blob: ef54de529a42838eff2afa93ff86b5f4cae5bf68 [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2016 Damien Zammit <damien@zamaudio.com>
* Copyright (C) 2015 Timothy Pearson <tpearson@raptorengineeringinc.com>, Raptor Engineering
* Copyright (C) 2007 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <inttypes.h>
#include <arch/io.h>
#include <arch/acpi.h>
#include <device/pci.h>
#include <string.h>
#include <cbmem.h>
#include <console/console.h>
#include <northbridge/amd/amdfam10/debug.h>
#include <northbridge/amd/amdfam10/raminit.h>
#include <northbridge/amd/amdfam10/amdfam10.h>
/* Global allocation of sysinfo_car */
#include <arch/early_variables.h>
struct sys_info sysinfo_car CAR_GLOBAL;
struct mem_controller;
extern void activate_spd_rom(const struct mem_controller *ctrl);
extern int spd_read_byte(unsigned device, unsigned address);
void fam15h_switch_dct(uint32_t dev, uint8_t dct)
{
uint32_t dword;
dword = Get_NB32(dev, 0x10c);
dword &= ~0x1;
dword |= (dct & 0x1);
Set_NB32(dev, 0x10c, dword);
}
static inline void fam15h_switch_nb_pstate_config_reg(uint32_t dev, uint8_t nb_pstate)
{
uint32_t dword;
dword = Get_NB32(dev, 0x10c);
dword &= ~(0x3 << 4);
dword |= (nb_pstate & 0x3) << 4;
Set_NB32(dev, 0x10c, dword);
}
uint32_t Get_NB32_DCT(uint32_t dev, uint8_t dct, uint32_t reg)
{
if (is_fam15h()) {
/* Obtain address of function 0x1 */
uint32_t dev_map = (dev & (~(0x7 << 12))) | (0x1 << 12);
fam15h_switch_dct(dev_map, dct);
return Get_NB32(dev, reg);
} else {
return Get_NB32(dev, (0x100 * dct) + reg);
}
}
void Set_NB32_DCT(uint32_t dev, uint8_t dct, uint32_t reg, uint32_t val)
{
if (is_fam15h()) {
/* Obtain address of function 0x1 */
uint32_t dev_map = (dev & (~(0x7 << 12))) | (0x1 << 12);
fam15h_switch_dct(dev_map, dct);
Set_NB32(dev, reg, val);
} else {
Set_NB32(dev, (0x100 * dct) + reg, val);
}
}
uint32_t Get_NB32_DCT_NBPstate(uint32_t dev, uint8_t dct, uint8_t nb_pstate, uint32_t reg)
{
if (is_fam15h()) {
/* Obtain address of function 0x1 */
uint32_t dev_map = (dev & (~(0x7 << 12))) | (0x1 << 12);
fam15h_switch_dct(dev_map, dct);
fam15h_switch_nb_pstate_config_reg(dev_map, nb_pstate);
return Get_NB32(dev, reg);
} else {
return Get_NB32(dev, (0x100 * dct) + reg);
}
}
void Set_NB32_DCT_NBPstate(uint32_t dev, uint8_t dct, uint8_t nb_pstate, uint32_t reg, uint32_t val)
{
if (is_fam15h()) {
/* Obtain address of function 0x1 */
uint32_t dev_map = (dev & (~(0x7 << 12))) | (0x1 << 12);
fam15h_switch_dct(dev_map, dct);
fam15h_switch_nb_pstate_config_reg(dev_map, nb_pstate);
Set_NB32(dev, reg, val);
} else {
Set_NB32(dev, (0x100 * dct) + reg, val);
}
}
uint32_t Get_NB32_index_wait_DCT(uint32_t dev, uint8_t dct, uint32_t index_reg, uint32_t index)
{
if (is_fam15h()) {
/* Obtain address of function 0x1 */
uint32_t dev_map = (dev & (~(0x7 << 12))) | (0x1 << 12);
fam15h_switch_dct(dev_map, dct);
return Get_NB32_index_wait(dev, index_reg, index);
} else {
return Get_NB32_index_wait(dev, (0x100 * dct) + index_reg, index);
}
}
void Set_NB32_index_wait_DCT(uint32_t dev, uint8_t dct, uint32_t index_reg, uint32_t index, uint32_t data)
{
if (is_fam15h()) {
/* Obtain address of function 0x1 */
uint32_t dev_map = (dev & (~(0x7 << 12))) | (0x1 << 12);
fam15h_switch_dct(dev_map, dct);
Set_NB32_index_wait(dev, index_reg, index, data);
} else {
Set_NB32_index_wait(dev, (0x100 * dct) + index_reg, index, data);
}
}
static uint16_t voltage_index_to_mv(uint8_t index)
{
if (index & 0x8)
return 1150;
if (index & 0x4)
return 1250;
else if (index & 0x2)
return 1350;
else
return 1500;
}
uint16_t mct_MaxLoadFreq(uint8_t count, uint8_t highest_rank_count, uint8_t registered, uint8_t voltage, uint16_t freq)
{
/* FIXME
* Mainboards need to be able to specify the maximum number of DIMMs installable per channel
* For now assume a maximum of 2 DIMMs per channel can be installed
*/
uint8_t MaxDimmsInstallable = 2;
/* Return limited maximum RAM frequency */
if (IS_ENABLED(CONFIG_DIMM_DDR2)) {
if (IS_ENABLED(CONFIG_DIMM_REGISTERED) && registered) {
/* K10 BKDG Rev. 3.62 Table 53 */
if (count > 2) {
/* Limit to DDR2-533 */
if (freq > 266) {
freq = 266;
print_tf(__func__, ": More than 2 registered DIMMs on channel; limiting to DDR2-533\n");
}
}
} else {
/* K10 BKDG Rev. 3.62 Table 52 */
if (count > 1) {
/* Limit to DDR2-800 */
if (freq > 400) {
freq = 400;
print_tf(__func__, ": More than 1 unbuffered DIMM on channel; limiting to DDR2-800\n");
}
}
}
} else if (IS_ENABLED(CONFIG_DIMM_DDR3)) {
if (voltage == 0) {
printk(BIOS_DEBUG, "%s: WARNING: Mainboard DDR3 voltage unknown, assuming 1.5V!\n", __func__);
voltage = 0x1;
}
if (is_fam15h()) {
if (CONFIG_CPU_SOCKET_TYPE == 0x15) {
/* Socket G34 */
if (IS_ENABLED(CONFIG_DIMM_REGISTERED) && registered) {
/* Fam15h BKDG Rev. 3.14 Table 27 */
if (voltage & 0x4) {
/* 1.25V */
if (count > 1) {
if (highest_rank_count > 1) {
/* Limit to DDR3-1066 */
if (freq > 533) {
freq = 533;
printk(BIOS_DEBUG, "%s: More than 1 registered DIMM on %dmV channel; limiting to DDR3-1066\n", __func__, voltage_index_to_mv(voltage));
}
} else {
/* Limit to DDR3-1333 */
if (freq > 666) {
freq = 666;
printk(BIOS_DEBUG, "%s: More than 1 registered DIMM on %dmV channel; limiting to DDR3-1333\n", __func__, voltage_index_to_mv(voltage));
}
}
} else {
/* Limit to DDR3-1333 */
if (freq > 666) {
freq = 666;
printk(BIOS_DEBUG, "%s: 1 registered DIMM on %dmV channel; limiting to DDR3-1333\n", __func__, voltage_index_to_mv(voltage));
}
}
} else if (voltage & 0x2) {
/* 1.35V */
if (count > 1) {
/* Limit to DDR3-1333 */
if (freq > 666) {
freq = 666;
printk(BIOS_DEBUG, "%s: More than 1 registered DIMM on %dmV channel; limiting to DDR3-1333\n", __func__, voltage_index_to_mv(voltage));
}
} else {
/* Limit to DDR3-1600 */
if (freq > 800) {
freq = 800;
printk(BIOS_DEBUG, "%s: 1 registered DIMM on %dmV channel; limiting to DDR3-1600\n", __func__, voltage_index_to_mv(voltage));
}
}
} else if (voltage & 0x1) {
/* 1.50V */
if (count > 1) {
/* Limit to DDR3-1600 */
if (freq > 800) {
freq = 800;
printk(BIOS_DEBUG, "%s: More than 1 registered DIMM on %dmV channel; limiting to DDR3-1600\n", __func__, voltage_index_to_mv(voltage));
}
} else {
/* Limit to DDR3-1866 */
if (freq > 933) {
freq = 933;
printk(BIOS_DEBUG, "%s: 1 registered DIMM on %dmV channel; limiting to DDR3-1866\n", __func__, voltage_index_to_mv(voltage));
}
}
}
} else {
/* Fam15h BKDG Rev. 3.14 Table 26 */
if (voltage & 0x4) {
/* 1.25V */
if (count > 1) {
if (highest_rank_count > 1) {
/* Limit to DDR3-1066 */
if (freq > 533) {
freq = 533;
printk(BIOS_DEBUG, "%s: More than 1 unbuffered DIMM on %dmV channel; limiting to DDR3-1066\n", __func__, voltage_index_to_mv(voltage));
}
} else {
/* Limit to DDR3-1333 */
if (freq > 666) {
freq = 666;
printk(BIOS_DEBUG, "%s: More than 1 unbuffered DIMM on %dmV channel; limiting to DDR3-1333\n", __func__, voltage_index_to_mv(voltage));
}
}
} else {
/* Limit to DDR3-1333 */
if (freq > 666) {
freq = 666;
printk(BIOS_DEBUG, "%s: 1 unbuffered DIMM on %dmV channel; limiting to DDR3-1333\n", __func__, voltage_index_to_mv(voltage));
}
}
} else if (voltage & 0x2) {
/* 1.35V */
if (MaxDimmsInstallable > 1) {
/* Limit to DDR3-1333 */
if (freq > 666) {
freq = 666;
printk(BIOS_DEBUG, "%s: More than 1 unbuffered DIMM on %dmV channel; limiting to DDR3-1333\n", __func__, voltage_index_to_mv(voltage));
}
} else {
/* Limit to DDR3-1600 */
if (freq > 800) {
freq = 800;
printk(BIOS_DEBUG, "%s: 1 unbuffered DIMM on %dmV channel; limiting to DDR3-1600\n", __func__, voltage_index_to_mv(voltage));
}
}
} else if (voltage & 0x1) {
if (MaxDimmsInstallable == 1) {
if (count > 1) {
/* Limit to DDR3-1600 */
if (freq > 800) {
freq = 800;
printk(BIOS_DEBUG, "%s: More than 1 unbuffered DIMM on %dmV channel; limiting to DDR3-1600\n", __func__, voltage_index_to_mv(voltage));
}
} else {
/* Limit to DDR3-1866 */
if (freq > 933) {
freq = 933;
printk(BIOS_DEBUG, "%s: 1 unbuffered DIMM on %dmV channel; limiting to DDR3-1866\n", __func__, voltage_index_to_mv(voltage));
}
}
} else {
if (count > 1) {
if (highest_rank_count > 1) {
/* Limit to DDR3-1333 */
if (freq > 666) {
freq = 666;
printk(BIOS_DEBUG, "%s: More than 1 unbuffered DIMM on %dmV channel; limiting to DDR3-1333\n", __func__, voltage_index_to_mv(voltage));
}
} else {
/* Limit to DDR3-1600 */
if (freq > 800) {
freq = 800;
printk(BIOS_DEBUG, "%s: More than 1 unbuffered DIMM on %dmV channel; limiting to DDR3-1600\n", __func__, voltage_index_to_mv(voltage));
}
}
} else {
/* Limit to DDR3-1600 */
if (freq > 800) {
freq = 800;
printk(BIOS_DEBUG, "%s: 1 unbuffered DIMM on %dmV channel; limiting to DDR3-1600\n", __func__, voltage_index_to_mv(voltage));
}
}
}
}
}
} else if (CONFIG_CPU_SOCKET_TYPE == 0x14) {
/* Socket C32 */
if (IS_ENABLED(CONFIG_DIMM_REGISTERED) && registered) {
/* Fam15h BKDG Rev. 3.14 Table 30 */
if (voltage & 0x4) {
/* 1.25V */
if (count > 1) {
if (highest_rank_count > 2) {
/* Limit to DDR3-800 */
if (freq > 400) {
freq = 400;
printk(BIOS_DEBUG, "%s: More than 1 registered DIMM on %dmV channel; limiting to DDR3-800\n", __func__, voltage_index_to_mv(voltage));
}
} else {
/* Limit to DDR3-1333 */
if (freq > 666) {
freq = 666;
printk(BIOS_DEBUG, "%s: More than 1 registered DIMM on %dmV channel; limiting to DDR3-1333\n", __func__, voltage_index_to_mv(voltage));
}
}
} else {
/* Limit to DDR3-1333 */
if (freq > 666) {
freq = 666;
printk(BIOS_DEBUG, "%s: 1 registered DIMM on %dmV channel; limiting to DDR3-1333\n", __func__, voltage_index_to_mv(voltage));
}
}
} else if (voltage & 0x2) {
/* 1.35V */
if (count > 1) {
if (highest_rank_count > 2) {
/* Limit to DDR3-800 */
if (freq > 400) {
freq = 400;
printk(BIOS_DEBUG, "%s: More than 1 registered DIMM on %dmV channel; limiting to DDR3-800\n", __func__, voltage_index_to_mv(voltage));
}
} else if (highest_rank_count > 1) {
/* Limit to DDR3-1066 */
if (freq > 533) {
freq = 533;
printk(BIOS_DEBUG, "%s: More than 1 registered DIMM on %dmV channel; limiting to DDR3-1066\n", __func__, voltage_index_to_mv(voltage));
}
} else {
/* Limit to DDR3-1333 */
if (freq > 666) {
freq = 666;
printk(BIOS_DEBUG, "%s: More than 1 registered DIMM on %dmV channel; limiting to DDR3-1333\n", __func__, voltage_index_to_mv(voltage));
}
}
} else {
/* Limit to DDR3-1600 */
if (freq > 800) {
freq = 800;
printk(BIOS_DEBUG, "%s: 1 registered DIMM on %dmV channel; limiting to DDR3-1600\n", __func__, voltage_index_to_mv(voltage));
}
}
} else if (voltage & 0x1) {
/* 1.50V */
if (count > 1) {
if (highest_rank_count > 2) {
/* Limit to DDR3-800 */
if (freq > 400) {
freq = 400;
printk(BIOS_DEBUG, "%s: More than 1 registered DIMM on %dmV channel; limiting to DDR3-800\n", __func__, voltage_index_to_mv(voltage));
}
} else if (highest_rank_count > 1) {
/* Limit to DDR3-1066 */
if (freq > 533) {
freq = 533;
printk(BIOS_DEBUG, "%s: More than 1 registered DIMM on %dmV channel; limiting to DDR3-1066\n", __func__, voltage_index_to_mv(voltage));
}
} else {
/* Limit to DDR3-1333 */
if (freq > 666) {
freq = 666;
printk(BIOS_DEBUG, "%s: More than 1 registered DIMM on %dmV channel; limiting to DDR3-1333\n", __func__, voltage_index_to_mv(voltage));
}
}
} else {
if (highest_rank_count > 2) {
/* Limit to DDR3-1333 */
if (freq > 666) {
freq = 666;
printk(BIOS_DEBUG, "%s: More than 1 registered DIMM on %dmV channel; limiting to DDR3-1333\n", __func__, voltage_index_to_mv(voltage));
}
} else {
/* Limit to DDR3-1600 */
if (freq > 800) {
freq = 800;
printk(BIOS_DEBUG, "%s: More than 1 registered DIMM on %dmV channel; limiting to DDR3-1600\n", __func__, voltage_index_to_mv(voltage));
}
}
}
}
} else {
/* Fam15h BKDG Rev. 3.14 Table 29 */
if (voltage & 0x4) {
/* 1.25V */
if (count > 1) {
/* Limit to DDR3-1066 */
if (freq > 533) {
freq = 533;
printk(BIOS_DEBUG, "%s: More than 1 unbuffered DIMM on %dmV channel; limiting to DDR3-1066\n", __func__, voltage_index_to_mv(voltage));
}
} else {
/* Limit to DDR3-1333 */
if (freq > 666) {
freq = 666;
printk(BIOS_DEBUG, "%s: 1 unbuffered DIMM on %dmV channel; limiting to DDR3-1333\n", __func__, voltage_index_to_mv(voltage));
}
}
} else if (voltage & 0x2) {
if (count > 1) {
if (highest_rank_count > 1) {
/* Limit to DDR3-1066 */
if (freq > 533) {
freq = 533;
printk(BIOS_DEBUG, "%s: More than 1 unbuffered DIMM on %dmV channel; limiting to DDR3-1066\n", __func__, voltage_index_to_mv(voltage));
}
} else {
/* Limit to DDR3-1333 */
if (freq > 666) {
freq = 666;
printk(BIOS_DEBUG, "%s: More than 1 unbuffered DIMM on %dmV channel; limiting to DDR3-1333\n", __func__, voltage_index_to_mv(voltage));
}
}
} else {
/* Limit to DDR3-1333 */
if (freq > 666) {
freq = 666;
printk(BIOS_DEBUG, "%s: 1 unbuffered DIMM on %dmV channel; limiting to DDR3-1333\n", __func__, voltage_index_to_mv(voltage));
}
}
} else if (voltage & 0x1) {
if (MaxDimmsInstallable == 1) {
/* Limit to DDR3-1600 */
if (freq > 800) {
freq = 800;
printk(BIOS_DEBUG, "%s: 1 unbuffered DIMM on %dmV channel; limiting to DDR3-1600\n", __func__, voltage_index_to_mv(voltage));
}
} else {
if (count > 1) {
if (highest_rank_count > 1) {
/* Limit to DDR3-1066 */
if (freq > 533) {
freq = 533;
printk(BIOS_DEBUG, "%s: More than 1 unbuffered DIMM on %dmV channel; limiting to DDR3-1066\n", __func__, voltage_index_to_mv(voltage));
}
} else {
/* Limit to DDR3-1333 */
if (freq > 666) {
freq = 666;
printk(BIOS_DEBUG, "%s: More than 1 unbuffered DIMM on %dmV channel; limiting to DDR3-1333\n", __func__, voltage_index_to_mv(voltage));
}
}
} else {
/* Limit to DDR3-1600 */
if (freq > 800) {
freq = 800;
printk(BIOS_DEBUG, "%s: 1 unbuffered DIMM on %dmV channel; limiting to DDR3-1600\n", __func__, voltage_index_to_mv(voltage));
}
}
}
}
}
} else {
/* TODO
* Other socket support unimplemented
*/
}
} else {
if (IS_ENABLED(CONFIG_DIMM_REGISTERED) && registered) {
/* K10 BKDG Rev. 3.62 Table 34 */
if (count > 2) {
/* Limit to DDR3-800 */
if (freq > 400) {
freq = 400;
printk(BIOS_DEBUG, "%s: More than 2 registered DIMMs on %dmV channel; limiting to DDR3-800\n", __func__, voltage_index_to_mv(voltage));
}
} else if (count == 2) {
/* Limit to DDR3-1066 */
if (freq > 533) {
freq = 533;
printk(BIOS_DEBUG, "%s: 2 registered DIMMs on %dmV channel; limiting to DDR3-1066\n", __func__, voltage_index_to_mv(voltage));
}
} else {
/* Limit to DDR3-1333 */
if (freq > 666) {
freq = 666;
printk(BIOS_DEBUG, "%s: 1 registered DIMM on %dmV channel; limiting to DDR3-1333\n", __func__, voltage_index_to_mv(voltage));
}
}
} else {
/* K10 BKDG Rev. 3.62 Table 33 */
/* Limit to DDR3-1333 */
if (freq > 666) {
freq = 666;
printk(BIOS_DEBUG, "%s: unbuffered DIMMs on %dmV channel; limiting to DDR3-1333\n", __func__, voltage_index_to_mv(voltage));
}
}
}
}
return freq;
}
int mctRead_SPD(u32 smaddr, u32 reg)
{
return spd_read_byte(smaddr, reg);
}
void mctSMBhub_Init(u32 node)
{
struct sys_info *sysinfo = &sysinfo_car;
struct mem_controller *ctrl = &(sysinfo->ctrl[node]);
activate_spd_rom(ctrl);
}
void mctGet_DIMMAddr(struct DCTStatStruc *pDCTstat, u32 node)
{
int j;
struct sys_info *sysinfo = &sysinfo_car;
struct mem_controller *ctrl = &(sysinfo->ctrl[node]);
for (j = 0; j < DIMM_SOCKETS; j++) {
pDCTstat->DIMMAddr[j*2] = ctrl->spd_addr[j] & 0xff;
pDCTstat->DIMMAddr[j*2+1] = ctrl->spd_addr[DIMM_SOCKETS + j] & 0xff;
}
}
#if IS_ENABLED(CONFIG_SET_FIDVID)
u8 mctGetProcessorPackageType(void) {
/* FIXME: I guess this belongs wherever mctGetLogicalCPUID ends up ? */
u32 BrandId = cpuid_ebx(0x80000001);
return (u8)((BrandId >> 28) & 0x0F);
}
#endif
void raminit_amdmct(struct sys_info *sysinfo)
{
struct MCTStatStruc *pMCTstat = &(sysinfo->MCTstat);
struct DCTStatStruc *pDCTstatA = sysinfo->DCTstatA;
printk(BIOS_DEBUG, "raminit_amdmct begin:\n");
mctAutoInitMCT_D(pMCTstat, pDCTstatA);
printk(BIOS_DEBUG, "raminit_amdmct end:\n");
}
void amdmct_cbmem_store_info(struct sys_info *sysinfo)
{
if (!sysinfo)
return;
/* Save memory info structures for use in ramstage */
size_t i;
struct DCTStatStruc *pDCTstatA = NULL;
if (!acpi_is_wakeup_s3()) {
/* Allocate memory */
struct amdmct_memory_info *mem_info;
mem_info = cbmem_add(CBMEM_ID_AMDMCT_MEMINFO, sizeof(struct amdmct_memory_info));
if (!mem_info)
return;
printk(BIOS_DEBUG, "%s: Storing AMDMCT configuration in CBMEM\n", __func__);
/* Initialize memory */
memset(mem_info, 0, sizeof(struct amdmct_memory_info));
/* Copy data */
memcpy(&mem_info->mct_stat, &sysinfo->MCTstat, sizeof(struct MCTStatStruc));
for (i = 0; i < MAX_NODES_SUPPORTED; i++) {
pDCTstatA = sysinfo->DCTstatA + i;
memcpy(&mem_info->dct_stat[i], pDCTstatA, sizeof(struct DCTStatStruc));
}
mem_info->ecc_enabled = mctGet_NVbits(NV_ECC_CAP);
mem_info->ecc_scrub_rate = mctGet_NVbits(NV_DramBKScrub);
/* Zero out invalid/unused pointers */
#if IS_ENABLED(CONFIG_DIMM_DDR3)
for (i = 0; i < MAX_NODES_SUPPORTED; i++) {
mem_info->dct_stat[i].C_MCTPtr = NULL;
mem_info->dct_stat[i].C_DCTPtr[0] = NULL;
mem_info->dct_stat[i].C_DCTPtr[1] = NULL;
}
#endif
}
}