", delay); | 
 | 			} else { | 
 | 				d->pc_delay = 2; | 
 | 				delay = prandom_u32_max(10000); | 
 | 				/* Fail within 10000 operations */ | 
 | 				d->pc_cnt_max = delay; | 
 | 				ubifs_warn(c, "failing after %lu calls", delay); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		d->pc_cnt += 1; | 
 | 	} | 
 |  | 
 | 	/* Determine if failure delay has expired */ | 
 | 	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout)) | 
 | 			return 0; | 
 | 	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max) | 
 | 			return 0; | 
 |  | 
 | 	if (lnum == UBIFS_SB_LNUM) { | 
 | 		if (write && chance(1, 2)) | 
 | 			return 0; | 
 | 		if (chance(19, 20)) | 
 | 			return 0; | 
 | 		ubifs_warn(c, "failing in super block LEB %d", lnum); | 
 | 	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { | 
 | 		if (chance(19, 20)) | 
 | 			return 0; | 
 | 		ubifs_warn(c, "failing in master LEB %d", lnum); | 
 | 	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { | 
 | 		if (write && chance(99, 100)) | 
 | 			return 0; | 
 | 		if (chance(399, 400)) | 
 | 			return 0; | 
 | 		ubifs_warn(c, "failing in log LEB %d", lnum); | 
 | 	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { | 
 | 		if (write && chance(7, 8)) | 
 | 			return 0; | 
 | 		if (chance(19, 20)) | 
 | 			return 0; | 
 | 		ubifs_warn(c, "failing in LPT LEB %d", lnum); | 
 | 	} else if (lnum >= c->orph_first && lnum <= c->orph_last) { | 
 | 		if (write && chance(1, 2)) | 
 | 			return 0; | 
 | 		if (chance(9, 10)) | 
 | 			return 0; | 
 | 		ubifs_warn(c, "failing in orphan LEB %d", lnum); | 
 | 	} else if (lnum == c->ihead_lnum) { | 
 | 		if (chance(99, 100)) | 
 | 			return 0; | 
 | 		ubifs_warn(c, "failing in index head LEB %d", lnum); | 
 | 	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { | 
 | 		if (chance(9, 10)) | 
 | 			return 0; | 
 | 		ubifs_warn(c, "failing in GC head LEB %d", lnum); | 
 | 	} else if (write && !RB_EMPTY_ROOT(&c->buds) && | 
 | 		   !ubifs_search_bud(c, lnum)) { | 
 | 		if (chance(19, 20)) | 
 | 			return 0; | 
 | 		ubifs_warn(c, "failing in non-bud LEB %d", lnum); | 
 | 	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || | 
 | 		   c->cmt_state == COMMIT_RUNNING_REQUIRED) { | 
 | 		if (chance(999, 1000)) | 
 | 			return 0; | 
 | 		ubifs_warn(c, "failing in bud LEB %d commit running", lnum); | 
 | 	} else { | 
 | 		if (chance(9999, 10000)) | 
 | 			return 0; | 
 | 		ubifs_warn(c, "failing in bud LEB %d commit not running", lnum); | 
 | 	} | 
 |  | 
 | 	d->pc_happened = 1; | 
 | 	ubifs_warn(c, "========== Power cut emulated =========="); | 
 | 	dump_stack(); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int corrupt_data(const struct ubifs_info *c, const void *buf, | 
 | 			unsigned int len) | 
 | { | 
 | 	unsigned int from, to, ffs = chance(1, 2); | 
 | 	unsigned char *p = (void *)buf; | 
 |  | 
 | 	from = prandom_u32_max(len); | 
 | 	/* Corruption span max to end of write unit */ | 
 | 	to = min(len, ALIGN(from + 1, c->max_write_size)); | 
 |  | 
 | 	ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1, | 
 | 		   ffs ? "0xFFs" : "random data"); | 
 |  | 
 | 	if (ffs) | 
 | 		memset(p + from, 0xFF, to - from); | 
 | 	else | 
 | 		get_random_bytes(p + from, to - from); | 
 |  | 
 | 	return to; | 
 | } | 
 |  | 
 | int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf, | 
 | 		  int offs, int len) | 
 | { | 
 | 	int err, failing; | 
 |  | 
 | 	if (dbg_is_power_cut(c)) | 
 | 		return -EROFS; | 
 |  | 
 | 	failing = power_cut_emulated(c, lnum, 1); | 
 | 	if (failing) { | 
 | 		len = corrupt_data(c, buf, len); | 
 | 		ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)", | 
 | 			   len, lnum, offs); | 
 | 	} | 
 | 	err = ubi_leb_write(c->ubi, lnum, buf, offs, len); | 
 | 	if (err) | 
 | 		return err; | 
 | 	if (failing) | 
 | 		return -EROFS; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf, | 
 | 		   int len) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (dbg_is_power_cut(c)) | 
 | 		return -EROFS; | 
 | 	if (power_cut_emulated(c, lnum, 1)) | 
 | 		return -EROFS; | 
 | 	err = ubi_leb_change(c->ubi, lnum, buf, len); | 
 | 	if (err) | 
 | 		return err; | 
 | 	if (power_cut_emulated(c, lnum, 1)) | 
 | 		return -EROFS; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int dbg_leb_unmap(struct ubifs_info *c, int lnum) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (dbg_is_power_cut(c)) | 
 | 		return -EROFS; | 
 | 	if (power_cut_emulated(c, lnum, 0)) | 
 | 		return -EROFS; | 
 | 	err = ubi_leb_unmap(c->ubi, lnum); | 
 | 	if (err) | 
 | 		return err; | 
 | 	if (power_cut_emulated(c, lnum, 0)) | 
 | 		return -EROFS; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int dbg_leb_map(struct ubifs_info *c, int lnum) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (dbg_is_power_cut(c)) | 
 | 		return -EROFS; | 
 | 	if (power_cut_emulated(c, lnum, 0)) | 
 | 		return -EROFS; | 
 | 	err = ubi_leb_map(c->ubi, lnum); | 
 | 	if (err) | 
 | 		return err; | 
 | 	if (power_cut_emulated(c, lnum, 0)) | 
 | 		return -EROFS; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which | 
 |  * contain the stuff specific to particular file-system mounts. | 
 |  */ | 
 | static struct dentry *dfs_rootdir; | 
 |  | 
 | static int dfs_file_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	file->private_data = inode->i_private; | 
 | 	return nonseekable_open(inode, file); | 
 | } | 
 |  | 
 | /** | 
 |  * provide_user_output - provide output to the user reading a debugfs file. | 
 |  * @val: boolean value for the answer | 
 |  * @u: the buffer to store the answer at | 
 |  * @count: size of the buffer | 
 |  * @ppos: position in the @u output buffer | 
 |  * | 
 |  * This is a simple helper function which stores @val boolean value in the user | 
 |  * buffer when the user reads one of UBIFS debugfs files. Returns amount of | 
 |  * bytes written to @u in case of success and a negative error code in case of | 
 |  * failure. | 
 |  */ | 
 | static int provide_user_output(int val, char __user *u, size_t count, | 
 | 			       loff_t *ppos) | 
 | { | 
 | 	char buf[3]; | 
 |  | 
 | 	if (val) | 
 | 		buf[0] = '1'; | 
 | 	else | 
 | 		buf[0] = '0'; | 
 | 	buf[1] = '\n'; | 
 | 	buf[2] = 0x00; | 
 |  | 
 | 	return simple_read_from_buffer(u, count, ppos, buf, 2); | 
 | } | 
 |  | 
 | static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count, | 
 | 			     loff_t *ppos) | 
 | { | 
 | 	struct dentry *dent = file->f_path.dentry; | 
 | 	struct ubifs_info *c = file->private_data; | 
 | 	struct ubifs_debug_info *d = c->dbg; | 
 | 	int val; | 
 |  | 
 | 	if (dent == d->dfs_chk_gen) | 
 | 		val = d->chk_gen; | 
 | 	else if (dent == d->dfs_chk_index) | 
 | 		val = d->chk_index; | 
 | 	else if (dent == d->dfs_chk_orph) | 
 | 		val = d->chk_orph; | 
 | 	else if (dent == d->dfs_chk_lprops) | 
 | 		val = d->chk_lprops; | 
 | 	else if (dent == d->dfs_chk_fs) | 
 | 		val = d->chk_fs; | 
 | 	else if (dent == d->dfs_tst_rcvry) | 
 | 		val = d->tst_rcvry; | 
 | 	else if (dent == d->dfs_ro_error) | 
 | 		val = c->ro_error; | 
 | 	else | 
 | 		return -EINVAL; | 
 |  | 
 | 	return provide_user_output(val, u, count, ppos); | 
 | } | 
 |  | 
 | /** | 
 |  * interpret_user_input - interpret user debugfs file input. | 
 |  * @u: user-provided buffer with the input | 
 |  * @count: buffer size | 
 |  * | 
 |  * This is a helper function which interpret user input to a boolean UBIFS | 
 |  * debugfs file. Returns %0 or %1 in case of success and a negative error code | 
 |  * in case of failure. | 
 |  */ | 
 | static int interpret_user_input(const char __user *u, size_t count) | 
 | { | 
 | 	size_t buf_size; | 
 | 	char buf[8]; | 
 |  | 
 | 	buf_size = min_t(size_t, count, (sizeof(buf) - 1)); | 
 | 	if (copy_from_user(buf, u, buf_size)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (buf[0] == '1') | 
 | 		return 1; | 
 | 	else if (buf[0] == '0') | 
 | 		return 0; | 
 |  | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static ssize_t dfs_file_write(struct file *file, const char __user *u, | 
 | 			      size_t count, loff_t *ppos) | 
 | { | 
 | 	struct ubifs_info *c = file->private_data; | 
 | 	struct ubifs_debug_info *d = c->dbg; | 
 | 	struct dentry *dent = file->f_path.dentry; | 
 | 	int val; | 
 |  | 
 | 	if (file->f_path.dentry == d->dfs_dump_lprops) { | 
 | 		ubifs_dump_lprops(c); | 
 | 		return count; | 
 | 	} | 
 | 	if (file->f_path.dentry == d->dfs_dump_budg) { | 
 | 		ubifs_dump_budg(c, &c->bi); | 
 | 		return count; | 
 | 	} | 
 | 	if (file->f_path.dentry == d->dfs_dump_tnc) { | 
 | 		mutex_lock(&c->tnc_mutex); | 
 | 		ubifs_dump_tnc(c); | 
 | 		mutex_unlock(&c->tnc_mutex); | 
 | 		return count; | 
 | 	} | 
 |  | 
 | 	val = interpret_user_input(u, count); | 
 | 	if (val < 0) | 
 | 		return val; | 
 |  | 
 | 	if (dent == d->dfs_chk_gen) | 
 | 		d->chk_gen = val; | 
 | 	else if (dent == d->dfs_chk_index) | 
 | 		d->chk_index = val; | 
 | 	else if (dent == d->dfs_chk_orph) | 
 | 		d->chk_orph = val; | 
 | 	else if (dent == d->dfs_chk_lprops) | 
 | 		d->chk_lprops = val; | 
 | 	else if (dent == d->dfs_chk_fs) | 
 | 		d->chk_fs = val; | 
 | 	else if (dent == d->dfs_tst_rcvry) | 
 | 		d->tst_rcvry = val; | 
 | 	else if (dent == d->dfs_ro_error) | 
 | 		c->ro_error = !!val; | 
 | 	else | 
 | 		return -EINVAL; | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static const struct file_operations dfs_fops = { | 
 | 	.open = dfs_file_open, | 
 | 	.read = dfs_file_read, | 
 | 	.write = dfs_file_write, | 
 | 	.owner = THIS_MODULE, | 
 | 	.llseek = no_llseek, | 
 | }; | 
 |  | 
 | /** | 
 |  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * This function creates all debugfs files for this instance of UBIFS. | 
 |  * | 
 |  * Note, the only reason we have not merged this function with the | 
 |  * 'ubifs_debugging_init()' function is because it is better to initialize | 
 |  * debugfs interfaces at the very end of the mount process, and remove them at | 
 |  * the very beginning of the mount process. | 
 |  */ | 
 | void dbg_debugfs_init_fs(struct ubifs_info *c) | 
 | { | 
 | 	int n; | 
 | 	const char *fname; | 
 | 	struct ubifs_debug_info *d = c->dbg; | 
 |  | 
 | 	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME, | 
 | 		     c->vi.ubi_num, c->vi.vol_id); | 
 | 	if (n > UBIFS_DFS_DIR_LEN) { | 
 | 		/* The array size is too small */ | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	fname = d->dfs_dir_name; | 
 | 	d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir); | 
 |  | 
 | 	fname = "dump_lprops"; | 
 | 	d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, | 
 | 						 &dfs_fops); | 
 |  | 
 | 	fname = "dump_budg"; | 
 | 	d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, | 
 | 					       &dfs_fops); | 
 |  | 
 | 	fname = "dump_tnc"; | 
 | 	d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, | 
 | 					      &dfs_fops); | 
 |  | 
 | 	fname = "chk_general"; | 
 | 	d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, | 
 | 					     d->dfs_dir, c, &dfs_fops); | 
 |  | 
 | 	fname = "chk_index"; | 
 | 	d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR, | 
 | 					       d->dfs_dir, c, &dfs_fops); | 
 |  | 
 | 	fname = "chk_orphans"; | 
 | 	d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR, | 
 | 					      d->dfs_dir, c, &dfs_fops); | 
 |  | 
 | 	fname = "chk_lprops"; | 
 | 	d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR, | 
 | 						d->dfs_dir, c, &dfs_fops); | 
 |  | 
 | 	fname = "chk_fs"; | 
 | 	d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, | 
 | 					    d->dfs_dir, c, &dfs_fops); | 
 |  | 
 | 	fname = "tst_recovery"; | 
 | 	d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR, | 
 | 					       d->dfs_dir, c, &dfs_fops); | 
 |  | 
 | 	fname = "ro_error"; | 
 | 	d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR, | 
 | 					      d->dfs_dir, c, &dfs_fops); | 
 | } | 
 |  | 
 | /** | 
 |  * dbg_debugfs_exit_fs - remove all debugfs files. | 
 |  * @c: UBIFS file-system description object | 
 |  */ | 
 | void dbg_debugfs_exit_fs(struct ubifs_info *c) | 
 | { | 
 | 	debugfs_remove_recursive(c->dbg->dfs_dir); | 
 | } | 
 |  | 
 | struct ubifs_global_debug_info ubifs_dbg; | 
 |  | 
 | static struct dentry *dfs_chk_gen; | 
 | static struct dentry *dfs_chk_index; | 
 | static struct dentry *dfs_chk_orph; | 
 | static struct dentry *dfs_chk_lprops; | 
 | static struct dentry *dfs_chk_fs; | 
 | static struct dentry *dfs_tst_rcvry; | 
 |  | 
 | static ssize_t dfs_global_file_read(struct file *file, char __user *u, | 
 | 				    size_t count, loff_t *ppos) | 
 | { | 
 | 	struct dentry *dent = file->f_path.dentry; | 
 | 	int val; | 
 |  | 
 | 	if (dent == dfs_chk_gen) | 
 | 		val = ubifs_dbg.chk_gen; | 
 | 	else if (dent == dfs_chk_index) | 
 | 		val = ubifs_dbg.chk_index; | 
 | 	else if (dent == dfs_chk_orph) | 
 | 		val = ubifs_dbg.chk_orph; | 
 | 	else if (dent == dfs_chk_lprops) | 
 | 		val = ubifs_dbg.chk_lprops; | 
 | 	else if (dent == dfs_chk_fs) | 
 | 		val = ubifs_dbg.chk_fs; | 
 | 	else if (dent == dfs_tst_rcvry) | 
 | 		val = ubifs_dbg.tst_rcvry; | 
 | 	else | 
 | 		return -EINVAL; | 
 |  | 
 | 	return provide_user_output(val, u, count, ppos); | 
 | } | 
 |  | 
 | static ssize_t dfs_global_file_write(struct file *file, const char __user *u, | 
 | 				     size_t count, loff_t *ppos) | 
 | { | 
 | 	struct dentry *dent = file->f_path.dentry; | 
 | 	int val; | 
 |  | 
 | 	val = interpret_user_input(u, count); | 
 | 	if (val < 0) | 
 | 		return val; | 
 |  | 
 | 	if (dent == dfs_chk_gen) | 
 | 		ubifs_dbg.chk_gen = val; | 
 | 	else if (dent == dfs_chk_index) | 
 | 		ubifs_dbg.chk_index = val; | 
 | 	else if (dent == dfs_chk_orph) | 
 | 		ubifs_dbg.chk_orph = val; | 
 | 	else if (dent == dfs_chk_lprops) | 
 | 		ubifs_dbg.chk_lprops = val; | 
 | 	else if (dent == dfs_chk_fs) | 
 | 		ubifs_dbg.chk_fs = val; | 
 | 	else if (dent == dfs_tst_rcvry) | 
 | 		ubifs_dbg.tst_rcvry = val; | 
 | 	else | 
 | 		return -EINVAL; | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static const struct file_operations dfs_global_fops = { | 
 | 	.read = dfs_global_file_read, | 
 | 	.write = dfs_global_file_write, | 
 | 	.owner = THIS_MODULE, | 
 | 	.llseek = no_llseek, | 
 | }; | 
 |  | 
 | /** | 
 |  * dbg_debugfs_init - initialize debugfs file-system. | 
 |  * | 
 |  * UBIFS uses debugfs file-system to expose various debugging knobs to | 
 |  * user-space. This function creates "ubifs" directory in the debugfs | 
 |  * file-system. | 
 |  */ | 
 | void dbg_debugfs_init(void) | 
 | { | 
 | 	const char *fname; | 
 |  | 
 | 	fname = "ubifs"; | 
 | 	dfs_rootdir = debugfs_create_dir(fname, NULL); | 
 |  | 
 | 	fname = "chk_general"; | 
 | 	dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, | 
 | 					  NULL, &dfs_global_fops); | 
 |  | 
 | 	fname = "chk_index"; | 
 | 	dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR, | 
 | 					    dfs_rootdir, NULL, &dfs_global_fops); | 
 |  | 
 | 	fname = "chk_orphans"; | 
 | 	dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR, | 
 | 					   dfs_rootdir, NULL, &dfs_global_fops); | 
 |  | 
 | 	fname = "chk_lprops"; | 
 | 	dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR, | 
 | 					     dfs_rootdir, NULL, &dfs_global_fops); | 
 |  | 
 | 	fname = "chk_fs"; | 
 | 	dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, | 
 | 					 NULL, &dfs_global_fops); | 
 |  | 
 | 	fname = "tst_recovery"; | 
 | 	dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR, | 
 | 					    dfs_rootdir, NULL, &dfs_global_fops); | 
 | } | 
 |  | 
 | /** | 
 |  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. | 
 |  */ | 
 | void dbg_debugfs_exit(void) | 
 | { | 
 | 	debugfs_remove_recursive(dfs_rootdir); | 
 | } | 
 |  | 
 | void ubifs_assert_failed(struct ubifs_info *c, const char *expr, | 
 | 			 const char *file, int line) | 
 | { | 
 | 	ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line); | 
 |  | 
 | 	switch (c->assert_action) { | 
 | 		case ASSACT_PANIC: | 
 | 		BUG(); | 
 | 		break; | 
 |  | 
 | 		case ASSACT_RO: | 
 | 		ubifs_ro_mode(c, -EINVAL); | 
 | 		break; | 
 |  | 
 | 		case ASSACT_REPORT: | 
 | 		default: | 
 | 		dump_stack(); | 
 | 		break; | 
 |  | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_debugging_init - initialize UBIFS debugging. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * This function initializes debugging-related data for the file system. | 
 |  * Returns zero in case of success and a negative error code in case of | 
 |  * failure. | 
 |  */ | 
 | int ubifs_debugging_init(struct ubifs_info *c) | 
 | { | 
 | 	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); | 
 | 	if (!c->dbg) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_debugging_exit - free debugging data. | 
 |  * @c: UBIFS file-system description object | 
 |  */ | 
 | void ubifs_debugging_exit(struct ubifs_info *c) | 
 | { | 
 | 	kfree(c->dbg); | 
 | } |