blob: 14bc6e0a89cef71c371157cfef063582c2ff151a [file] [log] [blame] [edit]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "system_wrappers/include/rtp_to_ntp_estimator.h"
#include <stddef.h>
#include "rtc_base/random.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
const uint32_t kOneMsInNtpFrac = 4294967;
const uint32_t kOneHourInNtpSec = 60 * 60;
const uint32_t kTimestampTicksPerMs = 90;
} // namespace
TEST(WrapAroundTests, OldRtcpWrapped_OldRtpTimestamp) {
RtpToNtpEstimator estimator;
bool new_sr;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 1;
uint32_t timestamp = 0;
EXPECT_TRUE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
ntp_frac += kOneMsInNtpFrac;
timestamp -= kTimestampTicksPerMs;
// No wraparound will be detected, since we are not allowed to wrap below 0,
// but there will be huge rtp timestamp jump, e.g. old_timestamp = 0,
// new_timestamp = 4294967295, which should be detected.
EXPECT_FALSE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
}
TEST(WrapAroundTests, OldRtcpWrapped_OldRtpTimestamp_Wraparound_Detected) {
RtpToNtpEstimator estimator;
bool new_sr;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 1;
uint32_t timestamp = 0xFFFFFFFE;
EXPECT_TRUE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
ntp_frac += 2 * kOneMsInNtpFrac;
timestamp += 2 * kTimestampTicksPerMs;
EXPECT_TRUE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
ntp_frac += kOneMsInNtpFrac;
timestamp -= kTimestampTicksPerMs;
// Expected to fail since the older RTCP has a smaller RTP timestamp than the
// newer (old:10, new:4294967206).
EXPECT_FALSE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
}
TEST(WrapAroundTests, NewRtcpWrapped) {
RtpToNtpEstimator estimator;
bool new_sr;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 1;
uint32_t timestamp = 0xFFFFFFFF;
EXPECT_TRUE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
ntp_frac += kOneMsInNtpFrac;
timestamp += kTimestampTicksPerMs;
EXPECT_TRUE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
int64_t timestamp_ms = -1;
EXPECT_TRUE(estimator.Estimate(0xFFFFFFFF, &timestamp_ms));
// Since this RTP packet has the same timestamp as the RTCP packet constructed
// at time 0 it should be mapped to 0 as well.
EXPECT_EQ(0, timestamp_ms);
}
TEST(WrapAroundTests, RtpWrapped) {
RtpToNtpEstimator estimator;
bool new_sr;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 1;
uint32_t timestamp = 0xFFFFFFFF - 2 * kTimestampTicksPerMs;
EXPECT_TRUE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
ntp_frac += kOneMsInNtpFrac;
timestamp += kTimestampTicksPerMs;
EXPECT_TRUE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
int64_t timestamp_ms = -1;
EXPECT_TRUE(
estimator.Estimate(0xFFFFFFFF - 2 * kTimestampTicksPerMs, &timestamp_ms));
// Since this RTP packet has the same timestamp as the RTCP packet constructed
// at time 0 it should be mapped to 0 as well.
EXPECT_EQ(0, timestamp_ms);
// Two kTimestampTicksPerMs advanced.
timestamp += kTimestampTicksPerMs;
EXPECT_TRUE(estimator.Estimate(timestamp, &timestamp_ms));
EXPECT_EQ(2, timestamp_ms);
// Wrapped rtp.
timestamp += kTimestampTicksPerMs;
EXPECT_TRUE(estimator.Estimate(timestamp, &timestamp_ms));
EXPECT_EQ(3, timestamp_ms);
}
TEST(WrapAroundTests, OldRtp_RtcpsWrapped) {
RtpToNtpEstimator estimator;
bool new_sr;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 1;
uint32_t timestamp = 0xFFFFFFFF;
EXPECT_TRUE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
ntp_frac += kOneMsInNtpFrac;
timestamp += kTimestampTicksPerMs;
EXPECT_TRUE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
timestamp -= 2 * kTimestampTicksPerMs;
int64_t timestamp_ms = 0xFFFFFFFF;
EXPECT_FALSE(estimator.Estimate(timestamp, &timestamp_ms));
}
TEST(WrapAroundTests, OldRtp_NewRtcpWrapped) {
RtpToNtpEstimator estimator;
bool new_sr;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 1;
uint32_t timestamp = 0xFFFFFFFF;
EXPECT_TRUE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
ntp_frac += kOneMsInNtpFrac;
timestamp += kTimestampTicksPerMs;
EXPECT_TRUE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
timestamp -= kTimestampTicksPerMs;
int64_t timestamp_ms = -1;
EXPECT_TRUE(estimator.Estimate(timestamp, &timestamp_ms));
// Constructed at the same time as the first RTCP and should therefore be
// mapped to zero.
EXPECT_EQ(0, timestamp_ms);
}
TEST(WrapAroundTests, GracefullyHandleRtpJump) {
RtpToNtpEstimator estimator;
bool new_sr;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 1;
uint32_t timestamp = 0;
EXPECT_TRUE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
ntp_frac += kOneMsInNtpFrac;
timestamp += kTimestampTicksPerMs;
EXPECT_TRUE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
ntp_frac += kOneMsInNtpFrac;
timestamp -= kTimestampTicksPerMs;
int64_t timestamp_ms = -1;
EXPECT_TRUE(estimator.Estimate(timestamp, &timestamp_ms));
// Constructed at the same time as the first RTCP and should therefore be
// mapped to zero.
EXPECT_EQ(0, timestamp_ms);
timestamp -= 0xFFFFF;
for (int i = 0; i < RtpToNtpEstimator::kMaxInvalidSamples - 1; ++i) {
EXPECT_FALSE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
ntp_frac += kOneMsInNtpFrac;
timestamp += kTimestampTicksPerMs;
}
EXPECT_TRUE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
ntp_frac += kOneMsInNtpFrac;
timestamp += kTimestampTicksPerMs;
EXPECT_TRUE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
ntp_frac += kOneMsInNtpFrac;
timestamp += kTimestampTicksPerMs;
timestamp_ms = -1;
EXPECT_TRUE(estimator.Estimate(timestamp, &timestamp_ms));
// 6 milliseconds has passed since the start of the test.
EXPECT_EQ(6, timestamp_ms);
}
TEST(UpdateRtcpMeasurementTests, FailsForZeroNtp) {
RtpToNtpEstimator estimator;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 0;
uint32_t timestamp = 0x12345678;
bool new_sr;
EXPECT_FALSE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
EXPECT_FALSE(new_sr);
}
TEST(UpdateRtcpMeasurementTests, FailsForEqualNtp) {
RtpToNtpEstimator estimator;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 699925050;
uint32_t timestamp = 0x12345678;
bool new_sr;
EXPECT_TRUE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
EXPECT_TRUE(new_sr);
// Ntp time already added, list not updated.
++timestamp;
EXPECT_TRUE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
EXPECT_FALSE(new_sr);
}
TEST(UpdateRtcpMeasurementTests, FailsForOldNtp) {
RtpToNtpEstimator estimator;
uint32_t ntp_sec = 1;
uint32_t ntp_frac = 699925050;
uint32_t timestamp = 0x12345678;
bool new_sr;
EXPECT_TRUE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
EXPECT_TRUE(new_sr);
// Old ntp time, list not updated.
ntp_frac -= kOneMsInNtpFrac;
timestamp += kTimestampTicksPerMs;
EXPECT_FALSE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
}
TEST(UpdateRtcpMeasurementTests, FailsForTooNewNtp) {
RtpToNtpEstimator estimator;
uint32_t ntp_sec = 1;
uint32_t ntp_frac = 699925050;
uint32_t timestamp = 0x12345678;
bool new_sr;
EXPECT_TRUE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
EXPECT_TRUE(new_sr);
// Ntp time from far future, list not updated.
ntp_sec += kOneHourInNtpSec * 2;
timestamp += kTimestampTicksPerMs * 10;
EXPECT_FALSE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
}
TEST(UpdateRtcpMeasurementTests, FailsForEqualTimestamp) {
RtpToNtpEstimator estimator;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 2;
uint32_t timestamp = 0x12345678;
bool new_sr;
EXPECT_TRUE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
EXPECT_TRUE(new_sr);
// Timestamp already added, list not updated.
++ntp_frac;
EXPECT_TRUE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
EXPECT_FALSE(new_sr);
}
TEST(UpdateRtcpMeasurementTests, FailsForOldRtpTimestamp) {
RtpToNtpEstimator estimator;
uint32_t ntp_sec = 0;
uint32_t ntp_frac = 2;
uint32_t timestamp = 0x12345678;
bool new_sr;
EXPECT_TRUE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
EXPECT_TRUE(new_sr);
// Old timestamp, list not updated.
ntp_frac += kOneMsInNtpFrac;
timestamp -= kTimestampTicksPerMs;
EXPECT_FALSE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
EXPECT_FALSE(new_sr);
}
TEST(UpdateRtcpMeasurementTests, VerifyParameters) {
RtpToNtpEstimator estimator;
uint32_t ntp_sec = 1;
uint32_t ntp_frac = 2;
uint32_t timestamp = 0x12345678;
bool new_sr;
EXPECT_TRUE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
EXPECT_TRUE(new_sr);
EXPECT_FALSE(estimator.params());
// Add second report, parameters should be calculated.
ntp_frac += kOneMsInNtpFrac;
timestamp += kTimestampTicksPerMs;
EXPECT_TRUE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
EXPECT_TRUE(estimator.params());
EXPECT_DOUBLE_EQ(90.0, estimator.params()->frequency_khz);
EXPECT_NE(0.0, estimator.params()->offset_ms);
}
TEST(RtpToNtpTests, FailsForNoParameters) {
RtpToNtpEstimator estimator;
uint32_t ntp_sec = 1;
uint32_t ntp_frac = 2;
uint32_t timestamp = 0x12345678;
bool new_sr;
EXPECT_TRUE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
EXPECT_TRUE(new_sr);
// Parameters are not calculated, conversion of RTP to NTP time should fail.
EXPECT_FALSE(estimator.params());
int64_t timestamp_ms = -1;
EXPECT_FALSE(estimator.Estimate(timestamp, &timestamp_ms));
}
TEST(RtpToNtpTests, AveragesErrorOut) {
RtpToNtpEstimator estimator;
uint32_t ntp_sec = 1;
uint32_t ntp_frac = 90000000; // More than 1 ms.
uint32_t timestamp = 0x12345678;
const int kNtpSecStep = 1; // 1 second.
const int kRtpTicksPerMs = 90;
const int kRtpStep = kRtpTicksPerMs * 1000;
bool new_sr;
EXPECT_TRUE(
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
EXPECT_TRUE(new_sr);
Random rand(1123536L);
for (size_t i = 0; i < 1000; i++) {
// Advance both timestamps by exactly 1 second.
ntp_sec += kNtpSecStep;
timestamp += kRtpStep;
// Add upto 1ms of errors to NTP and RTP timestamps passed to estimator.
EXPECT_TRUE(estimator.UpdateMeasurements(
ntp_sec,
ntp_frac + rand.Rand(-static_cast<int>(kOneMsInNtpFrac),
static_cast<int>(kOneMsInNtpFrac)),
timestamp + rand.Rand(-kRtpTicksPerMs, kRtpTicksPerMs), &new_sr));
EXPECT_TRUE(new_sr);
int64_t estimated_ntp_ms;
EXPECT_TRUE(estimator.Estimate(timestamp, &estimated_ntp_ms));
// Allow upto 2 ms of error.
EXPECT_NEAR(NtpTime(ntp_sec, ntp_frac).ToMs(), estimated_ntp_ms, 2);
}
}
} // namespace webrtc