blob: a37a9da8e71193e3b430ced563de9552ff6967cb [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2007 Advanced Micro Devices, Inc.
* Copyright (C) 2009-2010 coresystems GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <device/mmio.h>
#include <arch/interrupt.h>
#include <arch/registers.h>
#include <boot/coreboot_tables.h>
#include <console/console.h>
#include <delay.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <pc80/i8259.h>
#include <pc80/i8254.h>
#include <string.h>
#include <vbe.h>
/* we use x86emu's register file representation */
#include <x86emu/regs.h>
#include "x86.h"
typedef struct {
char signature[4];
u16 version;
u8 *oem_string_ptr;
u32 capabilities;
u32 video_mode_ptr;
u16 total_memory;
char reserved[236];
} __packed vbe_info_block;
/* The following symbols cannot be used directly. They need to be fixed up
* to point to the correct address location after the code has been copied
* to REALMODE_BASE. Absolute symbols are not used because those symbols are
* relocated when a relocatable ramstage is enabled.
*/
extern unsigned char __realmode_call, __realmode_interrupt;
extern unsigned char __realmode_buffer;
#define PTR_TO_REAL_MODE(sym)\
(void *)(REALMODE_BASE + ((char *)&(sym) - (char *)&__realmode_code))
/* to have a common register file for interrupt handlers */
X86EMU_sysEnv _X86EMU_env;
unsigned int (*realmode_call)(u32 addr, u32 eax, u32 ebx, u32 ecx, u32 edx,
u32 esi, u32 edi) asmlinkage;
unsigned int (*realmode_interrupt)(u32 intno, u32 eax, u32 ebx, u32 ecx,
u32 edx, u32 esi, u32 edi) asmlinkage;
static void setup_realmode_code(void)
{
memcpy(REALMODE_BASE, &__realmode_code, __realmode_code_size);
/* Ensure the global pointers are relocated properly. */
realmode_call = PTR_TO_REAL_MODE(__realmode_call);
realmode_interrupt = PTR_TO_REAL_MODE(__realmode_interrupt);
printk(BIOS_SPEW, "Real mode stub @%p: %d bytes\n", REALMODE_BASE,
__realmode_code_size);
}
static void setup_rombios(void)
{
const char date[] = "06/11/99";
memcpy((void *)0xffff5, &date, 8);
const char ident[] = "PCI_ISA";
memcpy((void *)0xfffd9, &ident, 7);
/* system model: IBM-AT */
write8((void *)0xffffe, 0xfc);
}
static int (*intXX_handler[256])(void) = { NULL };
static int intXX_exception_handler(void)
{
/* compatibility shim */
struct eregs reg_info = {
.eax=X86_EAX,
.ecx=X86_ECX,
.edx=X86_EDX,
.ebx=X86_EBX,
.esp=X86_ESP,
.ebp=X86_EBP,
.esi=X86_ESI,
.edi=X86_EDI,
.vector=M.x86.intno,
.error_code=0, // FIXME: fill in
.eip=X86_EIP,
.cs=X86_CS,
.eflags=X86_EFLAGS
};
struct eregs *regs = &reg_info;
printk(BIOS_INFO, "Oops, exception %d while executing option rom\n",
regs->vector);
x86_exception(regs); // Call coreboot exception handler
return 0; // Never really returns
}
static int intXX_unknown_handler(void)
{
printk(BIOS_INFO, "Unsupported software interrupt #0x%x eax 0x%x\n",
M.x86.intno, X86_EAX);
return -1;
}
/* setup interrupt handlers for mainboard */
void mainboard_interrupt_handlers(int intXX, int (*intXX_func)(void))
{
intXX_handler[intXX] = intXX_func;
}
static void setup_interrupt_handlers(void)
{
int i;
/* The first 16 intXX functions are not BIOS services,
* but the CPU-generated exceptions ("hardware interrupts")
*/
for (i = 0; i < 0x10; i++)
intXX_handler[i] = &intXX_exception_handler;
/* Mark all other intXX calls as unknown first */
for (i = 0x10; i < 0x100; i++)
{
/* If the mainboard_interrupt_handler isn't called first.
*/
if(!intXX_handler[i])
{
/* Now set the default functions that are actually
* needed to initialize the option roms. This is
* very slick, as it allows us to implement mainboard
* specific interrupt handlers, such as the int15.
*/
switch (i) {
case 0x10:
intXX_handler[0x10] = &int10_handler;
break;
case 0x12:
intXX_handler[0x12] = &int12_handler;
break;
case 0x16:
intXX_handler[0x16] = &int16_handler;
break;
case 0x1a:
intXX_handler[0x1a] = &int1a_handler;
break;
default:
intXX_handler[i] = &intXX_unknown_handler;
break;
}
}
}
}
static void write_idt_stub(void *target, u8 intnum)
{
unsigned char *codeptr;
codeptr = (unsigned char *) target;
memcpy(codeptr, &__idt_handler, __idt_handler_size);
codeptr[3] = intnum; /* modify int# in the code stub. */
}
static void setup_realmode_idt(void)
{
struct realmode_idt *idts = (struct realmode_idt *) 0;
int i;
/* Copy IDT stub code for each interrupt. This might seem wasteful
* but it is really simple
*/
for (i = 0; i < 256; i++) {
idts[i].cs = 0;
idts[i].offset = 0x1000 + (i * __idt_handler_size);
write_idt_stub((void *)((uintptr_t)idts[i].offset), i);
}
/* Many option ROMs use the hard coded interrupt entry points in the
* system bios. So install them at the known locations.
*/
/* int42 is the relocated int10 */
write_idt_stub((void *)0xff065, 0x42);
/* BIOS Int 11 Handler F000:F84D */
write_idt_stub((void *)0xff84d, 0x11);
/* BIOS Int 12 Handler F000:F841 */
write_idt_stub((void *)0xff841, 0x12);
/* BIOS Int 13 Handler F000:EC59 */
write_idt_stub((void *)0xfec59, 0x13);
/* BIOS Int 14 Handler F000:E739 */
write_idt_stub((void *)0xfe739, 0x14);
/* BIOS Int 15 Handler F000:F859 */
write_idt_stub((void *)0xff859, 0x15);
/* BIOS Int 16 Handler F000:E82E */
write_idt_stub((void *)0xfe82e, 0x16);
/* BIOS Int 17 Handler F000:EFD2 */
write_idt_stub((void *)0xfefd2, 0x17);
/* ROM BIOS Int 1A Handler F000:FE6E */
write_idt_stub((void *)0xffe6e, 0x1a);
}
#if CONFIG(FRAMEBUFFER_SET_VESA_MODE)
static vbe_mode_info_t mode_info;
static int mode_info_valid;
static int vbe_mode_info_valid(void)
{
return mode_info_valid;
}
const vbe_mode_info_t *vbe_mode_info(void)
{
if (!mode_info_valid || !mode_info.vesa.phys_base_ptr)
return NULL;
return &mode_info;
}
static int vbe_check_for_failure(int ah);
static void vbe_get_ctrl_info(vbe_info_block *info)
{
char *buffer = PTR_TO_REAL_MODE(__realmode_buffer);
u16 buffer_seg = (((unsigned long)buffer) >> 4) & 0xff00;
u16 buffer_adr = ((unsigned long)buffer) & 0xffff;
X86_EAX = realmode_interrupt(0x10, VESA_GET_INFO, 0x0000, 0x0000,
0x0000, buffer_seg, buffer_adr);
/* If the VBE function completed successfully, 0x0 is returned in AH */
if (X86_AH) {
printk(BIOS_ERR, "\nError: In %s function\n", __func__);
return;
}
memcpy(info, buffer, sizeof(vbe_info_block));
}
static void vbe_oprom_list_supported_mode(uint16_t *video_mode_ptr)
{
uint16_t mode;
printk(BIOS_DEBUG, "Supported Video Mode list for OpRom:\n");
do {
mode = *video_mode_ptr++;
if (mode != 0xffff)
printk(BIOS_DEBUG, "%x\n", mode);
} while (mode != 0xffff);
}
static void vbe_oprom_supported_mode_list(void)
{
uint16_t segment, offset;
vbe_info_block info;
vbe_get_ctrl_info(&info);
offset = info.video_mode_ptr;
segment = info.video_mode_ptr >> 16;
vbe_oprom_list_supported_mode((uint16_t *)((segment << 4) + offset));
}
/*
* EAX register is used to indicate the completion status upon return from
* VBE function in real mode.
*
* If the VBE function completed successfully then 0x0 is returned in the AH
* register. Otherwise the AH register is set with the nature of the failure:
*
* AH == 0x00: Function call successful
* AH == 0x01: Function call failed
* AH == 0x02: Function is not supported in the current HW configuration
* AH == 0x03: Function call invalid in current video mode
*
* Return 0 on success else -1 for failure
*/
static int vbe_check_for_failure(int ah)
{
int status;
switch (ah) {
case 0x0:
status = 0;
break;
case 1:
printk(BIOS_DEBUG, "VBE: Function call failed!\n");
status = -1;
break;
case 2:
printk(BIOS_DEBUG, "VBE: Function is not supported!\n");
status = -1;
break;
case 3:
default:
printk(BIOS_DEBUG, "VBE: Unsupported video mode %x!\n",
CONFIG_FRAMEBUFFER_VESA_MODE);
vbe_oprom_supported_mode_list();
status = -1;
break;
}
return status;
}
static u8 vbe_get_mode_info(vbe_mode_info_t * mi)
{
printk(BIOS_DEBUG, "VBE: Getting information about VESA mode %04x\n",
mi->video_mode);
char *buffer = PTR_TO_REAL_MODE(__realmode_buffer);
u16 buffer_seg = (((unsigned long)buffer) >> 4) & 0xff00;
u16 buffer_adr = ((unsigned long)buffer) & 0xffff;
X86_EAX = realmode_interrupt(0x10, VESA_GET_MODE_INFO, 0x0000,
mi->video_mode, 0x0000, buffer_seg, buffer_adr);
if (vbe_check_for_failure(X86_AH)) {
printk(BIOS_ERR, "\nError: In %s function\n", __func__);
mi->video_mode = 0;
return 0xff;
}
memcpy(mi->mode_info_block, buffer, sizeof(mi->mode_info_block));
mode_info_valid = 1;
return 0;
}
static u8 vbe_set_mode(vbe_mode_info_t * mi)
{
printk(BIOS_DEBUG, "VBE: Setting VESA mode %04x\n", mi->video_mode);
// request linear framebuffer mode
mi->video_mode |= (1 << 14);
// request clearing of framebuffer
mi->video_mode &= ~(1 << 15);
X86_EAX = realmode_interrupt(0x10, VESA_SET_MODE, mi->video_mode,
0x0000, 0x0000, 0x0000, 0x0000);
if (vbe_check_for_failure(X86_AH)) {
printk(BIOS_ERR,"\nError: In %s function\n", __func__);
mi->video_mode = 0;
return 0xff;
}
return 0;
}
/* These two functions could probably even be generic between
* yabel and x86 native. TBD later.
*/
void vbe_set_graphics(void)
{
mode_info.video_mode = (1 << 14) | CONFIG_FRAMEBUFFER_VESA_MODE;
if (vbe_get_mode_info(&mode_info)) {
printk(BIOS_ERR, "VBE: Requested mode not supported./n");
return;
}
unsigned char *framebuffer =
(unsigned char *)mode_info.vesa.phys_base_ptr;
printk(BIOS_DEBUG, "VBE: resolution: %dx%d@%d\n",
le16_to_cpu(mode_info.vesa.x_resolution),
le16_to_cpu(mode_info.vesa.y_resolution),
mode_info.vesa.bits_per_pixel);
printk(BIOS_DEBUG, "VBE: framebuffer: %p\n", framebuffer);
if (!framebuffer) {
printk(BIOS_DEBUG, "VBE: Mode does not support linear "
"framebuffer\n");
return;
}
vbe_set_mode(&mode_info);
}
void vbe_textmode_console(void)
{
delay(2);
X86_EAX = realmode_interrupt(0x10, 0x0003, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000);
if (vbe_check_for_failure(X86_AH))
printk(BIOS_ERR, "\nError: In %s function\n", __func__);
}
int fill_lb_framebuffer(struct lb_framebuffer *framebuffer)
{
if (!vbe_mode_info_valid())
return -1;
framebuffer->physical_address = mode_info.vesa.phys_base_ptr;
framebuffer->x_resolution = le16_to_cpu(mode_info.vesa.x_resolution);
framebuffer->y_resolution = le16_to_cpu(mode_info.vesa.y_resolution);
framebuffer->bytes_per_line =
le16_to_cpu(mode_info.vesa.bytes_per_scanline);
framebuffer->bits_per_pixel = mode_info.vesa.bits_per_pixel;
framebuffer->red_mask_pos = mode_info.vesa.red_mask_pos;
framebuffer->red_mask_size = mode_info.vesa.red_mask_size;
framebuffer->green_mask_pos = mode_info.vesa.green_mask_pos;
framebuffer->green_mask_size = mode_info.vesa.green_mask_size;
framebuffer->blue_mask_pos = mode_info.vesa.blue_mask_pos;
framebuffer->blue_mask_size = mode_info.vesa.blue_mask_size;
framebuffer->reserved_mask_pos = mode_info.vesa.reserved_mask_pos;
framebuffer->reserved_mask_size = mode_info.vesa.reserved_mask_size;
return 0;
}
#endif
void run_bios(struct device *dev, unsigned long addr)
{
u32 num_dev = (dev->bus->secondary << 8) | dev->path.pci.devfn;
/* Setting up required hardware.
* Removing this will cause random illegal instruction exceptions
* in some option roms.
*/
setup_i8259();
setup_i8254();
/* Set up some legacy information in the F segment */
setup_rombios();
/* Set up C interrupt handlers */
setup_interrupt_handlers();
/* Set up real-mode IDT */
setup_realmode_idt();
/* Make sure the code is placed. */
setup_realmode_code();
printk(BIOS_DEBUG, "Calling Option ROM...\n");
/* TODO ES:DI Pointer to System BIOS PnP Installation Check Structure */
/* Option ROM entry point is at OPROM start + 3 */
realmode_call(addr + 0x0003, num_dev, 0xffff, 0x0000, 0xffff, 0x0, 0x0);
printk(BIOS_DEBUG, "... Option ROM returned.\n");
#if CONFIG(FRAMEBUFFER_SET_VESA_MODE)
if ((dev->class >> 8)== PCI_CLASS_DISPLAY_VGA)
vbe_set_graphics();
#endif
}
/* interrupt_handler() is called from assembler code only,
* so there is no use in putting the prototype into a header file.
*/
int asmlinkage interrupt_handler(u32 intnumber,
u32 gsfs, u32 dses,
u32 edi, u32 esi,
u32 ebp, u32 esp,
u32 ebx, u32 edx,
u32 ecx, u32 eax,
u32 cs_ip, u16 stackflags);
int asmlinkage interrupt_handler(u32 intnumber,
u32 gsfs, u32 dses,
u32 edi, u32 esi,
u32 ebp, u32 esp,
u32 ebx, u32 edx,
u32 ecx, u32 eax,
u32 cs_ip, u16 stackflags)
{
u32 ip;
u32 cs;
u32 flags;
int ret = 0;
ip = cs_ip & 0xffff;
cs = cs_ip >> 16;
flags = stackflags;
#if CONFIG(REALMODE_DEBUG)
printk(BIOS_DEBUG, "oprom: INT# 0x%x\n", intnumber);
printk(BIOS_DEBUG, "oprom: eax: %08x ebx: %08x ecx: %08x edx: %08x\n",
eax, ebx, ecx, edx);
printk(BIOS_DEBUG, "oprom: ebp: %08x esp: %08x edi: %08x esi: %08x\n",
ebp, esp, edi, esi);
printk(BIOS_DEBUG, "oprom: ip: %04x cs: %04x flags: %08x\n",
ip, cs, flags);
#endif
// Fetch arguments from the stack and put them to a place
// suitable for the interrupt handlers
X86_EAX = eax;
X86_ECX = ecx;
X86_EDX = edx;
X86_EBX = ebx;
X86_ESP = esp;
X86_EBP = ebp;
X86_ESI = esi;
X86_EDI = edi;
M.x86.intno = intnumber;
/* TODO: error_code must be stored somewhere */
X86_EIP = ip;
X86_CS = cs;
X86_EFLAGS = flags;
// Call the interrupt handler for this int#
ret = intXX_handler[intnumber]();
// Put registers back on the stack. The assembler code
// will later pop them.
// What happens here is that we force (volatile!) changing
// the values of the parameters of this function. We do this
// because we know that they stay alive on the stack after
// we leave this function. Don't say this is bollocks.
*(volatile u32 *)&eax = X86_EAX;
*(volatile u32 *)&ecx = X86_ECX;
*(volatile u32 *)&edx = X86_EDX;
*(volatile u32 *)&ebx = X86_EBX;
*(volatile u32 *)&esi = X86_ESI;
*(volatile u32 *)&edi = X86_EDI;
flags = X86_EFLAGS;
/* Pass success or error back to our caller via the CARRY flag */
if (ret) {
flags &= ~1; // no error: clear carry
}else{
printk(BIOS_DEBUG,"int%02x call returned error.\n", intnumber);
flags |= 1; // error: set carry
}
*(volatile u16 *)&stackflags = flags;
/* The assembler code doesn't actually care for the return value,
* but keep it around so its expectations are met */
return ret;
}