| // Copyright 2018 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "absl/container/internal/hashtablez_sampler.h" |
| |
| #include <atomic> |
| #include <cassert> |
| #include <cmath> |
| #include <functional> |
| #include <limits> |
| |
| #include "absl/base/attributes.h" |
| #include "absl/container/internal/have_sse.h" |
| #include "absl/debugging/stacktrace.h" |
| #include "absl/memory/memory.h" |
| #include "absl/synchronization/mutex.h" |
| |
| namespace absl { |
| namespace container_internal { |
| constexpr int HashtablezInfo::kMaxStackDepth; |
| |
| namespace { |
| ABSL_CONST_INIT std::atomic<bool> g_hashtablez_enabled{ |
| false |
| }; |
| ABSL_CONST_INIT std::atomic<int32_t> g_hashtablez_sample_parameter{1 << 10}; |
| ABSL_CONST_INIT std::atomic<int32_t> g_hashtablez_max_samples{1 << 20}; |
| |
| // Returns the next pseudo-random value. |
| // pRNG is: aX+b mod c with a = 0x5DEECE66D, b = 0xB, c = 1<<48 |
| // This is the lrand64 generator. |
| uint64_t NextRandom(uint64_t rnd) { |
| const uint64_t prng_mult = uint64_t{0x5DEECE66D}; |
| const uint64_t prng_add = 0xB; |
| const uint64_t prng_mod_power = 48; |
| const uint64_t prng_mod_mask = ~(~uint64_t{0} << prng_mod_power); |
| return (prng_mult * rnd + prng_add) & prng_mod_mask; |
| } |
| |
| // Generates a geometric variable with the specified mean. |
| // This is done by generating a random number between 0 and 1 and applying |
| // the inverse cumulative distribution function for an exponential. |
| // Specifically: Let m be the inverse of the sample period, then |
| // the probability distribution function is m*exp(-mx) so the CDF is |
| // p = 1 - exp(-mx), so |
| // q = 1 - p = exp(-mx) |
| // log_e(q) = -mx |
| // -log_e(q)/m = x |
| // log_2(q) * (-log_e(2) * 1/m) = x |
| // In the code, q is actually in the range 1 to 2**26, hence the -26 below |
| // |
| int64_t GetGeometricVariable(int64_t mean) { |
| #if ABSL_HAVE_THREAD_LOCAL |
| thread_local |
| #else // ABSL_HAVE_THREAD_LOCAL |
| // SampleSlow and hence GetGeometricVariable is guarded by a single mutex when |
| // there are not thread locals. Thus, a single global rng is acceptable for |
| // that case. |
| static |
| #endif // ABSL_HAVE_THREAD_LOCAL |
| uint64_t rng = []() { |
| // We don't get well distributed numbers from this so we call |
| // NextRandom() a bunch to mush the bits around. We use a global_rand |
| // to handle the case where the same thread (by memory address) gets |
| // created and destroyed repeatedly. |
| ABSL_CONST_INIT static std::atomic<uint32_t> global_rand(0); |
| uint64_t r = reinterpret_cast<uint64_t>(&rng) + |
| global_rand.fetch_add(1, std::memory_order_relaxed); |
| for (int i = 0; i < 20; ++i) { |
| r = NextRandom(r); |
| } |
| return r; |
| }(); |
| |
| rng = NextRandom(rng); |
| |
| // Take the top 26 bits as the random number |
| // (This plus the 1<<58 sampling bound give a max possible step of |
| // 5194297183973780480 bytes.) |
| const uint64_t prng_mod_power = 48; // Number of bits in prng |
| // The uint32_t cast is to prevent a (hard-to-reproduce) NAN |
| // under piii debug for some binaries. |
| double q = static_cast<uint32_t>(rng >> (prng_mod_power - 26)) + 1.0; |
| // Put the computed p-value through the CDF of a geometric. |
| double interval = (log2(q) - 26) * (-std::log(2.0) * mean); |
| |
| // Very large values of interval overflow int64_t. If we happen to |
| // hit such improbable condition, we simply cheat and clamp interval |
| // to largest supported value. |
| if (interval > static_cast<double>(std::numeric_limits<int64_t>::max() / 2)) { |
| return std::numeric_limits<int64_t>::max() / 2; |
| } |
| |
| // Small values of interval are equivalent to just sampling next time. |
| if (interval < 1) { |
| return 1; |
| } |
| return static_cast<int64_t>(interval); |
| } |
| |
| } // namespace |
| |
| HashtablezSampler& HashtablezSampler::Global() { |
| static auto* sampler = new HashtablezSampler(); |
| return *sampler; |
| } |
| |
| HashtablezSampler::DisposeCallback HashtablezSampler::SetDisposeCallback( |
| DisposeCallback f) { |
| return dispose_.exchange(f, std::memory_order_relaxed); |
| } |
| |
| HashtablezInfo::HashtablezInfo() { PrepareForSampling(); } |
| HashtablezInfo::~HashtablezInfo() = default; |
| |
| void HashtablezInfo::PrepareForSampling() { |
| capacity.store(0, std::memory_order_relaxed); |
| size.store(0, std::memory_order_relaxed); |
| num_erases.store(0, std::memory_order_relaxed); |
| max_probe_length.store(0, std::memory_order_relaxed); |
| total_probe_length.store(0, std::memory_order_relaxed); |
| hashes_bitwise_or.store(0, std::memory_order_relaxed); |
| hashes_bitwise_and.store(~size_t{}, std::memory_order_relaxed); |
| |
| create_time = absl::Now(); |
| // The inliner makes hardcoded skip_count difficult (especially when combined |
| // with LTO). We use the ability to exclude stacks by regex when encoding |
| // instead. |
| depth = absl::GetStackTrace(stack, HashtablezInfo::kMaxStackDepth, |
| /* skip_count= */ 0); |
| dead = nullptr; |
| } |
| |
| HashtablezSampler::HashtablezSampler() |
| : dropped_samples_(0), size_estimate_(0), all_(nullptr), dispose_(nullptr) { |
| absl::MutexLock l(&graveyard_.init_mu); |
| graveyard_.dead = &graveyard_; |
| } |
| |
| HashtablezSampler::~HashtablezSampler() { |
| HashtablezInfo* s = all_.load(std::memory_order_acquire); |
| while (s != nullptr) { |
| HashtablezInfo* next = s->next; |
| delete s; |
| s = next; |
| } |
| } |
| |
| void HashtablezSampler::PushNew(HashtablezInfo* sample) { |
| sample->next = all_.load(std::memory_order_relaxed); |
| while (!all_.compare_exchange_weak(sample->next, sample, |
| std::memory_order_release, |
| std::memory_order_relaxed)) { |
| } |
| } |
| |
| void HashtablezSampler::PushDead(HashtablezInfo* sample) { |
| if (auto* dispose = dispose_.load(std::memory_order_relaxed)) { |
| dispose(*sample); |
| } |
| |
| absl::MutexLock graveyard_lock(&graveyard_.init_mu); |
| absl::MutexLock sample_lock(&sample->init_mu); |
| sample->dead = graveyard_.dead; |
| graveyard_.dead = sample; |
| } |
| |
| HashtablezInfo* HashtablezSampler::PopDead() { |
| absl::MutexLock graveyard_lock(&graveyard_.init_mu); |
| |
| // The list is circular, so eventually it collapses down to |
| // graveyard_.dead == &graveyard_ |
| // when it is empty. |
| HashtablezInfo* sample = graveyard_.dead; |
| if (sample == &graveyard_) return nullptr; |
| |
| absl::MutexLock sample_lock(&sample->init_mu); |
| graveyard_.dead = sample->dead; |
| sample->PrepareForSampling(); |
| return sample; |
| } |
| |
| HashtablezInfo* HashtablezSampler::Register() { |
| int64_t size = size_estimate_.fetch_add(1, std::memory_order_relaxed); |
| if (size > g_hashtablez_max_samples.load(std::memory_order_relaxed)) { |
| size_estimate_.fetch_sub(1, std::memory_order_relaxed); |
| dropped_samples_.fetch_add(1, std::memory_order_relaxed); |
| return nullptr; |
| } |
| |
| HashtablezInfo* sample = PopDead(); |
| if (sample == nullptr) { |
| // Resurrection failed. Hire a new warlock. |
| sample = new HashtablezInfo(); |
| PushNew(sample); |
| } |
| |
| return sample; |
| } |
| |
| void HashtablezSampler::Unregister(HashtablezInfo* sample) { |
| PushDead(sample); |
| size_estimate_.fetch_sub(1, std::memory_order_relaxed); |
| } |
| |
| int64_t HashtablezSampler::Iterate( |
| const std::function<void(const HashtablezInfo& stack)>& f) { |
| HashtablezInfo* s = all_.load(std::memory_order_acquire); |
| while (s != nullptr) { |
| absl::MutexLock l(&s->init_mu); |
| if (s->dead == nullptr) { |
| f(*s); |
| } |
| s = s->next; |
| } |
| |
| return dropped_samples_.load(std::memory_order_relaxed); |
| } |
| |
| HashtablezInfo* SampleSlow(int64_t* next_sample) { |
| if (kAbslContainerInternalSampleEverything) { |
| *next_sample = 1; |
| return HashtablezSampler::Global().Register(); |
| } |
| |
| bool first = *next_sample < 0; |
| *next_sample = GetGeometricVariable( |
| g_hashtablez_sample_parameter.load(std::memory_order_relaxed)); |
| |
| // g_hashtablez_enabled can be dynamically flipped, we need to set a threshold |
| // low enough that we will start sampling in a reasonable time, so we just use |
| // the default sampling rate. |
| if (!g_hashtablez_enabled.load(std::memory_order_relaxed)) return nullptr; |
| |
| // We will only be negative on our first count, so we should just retry in |
| // that case. |
| if (first) { |
| if (ABSL_PREDICT_TRUE(--*next_sample > 0)) return nullptr; |
| return SampleSlow(next_sample); |
| } |
| |
| return HashtablezSampler::Global().Register(); |
| } |
| |
| #if ABSL_PER_THREAD_TLS == 1 |
| ABSL_PER_THREAD_TLS_KEYWORD int64_t global_next_sample = 0; |
| #endif // ABSL_PER_THREAD_TLS == 1 |
| |
| void UnsampleSlow(HashtablezInfo* info) { |
| HashtablezSampler::Global().Unregister(info); |
| } |
| |
| void RecordInsertSlow(HashtablezInfo* info, size_t hash, |
| size_t distance_from_desired) { |
| // SwissTables probe in groups of 16, so scale this to count items probes and |
| // not offset from desired. |
| size_t probe_length = distance_from_desired; |
| #if SWISSTABLE_HAVE_SSE2 |
| probe_length /= 16; |
| #else |
| probe_length /= 8; |
| #endif |
| |
| info->hashes_bitwise_and.fetch_and(hash, std::memory_order_relaxed); |
| info->hashes_bitwise_or.fetch_or(hash, std::memory_order_relaxed); |
| info->max_probe_length.store( |
| std::max(info->max_probe_length.load(std::memory_order_relaxed), |
| probe_length), |
| std::memory_order_relaxed); |
| info->total_probe_length.fetch_add(probe_length, std::memory_order_relaxed); |
| info->size.fetch_add(1, std::memory_order_relaxed); |
| } |
| |
| void SetHashtablezEnabled(bool enabled) { |
| g_hashtablez_enabled.store(enabled, std::memory_order_release); |
| } |
| |
| void SetHashtablezSampleParameter(int32_t rate) { |
| if (rate > 0) { |
| g_hashtablez_sample_parameter.store(rate, std::memory_order_release); |
| } else { |
| ABSL_RAW_LOG(ERROR, "Invalid hashtablez sample rate: %lld", |
| static_cast<long long>(rate)); // NOLINT(runtime/int) |
| } |
| } |
| |
| void SetHashtablezMaxSamples(int32_t max) { |
| if (max > 0) { |
| g_hashtablez_max_samples.store(max, std::memory_order_release); |
| } else { |
| ABSL_RAW_LOG(ERROR, "Invalid hashtablez max samples: %lld", |
| static_cast<long long>(max)); // NOLINT(runtime/int) |
| } |
| } |
| |
| } // namespace container_internal |
| } // namespace absl |