blob: b5a26119142c55f18ad0521f68a3b0624200a881 [file] [log] [blame] [edit]
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/win32.h"
#include <winsock2.h>
#include <ws2tcpip.h>
#include <algorithm>
#include "rtc_base/arraysize.h"
#include "rtc_base/byte_order.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/string_utils.h"
namespace rtc {
// Helper function declarations for inet_ntop/inet_pton.
static const char* inet_ntop_v4(const void* src, char* dst, socklen_t size);
static const char* inet_ntop_v6(const void* src, char* dst, socklen_t size);
static int inet_pton_v4(const char* src, void* dst);
static int inet_pton_v6(const char* src, void* dst);
// Implementation of inet_ntop (create a printable representation of an
// ip address). XP doesn't have its own inet_ntop, and
// WSAAddressToString requires both IPv6 to be installed and for Winsock
// to be initialized.
const char* win32_inet_ntop(int af,
const void* src,
char* dst,
socklen_t size) {
if (!src || !dst) {
return nullptr;
}
switch (af) {
case AF_INET: {
return inet_ntop_v4(src, dst, size);
}
case AF_INET6: {
return inet_ntop_v6(src, dst, size);
}
}
return nullptr;
}
// As above, but for inet_pton. Implements inet_pton for v4 and v6.
// Note that our inet_ntop will output normal 'dotted' v4 addresses only.
int win32_inet_pton(int af, const char* src, void* dst) {
if (!src || !dst) {
return 0;
}
if (af == AF_INET) {
return inet_pton_v4(src, dst);
} else if (af == AF_INET6) {
return inet_pton_v6(src, dst);
}
return -1;
}
// Helper function for inet_ntop for IPv4 addresses.
// Outputs "dotted-quad" decimal notation.
const char* inet_ntop_v4(const void* src, char* dst, socklen_t size) {
if (size < INET_ADDRSTRLEN) {
return nullptr;
}
const struct in_addr* as_in_addr =
reinterpret_cast<const struct in_addr*>(src);
snprintf(dst, size, "%d.%d.%d.%d", as_in_addr->S_un.S_un_b.s_b1,
as_in_addr->S_un.S_un_b.s_b2, as_in_addr->S_un.S_un_b.s_b3,
as_in_addr->S_un.S_un_b.s_b4);
return dst;
}
// Helper function for inet_ntop for IPv6 addresses.
const char* inet_ntop_v6(const void* src, char* dst, socklen_t size) {
if (size < INET6_ADDRSTRLEN) {
return nullptr;
}
const uint16_t* as_shorts = reinterpret_cast<const uint16_t*>(src);
int runpos[8];
int current = 1;
int max = 0;
int maxpos = -1;
int run_array_size = arraysize(runpos);
// Run over the address marking runs of 0s.
for (int i = 0; i < run_array_size; ++i) {
if (as_shorts[i] == 0) {
runpos[i] = current;
if (current > max) {
maxpos = i;
max = current;
}
++current;
} else {
runpos[i] = -1;
current = 1;
}
}
if (max > 0) {
int tmpmax = maxpos;
// Run back through, setting -1 for all but the longest run.
for (int i = run_array_size - 1; i >= 0; i--) {
if (i > tmpmax) {
runpos[i] = -1;
} else if (runpos[i] == -1) {
// We're less than maxpos, we hit a -1, so the 'good' run is done.
// Setting tmpmax -1 means all remaining positions get set to -1.
tmpmax = -1;
}
}
}
char* cursor = dst;
// Print IPv4 compatible and IPv4 mapped addresses using the IPv4 helper.
// These addresses have an initial run of either eight zero-bytes followed
// by 0xFFFF, or an initial run of ten zero-bytes.
if (runpos[0] == 1 &&
(maxpos == 5 || (maxpos == 4 && as_shorts[5] == 0xFFFF))) {
*cursor++ = ':';
*cursor++ = ':';
if (maxpos == 4) {
cursor += snprintf(cursor, INET6_ADDRSTRLEN - 2, "ffff:");
}
const struct in_addr* as_v4 =
reinterpret_cast<const struct in_addr*>(&(as_shorts[6]));
inet_ntop_v4(as_v4, cursor,
static_cast<socklen_t>(INET6_ADDRSTRLEN - (cursor - dst)));
} else {
for (int i = 0; i < run_array_size; ++i) {
if (runpos[i] == -1) {
cursor += snprintf(cursor, INET6_ADDRSTRLEN - (cursor - dst), "%x",
NetworkToHost16(as_shorts[i]));
if (i != 7 && runpos[i + 1] != 1) {
*cursor++ = ':';
}
} else if (runpos[i] == 1) {
// Entered the run; print the colons and skip the run.
*cursor++ = ':';
*cursor++ = ':';
i += (max - 1);
}
}
}
return dst;
}
// Helper function for inet_pton for IPv4 addresses.
// |src| points to a character string containing an IPv4 network address in
// dotted-decimal format, "ddd.ddd.ddd.ddd", where ddd is a decimal number
// of up to three digits in the range 0 to 255.
// The address is converted and copied to dst,
// which must be sizeof(struct in_addr) (4) bytes (32 bits) long.
int inet_pton_v4(const char* src, void* dst) {
const int kIpv4AddressSize = 4;
int found = 0;
const char* src_pos = src;
unsigned char result[kIpv4AddressSize] = {0};
while (*src_pos != '\0') {
// strtol won't treat whitespace characters in the begining as an error,
// so check to ensure this is started with digit before passing to strtol.
if (!isdigit(*src_pos)) {
return 0;
}
char* end_pos;
long value = strtol(src_pos, &end_pos, 10);
if (value < 0 || value > 255 || src_pos == end_pos) {
return 0;
}
++found;
if (found > kIpv4AddressSize) {
return 0;
}
result[found - 1] = static_cast<unsigned char>(value);
src_pos = end_pos;
if (*src_pos == '.') {
// There's more.
++src_pos;
} else if (*src_pos != '\0') {
// If it's neither '.' nor '\0' then return fail.
return 0;
}
}
if (found != kIpv4AddressSize) {
return 0;
}
memcpy(dst, result, sizeof(result));
return 1;
}
// Helper function for inet_pton for IPv6 addresses.
int inet_pton_v6(const char* src, void* dst) {
// sscanf will pick any other invalid chars up, but it parses 0xnnnn as hex.
// Check for literal x in the input string.
const char* readcursor = src;
char c = *readcursor++;
while (c) {
if (c == 'x') {
return 0;
}
c = *readcursor++;
}
readcursor = src;
struct in6_addr an_addr;
memset(&an_addr, 0, sizeof(an_addr));
uint16_t* addr_cursor = reinterpret_cast<uint16_t*>(&an_addr.s6_addr[0]);
uint16_t* addr_end = reinterpret_cast<uint16_t*>(&an_addr.s6_addr[16]);
bool seencompressed = false;
// Addresses that start with "::" (i.e., a run of initial zeros) or
// "::ffff:" can potentially be IPv4 mapped or compatibility addresses.
// These have dotted-style IPv4 addresses on the end (e.g. "::192.168.7.1").
if (*readcursor == ':' && *(readcursor + 1) == ':' &&
*(readcursor + 2) != 0) {
// Check for periods, which we'll take as a sign of v4 addresses.
const char* addrstart = readcursor + 2;
if (strchr(addrstart, '.')) {
const char* colon = strchr(addrstart, ':');
if (colon) {
uint16_t a_short;
int bytesread = 0;
if (sscanf(addrstart, "%hx%n", &a_short, &bytesread) != 1 ||
a_short != 0xFFFF || bytesread != 4) {
// Colons + periods means has to be ::ffff:a.b.c.d. But it wasn't.
return 0;
} else {
an_addr.s6_addr[10] = 0xFF;
an_addr.s6_addr[11] = 0xFF;
addrstart = colon + 1;
}
}
struct in_addr v4;
if (inet_pton_v4(addrstart, &v4.s_addr)) {
memcpy(&an_addr.s6_addr[12], &v4, sizeof(v4));
memcpy(dst, &an_addr, sizeof(an_addr));
return 1;
} else {
// Invalid v4 address.
return 0;
}
}
}
// For addresses without a trailing IPv4 component ('normal' IPv6 addresses).
while (*readcursor != 0 && addr_cursor < addr_end) {
if (*readcursor == ':') {
if (*(readcursor + 1) == ':') {
if (seencompressed) {
// Can only have one compressed run of zeroes ("::") per address.
return 0;
}
// Hit a compressed run. Count colons to figure out how much of the
// address is skipped.
readcursor += 2;
const char* coloncounter = readcursor;
int coloncount = 0;
if (*coloncounter == 0) {
// Special case - trailing ::.
addr_cursor = addr_end;
} else {
while (*coloncounter) {
if (*coloncounter == ':') {
++coloncount;
}
++coloncounter;
}
// (coloncount + 1) is the number of shorts left in the address.
// If this number is greater than the number of available shorts, the
// address is malformed.
if (coloncount + 1 > addr_end - addr_cursor) {
return 0;
}
addr_cursor = addr_end - (coloncount + 1);
seencompressed = true;
}
} else {
++readcursor;
}
} else {
uint16_t word;
int bytesread = 0;
if (sscanf(readcursor, "%4hx%n", &word, &bytesread) != 1) {
return 0;
} else {
*addr_cursor = HostToNetwork16(word);
++addr_cursor;
readcursor += bytesread;
if (*readcursor != ':' && *readcursor != '\0') {
return 0;
}
}
}
}
if (*readcursor != '\0' || addr_cursor < addr_end) {
// Catches addresses too short or too long.
return 0;
}
memcpy(dst, &an_addr, sizeof(an_addr));
return 1;
}
bool Utf8ToWindowsFilename(const std::string& utf8, std::wstring* filename) {
// TODO: Integrate into fileutils.h
// TODO: Handle wide and non-wide cases via TCHAR?
// TODO: Skip \\?\ processing if the length is not > MAX_PATH?
// TODO: Write unittests
// Convert to Utf16
int wlen =
::MultiByteToWideChar(CP_UTF8, 0, utf8.c_str(),
static_cast<int>(utf8.length() + 1), nullptr, 0);
if (0 == wlen) {
return false;
}
wchar_t* wfilename = STACK_ARRAY(wchar_t, wlen);
if (0 == ::MultiByteToWideChar(CP_UTF8, 0, utf8.c_str(),
static_cast<int>(utf8.length() + 1), wfilename,
wlen)) {
return false;
}
// Replace forward slashes with backslashes
std::replace(wfilename, wfilename + wlen, L'/', L'\\');
#if defined(WINUWP)
// WinUWP sandboxed store applications require the paths to remain as
// relative paths.
filename->assign(wfilename);
#else
// Convert to complete filename
DWORD full_len = ::GetFullPathName(wfilename, 0, nullptr, nullptr);
if (0 == full_len) {
return false;
}
wchar_t* filepart = nullptr;
wchar_t* full_filename = STACK_ARRAY(wchar_t, full_len + 6);
wchar_t* start = full_filename + 6;
if (0 == ::GetFullPathName(wfilename, full_len, start, &filepart)) {
return false;
}
// Add long-path prefix
const wchar_t kLongPathPrefix[] = L"\\\\?\\UNC";
if ((start[0] != L'\\') || (start[1] != L'\\')) {
// Non-unc path: <pathname>
// Becomes: \\?\<pathname>
start -= 4;
RTC_DCHECK(start >= full_filename);
memcpy(start, kLongPathPrefix, 4 * sizeof(wchar_t));
} else if (start[2] != L'?') {
// Unc path: \\<server>\<pathname>
// Becomes: \\?\UNC\<server>\<pathname>
start -= 6;
RTC_DCHECK(start >= full_filename);
memcpy(start, kLongPathPrefix, 7 * sizeof(wchar_t));
} else {
// Already in long-path form.
}
filename->assign(start);
#endif // defined(WINUWP)
return true;
}
// Windows UWP applications cannot obtain versioning information from
// the sandbox with intention (as behehaviour based on OS versioning rather
// than feature discovery / compilation flags is discoraged and Windows
// 10 is living continously updated version unlike previous versions
// of Windows).
#if !defined(WINUWP)
bool GetOsVersion(int* major, int* minor, int* build) {
OSVERSIONINFO info = {0};
info.dwOSVersionInfoSize = sizeof(info);
if (GetVersionEx(&info)) {
if (major)
*major = info.dwMajorVersion;
if (minor)
*minor = info.dwMinorVersion;
if (build)
*build = info.dwBuildNumber;
return true;
}
return false;
}
bool GetCurrentProcessIntegrityLevel(int* level) {
bool ret = false;
HANDLE process = ::GetCurrentProcess(), token;
if (OpenProcessToken(process, TOKEN_QUERY | TOKEN_QUERY_SOURCE, &token)) {
DWORD size;
if (!GetTokenInformation(token, TokenIntegrityLevel, nullptr, 0, &size) &&
GetLastError() == ERROR_INSUFFICIENT_BUFFER) {
char* buf = STACK_ARRAY(char, size);
TOKEN_MANDATORY_LABEL* til =
reinterpret_cast<TOKEN_MANDATORY_LABEL*>(buf);
if (GetTokenInformation(token, TokenIntegrityLevel, til, size, &size)) {
DWORD count = *GetSidSubAuthorityCount(til->Label.Sid);
*level = *GetSidSubAuthority(til->Label.Sid, count - 1);
ret = true;
}
}
CloseHandle(token);
}
return ret;
}
#endif // !defined(WINUWP)
} // namespace rtc