| /* |
| * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/aec3/adaptive_fir_filter.h" |
| |
| // Defines WEBRTC_ARCH_X86_FAMILY, used below. |
| #include "rtc_base/system/arch.h" |
| |
| #include <math.h> |
| #include <algorithm> |
| #include <numeric> |
| #include <string> |
| #if defined(WEBRTC_ARCH_X86_FAMILY) |
| #include <emmintrin.h> |
| #endif |
| |
| #include "modules/audio_processing/aec3/aec3_fft.h" |
| #include "modules/audio_processing/aec3/aec_state.h" |
| #include "modules/audio_processing/aec3/cascaded_biquad_filter.h" |
| #include "modules/audio_processing/aec3/render_delay_buffer.h" |
| #include "modules/audio_processing/aec3/render_signal_analyzer.h" |
| #include "modules/audio_processing/aec3/shadow_filter_update_gain.h" |
| #include "modules/audio_processing/logging/apm_data_dumper.h" |
| #include "modules/audio_processing/test/echo_canceller_test_tools.h" |
| #include "rtc_base/arraysize.h" |
| #include "rtc_base/numerics/safe_minmax.h" |
| #include "rtc_base/random.h" |
| #include "rtc_base/strings/string_builder.h" |
| #include "system_wrappers/include/cpu_features_wrapper.h" |
| #include "test/gtest.h" |
| |
| namespace webrtc { |
| namespace aec3 { |
| namespace { |
| |
| std::string ProduceDebugText(size_t delay) { |
| rtc::StringBuilder ss; |
| ss << ", Delay: " << delay; |
| return ss.Release(); |
| } |
| |
| } // namespace |
| |
| #if defined(WEBRTC_HAS_NEON) |
| // Verifies that the optimized methods for filter adaptation are similar to |
| // their reference counterparts. |
| TEST(AdaptiveFirFilter, FilterAdaptationNeonOptimizations) { |
| std::unique_ptr<RenderDelayBuffer> render_delay_buffer( |
| RenderDelayBuffer::Create(EchoCanceller3Config(), 3)); |
| Random random_generator(42U); |
| std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f)); |
| FftData S_C; |
| FftData S_NEON; |
| FftData G; |
| Aec3Fft fft; |
| std::vector<FftData> H_C(10); |
| std::vector<FftData> H_NEON(10); |
| for (auto& H_j : H_C) { |
| H_j.Clear(); |
| } |
| for (auto& H_j : H_NEON) { |
| H_j.Clear(); |
| } |
| |
| for (size_t k = 0; k < 30; ++k) { |
| RandomizeSampleVector(&random_generator, x[0]); |
| render_delay_buffer->Insert(x); |
| if (k == 0) { |
| render_delay_buffer->Reset(); |
| } |
| render_delay_buffer->PrepareCaptureProcessing(); |
| } |
| auto* const render_buffer = render_delay_buffer->GetRenderBuffer(); |
| |
| for (size_t j = 0; j < G.re.size(); ++j) { |
| G.re[j] = j / 10001.f; |
| } |
| for (size_t j = 1; j < G.im.size() - 1; ++j) { |
| G.im[j] = j / 20001.f; |
| } |
| G.im[0] = 0.f; |
| G.im[G.im.size() - 1] = 0.f; |
| |
| AdaptPartitions_NEON(*render_buffer, G, H_NEON); |
| AdaptPartitions(*render_buffer, G, H_C); |
| AdaptPartitions_NEON(*render_buffer, G, H_NEON); |
| AdaptPartitions(*render_buffer, G, H_C); |
| |
| for (size_t l = 0; l < H_C.size(); ++l) { |
| for (size_t j = 0; j < H_C[l].im.size(); ++j) { |
| EXPECT_NEAR(H_C[l].re[j], H_NEON[l].re[j], fabs(H_C[l].re[j] * 0.00001f)); |
| EXPECT_NEAR(H_C[l].im[j], H_NEON[l].im[j], fabs(H_C[l].im[j] * 0.00001f)); |
| } |
| } |
| |
| ApplyFilter_NEON(*render_buffer, H_NEON, &S_NEON); |
| ApplyFilter(*render_buffer, H_C, &S_C); |
| for (size_t j = 0; j < S_C.re.size(); ++j) { |
| EXPECT_NEAR(S_C.re[j], S_NEON.re[j], fabs(S_C.re[j] * 0.00001f)); |
| EXPECT_NEAR(S_C.im[j], S_NEON.im[j], fabs(S_C.re[j] * 0.00001f)); |
| } |
| } |
| |
| // Verifies that the optimized method for frequency response computation is |
| // bitexact to the reference counterpart. |
| TEST(AdaptiveFirFilter, UpdateFrequencyResponseNeonOptimization) { |
| const size_t kNumPartitions = 12; |
| std::vector<FftData> H(kNumPartitions); |
| std::vector<std::array<float, kFftLengthBy2Plus1>> H2(kNumPartitions); |
| std::vector<std::array<float, kFftLengthBy2Plus1>> H2_NEON(kNumPartitions); |
| |
| for (size_t j = 0; j < H.size(); ++j) { |
| for (size_t k = 0; k < H[j].re.size(); ++k) { |
| H[j].re[k] = k + j / 3.f; |
| H[j].im[k] = j + k / 7.f; |
| } |
| } |
| |
| UpdateFrequencyResponse(H, &H2); |
| UpdateFrequencyResponse_NEON(H, &H2_NEON); |
| |
| for (size_t j = 0; j < H2.size(); ++j) { |
| for (size_t k = 0; k < H[j].re.size(); ++k) { |
| EXPECT_FLOAT_EQ(H2[j][k], H2_NEON[j][k]); |
| } |
| } |
| } |
| |
| // Verifies that the optimized method for echo return loss computation is |
| // bitexact to the reference counterpart. |
| TEST(AdaptiveFirFilter, UpdateErlNeonOptimization) { |
| const size_t kNumPartitions = 12; |
| std::vector<std::array<float, kFftLengthBy2Plus1>> H2(kNumPartitions); |
| std::array<float, kFftLengthBy2Plus1> erl; |
| std::array<float, kFftLengthBy2Plus1> erl_NEON; |
| |
| for (size_t j = 0; j < H2.size(); ++j) { |
| for (size_t k = 0; k < H2[j].size(); ++k) { |
| H2[j][k] = k + j / 3.f; |
| } |
| } |
| |
| UpdateErlEstimator(H2, &erl); |
| UpdateErlEstimator_NEON(H2, &erl_NEON); |
| |
| for (size_t j = 0; j < erl.size(); ++j) { |
| EXPECT_FLOAT_EQ(erl[j], erl_NEON[j]); |
| } |
| } |
| |
| #endif |
| |
| #if defined(WEBRTC_ARCH_X86_FAMILY) |
| // Verifies that the optimized methods for filter adaptation are bitexact to |
| // their reference counterparts. |
| TEST(AdaptiveFirFilter, FilterAdaptationSse2Optimizations) { |
| bool use_sse2 = (WebRtc_GetCPUInfo(kSSE2) != 0); |
| if (use_sse2) { |
| std::unique_ptr<RenderDelayBuffer> render_delay_buffer( |
| RenderDelayBuffer::Create(EchoCanceller3Config(), 3)); |
| Random random_generator(42U); |
| std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f)); |
| FftData S_C; |
| FftData S_SSE2; |
| FftData G; |
| Aec3Fft fft; |
| std::vector<FftData> H_C(10); |
| std::vector<FftData> H_SSE2(10); |
| for (auto& H_j : H_C) { |
| H_j.Clear(); |
| } |
| for (auto& H_j : H_SSE2) { |
| H_j.Clear(); |
| } |
| |
| for (size_t k = 0; k < 500; ++k) { |
| RandomizeSampleVector(&random_generator, x[0]); |
| render_delay_buffer->Insert(x); |
| if (k == 0) { |
| render_delay_buffer->Reset(); |
| } |
| render_delay_buffer->PrepareCaptureProcessing(); |
| auto* const render_buffer = render_delay_buffer->GetRenderBuffer(); |
| |
| ApplyFilter_SSE2(*render_buffer, H_SSE2, &S_SSE2); |
| ApplyFilter(*render_buffer, H_C, &S_C); |
| for (size_t j = 0; j < S_C.re.size(); ++j) { |
| EXPECT_FLOAT_EQ(S_C.re[j], S_SSE2.re[j]); |
| EXPECT_FLOAT_EQ(S_C.im[j], S_SSE2.im[j]); |
| } |
| |
| std::for_each(G.re.begin(), G.re.end(), |
| [&](float& a) { a = random_generator.Rand<float>(); }); |
| std::for_each(G.im.begin(), G.im.end(), |
| [&](float& a) { a = random_generator.Rand<float>(); }); |
| |
| AdaptPartitions_SSE2(*render_buffer, G, H_SSE2); |
| AdaptPartitions(*render_buffer, G, H_C); |
| |
| for (size_t k = 0; k < H_C.size(); ++k) { |
| for (size_t j = 0; j < H_C[k].re.size(); ++j) { |
| EXPECT_FLOAT_EQ(H_C[k].re[j], H_SSE2[k].re[j]); |
| EXPECT_FLOAT_EQ(H_C[k].im[j], H_SSE2[k].im[j]); |
| } |
| } |
| } |
| } |
| } |
| |
| // Verifies that the optimized method for frequency response computation is |
| // bitexact to the reference counterpart. |
| TEST(AdaptiveFirFilter, UpdateFrequencyResponseSse2Optimization) { |
| bool use_sse2 = (WebRtc_GetCPUInfo(kSSE2) != 0); |
| if (use_sse2) { |
| const size_t kNumPartitions = 12; |
| std::vector<FftData> H(kNumPartitions); |
| std::vector<std::array<float, kFftLengthBy2Plus1>> H2(kNumPartitions); |
| std::vector<std::array<float, kFftLengthBy2Plus1>> H2_SSE2(kNumPartitions); |
| |
| for (size_t j = 0; j < H.size(); ++j) { |
| for (size_t k = 0; k < H[j].re.size(); ++k) { |
| H[j].re[k] = k + j / 3.f; |
| H[j].im[k] = j + k / 7.f; |
| } |
| } |
| |
| UpdateFrequencyResponse(H, &H2); |
| UpdateFrequencyResponse_SSE2(H, &H2_SSE2); |
| |
| for (size_t j = 0; j < H2.size(); ++j) { |
| for (size_t k = 0; k < H[j].re.size(); ++k) { |
| EXPECT_FLOAT_EQ(H2[j][k], H2_SSE2[j][k]); |
| } |
| } |
| } |
| } |
| |
| // Verifies that the optimized method for echo return loss computation is |
| // bitexact to the reference counterpart. |
| TEST(AdaptiveFirFilter, UpdateErlSse2Optimization) { |
| bool use_sse2 = (WebRtc_GetCPUInfo(kSSE2) != 0); |
| if (use_sse2) { |
| const size_t kNumPartitions = 12; |
| std::vector<std::array<float, kFftLengthBy2Plus1>> H2(kNumPartitions); |
| std::array<float, kFftLengthBy2Plus1> erl; |
| std::array<float, kFftLengthBy2Plus1> erl_SSE2; |
| |
| for (size_t j = 0; j < H2.size(); ++j) { |
| for (size_t k = 0; k < H2[j].size(); ++k) { |
| H2[j][k] = k + j / 3.f; |
| } |
| } |
| |
| UpdateErlEstimator(H2, &erl); |
| UpdateErlEstimator_SSE2(H2, &erl_SSE2); |
| |
| for (size_t j = 0; j < erl.size(); ++j) { |
| EXPECT_FLOAT_EQ(erl[j], erl_SSE2[j]); |
| } |
| } |
| } |
| |
| #endif |
| |
| #if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID) |
| // Verifies that the check for non-null data dumper works. |
| TEST(AdaptiveFirFilter, NullDataDumper) { |
| EXPECT_DEATH(AdaptiveFirFilter(9, 9, 250, DetectOptimization(), nullptr), ""); |
| } |
| |
| // Verifies that the check for non-null filter output works. |
| TEST(AdaptiveFirFilter, NullFilterOutput) { |
| ApmDataDumper data_dumper(42); |
| AdaptiveFirFilter filter(9, 9, 250, DetectOptimization(), &data_dumper); |
| std::unique_ptr<RenderDelayBuffer> render_delay_buffer( |
| RenderDelayBuffer::Create(EchoCanceller3Config(), 3)); |
| EXPECT_DEATH(filter.Filter(*render_delay_buffer->GetRenderBuffer(), nullptr), |
| ""); |
| } |
| |
| #endif |
| |
| // Verifies that the filter statistics can be accessed when filter statistics |
| // are turned on. |
| TEST(AdaptiveFirFilter, FilterStatisticsAccess) { |
| ApmDataDumper data_dumper(42); |
| AdaptiveFirFilter filter(9, 9, 250, DetectOptimization(), &data_dumper); |
| filter.Erl(); |
| filter.FilterFrequencyResponse(); |
| } |
| |
| // Verifies that the filter size if correctly repported. |
| TEST(AdaptiveFirFilter, FilterSize) { |
| ApmDataDumper data_dumper(42); |
| for (size_t filter_size = 1; filter_size < 5; ++filter_size) { |
| AdaptiveFirFilter filter(filter_size, filter_size, 250, |
| DetectOptimization(), &data_dumper); |
| EXPECT_EQ(filter_size, filter.SizePartitions()); |
| } |
| } |
| |
| // Verifies that the filter is being able to properly filter a signal and to |
| // adapt its coefficients. |
| TEST(AdaptiveFirFilter, FilterAndAdapt) { |
| constexpr size_t kNumBlocksToProcess = 1000; |
| ApmDataDumper data_dumper(42); |
| EchoCanceller3Config config; |
| AdaptiveFirFilter filter(config.filter.main.length_blocks, |
| config.filter.main.length_blocks, |
| config.filter.config_change_duration_blocks, |
| DetectOptimization(), &data_dumper); |
| Aec3Fft fft; |
| config.delay.default_delay = 1; |
| std::unique_ptr<RenderDelayBuffer> render_delay_buffer( |
| RenderDelayBuffer::Create(config, 3)); |
| ShadowFilterUpdateGain gain(config.filter.shadow, |
| config.filter.config_change_duration_blocks); |
| Random random_generator(42U); |
| std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f)); |
| std::vector<float> n(kBlockSize, 0.f); |
| std::vector<float> y(kBlockSize, 0.f); |
| AecState aec_state(EchoCanceller3Config{}); |
| RenderSignalAnalyzer render_signal_analyzer(config); |
| absl::optional<DelayEstimate> delay_estimate; |
| std::vector<float> e(kBlockSize, 0.f); |
| std::array<float, kFftLength> s_scratch; |
| SubtractorOutput output; |
| FftData S; |
| FftData G; |
| FftData E; |
| std::array<float, kFftLengthBy2Plus1> Y2; |
| std::array<float, kFftLengthBy2Plus1> E2_main; |
| std::array<float, kFftLengthBy2Plus1> E2_shadow; |
| // [B,A] = butter(2,100/8000,'high') |
| constexpr CascadedBiQuadFilter::BiQuadCoefficients |
| kHighPassFilterCoefficients = {{0.97261f, -1.94523f, 0.97261f}, |
| {-1.94448f, 0.94598f}}; |
| Y2.fill(0.f); |
| E2_main.fill(0.f); |
| E2_shadow.fill(0.f); |
| output.Reset(); |
| |
| constexpr float kScale = 1.0f / kFftLengthBy2; |
| |
| for (size_t delay_samples : {0, 64, 150, 200, 301}) { |
| DelayBuffer<float> delay_buffer(delay_samples); |
| CascadedBiQuadFilter x_hp_filter(kHighPassFilterCoefficients, 1); |
| CascadedBiQuadFilter y_hp_filter(kHighPassFilterCoefficients, 1); |
| |
| SCOPED_TRACE(ProduceDebugText(delay_samples)); |
| for (size_t j = 0; j < kNumBlocksToProcess; ++j) { |
| RandomizeSampleVector(&random_generator, x[0]); |
| delay_buffer.Delay(x[0], y); |
| |
| RandomizeSampleVector(&random_generator, n); |
| static constexpr float kNoiseScaling = 1.f / 100.f; |
| std::transform(y.begin(), y.end(), n.begin(), y.begin(), |
| [](float a, float b) { return a + b * kNoiseScaling; }); |
| |
| x_hp_filter.Process(x[0]); |
| y_hp_filter.Process(y); |
| |
| render_delay_buffer->Insert(x); |
| if (j == 0) { |
| render_delay_buffer->Reset(); |
| } |
| render_delay_buffer->PrepareCaptureProcessing(); |
| auto* const render_buffer = render_delay_buffer->GetRenderBuffer(); |
| |
| render_signal_analyzer.Update(*render_buffer, |
| aec_state.FilterDelayBlocks()); |
| |
| filter.Filter(*render_buffer, &S); |
| fft.Ifft(S, &s_scratch); |
| std::transform(y.begin(), y.end(), s_scratch.begin() + kFftLengthBy2, |
| e.begin(), |
| [&](float a, float b) { return a - b * kScale; }); |
| std::for_each(e.begin(), e.end(), |
| [](float& a) { a = rtc::SafeClamp(a, -32768.f, 32767.f); }); |
| fft.ZeroPaddedFft(e, Aec3Fft::Window::kRectangular, &E); |
| for (size_t k = 0; k < kBlockSize; ++k) { |
| output.s_main[k] = kScale * s_scratch[k + kFftLengthBy2]; |
| } |
| |
| std::array<float, kFftLengthBy2Plus1> render_power; |
| render_buffer->SpectralSum(filter.SizePartitions(), &render_power); |
| gain.Compute(render_power, render_signal_analyzer, E, |
| filter.SizePartitions(), false, &G); |
| filter.Adapt(*render_buffer, G); |
| aec_state.HandleEchoPathChange(EchoPathVariability( |
| false, EchoPathVariability::DelayAdjustment::kNone, false)); |
| |
| aec_state.Update(delay_estimate, filter.FilterFrequencyResponse(), |
| filter.FilterImpulseResponse(), *render_buffer, E2_main, |
| Y2, output, y); |
| } |
| // Verify that the filter is able to perform well. |
| EXPECT_LT(1000 * std::inner_product(e.begin(), e.end(), e.begin(), 0.f), |
| std::inner_product(y.begin(), y.end(), y.begin(), 0.f)); |
| } |
| } |
| } // namespace aec3 |
| } // namespace webrtc |