blob: 8f72dd1b7d0c9f538d91d627dff0662e4e0c9b2c [file] [log] [blame]
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// This file provides CityHash64() and related functions.
//
// It's probably possible to create even faster hash functions by
// writing a program that systematically explores some of the space of
// possible hash functions, by using SIMD instructions, or by
// compromising on hash quality.
#include "absl/hash/internal/city.h"
#include <string.h> // for memcpy and memset
#include <algorithm>
#include "absl/base/config.h"
#include "absl/base/internal/endian.h"
#include "absl/base/internal/unaligned_access.h"
#include "absl/base/optimization.h"
namespace absl {
namespace hash_internal {
#ifdef ABSL_IS_BIG_ENDIAN
#define uint32_in_expected_order(x) (absl::gbswap_32(x))
#define uint64_in_expected_order(x) (absl::gbswap_64(x))
#else
#define uint32_in_expected_order(x) (x)
#define uint64_in_expected_order(x) (x)
#endif
static uint64_t Fetch64(const char *p) {
return uint64_in_expected_order(ABSL_INTERNAL_UNALIGNED_LOAD64(p));
}
static uint32_t Fetch32(const char *p) {
return uint32_in_expected_order(ABSL_INTERNAL_UNALIGNED_LOAD32(p));
}
// Some primes between 2^63 and 2^64 for various uses.
static const uint64_t k0 = 0xc3a5c85c97cb3127ULL;
static const uint64_t k1 = 0xb492b66fbe98f273ULL;
static const uint64_t k2 = 0x9ae16a3b2f90404fULL;
// Magic numbers for 32-bit hashing. Copied from Murmur3.
static const uint32_t c1 = 0xcc9e2d51;
static const uint32_t c2 = 0x1b873593;
// A 32-bit to 32-bit integer hash copied from Murmur3.
static uint32_t fmix(uint32_t h) {
h ^= h >> 16;
h *= 0x85ebca6b;
h ^= h >> 13;
h *= 0xc2b2ae35;
h ^= h >> 16;
return h;
}
static uint32_t Rotate32(uint32_t val, int shift) {
// Avoid shifting by 32: doing so yields an undefined result.
return shift == 0 ? val : ((val >> shift) | (val << (32 - shift)));
}
#undef PERMUTE3
#define PERMUTE3(a, b, c) \
do { \
std::swap(a, b); \
std::swap(a, c); \
} while (0)
static uint32_t Mur(uint32_t a, uint32_t h) {
// Helper from Murmur3 for combining two 32-bit values.
a *= c1;
a = Rotate32(a, 17);
a *= c2;
h ^= a;
h = Rotate32(h, 19);
return h * 5 + 0xe6546b64;
}
static uint32_t Hash32Len13to24(const char *s, size_t len) {
uint32_t a = Fetch32(s - 4 + (len >> 1));
uint32_t b = Fetch32(s + 4);
uint32_t c = Fetch32(s + len - 8);
uint32_t d = Fetch32(s + (len >> 1));
uint32_t e = Fetch32(s);
uint32_t f = Fetch32(s + len - 4);
uint32_t h = len;
return fmix(Mur(f, Mur(e, Mur(d, Mur(c, Mur(b, Mur(a, h)))))));
}
static uint32_t Hash32Len0to4(const char *s, size_t len) {
uint32_t b = 0;
uint32_t c = 9;
for (size_t i = 0; i < len; i++) {
signed char v = s[i];
b = b * c1 + v;
c ^= b;
}
return fmix(Mur(b, Mur(len, c)));
}
static uint32_t Hash32Len5to12(const char *s, size_t len) {
uint32_t a = len, b = len * 5, c = 9, d = b;
a += Fetch32(s);
b += Fetch32(s + len - 4);
c += Fetch32(s + ((len >> 1) & 4));
return fmix(Mur(c, Mur(b, Mur(a, d))));
}
uint32_t CityHash32(const char *s, size_t len) {
if (len <= 24) {
return len <= 12
? (len <= 4 ? Hash32Len0to4(s, len) : Hash32Len5to12(s, len))
: Hash32Len13to24(s, len);
}
// len > 24
uint32_t h = len, g = c1 * len, f = g;
uint32_t a0 = Rotate32(Fetch32(s + len - 4) * c1, 17) * c2;
uint32_t a1 = Rotate32(Fetch32(s + len - 8) * c1, 17) * c2;
uint32_t a2 = Rotate32(Fetch32(s + len - 16) * c1, 17) * c2;
uint32_t a3 = Rotate32(Fetch32(s + len - 12) * c1, 17) * c2;
uint32_t a4 = Rotate32(Fetch32(s + len - 20) * c1, 17) * c2;
h ^= a0;
h = Rotate32(h, 19);
h = h * 5 + 0xe6546b64;
h ^= a2;
h = Rotate32(h, 19);
h = h * 5 + 0xe6546b64;
g ^= a1;
g = Rotate32(g, 19);
g = g * 5 + 0xe6546b64;
g ^= a3;
g = Rotate32(g, 19);
g = g * 5 + 0xe6546b64;
f += a4;
f = Rotate32(f, 19);
f = f * 5 + 0xe6546b64;
size_t iters = (len - 1) / 20;
do {
uint32_t b0 = Rotate32(Fetch32(s) * c1, 17) * c2;
uint32_t b1 = Fetch32(s + 4);
uint32_t b2 = Rotate32(Fetch32(s + 8) * c1, 17) * c2;
uint32_t b3 = Rotate32(Fetch32(s + 12) * c1, 17) * c2;
uint32_t b4 = Fetch32(s + 16);
h ^= b0;
h = Rotate32(h, 18);
h = h * 5 + 0xe6546b64;
f += b1;
f = Rotate32(f, 19);
f = f * c1;
g += b2;
g = Rotate32(g, 18);
g = g * 5 + 0xe6546b64;
h ^= b3 + b1;
h = Rotate32(h, 19);
h = h * 5 + 0xe6546b64;
g ^= b4;
g = absl::gbswap_32(g) * 5;
h += b4 * 5;
h = absl::gbswap_32(h);
f += b0;
PERMUTE3(f, h, g);
s += 20;
} while (--iters != 0);
g = Rotate32(g, 11) * c1;
g = Rotate32(g, 17) * c1;
f = Rotate32(f, 11) * c1;
f = Rotate32(f, 17) * c1;
h = Rotate32(h + g, 19);
h = h * 5 + 0xe6546b64;
h = Rotate32(h, 17) * c1;
h = Rotate32(h + f, 19);
h = h * 5 + 0xe6546b64;
h = Rotate32(h, 17) * c1;
return h;
}
// Bitwise right rotate. Normally this will compile to a single
// instruction, especially if the shift is a manifest constant.
static uint64_t Rotate(uint64_t val, int shift) {
// Avoid shifting by 64: doing so yields an undefined result.
return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
}
static uint64_t ShiftMix(uint64_t val) { return val ^ (val >> 47); }
static uint64_t HashLen16(uint64_t u, uint64_t v) {
return Hash128to64(uint128(u, v));
}
static uint64_t HashLen16(uint64_t u, uint64_t v, uint64_t mul) {
// Murmur-inspired hashing.
uint64_t a = (u ^ v) * mul;
a ^= (a >> 47);
uint64_t b = (v ^ a) * mul;
b ^= (b >> 47);
b *= mul;
return b;
}
static uint64_t HashLen0to16(const char *s, size_t len) {
if (len >= 8) {
uint64_t mul = k2 + len * 2;
uint64_t a = Fetch64(s) + k2;
uint64_t b = Fetch64(s + len - 8);
uint64_t c = Rotate(b, 37) * mul + a;
uint64_t d = (Rotate(a, 25) + b) * mul;
return HashLen16(c, d, mul);
}
if (len >= 4) {
uint64_t mul = k2 + len * 2;
uint64_t a = Fetch32(s);
return HashLen16(len + (a << 3), Fetch32(s + len - 4), mul);
}
if (len > 0) {
uint8_t a = s[0];
uint8_t b = s[len >> 1];
uint8_t c = s[len - 1];
uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
uint32_t z = len + (static_cast<uint32_t>(c) << 2);
return ShiftMix(y * k2 ^ z * k0) * k2;
}
return k2;
}
// This probably works well for 16-byte strings as well, but it may be overkill
// in that case.
static uint64_t HashLen17to32(const char *s, size_t len) {
uint64_t mul = k2 + len * 2;
uint64_t a = Fetch64(s) * k1;
uint64_t b = Fetch64(s + 8);
uint64_t c = Fetch64(s + len - 8) * mul;
uint64_t d = Fetch64(s + len - 16) * k2;
return HashLen16(Rotate(a + b, 43) + Rotate(c, 30) + d,
a + Rotate(b + k2, 18) + c, mul);
}
// Return a 16-byte hash for 48 bytes. Quick and dirty.
// Callers do best to use "random-looking" values for a and b.
static std::pair<uint64_t, uint64_t> WeakHashLen32WithSeeds(uint64_t w, uint64_t x,
uint64_t y, uint64_t z,
uint64_t a, uint64_t b) {
a += w;
b = Rotate(b + a + z, 21);
uint64_t c = a;
a += x;
a += y;
b += Rotate(a, 44);
return std::make_pair(a + z, b + c);
}
// Return a 16-byte hash for s[0] ... s[31], a, and b. Quick and dirty.
static std::pair<uint64_t, uint64_t> WeakHashLen32WithSeeds(const char *s, uint64_t a,
uint64_t b) {
return WeakHashLen32WithSeeds(Fetch64(s), Fetch64(s + 8), Fetch64(s + 16),
Fetch64(s + 24), a, b);
}
// Return an 8-byte hash for 33 to 64 bytes.
static uint64_t HashLen33to64(const char *s, size_t len) {
uint64_t mul = k2 + len * 2;
uint64_t a = Fetch64(s) * k2;
uint64_t b = Fetch64(s + 8);
uint64_t c = Fetch64(s + len - 24);
uint64_t d = Fetch64(s + len - 32);
uint64_t e = Fetch64(s + 16) * k2;
uint64_t f = Fetch64(s + 24) * 9;
uint64_t g = Fetch64(s + len - 8);
uint64_t h = Fetch64(s + len - 16) * mul;
uint64_t u = Rotate(a + g, 43) + (Rotate(b, 30) + c) * 9;
uint64_t v = ((a + g) ^ d) + f + 1;
uint64_t w = absl::gbswap_64((u + v) * mul) + h;
uint64_t x = Rotate(e + f, 42) + c;
uint64_t y = (absl::gbswap_64((v + w) * mul) + g) * mul;
uint64_t z = e + f + c;
a = absl::gbswap_64((x + z) * mul + y) + b;
b = ShiftMix((z + a) * mul + d + h) * mul;
return b + x;
}
uint64_t CityHash64(const char *s, size_t len) {
if (len <= 32) {
if (len <= 16) {
return HashLen0to16(s, len);
} else {
return HashLen17to32(s, len);
}
} else if (len <= 64) {
return HashLen33to64(s, len);
}
// For strings over 64 bytes we hash the end first, and then as we
// loop we keep 56 bytes of state: v, w, x, y, and z.
uint64_t x = Fetch64(s + len - 40);
uint64_t y = Fetch64(s + len - 16) + Fetch64(s + len - 56);
uint64_t z = HashLen16(Fetch64(s + len - 48) + len, Fetch64(s + len - 24));
std::pair<uint64_t, uint64_t> v = WeakHashLen32WithSeeds(s + len - 64, len, z);
std::pair<uint64_t, uint64_t> w = WeakHashLen32WithSeeds(s + len - 32, y + k1, x);
x = x * k1 + Fetch64(s);
// Decrease len to the nearest multiple of 64, and operate on 64-byte chunks.
len = (len - 1) & ~static_cast<size_t>(63);
do {
x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1;
y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1;
x ^= w.second;
y += v.first + Fetch64(s + 40);
z = Rotate(z + w.first, 33) * k1;
v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first);
w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16));
std::swap(z, x);
s += 64;
len -= 64;
} while (len != 0);
return HashLen16(HashLen16(v.first, w.first) + ShiftMix(y) * k1 + z,
HashLen16(v.second, w.second) + x);
}
uint64_t CityHash64WithSeed(const char *s, size_t len, uint64_t seed) {
return CityHash64WithSeeds(s, len, k2, seed);
}
uint64_t CityHash64WithSeeds(const char *s, size_t len, uint64_t seed0,
uint64_t seed1) {
return HashLen16(CityHash64(s, len) - seed0, seed1);
}
// A subroutine for CityHash128(). Returns a decent 128-bit hash for strings
// of any length representable in signed long. Based on City and Murmur.
static uint128 CityMurmur(const char *s, size_t len, uint128 seed) {
uint64_t a = Uint128Low64(seed);
uint64_t b = Uint128High64(seed);
uint64_t c = 0;
uint64_t d = 0;
int64_t l = len - 16;
if (l <= 0) { // len <= 16
a = ShiftMix(a * k1) * k1;
c = b * k1 + HashLen0to16(s, len);
d = ShiftMix(a + (len >= 8 ? Fetch64(s) : c));
} else { // len > 16
c = HashLen16(Fetch64(s + len - 8) + k1, a);
d = HashLen16(b + len, c + Fetch64(s + len - 16));
a += d;
do {
a ^= ShiftMix(Fetch64(s) * k1) * k1;
a *= k1;
b ^= a;
c ^= ShiftMix(Fetch64(s + 8) * k1) * k1;
c *= k1;
d ^= c;
s += 16;
l -= 16;
} while (l > 0);
}
a = HashLen16(a, c);
b = HashLen16(d, b);
return uint128(a ^ b, HashLen16(b, a));
}
uint128 CityHash128WithSeed(const char *s, size_t len, uint128 seed) {
if (len < 128) {
return CityMurmur(s, len, seed);
}
// We expect len >= 128 to be the common case. Keep 56 bytes of state:
// v, w, x, y, and z.
std::pair<uint64_t, uint64_t> v, w;
uint64_t x = Uint128Low64(seed);
uint64_t y = Uint128High64(seed);
uint64_t z = len * k1;
v.first = Rotate(y ^ k1, 49) * k1 + Fetch64(s);
v.second = Rotate(v.first, 42) * k1 + Fetch64(s + 8);
w.first = Rotate(y + z, 35) * k1 + x;
w.second = Rotate(x + Fetch64(s + 88), 53) * k1;
// This is the same inner loop as CityHash64(), manually unrolled.
do {
x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1;
y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1;
x ^= w.second;
y += v.first + Fetch64(s + 40);
z = Rotate(z + w.first, 33) * k1;
v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first);
w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16));
std::swap(z, x);
s += 64;
x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1;
y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1;
x ^= w.second;
y += v.first + Fetch64(s + 40);
z = Rotate(z + w.first, 33) * k1;
v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first);
w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16));
std::swap(z, x);
s += 64;
len -= 128;
} while (ABSL_PREDICT_TRUE(len >= 128));
x += Rotate(v.first + z, 49) * k0;
y = y * k0 + Rotate(w.second, 37);
z = z * k0 + Rotate(w.first, 27);
w.first *= 9;
v.first *= k0;
// If 0 < len < 128, hash up to 4 chunks of 32 bytes each from the end of s.
for (size_t tail_done = 0; tail_done < len;) {
tail_done += 32;
y = Rotate(x + y, 42) * k0 + v.second;
w.first += Fetch64(s + len - tail_done + 16);
x = x * k0 + w.first;
z += w.second + Fetch64(s + len - tail_done);
w.second += v.first;
v = WeakHashLen32WithSeeds(s + len - tail_done, v.first + z, v.second);
v.first *= k0;
}
// At this point our 56 bytes of state should contain more than
// enough information for a strong 128-bit hash. We use two
// different 56-byte-to-8-byte hashes to get a 16-byte final result.
x = HashLen16(x, v.first);
y = HashLen16(y + z, w.first);
return uint128(HashLen16(x + v.second, w.second) + y,
HashLen16(x + w.second, y + v.second));
}
uint128 CityHash128(const char *s, size_t len) {
return len >= 16
? CityHash128WithSeed(s + 16, len - 16,
uint128(Fetch64(s), Fetch64(s + 8) + k0))
: CityHash128WithSeed(s, len, uint128(k0, k1));
}
} // namespace hash_internal
} // namespace absl
#ifdef __SSE4_2__
#include <nmmintrin.h>
#include "absl/hash/internal/city_crc.h"
namespace absl {
namespace hash_internal {
// Requires len >= 240.
static void CityHashCrc256Long(const char *s, size_t len, uint32_t seed,
uint64_t *result) {
uint64_t a = Fetch64(s + 56) + k0;
uint64_t b = Fetch64(s + 96) + k0;
uint64_t c = result[0] = HashLen16(b, len);
uint64_t d = result[1] = Fetch64(s + 120) * k0 + len;
uint64_t e = Fetch64(s + 184) + seed;
uint64_t f = 0;
uint64_t g = 0;
uint64_t h = c + d;
uint64_t x = seed;
uint64_t y = 0;
uint64_t z = 0;
// 240 bytes of input per iter.
size_t iters = len / 240;
len -= iters * 240;
do {
#undef CHUNK
#define CHUNK(r) \
PERMUTE3(x, z, y); \
b += Fetch64(s); \
c += Fetch64(s + 8); \
d += Fetch64(s + 16); \
e += Fetch64(s + 24); \
f += Fetch64(s + 32); \
a += b; \
h += f; \
b += c; \
f += d; \
g += e; \
e += z; \
g += x; \
z = _mm_crc32_u64(z, b + g); \
y = _mm_crc32_u64(y, e + h); \
x = _mm_crc32_u64(x, f + a); \
e = Rotate(e, r); \
c += e; \
s += 40
CHUNK(0);
PERMUTE3(a, h, c);
CHUNK(33);
PERMUTE3(a, h, f);
CHUNK(0);
PERMUTE3(b, h, f);
CHUNK(42);
PERMUTE3(b, h, d);
CHUNK(0);
PERMUTE3(b, h, e);
CHUNK(33);
PERMUTE3(a, h, e);
} while (--iters > 0);
while (len >= 40) {
CHUNK(29);
e ^= Rotate(a, 20);
h += Rotate(b, 30);
g ^= Rotate(c, 40);
f += Rotate(d, 34);
PERMUTE3(c, h, g);
len -= 40;
}
if (len > 0) {
s = s + len - 40;
CHUNK(33);
e ^= Rotate(a, 43);
h += Rotate(b, 42);
g ^= Rotate(c, 41);
f += Rotate(d, 40);
}
result[0] ^= h;
result[1] ^= g;
g += h;
a = HashLen16(a, g + z);
x += y << 32;
b += x;
c = HashLen16(c, z) + h;
d = HashLen16(d, e + result[0]);
g += e;
h += HashLen16(x, f);
e = HashLen16(a, d) + g;
z = HashLen16(b, c) + a;
y = HashLen16(g, h) + c;
result[0] = e + z + y + x;
a = ShiftMix((a + y) * k0) * k0 + b;
result[1] += a + result[0];
a = ShiftMix(a * k0) * k0 + c;
result[2] = a + result[1];
a = ShiftMix((a + e) * k0) * k0;
result[3] = a + result[2];
}
// Requires len < 240.
static void CityHashCrc256Short(const char *s, size_t len, uint64_t *result) {
char buf[240];
memcpy(buf, s, len);
memset(buf + len, 0, 240 - len);
CityHashCrc256Long(buf, 240, ~static_cast<uint32_t>(len), result);
}
void CityHashCrc256(const char *s, size_t len, uint64_t *result) {
if (ABSL_PREDICT_TRUE(len >= 240)) {
CityHashCrc256Long(s, len, 0, result);
} else {
CityHashCrc256Short(s, len, result);
}
}
uint128 CityHashCrc128WithSeed(const char *s, size_t len, uint128 seed) {
if (len <= 900) {
return CityHash128WithSeed(s, len, seed);
} else {
uint64_t result[4];
CityHashCrc256(s, len, result);
uint64_t u = Uint128High64(seed) + result[0];
uint64_t v = Uint128Low64(seed) + result[1];
return uint128(HashLen16(u, v + result[2]),
HashLen16(Rotate(v, 32), u * k0 + result[3]));
}
}
uint128 CityHashCrc128(const char *s, size_t len) {
if (len <= 900) {
return CityHash128(s, len);
} else {
uint64_t result[4];
CityHashCrc256(s, len, result);
return uint128(result[2], result[3]);
}
}
} // namespace hash_internal
} // namespace absl
#endif