blob: 548cb03ee37a4626f03a2bec9a1eb04544dc1090 [file] [log] [blame]
/*
* DDR3 mem setup file for EXYNOS5 based board
*
* Copyright (C) 2012 Samsung Electronics
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <config.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/cpu.h>
#include <asm/arch/dmc.h>
#include <asm/arch/setup.h>
#include "clock_init.h"
#define TIMEOUT 10000
static struct mem_timings ares_ddr3_timings = {
.mem_manuf = MEM_MANUF_SAMSUNG,
.mem_type = DDR_MODE_DDR3,
.frequency_mhz = 800,
.direct_cmd_msr = {
0x00020018, 0x00030000, 0x00010002, 0x00000d70
},
.timing_ref = 0x000000bb,
.timing_row = 0x6836650f,
.timing_data = 0x3630580b,
.timing_power = 0x41000a26,
.phy0_dqs = 0x08080808,
.phy1_dqs = 0x08080808,
.phy0_dq = 0x08080808,
.phy1_dq = 0x08080808,
.phy0_tFS = 0x8,
.phy1_tFS = 0x8,
.phy0_pulld_dqs = 0xf,
.phy1_pulld_dqs = 0xf,
.lpddr3_ctrl_phy_reset = 0x1,
.ctrl_start_point = 0x10,
.ctrl_inc = 0x10,
.ctrl_start = 0x1,
.ctrl_dll_on = 0x1,
.ctrl_ref = 0x8,
.ctrl_force = 0x1a,
.ctrl_rdlat = 0x0b,
.ctrl_bstlen = 0x08,
.fp_resync = 0x8,
.iv_size = 0x7,
.dfi_init_start = 1,
.aref_en = 1,
.rd_fetch = 0x3,
.zq_mode_dds = 0x6,
.zq_mode_term = 0x1,
.zq_mode_noterm = 1,
/*
* Dynamic Clock: Always Running
* Memory Burst length: 8
* Number of chips: 1
* Memory Bus width: 32 bit
* Memory Type: DDR3
* Additional Latancy for PLL: 0 Cycle
*/
.memcontrol = DMC_MEMCONTROL_CLK_STOP_DISABLE |
DMC_MEMCONTROL_DPWRDN_DISABLE |
DMC_MEMCONTROL_DPWRDN_ACTIVE_PRECHARGE |
DMC_MEMCONTROL_TP_DISABLE |
DMC_MEMCONTROL_DSREF_DISABLE |
DMC_MEMCONTROL_ADD_LAT_PALL_CYCLE(0) |
DMC_MEMCONTROL_MEM_TYPE_DDR3 |
DMC_MEMCONTROL_MEM_WIDTH_32BIT |
DMC_MEMCONTROL_NUM_CHIP_2 |
DMC_MEMCONTROL_BL_8 |
DMC_MEMCONTROL_PZQ_DISABLE |
DMC_MEMCONTROL_MRR_BYTE_7_0,
.memconfig = DMC_MEMCONFIG_CHIP_MAP_SPLIT |
DMC_MEMCONFIGx_CHIP_COL_10 |
DMC_MEMCONFIGx_CHIP_ROW_15 |
DMC_MEMCONFIGx_CHIP_BANK_8,
.prechconfig_tp_cnt = 0xff,
.dpwrdn_cyc = 0xff,
.dsref_cyc = 0xffff,
.concontrol = DMC_CONCONTROL_DFI_INIT_START_DISABLE |
DMC_CONCONTROL_TIMEOUT_LEVEL0 |
DMC_CONCONTROL_RD_FETCH_DISABLE |
DMC_CONCONTROL_EMPTY_DISABLE |
DMC_CONCONTROL_AREF_EN_DISABLE |
DMC_CONCONTROL_IO_PD_CON_DISABLE,
.dmc_channels = 1,
.chips_per_channel = 2,
.chips_to_configure = 2,
.send_zq_init = 1,
.gate_leveling_enable = 1,
};
int ddr3_mem_ctrl_init(int reset)
{
struct exynos5420_clock *clk =
(struct exynos5420_clock *)EXYNOS5_CLOCK_BASE;
struct exynos5_phy_control *phy0_ctrl, *phy1_ctrl;
struct exynos5_dmc *drex0, *drex1;
struct exynos5_tzasc *tzasc0, *tzasc1;
struct mem_timings *mem = &ares_ddr3_timings;
u32 val, nLockR, nLockW_phy0, nLockW_phy1;
int i;
phy0_ctrl = (struct exynos5_phy_control *)EXYNOS5_DMC_PHY0_BASE;
phy1_ctrl = (struct exynos5_phy_control *)EXYNOS5_DMC_PHY1_BASE;
drex0 = (struct exynos5_dmc *)EXYNOS5420_DMC_DREXI_0;
drex1 = (struct exynos5_dmc *)EXYNOS5420_DMC_DREXI_1;
tzasc0 = (struct exynos5_tzasc *)EXYNOS5420_DMC_TZASC_0;
tzasc1 = (struct exynos5_tzasc *)EXYNOS5420_DMC_TZASC_1;
/* Enable PAUSE for DREX */
setbits_le32(&clk->pause, ENABLE_BIT);
/* Enable BYPASS mode */
setbits_le32(&clk->bpll_con1, BYPASS_EN);
writel(MUX_BPLL_SEL_FOUTBPLL, &clk->clk_src_cdrex);
do {
val = readl(&clk->clk_mux_stat_cdrex);
val &= BPLL_SEL_MASK;
} while (val != FOUTBPLL);
clrbits_le32(&clk->bpll_con1, BYPASS_EN);
/* Specify the DDR memory type as DDR3 */
val = readl(&phy0_ctrl->phy_con0);
val &= ~(PHY_CON0_CTRL_DDR_MODE_MASK << PHY_CON0_CTRL_DDR_MODE_SHIFT);
val |= (DDR_MODE_DDR3 << PHY_CON0_CTRL_DDR_MODE_SHIFT);
writel(val, &phy0_ctrl->phy_con0);
val = readl(&phy1_ctrl->phy_con0);
val &= ~(PHY_CON0_CTRL_DDR_MODE_MASK << PHY_CON0_CTRL_DDR_MODE_SHIFT);
val |= (DDR_MODE_DDR3 << PHY_CON0_CTRL_DDR_MODE_SHIFT);
writel(val, &phy1_ctrl->phy_con0);
/* Set Read Latency and Burst Length for PHY0 and PHY1 */
val = (mem->ctrl_bstlen << PHY_CON42_CTRL_BSTLEN_SHIFT) |
(mem->ctrl_rdlat << PHY_CON42_CTRL_RDLAT_SHIFT);
writel(val, &phy0_ctrl->phy_con42);
writel(val, &phy1_ctrl->phy_con42);
val = readl(&phy0_ctrl->phy_con26);
val &= ~(T_WRDATA_EN_MASK << T_WRDATA_EN_OFFSET);
val |= (T_WRDATA_EN_DDR3 << T_WRDATA_EN_OFFSET);
writel(val, &phy0_ctrl->phy_con26);
val = readl(&phy1_ctrl->phy_con26);
val &= ~(T_WRDATA_EN_MASK << T_WRDATA_EN_OFFSET);
val |= (T_WRDATA_EN_DDR3 << T_WRDATA_EN_OFFSET);
writel(val, &phy1_ctrl->phy_con26);
/* Set Driver strength for CK, CKE, CS & CA to 0x7
* Set Driver strength for Data Slice 0~3 to 0x6
*/
val = (0x7 << CA_CK_DRVR_DS_OFFSET) | (0x7 << CA_CKE_DRVR_DS_OFFSET) |
(0x7 << CA_CS_DRVR_DS_OFFSET) | (0x7 << CA_ADR_DRVR_DS_OFFSET);
val |= (0x6 << DA_3_DS_OFFSET) | (0x6 << DA_2_DS_OFFSET) |
(0x6 << DA_1_DS_OFFSET) | (0x6 << DA_0_DS_OFFSET);
writel(val, &phy0_ctrl->phy_con39);
writel(val, &phy1_ctrl->phy_con39);
/* ZQ Calibration */
if (dmc_config_zq(mem, phy0_ctrl, phy1_ctrl))
return SETUP_ERR_ZQ_CALIBRATION_FAILURE;
clrbits_le32(&phy0_ctrl->phy_con16, ZQ_CLK_DIV_EN);
clrbits_le32(&phy1_ctrl->phy_con16, ZQ_CLK_DIV_EN);
/* DQ Signal */
writel(mem->phy0_pulld_dqs, &phy0_ctrl->phy_con14);
writel(mem->phy1_pulld_dqs, &phy1_ctrl->phy_con14);
val = MEM_TERM_EN | PHY_TERM_EN;
writel(val, &drex0->phycontrol0);
writel(val, &drex1->phycontrol0);
writel(mem->concontrol |
(mem->dfi_init_start << CONCONTROL_DFI_INIT_START_SHIFT) |
(mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT),
&drex0->concontrol);
writel(mem->concontrol |
(mem->dfi_init_start << CONCONTROL_DFI_INIT_START_SHIFT) |
(mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT),
&drex1->concontrol);
do {
val = readl(&drex0->phystatus);
} while ((val & DFI_INIT_COMPLETE) != DFI_INIT_COMPLETE);
do {
val = readl(&drex1->phystatus);
} while ((val & DFI_INIT_COMPLETE) != DFI_INIT_COMPLETE);
clrbits_le32(&drex0->concontrol, DFI_INIT_START);
clrbits_le32(&drex1->concontrol, DFI_INIT_START);
update_reset_dll(drex0, DDR_MODE_DDR3);
update_reset_dll(drex1, DDR_MODE_DDR3);
/* Set Base Address:
* 0x2000_0000 ~ 0x5FFF_FFFF
* 0x6000_0000 ~ 0x9FFF_FFFF
*/
/* MEMBASECONFIG0 */
val = DMC_MEMBASECONFIGx_CHIP_BASE(DMC_CHIP_BASE_0) |
DMC_MEMBASECONFIGx_CHIP_MASK(DMC_CHIP_MASK);
writel(val, &tzasc0->membaseconfig0);
writel(val, &tzasc1->membaseconfig0);
/* MEMBASECONFIG1 */
val = DMC_MEMBASECONFIGx_CHIP_BASE(DMC_CHIP_BASE_1) |
DMC_MEMBASECONFIGx_CHIP_MASK(DMC_CHIP_MASK);
writel(val, &tzasc0->membaseconfig1);
writel(val, &tzasc1->membaseconfig1);
/* Memory Channel Inteleaving Size
* Ares Channel interleaving = 128 bytes
*/
/* MEMCONFIG0/1 */
writel(mem->memconfig, &tzasc0->memconfig0);
writel(mem->memconfig, &tzasc1->memconfig0);
writel(mem->memconfig, &tzasc0->memconfig1);
writel(mem->memconfig, &tzasc1->memconfig1);
/* Precharge Configuration */
writel(mem->prechconfig_tp_cnt << PRECHCONFIG_TP_CNT_SHIFT,
&drex0->prechconfig0);
writel(mem->prechconfig_tp_cnt << PRECHCONFIG_TP_CNT_SHIFT,
&drex1->prechconfig0);
/* TimingRow, TimingData, TimingPower and Timingaref
* values as per Memory AC parameters
*/
writel(mem->timing_ref, &drex0->timingref);
writel(mem->timing_ref, &drex1->timingref);
writel(mem->timing_row, &drex0->timingrow);
writel(mem->timing_row, &drex1->timingrow);
writel(mem->timing_data, &drex0->timingdata);
writel(mem->timing_data, &drex1->timingdata);
writel(mem->timing_power, &drex0->timingpower);
writel(mem->timing_power, &drex1->timingpower);
if (reset) {
/* Send NOP, MRS and ZQINIT commands
* Sending MRS command will reset the DRAM. We should not be
* reseting the DRAM after resume, this will lead to memory
* corruption as DRAM content is lost after DRAM reset
*/
dmc_config_mrs(mem, drex0);
dmc_config_mrs(mem, drex1);
} else {
/*
* During Suspend-Resume & S/W-Reset, as soon as PMU releases
* pad retention, CKE goes high. This causes memory contents
* not to be retained during DRAM initialization. Therfore,
* there is a new control register(0x100431e8[28]) which lets us
* release pad retention and retain the memory content until the
* initialization is complete.
*/
writel(PAD_RETENTION_DRAM_COREBLK_VAL,
PAD_RETENTION_DRAM_COREBLK_OPTION);
do {
val = readl(PAD_RETENTION_DRAM_STATUS);
} while (val != 0x1);
/*
* CKE PAD retention disables DRAM self-refresh mode.
* Send auto refresh command for DRAM refresh.
*/
for (i = 0; i < 128; i++) {
writel(DIRECT_CMD_REFA, &drex0->directcmd);
writel(DIRECT_CMD_REFA | (0x1 << DIRECT_CMD_CHIP_SHIFT),
&drex0->directcmd);
writel(DIRECT_CMD_REFA, &drex1->directcmd);
writel(DIRECT_CMD_REFA | (0x1 << DIRECT_CMD_CHIP_SHIFT),
&drex1->directcmd);
}
}
if (mem->gate_leveling_enable) {
setbits_le32(&phy0_ctrl->phy_con0, CTRL_ATGATE);
setbits_le32(&phy1_ctrl->phy_con0, CTRL_ATGATE);
setbits_le32(&phy0_ctrl->phy_con0, P0_CMD_EN);
setbits_le32(&phy1_ctrl->phy_con0, P0_CMD_EN);
val = PHY_CON2_RESET_VAL;
val |= INIT_DESKEW_EN;
writel(val, &phy0_ctrl->phy_con2);
writel(val, &phy1_ctrl->phy_con2);
val = PHY_CON0_RESET_VAL;
val |= P0_CMD_EN;
val |= BYTE_RDLVL_EN;
writel(val, &phy0_ctrl->phy_con0);
writel(val, &phy1_ctrl->phy_con0);
val = readl(&phy0_ctrl->phy_con1);
val |= (RDLVL_PASS_ADJ_VAL << RDLVL_PASS_ADJ_OFFSET);
writel(val, &phy0_ctrl->phy_con1);
val = readl(&phy1_ctrl->phy_con1);
val |= (RDLVL_PASS_ADJ_VAL << RDLVL_PASS_ADJ_OFFSET);
writel(val, &phy1_ctrl->phy_con1);
nLockR = readl(&phy0_ctrl->phy_con13);
nLockW_phy0 = (nLockR & CTRL_LOCK_COARSE_MASK) >> 2;
nLockR = readl(&phy0_ctrl->phy_con12);
nLockR &= ~CTRL_DLL_ON;
nLockR |= nLockW_phy0;
writel(nLockR, &phy0_ctrl->phy_con12);
nLockR = readl(&phy1_ctrl->phy_con13);
nLockW_phy1 = (nLockR & CTRL_LOCK_COARSE_MASK) >> 2;
nLockR = readl(&phy1_ctrl->phy_con12);
nLockR &= ~CTRL_DLL_ON;
nLockR |= nLockW_phy1;
writel(nLockR, &phy1_ctrl->phy_con12);
val = (0x3 << DIRECT_CMD_BANK_SHIFT) | 0x4;
writel(val, &drex0->directcmd);
writel(val | (0x1 << DIRECT_CMD_CHIP_SHIFT),
&drex0->directcmd);
writel(val, &drex1->directcmd);
writel(val | (0x1 << DIRECT_CMD_CHIP_SHIFT),
&drex1->directcmd);
setbits_le32(&phy0_ctrl->phy_con2, RDLVL_GATE_EN);
setbits_le32(&phy1_ctrl->phy_con2, RDLVL_GATE_EN);
setbits_le32(&phy0_ctrl->phy_con0, CTRL_SHGATE);
setbits_le32(&phy1_ctrl->phy_con0, CTRL_SHGATE);
val = readl(&phy0_ctrl->phy_con1);
val &= ~(CTRL_GATEDURADJ_MASK);
writel(val, &phy0_ctrl->phy_con1);
val = readl(&phy1_ctrl->phy_con1);
val &= ~(CTRL_GATEDURADJ_MASK);
writel(val, &phy1_ctrl->phy_con1);
writel(CTRL_RDLVL_GATE_ENABLE, &drex0->rdlvl_config);
i = TIMEOUT;
while (((readl(&drex0->phystatus) & RDLVL_COMPLETE_CHO) !=
RDLVL_COMPLETE_CHO) && (i > 0)) {
/*
* TODO(waihong): Comment on how long this take to
* timeout
*/
sdelay(100);
i--;
}
if (!i)
return SETUP_ERR_RDLV_COMPLETE_TIMEOUT;
writel(CTRL_RDLVL_GATE_DISABLE, &drex0->rdlvl_config);
writel(CTRL_RDLVL_GATE_ENABLE, &drex1->rdlvl_config);
i = TIMEOUT;
while (((readl(&drex1->phystatus) & RDLVL_COMPLETE_CHO) !=
RDLVL_COMPLETE_CHO) && (i > 0)) {
/*
* TODO(waihong): Comment on how long this take to
* timeout
*/
sdelay(100);
i--;
}
if (!i)
return SETUP_ERR_RDLV_COMPLETE_TIMEOUT;
writel(CTRL_RDLVL_GATE_DISABLE, &drex1->rdlvl_config);
writel(0, &phy0_ctrl->phy_con14);
writel(0, &phy1_ctrl->phy_con14);
val = (0x3 << DIRECT_CMD_BANK_SHIFT);
writel(val, &drex0->directcmd);
writel(val | (0x1 << DIRECT_CMD_CHIP_SHIFT),
&drex0->directcmd);
writel(val, &drex1->directcmd);
writel(val | (0x1 << DIRECT_CMD_CHIP_SHIFT),
&drex1->directcmd);
/* Set Read DQ Calibration */
val = (0x3 << DIRECT_CMD_BANK_SHIFT) | 0x4;
writel(val, &drex0->directcmd);
writel(val | (0x1 << DIRECT_CMD_CHIP_SHIFT),
&drex0->directcmd);
writel(val, &drex1->directcmd);
writel(val | (0x1 << DIRECT_CMD_CHIP_SHIFT),
&drex1->directcmd);
val = readl(&phy0_ctrl->phy_con1);
val |= READ_LEVELLING_DDR3;
writel(val, &phy0_ctrl->phy_con1);
val = readl(&phy1_ctrl->phy_con1);
val |= READ_LEVELLING_DDR3;
writel(val, &phy1_ctrl->phy_con1);
val = readl(&phy0_ctrl->phy_con2);
val |= (RDLVL_EN | RDLVL_INCR_ADJ);
writel(val, &phy0_ctrl->phy_con2);
val = readl(&phy1_ctrl->phy_con2);
val |= (RDLVL_EN | RDLVL_INCR_ADJ);
writel(val, &phy1_ctrl->phy_con2);
setbits_le32(&drex0->rdlvl_config, CTRL_RDLVL_DATA_ENABLE);
i = TIMEOUT;
while (((readl(&drex0->phystatus) & RDLVL_COMPLETE_CHO) !=
RDLVL_COMPLETE_CHO) && (i > 0)) {
/*
* TODO(waihong): Comment on how long this take to
* timeout
*/
sdelay(100);
i--;
}
if (!i)
return SETUP_ERR_RDLV_COMPLETE_TIMEOUT;
clrbits_le32(&drex0->rdlvl_config, CTRL_RDLVL_DATA_ENABLE);
setbits_le32(&drex1->rdlvl_config, CTRL_RDLVL_DATA_ENABLE);
i = TIMEOUT;
while (((readl(&drex1->phystatus) & RDLVL_COMPLETE_CHO) !=
RDLVL_COMPLETE_CHO) && (i > 0)) {
/*
* TODO(waihong): Comment on how long this take to
* timeout
*/
sdelay(100);
i--;
}
if (!i)
return SETUP_ERR_RDLV_COMPLETE_TIMEOUT;
clrbits_le32(&drex1->rdlvl_config, CTRL_RDLVL_DATA_ENABLE);
val = (0x3 << DIRECT_CMD_BANK_SHIFT);
writel(val, &drex0->directcmd);
writel(val | (0x1 << DIRECT_CMD_CHIP_SHIFT),
&drex0->directcmd);
writel(val, &drex1->directcmd);
writel(val | (0x1 << DIRECT_CMD_CHIP_SHIFT),
&drex1->directcmd);
update_reset_dll(drex0, DDR_MODE_DDR3);
update_reset_dll(drex1, DDR_MODE_DDR3);
/* Common Settings for Leveling */
val = PHY_CON12_RESET_VAL;
writel((val + nLockW_phy0), &phy0_ctrl->phy_con12);
writel((val + nLockW_phy1), &phy1_ctrl->phy_con12);
setbits_le32(&phy0_ctrl->phy_con2, DLL_DESKEW_EN);
setbits_le32(&phy1_ctrl->phy_con2, DLL_DESKEW_EN);
update_reset_dll(drex0, DDR_MODE_DDR3);
update_reset_dll(drex1, DDR_MODE_DDR3);
}
/* Send PALL command */
dmc_config_prech(mem, drex0);
dmc_config_prech(mem, drex1);
writel(mem->memcontrol, &drex0->memcontrol);
writel(mem->memcontrol, &drex1->memcontrol);
/* Set DMC Concontrol and enable auto-refresh counter */
writel(mem->concontrol | (mem->aref_en << CONCONTROL_AREF_EN_SHIFT) |
(mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT),
&drex0->concontrol);
writel(mem->concontrol | (mem->aref_en << CONCONTROL_AREF_EN_SHIFT) |
(mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT),
&drex1->concontrol);
/* Enable Clock Gating Control for DMC
* this saves around 25 mw dmc power as compared to the power
* consumption without these bits enabled
*/
setbits_le32(&drex0->cgcontrol, DMC_INTERNAL_CG);
setbits_le32(&drex1->cgcontrol, DMC_INTERNAL_CG);
return 0;
}