blob: 44b51007429fbfe87a78f5316996ce07e1f88dd6 [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2005 Linux Networx
* (Written by Eric Biederman <ebiederman@lnxi.com> for Linux Networx)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <console/console.h>
#include <delay.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <device/pci_ops.h>
#include <device/pciexp.h>
unsigned int pciexp_find_extended_cap(struct device *dev, unsigned int cap)
{
unsigned int this_cap_offset, next_cap_offset;
unsigned int this_cap, cafe;
this_cap_offset = PCIE_EXT_CAP_OFFSET;
do {
this_cap = pci_read_config32(dev, this_cap_offset);
next_cap_offset = this_cap >> 20;
this_cap &= 0xffff;
cafe = pci_read_config32(dev, this_cap_offset + 4);
cafe &= 0xffff;
if (this_cap == cap)
return this_cap_offset;
else if (cafe == cap)
return this_cap_offset + 4;
else
this_cap_offset = next_cap_offset;
} while (next_cap_offset != 0);
return 0;
}
/*
* Re-train a PCIe link
*/
#define PCIE_TRAIN_RETRY 10000
static int pciexp_retrain_link(struct device *dev, unsigned cap)
{
unsigned int try;
u16 lnk;
/*
* Implementation note (page 633) in PCIe Specification 3.0 suggests
* polling the Link Training bit in the Link Status register until the
* value returned is 0 before setting the Retrain Link bit to 1.
* This is meant to avoid a race condition when using the
* Retrain Link mechanism.
*/
for (try = PCIE_TRAIN_RETRY; try > 0; try--) {
lnk = pci_read_config16(dev, cap + PCI_EXP_LNKSTA);
if (!(lnk & PCI_EXP_LNKSTA_LT))
break;
udelay(100);
}
if (try == 0) {
printk(BIOS_ERR, "%s: Link Retrain timeout\n", dev_path(dev));
return -1;
}
/* Start link retraining */
lnk = pci_read_config16(dev, cap + PCI_EXP_LNKCTL);
lnk |= PCI_EXP_LNKCTL_RL;
pci_write_config16(dev, cap + PCI_EXP_LNKCTL, lnk);
/* Wait for training to complete */
for (try = PCIE_TRAIN_RETRY; try > 0; try--) {
lnk = pci_read_config16(dev, cap + PCI_EXP_LNKSTA);
if (!(lnk & PCI_EXP_LNKSTA_LT))
return 0;
udelay(100);
}
printk(BIOS_ERR, "%s: Link Retrain timeout\n", dev_path(dev));
return -1;
}
/*
* Check the Slot Clock Configuration for root port and endpoint
* and enable Common Clock Configuration if possible. If CCC is
* enabled the link must be retrained.
*/
static void pciexp_enable_common_clock(struct device *root, unsigned root_cap,
struct device *endp, unsigned endp_cap)
{
u16 root_scc, endp_scc, lnkctl;
/* Get Slot Clock Configuration for root port */
root_scc = pci_read_config16(root, root_cap + PCI_EXP_LNKSTA);
root_scc &= PCI_EXP_LNKSTA_SLC;
/* Get Slot Clock Configuration for endpoint */
endp_scc = pci_read_config16(endp, endp_cap + PCI_EXP_LNKSTA);
endp_scc &= PCI_EXP_LNKSTA_SLC;
/* Enable Common Clock Configuration and retrain */
if (root_scc && endp_scc) {
printk(BIOS_INFO, "Enabling Common Clock Configuration\n");
/* Set in endpoint */
lnkctl = pci_read_config16(endp, endp_cap + PCI_EXP_LNKCTL);
lnkctl |= PCI_EXP_LNKCTL_CCC;
pci_write_config16(endp, endp_cap + PCI_EXP_LNKCTL, lnkctl);
/* Set in root port */
lnkctl = pci_read_config16(root, root_cap + PCI_EXP_LNKCTL);
lnkctl |= PCI_EXP_LNKCTL_CCC;
pci_write_config16(root, root_cap + PCI_EXP_LNKCTL, lnkctl);
/* Retrain link if CCC was enabled */
pciexp_retrain_link(root, root_cap);
}
}
static void pciexp_enable_clock_power_pm(struct device *endp, unsigned endp_cap)
{
/* check if per port clk req is supported in device */
u32 endp_ca;
u16 lnkctl;
endp_ca = pci_read_config32(endp, endp_cap + PCI_EXP_LNKCAP);
if ((endp_ca & PCI_EXP_CLK_PM) == 0) {
printk(BIOS_INFO, "PCIE CLK PM is not supported by endpoint\n");
return;
}
lnkctl = pci_read_config16(endp, endp_cap + PCI_EXP_LNKCTL);
lnkctl = lnkctl | PCI_EXP_EN_CLK_PM;
pci_write_config16(endp, endp_cap + PCI_EXP_LNKCTL, lnkctl);
}
static void pciexp_config_max_latency(struct device *root, struct device *dev)
{
unsigned int cap;
cap = pciexp_find_extended_cap(dev, PCIE_EXT_CAP_LTR_ID);
if ((cap) && (root->ops->ops_pci != NULL) &&
(root->ops->ops_pci->set_L1_ss_latency != NULL))
root->ops->ops_pci->set_L1_ss_latency(dev, cap + 4);
}
static bool pciexp_is_ltr_supported(struct device *dev, unsigned int cap)
{
unsigned int val;
val = pci_read_config16(dev, cap + PCI_EXP_DEV_CAP2_OFFSET);
if (val & LTR_MECHANISM_SUPPORT)
return true;
return false;
}
static void pciexp_configure_ltr(struct device *dev)
{
unsigned int cap;
cap = pci_find_capability(dev, PCI_CAP_ID_PCIE);
/*
* Check if capibility pointer is valid and
* device supports LTR mechanism.
*/
if (!cap || !pciexp_is_ltr_supported(dev, cap)) {
printk(BIOS_INFO, "Failed to enable LTR for dev = %s\n",
dev_path(dev));
return;
}
cap += PCI_EXP_DEV_CTL_STS2_CAP_OFFSET;
/* Enable LTR for device */
pci_update_config32(dev, cap, ~LTR_MECHANISM_EN, LTR_MECHANISM_EN);
/* Configure Max Snoop Latency */
pciexp_config_max_latency(dev->bus->dev, dev);
}
static void pciexp_enable_ltr(struct device *dev)
{
struct bus *bus;
struct device *child;
for (bus = dev->link_list ; bus ; bus = bus->next) {
for (child = bus->children; child; child = child->sibling) {
pciexp_configure_ltr(child);
if (child->ops && child->ops->scan_bus)
pciexp_enable_ltr(child);
}
}
}
static unsigned char pciexp_L1_substate_cal(struct device *dev, unsigned int endp_cap,
unsigned int *data)
{
unsigned char mult[4] = {2, 10, 100, 0};
unsigned int L1SubStateSupport = *data & 0xf;
unsigned int comm_mode_rst_time = (*data >> 8) & 0xff;
unsigned int power_on_scale = (*data >> 16) & 0x3;
unsigned int power_on_value = (*data >> 19) & 0x1f;
unsigned int endp_data = pci_read_config32(dev, endp_cap + 4);
unsigned int endp_L1SubStateSupport = endp_data & 0xf;
unsigned int endp_comm_mode_restore_time = (endp_data >> 8) & 0xff;
unsigned int endp_power_on_scale = (endp_data >> 16) & 0x3;
unsigned int endp_power_on_value = (endp_data >> 19) & 0x1f;
L1SubStateSupport &= endp_L1SubStateSupport;
if (L1SubStateSupport == 0)
return 0;
if (power_on_value * mult[power_on_scale] <
endp_power_on_value * mult[endp_power_on_scale]) {
power_on_value = endp_power_on_value;
power_on_scale = endp_power_on_scale;
}
if (comm_mode_rst_time < endp_comm_mode_restore_time)
comm_mode_rst_time = endp_comm_mode_restore_time;
*data = (comm_mode_rst_time << 8) | (power_on_scale << 16)
| (power_on_value << 19) | L1SubStateSupport;
return 1;
}
static void pciexp_L1_substate_commit(struct device *root, struct device *dev,
unsigned int root_cap, unsigned int end_cap)
{
struct device *dev_t;
unsigned char L1_ss_ok;
unsigned int rp_L1_support = pci_read_config32(root, root_cap + 4);
unsigned int L1SubStateSupport;
unsigned int comm_mode_rst_time;
unsigned int power_on_scale;
unsigned int endp_power_on_value;
for (dev_t = dev; dev_t; dev_t = dev_t->sibling) {
/*
* rp_L1_support is init'd above from root port.
* it needs coordination with endpoints to reach in common.
* if certain endpoint doesn't support L1 Sub-State, abort
* this feature enabling.
*/
L1_ss_ok = pciexp_L1_substate_cal(dev_t, end_cap,
&rp_L1_support);
if (!L1_ss_ok)
return;
}
L1SubStateSupport = rp_L1_support & 0xf;
comm_mode_rst_time = (rp_L1_support >> 8) & 0xff;
power_on_scale = (rp_L1_support >> 16) & 0x3;
endp_power_on_value = (rp_L1_support >> 19) & 0x1f;
printk(BIOS_INFO, "L1 Sub-State supported from root port %d\n",
root->path.pci.devfn >> 3);
printk(BIOS_INFO, "L1 Sub-State Support = 0x%x\n", L1SubStateSupport);
printk(BIOS_INFO, "CommonModeRestoreTime = 0x%x\n", comm_mode_rst_time);
printk(BIOS_INFO, "Power On Value = 0x%x, Power On Scale = 0x%x\n",
endp_power_on_value, power_on_scale);
pci_update_config32(root, root_cap + 0x08, ~0xff00,
(comm_mode_rst_time << 8));
pci_update_config32(root, root_cap + 0x0c, 0xffffff04,
(endp_power_on_value << 3) | (power_on_scale));
/* TODO: 0xa0, 2 are values that work on some chipsets but really
* should be determined dynamically by looking at downstream devices.
*/
pci_update_config32(root, root_cap + 0x08,
~(ASPM_LTR_L12_THRESHOLD_VALUE_MASK |
ASPM_LTR_L12_THRESHOLD_SCALE_MASK),
(0xa0 << ASPM_LTR_L12_THRESHOLD_VALUE_OFFSET) |
(2 << ASPM_LTR_L12_THRESHOLD_SCALE_OFFSET));
pci_update_config32(root, root_cap + 0x08, ~0x1f,
L1SubStateSupport);
for (dev_t = dev; dev_t; dev_t = dev_t->sibling) {
pci_update_config32(dev_t, end_cap + 0x0c, 0xffffff04,
(endp_power_on_value << 3) | (power_on_scale));
pci_update_config32(dev_t, end_cap + 0x08,
~(ASPM_LTR_L12_THRESHOLD_VALUE_MASK |
ASPM_LTR_L12_THRESHOLD_SCALE_MASK),
(0xa0 << ASPM_LTR_L12_THRESHOLD_VALUE_OFFSET) |
(2 << ASPM_LTR_L12_THRESHOLD_SCALE_OFFSET));
pci_update_config32(dev_t, end_cap + 0x08, ~0x1f,
L1SubStateSupport);
}
}
static void pciexp_config_L1_sub_state(struct device *root, struct device *dev)
{
unsigned int root_cap, end_cap;
/* Do it for function 0 only */
if (dev->path.pci.devfn & 0x7)
return;
root_cap = pciexp_find_extended_cap(root, PCIE_EXT_CAP_L1SS_ID);
if (!root_cap)
return;
end_cap = pciexp_find_extended_cap(dev, PCIE_EXT_CAP_L1SS_ID);
if (!end_cap) {
end_cap = pciexp_find_extended_cap(dev, 0xcafe);
if (!end_cap)
return;
}
pciexp_L1_substate_commit(root, dev, root_cap, end_cap);
}
/*
* Determine the ASPM L0s or L1 exit latency for a link
* by checking both root port and endpoint and returning
* the highest latency value.
*/
static int pciexp_aspm_latency(struct device *root, unsigned root_cap,
struct device *endp, unsigned endp_cap,
enum aspm_type type)
{
int root_lat = 0, endp_lat = 0;
u32 root_lnkcap, endp_lnkcap;
root_lnkcap = pci_read_config32(root, root_cap + PCI_EXP_LNKCAP);
endp_lnkcap = pci_read_config32(endp, endp_cap + PCI_EXP_LNKCAP);
/* Make sure the link supports this ASPM type by checking
* capability bits 11:10 with aspm_type offset by 1 */
if (!(root_lnkcap & (1 << (type + 9))) ||
!(endp_lnkcap & (1 << (type + 9))))
return -1;
/* Find the one with higher latency */
switch (type) {
case PCIE_ASPM_L0S:
root_lat = (root_lnkcap & PCI_EXP_LNKCAP_L0SEL) >> 12;
endp_lat = (endp_lnkcap & PCI_EXP_LNKCAP_L0SEL) >> 12;
break;
case PCIE_ASPM_L1:
root_lat = (root_lnkcap & PCI_EXP_LNKCAP_L1EL) >> 15;
endp_lat = (endp_lnkcap & PCI_EXP_LNKCAP_L1EL) >> 15;
break;
default:
return -1;
}
return (endp_lat > root_lat) ? endp_lat : root_lat;
}
/*
* Enable ASPM on PCIe root port and endpoint.
*/
static void pciexp_enable_aspm(struct device *root, unsigned root_cap,
struct device *endp, unsigned endp_cap)
{
const char *aspm_type_str[] = { "None", "L0s", "L1", "L0s and L1" };
enum aspm_type apmc = PCIE_ASPM_NONE;
int exit_latency, ok_latency;
u16 lnkctl;
u32 devcap;
if (endp->disable_pcie_aspm)
return;
/* Get endpoint device capabilities for acceptable limits */
devcap = pci_read_config32(endp, endp_cap + PCI_EXP_DEVCAP);
/* Enable L0s if it is within endpoint acceptable limit */
ok_latency = (devcap & PCI_EXP_DEVCAP_L0S) >> 6;
exit_latency = pciexp_aspm_latency(root, root_cap, endp, endp_cap,
PCIE_ASPM_L0S);
if (exit_latency >= 0 && exit_latency <= ok_latency)
apmc |= PCIE_ASPM_L0S;
/* Enable L1 if it is within endpoint acceptable limit */
ok_latency = (devcap & PCI_EXP_DEVCAP_L1) >> 9;
exit_latency = pciexp_aspm_latency(root, root_cap, endp, endp_cap,
PCIE_ASPM_L1);
if (exit_latency >= 0 && exit_latency <= ok_latency)
apmc |= PCIE_ASPM_L1;
if (apmc != PCIE_ASPM_NONE) {
/* Set APMC in root port first */
lnkctl = pci_read_config16(root, root_cap + PCI_EXP_LNKCTL);
lnkctl |= apmc;
pci_write_config16(root, root_cap + PCI_EXP_LNKCTL, lnkctl);
/* Set APMC in endpoint device next */
lnkctl = pci_read_config16(endp, endp_cap + PCI_EXP_LNKCTL);
lnkctl |= apmc;
pci_write_config16(endp, endp_cap + PCI_EXP_LNKCTL, lnkctl);
}
printk(BIOS_INFO, "ASPM: Enabled %s\n", aspm_type_str[apmc]);
}
static void pciexp_tune_dev(struct device *dev)
{
struct device *root = dev->bus->dev;
unsigned int root_cap, cap;
cap = pci_find_capability(dev, PCI_CAP_ID_PCIE);
if (!cap)
return;
root_cap = pci_find_capability(root, PCI_CAP_ID_PCIE);
if (!root_cap)
return;
/* Check for and enable Common Clock */
if (IS_ENABLED(CONFIG_PCIEXP_COMMON_CLOCK))
pciexp_enable_common_clock(root, root_cap, dev, cap);
/* Check if per port CLK req is supported by endpoint*/
if (IS_ENABLED(CONFIG_PCIEXP_CLK_PM))
pciexp_enable_clock_power_pm(dev, cap);
/* Enable L1 Sub-State when both root port and endpoint support */
if (IS_ENABLED(CONFIG_PCIEXP_L1_SUB_STATE))
pciexp_config_L1_sub_state(root, dev);
/* Check for and enable ASPM */
if (IS_ENABLED(CONFIG_PCIEXP_ASPM))
pciexp_enable_aspm(root, root_cap, dev, cap);
}
void pciexp_scan_bus(struct bus *bus, unsigned int min_devfn,
unsigned int max_devfn)
{
struct device *child;
pci_scan_bus(bus, min_devfn, max_devfn);
for (child = bus->children; child; child = child->sibling) {
if ((child->path.pci.devfn < min_devfn) ||
(child->path.pci.devfn > max_devfn)) {
continue;
}
pciexp_tune_dev(child);
}
}
void pciexp_scan_bridge(struct device *dev)
{
do_pci_scan_bridge(dev, pciexp_scan_bus);
pciexp_enable_ltr(dev);
}
/** Default device operations for PCI Express bridges */
static struct pci_operations pciexp_bus_ops_pci = {
.set_subsystem = 0,
};
struct device_operations default_pciexp_ops_bus = {
.read_resources = pci_bus_read_resources,
.set_resources = pci_dev_set_resources,
.enable_resources = pci_bus_enable_resources,
.init = 0,
.scan_bus = pciexp_scan_bridge,
.enable = 0,
.reset_bus = pci_bus_reset,
.ops_pci = &pciexp_bus_ops_pci,
};