blob: 0270920c9508b388cc7a213305fc8629523ef623 [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2015 Intel Corp.
* (Written by Alexandru Gagniuc <alexandrux.gagniuc@intel.com> for Intel Corp.)
* (Written by Andrey Petrov <andrey.petrov@intel.com> for Intel Corp.)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <arch/cpu.h>
#include <arch/early_variables.h>
#include <arch/io.h>
#include <arch/symbols.h>
#include <assert.h>
#include <bootmode.h>
#include <cbfs.h>
#include <cbmem.h>
#include <console/console.h>
#include <cpu/x86/mtrr.h>
#include <device/pci_def.h>
#include <device/resource.h>
#include <fsp/api.h>
#include <fsp/memmap.h>
#include <fsp/util.h>
#include <soc/cpu.h>
#include <soc/flash_ctrlr.h>
#include <soc/intel/common/mrc_cache.h>
#include <soc/iomap.h>
#include <soc/systemagent.h>
#include <soc/pci_devs.h>
#include <soc/pm.h>
#include <soc/romstage.h>
#include <soc/uart.h>
#include <spi_flash.h>
#include <string.h>
#include <timestamp.h>
#include <timer.h>
#include <delay.h>
#include "chip.h"
static struct chipset_power_state power_state CAR_GLOBAL;
static const uint8_t hob_variable_guid[16] = {
0x7d, 0x14, 0x34, 0xa0, 0x0c, 0x69, 0x54, 0x41,
0x8d, 0xe6, 0xc0, 0x44, 0x64, 0x1d, 0xe9, 0x42,
};
static uint32_t fsp_version CAR_GLOBAL;
/* High Performance Event Timer Configuration */
#define P2SB_HPTC 0x60
#define P2SB_HPTC_ADDRESS_ENABLE (1 << 7)
/*
* ADDRESS_SELECT ENCODING_RANGE
* 0 0xFED0 0000 - 0xFED0 03FF
* 1 0xFED0 1000 - 0xFED0 13FF
* 2 0xFED0 2000 - 0xFED0 23FF
* 3 0xFED0 3000 - 0xFED0 33FF
*/
#define P2SB_HPTC_ADDRESS_SELECT_0 (0 << 0)
#define P2SB_HPTC_ADDRESS_SELECT_1 (1 << 0)
#define P2SB_HPTC_ADDRESS_SELECT_2 (2 << 0)
#define P2SB_HPTC_ADDRESS_SELECT_3 (3 << 0)
/*
* Enables several BARs and devices which are needed for memory init
* - MCH_BASE_ADDR is needed in order to talk to the memory controller
* - HPET is enabled because FSP wants to store a pointer to global data in the
* HPET comparator register
*/
static void soc_early_romstage_init(void)
{
/* Set MCH base address and enable bit */
pci_write_config32(SA_DEV_ROOT, MCHBAR, MCH_BASE_ADDR | 1);
/* Enable decoding for HPET. Needed for FSP global pointer storage */
pci_write_config8(PCH_DEV_P2SB, P2SB_HPTC, P2SB_HPTC_ADDRESS_SELECT_0 |
P2SB_HPTC_ADDRESS_ENABLE);
}
static void disable_watchdog(void)
{
uint32_t reg;
/* Stop TCO timer */
reg = inl(ACPI_PMIO_BASE + TCO1_CNT);
reg |= TCO_TMR_HLT;
outl(reg, ACPI_PMIO_BASE + TCO1_CNT);
}
static void migrate_power_state(int is_recovery)
{
struct chipset_power_state *ps_cbmem;
struct chipset_power_state *ps_car;
ps_car = car_get_var_ptr(&power_state);
ps_cbmem = cbmem_add(CBMEM_ID_POWER_STATE, sizeof(*ps_cbmem));
if (ps_cbmem == NULL) {
printk(BIOS_DEBUG, "Unable to add power state to cbmem!\n");
return;
}
memcpy(ps_cbmem, ps_car, sizeof(*ps_cbmem));
}
ROMSTAGE_CBMEM_INIT_HOOK(migrate_power_state);
/*
* Punit Initialization code. This all isn't documented, but
* this is the recipe.
*/
static bool punit_init(void)
{
uint32_t reg;
uint32_t data;
struct stopwatch sw;
/*
* Software Core Disable Mask (P_CR_CORE_DISABLE_MASK_0_0_0_MCHBAR).
* Enable all cores here.
*/
write32((void *)(MCH_BASE_ADDR + P_CR_CORE_DISABLE_MASK_0_0_0_MCHBAR),
0x0);
void *bios_rest_cpl = (void *)(MCH_BASE_ADDR +
P_CR_BIOS_RESET_CPL_0_0_0_MCHBAR);
/* P-Unit bring up */
reg = read32(bios_rest_cpl);
if (reg == 0xffffffff) {
/* P-unit not found */
printk(BIOS_DEBUG, "Punit MMIO not available\n");
return false;
}
/* Set Punit interrupt pin IPIN offset 3D */
pci_write_config8(SA_DEV_PUNIT, PCI_INTERRUPT_PIN, 0x2);
/* Set PUINT IRQ to 24 and INTPIN LOCK */
write32((void *)(MCH_BASE_ADDR + PUNIT_THERMAL_DEVICE_IRQ),
PUINT_THERMAL_DEVICE_IRQ_VEC_NUMBER |
PUINT_THERMAL_DEVICE_IRQ_LOCK);
data = read32((void *)(MCH_BASE_ADDR + 0x7818));
data &= 0xFFFFE01F;
data |= 0x20 | 0x200;
write32((void *)(MCH_BASE_ADDR + 0x7818), data);
/* Stage0 BIOS Reset Complete (RST_CPL) */
write32(bios_rest_cpl, 0x1);
/*
* Poll for bit 8 in same reg (RST_CPL).
* We wait here till 1 ms for the bit to get set.
*/
stopwatch_init_msecs_expire(&sw, 1);
while (!(read32(bios_rest_cpl) & 0x100)) {
if (stopwatch_expired(&sw)) {
printk(BIOS_DEBUG,
"Failed to set RST_CPL bit\n");
return false;
}
udelay(100);
}
return true;
}
asmlinkage void car_stage_entry(void)
{
struct postcar_frame pcf;
uintptr_t top_of_ram;
bool s3wake;
struct chipset_power_state *ps = car_get_var_ptr(&power_state);
void *smm_base;
size_t smm_size, var_size;
const void *new_var_data;
uintptr_t tseg_base;
timestamp_add_now(TS_START_ROMSTAGE);
soc_early_romstage_init();
disable_watchdog();
console_init();
s3wake = fill_power_state(ps) == ACPI_S3;
fsp_memory_init(s3wake);
if (punit_init())
set_max_freq();
else
printk(BIOS_DEBUG, "Punit failed to initialize properly\n");
/* Stash variable MRC data and let cache system update it later */
new_var_data = fsp_find_extension_hob_by_guid(hob_variable_guid,
&var_size);
if (new_var_data)
mrc_cache_stash_data(MRC_VARIABLE_DATA,
car_get_var(fsp_version), new_var_data,
var_size);
else
printk(BIOS_ERR, "Failed to determine variable data\n");
if (postcar_frame_init(&pcf, 1*KiB))
die("Unable to initialize postcar frame.\n");
mainboard_save_dimm_info();
/*
* We need to make sure ramstage will be run cached. At this point exact
* location of ramstage in cbmem is not known. Instruct postcar to cache
* 16 megs under cbmem top which is a safe bet to cover ramstage.
*/
top_of_ram = (uintptr_t) cbmem_top();
/* cbmem_top() needs to be at least 16 MiB aligned */
assert(ALIGN_DOWN(top_of_ram, 16*MiB) == top_of_ram);
postcar_frame_add_mtrr(&pcf, top_of_ram - 16*MiB, 16*MiB,
MTRR_TYPE_WRBACK);
/* Cache the memory-mapped boot media. */
if (IS_ENABLED(CONFIG_BOOT_DEVICE_MEMORY_MAPPED))
postcar_frame_add_mtrr(&pcf, -CONFIG_ROM_SIZE, CONFIG_ROM_SIZE,
MTRR_TYPE_WRPROT);
/*
* Cache the TSEG region at the top of ram. This region is
* not restricted to SMM mode until SMM has been relocated.
* By setting the region to cacheable it provides faster access
* when relocating the SMM handler as well as using the TSEG
* region for other purposes.
*/
smm_region(&smm_base, &smm_size);
tseg_base = (uintptr_t)smm_base;
postcar_frame_add_mtrr(&pcf, tseg_base, smm_size, MTRR_TYPE_WRBACK);
run_postcar_phase(&pcf);
}
static void fill_console_params(FSPM_UPD *mupd)
{
if (IS_ENABLED(CONFIG_CONSOLE_SERIAL)) {
mupd->FspmConfig.SerialDebugPortDevice =
CONFIG_UART_FOR_CONSOLE;
/* use MMIO port type */
mupd->FspmConfig.SerialDebugPortType = 2;
/* use 4 byte register stride */
mupd->FspmConfig.SerialDebugPortStrideSize = 2;
/* used only for port type set to external */
mupd->FspmConfig.SerialDebugPortAddress = 0;
} else {
mupd->FspmConfig.SerialDebugPortType = 0;
}
}
void platform_fsp_memory_init_params_cb(FSPM_UPD *mupd, uint32_t version)
{
struct region_device rdev;
fill_console_params(mupd);
mainboard_memory_init_params(mupd);
/* Do NOT let FSP do any GPIO pad configuration */
mupd->FspmConfig.PreMemGpioTablePtr = (uintptr_t) NULL;
/*
* Tell CSE we do not need to use Ring Buffer Protocol (RBP) to fetch
* firmware for us if we are using memory-mapped SPI. This lets CSE
* state machine transition to next boot state, so that it can function
* as designed.
*/
mupd->FspmConfig.SkipCseRbp =
IS_ENABLED(CONFIG_BOOT_DEVICE_MEMORY_MAPPED);
/*
* Converged Security Engine (CSE) has secure storage functionality.
* HECI2 device can be used to access that functionality. However, part
* of S3 resume flow involves resetting HECI2 which takes 136ms. Since
* coreboot does not use secure storage functionality, instruct FSP to
* skip HECI2 reset.
*/
mupd->FspmConfig.EnableS3Heci2 = 0;
/*
* Apollolake splits MRC cache into two parts: constant and variable.
* The constant part is not expected to change often and variable is.
* Currently variable part consists of parameters that change on cold
* boots such as scrambler seed and some memory controller registers.
* Scrambler seed is vital for S3 resume case because attempt to use
* wrong/missing key renders DRAM contents useless.
*/
if (mrc_cache_get_current(MRC_VARIABLE_DATA, version, &rdev) == 0) {
/* Assume leaking is ok. */
assert(IS_ENABLED(CONFIG_BOOT_DEVICE_MEMORY_MAPPED));
mupd->FspmConfig.VariableNvsBufferPtr = rdev_mmap_full(&rdev);
}
car_set_var(fsp_version, version);
}
__attribute__ ((weak))
void mainboard_memory_init_params(FSPM_UPD *mupd)
{
printk(BIOS_DEBUG, "WEAK: %s/%s called\n", __FILE__, __func__);
}
__attribute__ ((weak))
void mainboard_save_dimm_info(void)
{
printk(BIOS_DEBUG, "WEAK: %s/%s called\n", __FILE__, __func__);
}
int get_sw_write_protect_state(void)
{
uint8_t status;
const struct spi_flash *flash;
flash = boot_device_spi_flash();
if (!flash)
return 0;
/* Return unprotected status if status read fails. */
return spi_flash_status(flash, &status) ? 0 : !!(status & 0x80);
}