blob: a6498fb1c3d15c46e45a242e709bc8f61329f6c2 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
#include <acpi/acpigen.h>
#include <device/mmio.h>
#include <console/console.h>
#include <device/device.h>
#include <device/i2c_bus.h>
#include <device/i2c_simple.h>
#include <string.h>
#include <timer.h>
#include "dw_i2c.h"
/* Use a ~10ms timeout for various operations */
#define DW_I2C_TIMEOUT_US 10000
/* High and low times in different speed modes (in ns) */
enum {
/* SDA Hold Time */
DEFAULT_SDA_HOLD_TIME = 300,
/* Standard Speed */
MIN_SS_SCL_HIGHTIME = 4000,
MIN_SS_SCL_LOWTIME = 4700,
/* Fast Speed */
MIN_FS_SCL_HIGHTIME = 600,
MIN_FS_SCL_LOWTIME = 1300,
/* Fast Plus Speed */
MIN_FP_SCL_HIGHTIME = 260,
MIN_FP_SCL_LOWTIME = 500,
/* High Speed */
MIN_HS_SCL_HIGHTIME = 60,
MIN_HS_SCL_LOWTIME = 160,
};
/* Frequency represented as ticks per ns. Can also be used to calculate
* the number of ticks to meet a time target or the period. */
struct freq {
uint32_t ticks;
uint32_t ns;
};
/* Control register definitions */
enum {
CONTROL_MASTER_MODE = (1 << 0),
CONTROL_SPEED_SS = (1 << 1),
CONTROL_SPEED_FS = (1 << 2),
CONTROL_SPEED_HS = (3 << 1),
CONTROL_SPEED_MASK = (3 << 1),
CONTROL_10BIT_SLAVE = (1 << 3),
CONTROL_10BIT_MASTER = (1 << 4),
CONTROL_RESTART_ENABLE = (1 << 5),
CONTROL_SLAVE_DISABLE = (1 << 6),
};
/* Command/Data register definitions */
enum {
CMD_DATA_CMD = (1 << 8),
CMD_DATA_STOP = (1 << 9),
};
/* Status register definitions */
enum {
STATUS_ACTIVITY = (1 << 0),
STATUS_TX_FIFO_NOT_FULL = (1 << 1),
STATUS_TX_FIFO_EMPTY = (1 << 2),
STATUS_RX_FIFO_NOT_EMPTY = (1 << 3),
STATUS_RX_FIFO_FULL = (1 << 4),
STATUS_MASTER_ACTIVITY = (1 << 5),
STATUS_SLAVE_ACTIVITY = (1 << 6),
};
/* Enable register definitions */
enum {
ENABLE_CONTROLLER = (1 << 0),
};
/* Interrupt status register definitions */
enum {
INTR_STAT_RX_UNDER = (1 << 0),
INTR_STAT_RX_OVER = (1 << 1),
INTR_STAT_RX_FULL = (1 << 2),
INTR_STAT_TX_OVER = (1 << 3),
INTR_STAT_TX_EMPTY = (1 << 4),
INTR_STAT_RD_REQ = (1 << 5),
INTR_STAT_TX_ABORT = (1 << 6),
INTR_STAT_RX_DONE = (1 << 7),
INTR_STAT_ACTIVITY = (1 << 8),
INTR_STAT_STOP_DET = (1 << 9),
INTR_STAT_START_DET = (1 << 10),
INTR_STAT_GEN_CALL = (1 << 11),
};
/* I2C Controller MMIO register space */
struct dw_i2c_regs {
uint32_t control; /* 0x0 */
uint32_t target_addr; /* 0x4 */
uint32_t slave_addr; /* 0x8 */
uint32_t master_addr; /* 0xc */
uint32_t cmd_data; /* 0x10 */
uint32_t ss_scl_hcnt; /* 0x14 */
uint32_t ss_scl_lcnt; /* 0x18 */
uint32_t fs_scl_hcnt; /* 0x1c */
uint32_t fs_scl_lcnt; /* 0x20 */
uint32_t hs_scl_hcnt; /* 0x24 */
uint32_t hs_scl_lcnt; /* 0x28 */
uint32_t intr_stat; /* 0x2c */
uint32_t intr_mask; /* 0x30 */
uint32_t raw_intr_stat; /* 0x34 */
uint32_t rx_thresh; /* 0x38 */
uint32_t tx_thresh; /* 0x3c */
uint32_t clear_intr; /* 0x40 */
uint32_t clear_rx_under_intr; /* 0x44 */
uint32_t clear_rx_over_intr; /* 0x48 */
uint32_t clear_tx_over_intr; /* 0x4c */
uint32_t clear_rd_req_intr; /* 0x50 */
uint32_t clear_tx_abrt_intr; /* 0x54 */
uint32_t clear_rx_done_intr; /* 0x58 */
uint32_t clear_activity_intr; /* 0x5c */
uint32_t clear_stop_det_intr; /* 0x60 */
uint32_t clear_start_det_intr; /* 0x64 */
uint32_t clear_gen_call_intr; /* 0x68 */
uint32_t enable; /* 0x6c */
uint32_t status; /* 0x70 */
uint32_t tx_level; /* 0x74 */
uint32_t rx_level; /* 0x78 */
uint32_t sda_hold; /* 0x7c */
uint32_t tx_abort_source; /* 0x80 */
uint32_t slv_data_nak_only; /* 0x84 */
uint32_t dma_cr; /* 0x88 */
uint32_t dma_tdlr; /* 0x8c */
uint32_t dma_rdlr; /* 0x90 */
uint32_t sda_setup; /* 0x94 */
uint32_t ack_general_call; /* 0x98 */
uint32_t enable_status; /* 0x9c */
uint32_t fs_spklen; /* 0xa0 */
uint32_t hs_spklen; /* 0xa4 */
uint32_t clr_restart_det; /* 0xa8 */
uint32_t reserved[18]; /* 0xac - 0xf0 */
uint32_t comp_param1; /* 0xf4 */
uint32_t comp_version; /* 0xf8 */
uint32_t comp_type; /* 0xfc */
} __packed;
/* Constant value defined in the DesignWare DW_apb_i2c Databook. */
#define DW_I2C_COMP_TYPE 0x44570140
static const struct i2c_descriptor {
enum i2c_speed speed;
struct freq freq;
int min_thigh_ns;
int min_tlow_ns;
} speed_descriptors[] = {
{
.speed = I2C_SPEED_STANDARD,
.freq = {
.ticks = 100,
.ns = 1000*1000,
},
.min_thigh_ns = MIN_SS_SCL_HIGHTIME,
.min_tlow_ns = MIN_SS_SCL_LOWTIME,
},
{
.speed = I2C_SPEED_FAST,
.freq = {
.ticks = 400,
.ns = 1000*1000,
},
.min_thigh_ns = MIN_FS_SCL_HIGHTIME,
.min_tlow_ns = MIN_FS_SCL_LOWTIME,
},
{
.speed = I2C_SPEED_FAST_PLUS,
.freq = {
.ticks = 1,
.ns = 1000,
},
.min_thigh_ns = MIN_FP_SCL_HIGHTIME,
.min_tlow_ns = MIN_FP_SCL_LOWTIME,
},
{
/* 100pF max capacitance */
.speed = I2C_SPEED_HIGH,
.freq = {
.ticks = 3400,
.ns = 1000*1000,
},
.min_thigh_ns = MIN_HS_SCL_HIGHTIME,
.min_tlow_ns = MIN_HS_SCL_LOWTIME,
},
};
static const struct soc_clock {
int clk_speed_mhz;
struct freq freq;
} soc_clocks[] = {
{
.clk_speed_mhz = 120,
.freq = {
.ticks = 120,
.ns = 1000,
},
},
{
.clk_speed_mhz = 133,
.freq = {
.ticks = 400,
.ns = 3000,
},
},
{
.clk_speed_mhz = 150,
.freq = {
.ticks = 600,
.ns = 4000,
},
},
{
.clk_speed_mhz = 216,
.freq = {
.ticks = 1080,
.ns = 5000,
},
},
};
static const struct i2c_descriptor *get_bus_descriptor(enum i2c_speed speed)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(speed_descriptors); i++)
if (speed == speed_descriptors[i].speed)
return &speed_descriptors[i];
return NULL;
}
static const struct soc_clock *get_soc_descriptor(int ic_clk)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(soc_clocks); i++)
if (ic_clk == soc_clocks[i].clk_speed_mhz)
return &soc_clocks[i];
return NULL;
}
static int counts_from_time(const struct freq *f, int ns)
{
return DIV_ROUND_UP(f->ticks * ns, f->ns);
}
static int counts_from_freq(const struct freq *fast, const struct freq *slow)
{
return DIV_ROUND_UP(fast->ticks * slow->ns, fast->ns * slow->ticks);
}
/* Enable this I2C controller */
static void dw_i2c_enable(struct dw_i2c_regs *regs)
{
uint32_t enable = read32(&regs->enable);
if (!(enable & ENABLE_CONTROLLER))
write32(&regs->enable, enable | ENABLE_CONTROLLER);
}
/* Disable this I2C controller */
static int dw_i2c_disable(struct dw_i2c_regs *regs)
{
uint32_t enable = read32(&regs->enable);
if (enable & ENABLE_CONTROLLER) {
struct stopwatch sw;
write32(&regs->enable, enable & ~ENABLE_CONTROLLER);
/* Wait for enable bit to clear */
stopwatch_init_usecs_expire(&sw, DW_I2C_TIMEOUT_US);
while (read32(&regs->enable_status) & ENABLE_CONTROLLER)
if (stopwatch_expired(&sw))
return -1;
}
return 0;
}
/* Wait for this I2C controller to go idle for transmit */
static int dw_i2c_wait_for_bus_idle(struct dw_i2c_regs *regs)
{
struct stopwatch sw;
/* Start timeout for up to 16 bytes in FIFO */
stopwatch_init_usecs_expire(&sw, 16 * DW_I2C_TIMEOUT_US);
while (!stopwatch_expired(&sw)) {
uint32_t status = read32(&regs->status);
/* Check for master activity and keep waiting */
if (status & STATUS_MASTER_ACTIVITY)
continue;
/* Check for TX FIFO empty to indicate TX idle */
if (status & STATUS_TX_FIFO_EMPTY)
return 0;
}
/* Timed out while waiting for bus to go idle */
return -1;
}
/* Transfer one byte of one segment, sending stop bit if requested */
static int dw_i2c_transfer_byte(struct dw_i2c_regs *regs,
const struct i2c_msg *segment,
size_t byte, int send_stop)
{
struct stopwatch sw;
uint32_t cmd = CMD_DATA_CMD; /* Read op */
stopwatch_init_usecs_expire(&sw, DW_I2C_TIMEOUT_US);
if (!(segment->flags & I2C_M_RD)) {
/* Write op only: Wait for FIFO not full */
while (!(read32(&regs->status) & STATUS_TX_FIFO_NOT_FULL)) {
if (stopwatch_expired(&sw)) {
printk(BIOS_ERR, "I2C transmit timeout\n");
return -1;
}
}
cmd = segment->buf[byte];
}
/* Send stop on last byte, if desired */
if (send_stop && byte == segment->len - 1)
cmd |= CMD_DATA_STOP;
write32(&regs->cmd_data, cmd);
if (segment->flags & I2C_M_RD) {
/* Read op only: Wait for FIFO data and store it */
while (!(read32(&regs->status) & STATUS_RX_FIFO_NOT_EMPTY)) {
if (stopwatch_expired(&sw)) {
printk(BIOS_ERR, "I2C receive timeout\n");
return -1;
}
}
segment->buf[byte] = read32(&regs->cmd_data);
}
return 0;
}
static int _dw_i2c_transfer(unsigned int bus, const struct i2c_msg *segments,
size_t count)
{
struct stopwatch sw;
struct dw_i2c_regs *regs;
size_t byte;
int ret = -1;
regs = (struct dw_i2c_regs *)dw_i2c_base_address(bus);
if (!regs) {
printk(BIOS_ERR, "I2C bus %u base address not found\n", bus);
return -1;
}
/* The assumption is that the host controller is disabled -- either
after running this function or from performing the initialization
sequence in dw_i2c_init(). */
/* Set target slave address */
write32(&regs->target_addr, segments->slave);
dw_i2c_enable(regs);
/* Process each segment */
while (count--) {
if (CONFIG(DRIVERS_I2C_DESIGNWARE_DEBUG)) {
printk(BIOS_DEBUG, "i2c %u:%02x %s %d bytes : ",
bus, segments->slave,
(segments->flags & I2C_M_RD) ? "R" : "W",
segments->len);
}
/* Read or write each byte in segment */
for (byte = 0; byte < segments->len; byte++) {
/*
* Set stop condition on final segment only.
* Repeated start will be automatically generated
* by the controller on R->W or W->R switch.
*/
if (dw_i2c_transfer_byte(regs, segments, byte,
count == 0) < 0) {
printk(BIOS_ERR, "I2C %s failed: bus %u "
"addr 0x%02x\n",
(segments->flags & I2C_M_RD) ?
"read" : "write", bus, segments->slave);
goto out;
}
}
if (CONFIG(DRIVERS_I2C_DESIGNWARE_DEBUG)) {
int j;
for (j = 0; j < segments->len; j++)
printk(BIOS_DEBUG, "%02x ", segments->buf[j]);
printk(BIOS_DEBUG, "\n");
}
segments++;
}
/* Wait for interrupt status to indicate transfer is complete */
stopwatch_init_usecs_expire(&sw, DW_I2C_TIMEOUT_US);
while (!(read32(&regs->raw_intr_stat) & INTR_STAT_STOP_DET)) {
if (stopwatch_expired(&sw)) {
printk(BIOS_ERR, "I2C stop bit not received\n");
goto out;
}
}
/* Read to clear INTR_STAT_STOP_DET */
read32(&regs->clear_stop_det_intr);
/* Check TX abort */
if (read32(&regs->raw_intr_stat) & INTR_STAT_TX_ABORT) {
printk(BIOS_ERR, "I2C TX abort detected (%08x)\n",
read32(&regs->tx_abort_source));
/* clear INTR_STAT_TX_ABORT */
read32(&regs->clear_tx_abrt_intr);
goto out;
}
/* Wait for the bus to go idle */
if (dw_i2c_wait_for_bus_idle(regs)) {
printk(BIOS_ERR, "I2C timeout waiting for bus %u idle\n", bus);
goto out;
}
/* Flush the RX FIFO in case it is not empty */
stopwatch_init_usecs_expire(&sw, 16 * DW_I2C_TIMEOUT_US);
while (read32(&regs->status) & STATUS_RX_FIFO_NOT_EMPTY) {
if (stopwatch_expired(&sw)) {
printk(BIOS_ERR, "I2C timeout flushing RX FIFO\n");
goto out;
}
read32(&regs->cmd_data);
}
ret = 0;
out:
read32(&regs->clear_intr);
dw_i2c_disable(regs);
return ret;
}
int dw_i2c_transfer(unsigned int bus, const struct i2c_msg *msg, size_t count)
{
const struct i2c_msg *orig_msg = msg;
size_t i;
size_t start;
uint16_t addr;
if (count == 0 || !msg)
return -1;
/* Break up the transfers at the differing slave address boundary. */
addr = orig_msg->slave;
for (i = 0, start = 0; i < count; i++, msg++) {
if (addr != msg->slave) {
if (_dw_i2c_transfer(bus, &orig_msg[start], i - start))
return -1;
start = i;
addr = msg->slave;
}
}
return _dw_i2c_transfer(bus, &orig_msg[start], count - start);
}
/* Global I2C bus handler, defined in include/device/i2c_simple.h */
int platform_i2c_transfer(unsigned int bus, struct i2c_msg *msg, int count)
{
return dw_i2c_transfer(bus, msg, count < 0 ? 0 : count);
}
static int dw_i2c_set_speed_config(unsigned int bus,
const struct dw_i2c_speed_config *config)
{
struct dw_i2c_regs *regs;
void *hcnt_reg, *lcnt_reg;
regs = (struct dw_i2c_regs *)dw_i2c_base_address(bus);
if (!regs || !config)
return -1;
/* Nothing to do if no values are set */
if (!config->scl_lcnt && !config->scl_hcnt && !config->sda_hold)
return 0;
if (config->speed >= I2C_SPEED_HIGH) {
/* High and Fast Ultra speed */
hcnt_reg = &regs->hs_scl_hcnt;
lcnt_reg = &regs->hs_scl_lcnt;
} else if (config->speed >= I2C_SPEED_FAST) {
/* Fast and Fast-Plus speed */
hcnt_reg = &regs->fs_scl_hcnt;
lcnt_reg = &regs->fs_scl_lcnt;
} else {
/* Standard speed */
hcnt_reg = &regs->ss_scl_hcnt;
lcnt_reg = &regs->ss_scl_lcnt;
}
/* SCL count must be set after the speed is selected */
if (config->scl_hcnt)
write32(hcnt_reg, config->scl_hcnt);
if (config->scl_lcnt)
write32(lcnt_reg, config->scl_lcnt);
/* Set SDA Hold Time register */
if (config->sda_hold)
write32(&regs->sda_hold, config->sda_hold);
return 0;
}
static int dw_i2c_gen_config_rise_fall_time(struct dw_i2c_regs *regs,
enum i2c_speed speed,
const struct dw_i2c_bus_config *bcfg,
int ic_clk,
struct dw_i2c_speed_config *config)
{
const struct i2c_descriptor *bus;
const struct soc_clock *soc;
int fall_cnt, rise_cnt, min_tlow_cnt, min_thigh_cnt, spk_cnt;
int hcnt, lcnt, period_cnt, diff, tot;
int data_hold_time_ns;
bus = get_bus_descriptor(speed);
soc = get_soc_descriptor(ic_clk);
if (bus == NULL) {
printk(BIOS_ERR, "dw_i2c: invalid bus speed %d\n", speed);
return -1;
}
if (soc == NULL) {
printk(BIOS_ERR, "dw_i2c: invalid SoC clock speed %d MHz\n",
ic_clk);
return -1;
}
/* Get the proper spike suppression count based on target speed. */
if (speed >= I2C_SPEED_HIGH)
spk_cnt = read32(&regs->hs_spklen);
else
spk_cnt = read32(&regs->fs_spklen);
/* Find the period, rise, fall, min tlow, and min thigh in terms of
* counts of SoC clock. */
period_cnt = counts_from_freq(&soc->freq, &bus->freq);
rise_cnt = counts_from_time(&soc->freq, bcfg->rise_time_ns);
fall_cnt = counts_from_time(&soc->freq, bcfg->fall_time_ns);
min_tlow_cnt = counts_from_time(&soc->freq, bus->min_tlow_ns);
min_thigh_cnt = counts_from_time(&soc->freq, bus->min_thigh_ns);
printk(DW_I2C_DEBUG, "dw_i2c: SoC %d/%d ns Bus: %d/%d ns\n",
soc->freq.ticks, soc->freq.ns, bus->freq.ticks, bus->freq.ns);
printk(DW_I2C_DEBUG,
" dw_i2c: period %d rise %d fall %d tlow %d thigh %d spk %d\n",
period_cnt, rise_cnt, fall_cnt, min_tlow_cnt, min_thigh_cnt,
spk_cnt);
/*
* Back solve for hcnt and lcnt according to the following equations.
* SCL_High_time = [(HCNT + IC_*_SPKLEN + 7) * ic_clk] + SCL_Fall_time
* SCL_Low_time = [(LCNT + 1) * ic_clk] - SCL_Fall_time + SCL_Rise_time
*/
hcnt = min_thigh_cnt - fall_cnt - 7 - spk_cnt;
lcnt = min_tlow_cnt - rise_cnt + fall_cnt - 1;
if (hcnt < 0 || lcnt < 0) {
printk(BIOS_ERR, "dw_i2c: bad counts. hcnt = %d lcnt = %d\n",
hcnt, lcnt);
return -1;
}
/* Now add things back up to ensure the period is hit. If off,
* split the difference and bias to lcnt for remainder. */
tot = hcnt + lcnt + 7 + spk_cnt + rise_cnt + 1;
if (tot < period_cnt) {
diff = (period_cnt - tot) / 2;
hcnt += diff;
lcnt += diff;
tot = hcnt + lcnt + 7 + spk_cnt + rise_cnt + 1;
lcnt += period_cnt - tot;
}
config->speed = speed;
config->scl_lcnt = lcnt;
config->scl_hcnt = hcnt;
/* Use internal default unless other value is specified. */
data_hold_time_ns = DEFAULT_SDA_HOLD_TIME;
if (bcfg->data_hold_time_ns)
data_hold_time_ns = bcfg->data_hold_time_ns;
config->sda_hold = counts_from_time(&soc->freq, data_hold_time_ns);
printk(DW_I2C_DEBUG, "dw_i2c: hcnt = %d lcnt = %d sda hold = %d\n",
hcnt, lcnt, config->sda_hold);
return 0;
}
int dw_i2c_gen_speed_config(uintptr_t dw_i2c_addr,
enum i2c_speed speed,
const struct dw_i2c_bus_config *bcfg,
struct dw_i2c_speed_config *config)
{
const int ic_clk = CONFIG_DRIVERS_I2C_DESIGNWARE_CLOCK_MHZ;
struct dw_i2c_regs *regs;
int i;
regs = (struct dw_i2c_regs *)dw_i2c_addr;
_Static_assert(CONFIG_DRIVERS_I2C_DESIGNWARE_CLOCK_MHZ != 0,
"DRIVERS_I2C_DESIGNWARE_CLOCK_MHZ can't be zero!");
/* Apply board specific override for this speed if found */
for (i = 0; i < DW_I2C_SPEED_CONFIG_COUNT; i++) {
if (bcfg->speed_config[i].speed != speed)
continue;
memcpy(config, &bcfg->speed_config[i], sizeof(*config));
return 0;
}
/* Use the time calculation. */
return dw_i2c_gen_config_rise_fall_time(regs, speed, bcfg, ic_clk, config);
}
static int dw_i2c_set_speed(unsigned int bus, enum i2c_speed speed,
const struct dw_i2c_bus_config *bcfg)
{
struct dw_i2c_regs *regs;
struct dw_i2c_speed_config config;
uint32_t control;
/* Clock must be provided by Kconfig */
regs = (struct dw_i2c_regs *)dw_i2c_base_address(bus);
if (!regs || !speed)
return -1;
control = read32(&regs->control);
control &= ~CONTROL_SPEED_MASK;
if (speed >= I2C_SPEED_HIGH) {
/* High and Fast-Ultra speed share config registers */
control |= CONTROL_SPEED_HS;
} else if (speed >= I2C_SPEED_FAST) {
/* Fast speed and Fast-Plus */
control |= CONTROL_SPEED_FS;
} else {
/* Standard speed */
control |= CONTROL_SPEED_SS;
}
/* Generate speed config based on clock */
if (dw_i2c_gen_speed_config((uintptr_t)regs, speed, bcfg, &config) < 0)
return -1;
/* Select this speed in the control register */
write32(&regs->control, control);
/* Write the speed config that was generated earlier */
dw_i2c_set_speed_config(bus, &config);
return 0;
}
/*
* Initialize this bus controller and set the speed.
*
* The bus speed can be passed in Hz or using values from device/i2c.h and
* will default to I2C_SPEED_FAST if it is not provided.
*/
int dw_i2c_init(unsigned int bus, const struct dw_i2c_bus_config *bcfg)
{
struct dw_i2c_regs *regs;
enum i2c_speed speed;
if (!bcfg)
return -1;
speed = bcfg->speed ? : I2C_SPEED_FAST;
regs = (struct dw_i2c_regs *)dw_i2c_base_address(bus);
if (!regs) {
printk(BIOS_ERR, "I2C bus %u base address not found\n", bus);
return -1;
}
if (read32(&regs->comp_type) != DW_I2C_COMP_TYPE) {
printk(BIOS_ERR, "I2C bus %u has unknown type 0x%x.\n", bus,
read32(&regs->comp_type));
return -1;
}
printk(BIOS_DEBUG, "I2C bus %u version 0x%x\n", bus, read32(&regs->comp_version));
if (dw_i2c_disable(regs) < 0) {
printk(BIOS_ERR, "I2C timeout disabling bus %u\n", bus);
return -1;
}
/* Put controller in master mode with restart enabled */
write32(&regs->control, CONTROL_MASTER_MODE | CONTROL_SLAVE_DISABLE |
CONTROL_RESTART_ENABLE);
/* Set bus speed to FAST by default */
if (dw_i2c_set_speed(bus, speed, bcfg) < 0) {
printk(BIOS_ERR, "I2C failed to set speed for bus %u\n", bus);
return -1;
}
/* Set RX/TX thresholds to smallest values */
write32(&regs->rx_thresh, 0);
write32(&regs->tx_thresh, 0);
/* Enable stop detection and TX abort interrupt */
write32(&regs->intr_mask, INTR_STAT_STOP_DET | INTR_STAT_TX_ABORT);
printk(BIOS_INFO, "DW I2C bus %u at %p (%u KHz)\n",
bus, regs, speed / KHz);
return 0;
}
/*
* Write ACPI object to describe speed configuration.
*
* ACPI Object: Name ("xxxx", Package () { scl_lcnt, scl_hcnt, sda_hold }
*
* SSCN: I2C_SPEED_STANDARD
* FMCN: I2C_SPEED_FAST
* FPCN: I2C_SPEED_FAST_PLUS
* HSCN: I2C_SPEED_HIGH
*/
static void dw_i2c_acpi_write_speed_config(
const struct dw_i2c_speed_config *config)
{
if (!config)
return;
if (!config->scl_lcnt && !config->scl_hcnt && !config->sda_hold)
return;
if (config->speed >= I2C_SPEED_HIGH)
acpigen_write_name("HSCN");
else if (config->speed >= I2C_SPEED_FAST_PLUS)
acpigen_write_name("FPCN");
else if (config->speed >= I2C_SPEED_FAST)
acpigen_write_name("FMCN");
else
acpigen_write_name("SSCN");
/* Package () { scl_lcnt, scl_hcnt, sda_hold } */
acpigen_write_package(3);
acpigen_write_word(config->scl_hcnt);
acpigen_write_word(config->scl_lcnt);
acpigen_write_dword(config->sda_hold);
acpigen_pop_len();
}
/*
* The device should already be enabled and out of reset,
* either from early init in coreboot or SiliconInit in FSP.
*/
void dw_i2c_dev_init(struct device *dev)
{
const struct dw_i2c_bus_config *config;
int bus = dw_i2c_soc_dev_to_bus(dev);
if (bus < 0)
return;
config = dw_i2c_get_soc_cfg(bus);
if (!config)
return;
dw_i2c_init(bus, config);
}
/*
* Generate I2C timing information into the SSDT for the OS driver to consume,
* optionally applying override values provided by the caller.
*/
void dw_i2c_acpi_fill_ssdt(const struct device *dev)
{
const struct dw_i2c_bus_config *bcfg;
uintptr_t dw_i2c_addr;
struct dw_i2c_speed_config sgen;
int bus;
const char *path;
unsigned int speed, i;
bus = dw_i2c_soc_dev_to_bus(dev);
if (bus < 0)
return;
bcfg = dw_i2c_get_soc_cfg(bus);
if (!bcfg)
return;
dw_i2c_addr = dw_i2c_base_address(bus);
if (!dw_i2c_addr)
return;
path = acpi_device_path(dev);
if (!path)
return;
/* Ensure a default speed is available */
speed = (bcfg->speed == 0) ? I2C_SPEED_FAST : bcfg->speed;
/* Report currently used timing values for the OS driver */
acpigen_write_scope(path);
if (dw_i2c_gen_speed_config(dw_i2c_addr, speed, bcfg, &sgen) >= 0) {
dw_i2c_acpi_write_speed_config(&sgen);
}
/* Now check if there are more speed settings available and report them as well. */
for (i = 0; i < DW_I2C_SPEED_CONFIG_COUNT; i++) {
if (bcfg->speed_config[i].speed && speed != bcfg->speed_config[i].speed)
dw_i2c_acpi_write_speed_config(&bcfg->speed_config[i]);
}
acpigen_write_scope_end();
}
static int dw_i2c_dev_transfer(struct device *dev,
const struct i2c_msg *msg, size_t count)
{
return dw_i2c_transfer(dw_i2c_soc_dev_to_bus(dev), msg, count);
}
const struct i2c_bus_operations dw_i2c_bus_ops = {
.transfer = dw_i2c_dev_transfer,
};