blob: a66ee86fd15633d75e3bca1ba97afc069614c960 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
#include <console/console.h>
#include <cbmem.h>
#include <device/device.h>
#include <device/dram/ddr4.h>
#include <string.h>
#include <memory_info.h>
#include <smbios.h>
#include <types.h>
enum ddr4_speed_grade {
DDR4_1600,
DDR4_1866,
DDR4_2133,
DDR4_2400,
DDR4_2666,
DDR4_2933,
DDR4_3200
};
struct ddr4_speed_attr {
uint32_t min_clock_mhz; // inclusive
uint32_t max_clock_mhz; // inclusive
uint32_t reported_mts;
};
/**
* DDR4 speed attributes derived from JEDEC 79-4C tables 169 & 170
*
* min_clock_mhz = 1000/max_tCk_avg(ns) + 1
* Adding 1 to make minimum inclusive
* max_clock_mhz = 1000/min_tCk_avg(ns)
* reported_mts = Standard reported DDR4 speed in MT/s
* May be 1 less than the actual max MT/s
*/
static const struct ddr4_speed_attr ddr4_speeds[] = {
[DDR4_1600] = {
.min_clock_mhz = 668,
.max_clock_mhz = 800,
.reported_mts = 1600
},
[DDR4_1866] = {
.min_clock_mhz = 801,
.max_clock_mhz = 934,
.reported_mts = 1866
},
[DDR4_2133] = {
.min_clock_mhz = 935,
.max_clock_mhz = 1067,
.reported_mts = 2133
},
[DDR4_2400] = {
.min_clock_mhz = 1068,
.max_clock_mhz = 1200,
.reported_mts = 2400
},
[DDR4_2666] = {
.min_clock_mhz = 1201,
.max_clock_mhz = 1333,
.reported_mts = 2666
},
[DDR4_2933] = {
.min_clock_mhz = 1334,
.max_clock_mhz = 1466,
.reported_mts = 2933
},
[DDR4_3200] = {
.min_clock_mhz = 1467,
.max_clock_mhz = 1600,
.reported_mts = 3200
}
};
typedef enum {
BLOCK_0, /* Base Configuration and DRAM Parameters */
BLOCK_1,
BLOCK_1_L, /* Standard Module Parameters */
BLOCK_1_H, /* Hybrid Module Parameters */
BLOCK_2,
BLOCK_2_L, /* Hybrid Module Extended Function Parameters */
BLOCK_2_H, /* Manufacturing Information */
BLOCK_3 /* End user programmable */
} spd_block_type;
typedef struct {
spd_block_type type;
uint16_t start; /* starting offset from beginning of the spd */
uint16_t len; /* size of the block */
uint16_t crc_start; /* offset from start of crc bytes, 0 if none */
} spd_block;
/* 'SPD contents architecture' as per datasheet */
const spd_block spd_blocks[] = {
{.type = BLOCK_0, 0, 128, 126}, {.type = BLOCK_1, 128, 128, 126},
{.type = BLOCK_1_L, 128, 64, 0}, {.type = BLOCK_1_H, 192, 64, 0},
{.type = BLOCK_2_L, 256, 64, 62}, {.type = BLOCK_2_H, 320, 64, 0},
{.type = BLOCK_3, 384, 128, 0} };
static bool verify_block(const spd_block *block, spd_raw_data spd)
{
uint16_t crc, spd_crc;
spd_crc = (spd[block->start + block->crc_start + 1] << 8)
| spd[block->start + block->crc_start];
crc = ddr_crc16(&spd[block->start], block->len - 2);
return spd_crc == crc;
}
/* Check if given block is 'reserved' for a given module type */
static bool block_exists(spd_block_type type, u8 dimm_type)
{
bool is_hybrid;
switch (type) {
case BLOCK_0: /* fall-through */
case BLOCK_1: /* fall-through */
case BLOCK_1_L: /* fall-through */
case BLOCK_1_H: /* fall-through */
case BLOCK_2_H: /* fall-through */
case BLOCK_3: /* fall-through */
return true;
case BLOCK_2_L:
is_hybrid = (dimm_type >> 4) & ((1 << 3) - 1);
if (is_hybrid)
return true;
return false;
default: /* fall-through */
return false;
}
}
/**
* Converts DDR4 clock speed in MHz to the standard reported speed in MT/s
*/
uint16_t ddr4_speed_mhz_to_reported_mts(uint16_t speed_mhz)
{
for (enum ddr4_speed_grade speed = 0; speed < ARRAY_SIZE(ddr4_speeds); speed++) {
const struct ddr4_speed_attr *speed_attr = &ddr4_speeds[speed];
if (speed_mhz >= speed_attr->min_clock_mhz &&
speed_mhz <= speed_attr->max_clock_mhz) {
return speed_attr->reported_mts;
}
}
printk(BIOS_ERR, "DDR4 speed of %d MHz is out of range\n", speed_mhz);
return 0;
}
/**
* \brief Decode the raw SPD data
*
* Decodes a raw SPD data from a DDR4 DIMM, and organizes it into a
* @ref dimm_attr structure. The SPD data must first be read in a contiguous
* array, and passed to this function.
*
* @param dimm pointer to @ref dimm_attr structure where the decoded data is to
* be stored
* @param spd array of raw data previously read from the SPD.
*
* @return @ref spd_status enumerator
* SPD_STATUS_OK -- decoding was successful
* SPD_STATUS_INVALID -- invalid SPD or not a DDR4 SPD
* SPD_STATUS_CRC_ERROR -- checksum mismatch
*/
int spd_decode_ddr4(struct dimm_attr_ddr4_st *dimm, spd_raw_data spd)
{
u8 reg8;
u8 bus_width, sdram_width;
u16 cap_per_die_mbit;
u16 spd_bytes_total, spd_bytes_used;
const uint16_t spd_bytes_used_table[] = {0, 128, 256, 384, 512};
/* Make sure that the SPD dump is indeed from a DDR4 module */
if (spd[2] != SPD_MEMORY_TYPE_DDR4_SDRAM) {
printk(BIOS_ERR, "Not a DDR4 SPD!\n");
dimm->dram_type = SPD_MEMORY_TYPE_UNDEFINED;
return SPD_STATUS_INVALID;
}
spd_bytes_total = (spd[0] >> 4) & 0x7;
spd_bytes_used = spd[0] & 0xf;
if (!spd_bytes_total || !spd_bytes_used) {
printk(BIOS_ERR, "SPD failed basic sanity checks\n");
return SPD_STATUS_INVALID;
}
if (spd_bytes_total >= 3)
printk(BIOS_WARNING, "SPD Bytes Total value is reserved\n");
spd_bytes_total = 256 << (spd_bytes_total - 1);
if (spd_bytes_used > 4) {
printk(BIOS_ERR, "SPD Bytes Used value is reserved\n");
return SPD_STATUS_INVALID;
}
spd_bytes_used = spd_bytes_used_table[spd_bytes_used];
if (spd_bytes_used > spd_bytes_total) {
printk(BIOS_ERR, "SPD Bytes Used is greater than SPD Bytes Total\n");
return SPD_STATUS_INVALID;
}
/* Verify CRC of blocks that have them, do not step over 'used' length */
for (int i = 0; i < ARRAY_SIZE(spd_blocks); i++) {
/* this block is not checksummed */
if (spd_blocks[i].crc_start == 0)
continue;
/* we shouldn't have this block */
if (spd_blocks[i].start + spd_blocks[i].len > spd_bytes_used)
continue;
/* check if block exists in the current schema */
if (!block_exists(spd_blocks[i].type, spd[3]))
continue;
if (!verify_block(&spd_blocks[i], spd)) {
printk(BIOS_ERR, "CRC failed for block %d\n", i);
return SPD_STATUS_CRC_ERROR;
}
}
dimm->dram_type = SPD_MEMORY_TYPE_DDR4_SDRAM;
dimm->dimm_type = spd[3] & ((1 << 4) - 1);
reg8 = spd[13] & ((1 << 4) - 1);
dimm->bus_width = reg8;
bus_width = 8 << (reg8 & ((1 << 3) - 1));
reg8 = spd[12] & ((1 << 3) - 1);
dimm->sdram_width = reg8;
sdram_width = 4 << reg8;
reg8 = spd[4] & ((1 << 4) - 1);
dimm->cap_per_die_mbit = reg8;
cap_per_die_mbit = (1 << reg8) * 256;
reg8 = (spd[12] >> 3) & ((1 << 3) - 1);
dimm->ranks = reg8 + 1;
if (!bus_width || !sdram_width) {
printk(BIOS_ERR, "SPD information is invalid");
dimm->size_mb = 0;
return SPD_STATUS_INVALID;
}
/* seems to be only one, in mV */
dimm->vdd_voltage = 1200;
/* calculate size */
dimm->size_mb = cap_per_die_mbit / 8 * bus_width / sdram_width * dimm->ranks;
/* make sure we have the manufacturing information block */
if (spd_bytes_used > 320) {
dimm->manufacturer_id = (spd[351] << 8) | spd[350];
memcpy(dimm->part_number, &spd[329], SPD_DDR4_PART_LEN);
dimm->part_number[SPD_DDR4_PART_LEN] = 0;
memcpy(dimm->serial_number, &spd[325], sizeof(dimm->serial_number));
}
return SPD_STATUS_OK;
}
enum cb_err spd_add_smbios17_ddr4(const u8 channel, const u8 slot, const u16 selected_freq,
const struct dimm_attr_ddr4_st *info)
{
struct memory_info *mem_info;
struct dimm_info *dimm;
/*
* Allocate CBMEM area for DIMM information used to populate SMBIOS
* table 17
*/
mem_info = cbmem_find(CBMEM_ID_MEMINFO);
if (!mem_info) {
mem_info = cbmem_add(CBMEM_ID_MEMINFO, sizeof(*mem_info));
printk(BIOS_DEBUG, "CBMEM entry for DIMM info: %p\n", mem_info);
if (!mem_info)
return CB_ERR;
memset(mem_info, 0, sizeof(*mem_info));
}
if (mem_info->dimm_cnt >= ARRAY_SIZE(mem_info->dimm)) {
printk(BIOS_WARNING, "BUG: Too many DIMM infos for %s.\n", __func__);
return CB_ERR;
}
dimm = &mem_info->dimm[mem_info->dimm_cnt];
if (info->size_mb) {
dimm->ddr_type = MEMORY_TYPE_DDR4;
dimm->ddr_frequency = selected_freq;
dimm->dimm_size = info->size_mb;
dimm->channel_num = channel;
dimm->rank_per_dimm = info->ranks;
dimm->dimm_num = slot;
memcpy(dimm->module_part_number, info->part_number, SPD_DDR4_PART_LEN);
dimm->mod_id = info->manufacturer_id;
switch (info->dimm_type) {
case SPD_DDR4_DIMM_TYPE_SO_DIMM:
dimm->mod_type = DDR4_SPD_SODIMM;
break;
case SPD_DDR4_DIMM_TYPE_72B_SO_RDIMM:
dimm->mod_type = DDR4_SPD_72B_SO_RDIMM;
break;
case SPD_DDR4_DIMM_TYPE_UDIMM:
dimm->mod_type = DDR4_SPD_UDIMM;
break;
case SPD_DDR4_DIMM_TYPE_RDIMM:
dimm->mod_type = DDR4_SPD_RDIMM;
break;
default:
dimm->mod_type = SPD_UNDEFINED;
break;
}
dimm->bus_width = info->bus_width;
memcpy(dimm->serial, info->serial_number,
MIN(sizeof(dimm->serial), sizeof(info->serial_number)));
dimm->vdd_voltage = info->vdd_voltage;
mem_info->dimm_cnt++;
}
return CB_SUCCESS;
}