blob: 8763a9d71f86602c0d71ee35950fe6b1a5740a4b [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
#include <assert.h>
#include <commonlib/helpers.h>
#include <console/console.h>
#include <delay.h>
#include <device/mmio.h>
#include <soc/clock.h>
#include <timer.h>
#include <types.h>
#define DIV(div) (2 * div - 1)
struct clock_config qup_cfg[] = {
{
.hz = SRC_XO_HZ, /* 19.2KHz */
.src = SRC_XO_19_2MHZ,
.div = DIV(1),
}
};
struct clock_config qspi_core_cfg[] = {
{
.hz = SRC_XO_HZ, /* 19.2KHz */
.src = SRC_XO_19_2MHZ,
.div = DIV(1),
},
{
.hz = 100 * MHz,
.src = SRC_GPLL0_EVEN_300MHZ,
.div = DIV(3),
},
{
.hz = 150 * MHz,
.src = SRC_GPLL0_EVEN_300MHZ,
.div = DIV(2),
},
{
.hz = GPLL0_EVEN_HZ, /* 300MHz */
.src = SRC_GPLL0_EVEN_300MHZ,
.div = DIV(1),
}
};
struct clock_config qup_wrap_cfg[] = {
{
.hz = SRC_XO_HZ, /* 19.2KHz */
.src = SRC_XO_19_2MHZ,
.div = DIV(1),
},
{
.hz = 32 * MHz,
.src = SRC_GPLL0_EVEN_300MHZ,
.div = DIV(1),
.m = 8,
.n = 75,
.d_2 = 75,
},
{
.hz = 48 * MHz,
.src = SRC_GPLL0_EVEN_300MHZ,
.div = DIV(1),
.m = 4,
.n = 25,
.d_2 = 25,
},
{
.hz = 64 * MHz,
.src = SRC_GPLL0_EVEN_300MHZ,
.div = DIV(1),
.m = 16,
.n = 75,
.d_2 = 75,
},
{
.hz = 96 * MHz,
.src = SRC_GPLL0_EVEN_300MHZ,
.div = DIV(1),
.m = 8,
.n = 25,
.d_2 = 25,
},
{
.hz = 100 * MHz,
.src = SRC_GPLL0_EVEN_300MHZ,
.div = DIV(3),
},
{
.hz = SRC_XO_HZ, /* 19.2KHz */
.src = SRC_XO_19_2MHZ,
.div = DIV(1),
},
{
.hz = SRC_XO_HZ, /* 19.2KHz */
.src = SRC_XO_19_2MHZ,
.div = DIV(1),
},
};
static struct sc7180_mnd_clock *mdss_clock[MDSS_CLK_COUNT] = {
[MDSS_CLK_ESC0] = &mdss->esc0,
[MDSS_CLK_PCLK0] = &mdss->pclk0,
[MDSS_CLK_BYTE0] = &mdss->byte0,
[MDSS_CLK_BYTE0_INTF] = &mdss->byte0,
};
static u32 *mdss_cbcr[MDSS_CLK_COUNT] = {
[MDSS_CLK_ESC0] = &mdss->esc0_cbcr,
[MDSS_CLK_PCLK0] = &mdss->pclk0_cbcr,
[MDSS_CLK_BYTE0] = &mdss->byte0_cbcr,
[MDSS_CLK_BYTE0_INTF] = &mdss->byte0_intf_cbcr,
};
static int clock_configure_gpll0(void)
{
setbits32(&gcc->gpll0.user_ctl_u, 1 << SCALE_FREQ_SHFT);
/* Keep existing GPLL0 configuration, in RUN mode @600Mhz. */
setbits32(&gcc->gpll0.user_ctl,
1 << CLK_CTL_GPLL_PLLOUT_EVEN_SHFT |
1 << CLK_CTL_GPLL_PLLOUT_MAIN_SHFT |
1 << CLK_CTL_GPLL_PLLOUT_ODD_SHFT);
return 0;
}
static int clock_configure_mnd(struct sc7180_clock *clk, uint32_t m, uint32_t n,
uint32_t d_2)
{
struct sc7180_mnd_clock *mnd = (struct sc7180_mnd_clock *)clk;
setbits32(&clk->rcg_cfg,
RCG_MODE_DUAL_EDGE << CLK_CTL_CFG_MODE_SHFT);
write32(&mnd->m, m & CLK_CTL_RCG_MND_BMSK);
write32(&mnd->n, ~(n-m) & CLK_CTL_RCG_MND_BMSK);
write32(&mnd->d_2, ~(d_2) & CLK_CTL_RCG_MND_BMSK);
return 0;
}
static int clock_configure(struct sc7180_clock *clk,
struct clock_config *clk_cfg,
uint32_t hz, uint32_t num_perfs)
{
uint32_t reg_val;
uint32_t idx;
for (idx = 0; idx < num_perfs; idx++)
if (hz <= clk_cfg[idx].hz)
break;
assert(hz == clk_cfg[idx].hz);
reg_val = (clk_cfg[idx].src << CLK_CTL_CFG_SRC_SEL_SHFT) |
(clk_cfg[idx].div << CLK_CTL_CFG_SRC_DIV_SHFT);
/* Set clock config */
write32(&clk->rcg_cfg, reg_val);
if (clk_cfg[idx].m != 0)
clock_configure_mnd(clk, clk_cfg[idx].m, clk_cfg[idx].n,
clk_cfg[idx].d_2);
/* Commit config to RCG*/
setbits32(&clk->rcg_cmd, BIT(CLK_CTL_CMD_UPDATE_SHFT));
return 0;
}
static bool clock_is_off(u32 *cbcr_addr)
{
return (read32(cbcr_addr) & CLK_CTL_CBC_CLK_OFF_BMSK);
}
static int clock_enable_vote(void *cbcr_addr, void *vote_addr,
uint32_t vote_bit)
{
/* Set clock vote bit */
setbits32(vote_addr, BIT(vote_bit));
/* Ensure clock is enabled */
while (clock_is_off(cbcr_addr))
;
return 0;
}
static int clock_enable(void *cbcr_addr)
{
/* Set clock enable bit */
setbits32(cbcr_addr, BIT(CLK_CTL_CBC_CLK_EN_SHFT));
/* Ensure clock is enabled */
while (clock_is_off(cbcr_addr))
;
return 0;
}
void clock_reset_aop(void)
{
/* Bring AOP out of RESET */
clrbits32(&aoss->aoss_cc_apcs_misc, BIT(AOP_RESET_SHFT));
}
void clock_configure_qspi(uint32_t hz)
{
clock_configure(&gcc->qspi_core,
qspi_core_cfg, hz,
ARRAY_SIZE(qspi_core_cfg));
clock_enable(&gcc->qspi_cnoc_ahb_cbcr);
clock_enable(&gcc->qspi_core_cbcr);
}
int clock_reset_bcr(void *bcr_addr, bool reset)
{
struct sc7180_bcr *bcr = bcr_addr;
if (reset)
setbits32(bcr, BIT(CLK_CTL_BCR_BLK_ARES_SHFT));
else
clrbits32(bcr, BIT(CLK_CTL_BCR_BLK_ARES_SHFT));
return 0;
}
void clock_configure_dfsr(int qup)
{
int idx;
int s = qup % QUP_WRAP1_S0;
uint32_t reg_val;
struct sc7180_qupv3_clock *qup_clk = qup < QUP_WRAP1_S0 ?
&gcc->qup_wrap0_s[s] : &gcc->qup_wrap1_s[s];
clrsetbits32(&qup_clk->dfsr_clk.cmd_dfsr,
BIT(CLK_CTL_CMD_RCG_SW_CTL_SHFT),
BIT(CLK_CTL_CMD_DFSR_SHFT));
for (idx = 0; idx < ARRAY_SIZE(qup_wrap_cfg); idx++) {
reg_val = (qup_wrap_cfg[idx].src << CLK_CTL_CFG_SRC_SEL_SHFT) |
(qup_wrap_cfg[idx].div << CLK_CTL_CFG_SRC_DIV_SHFT);
write32(&qup_clk->dfsr_clk.perf_dfsr[idx], reg_val);
if (qup_wrap_cfg[idx].m == 0)
continue;
setbits32(&qup_clk->dfsr_clk.perf_dfsr[idx],
RCG_MODE_DUAL_EDGE << CLK_CTL_CFG_MODE_SHFT);
reg_val = qup_wrap_cfg[idx].m & CLK_CTL_RCG_MND_BMSK;
write32(&qup_clk->dfsr_clk.perf_m_dfsr[idx], reg_val);
reg_val = ~(qup_wrap_cfg[idx].n - qup_wrap_cfg[idx].m)
& CLK_CTL_RCG_MND_BMSK;
write32(&qup_clk->dfsr_clk.perf_n_dfsr[idx], reg_val);
reg_val = ~(qup_wrap_cfg[idx].d_2) & CLK_CTL_RCG_MND_BMSK;
write32(&qup_clk->dfsr_clk.perf_d_dfsr[idx], reg_val);
}
}
void clock_configure_qup(int qup, uint32_t hz)
{
int s = qup % QUP_WRAP1_S0;
struct sc7180_qupv3_clock *qup_clk = qup < QUP_WRAP1_S0 ?
&gcc->qup_wrap0_s[s] : &gcc->qup_wrap1_s[s];
clock_configure(&qup_clk->mnd_clk.clock, qup_cfg, hz,
ARRAY_SIZE(qup_cfg));
}
void clock_enable_qup(int qup)
{
int s = qup % QUP_WRAP1_S0;
int clk_en_off = qup < QUP_WRAP1_S0 ?
QUPV3_WRAP0_CLK_ENA_S(s) : QUPV3_WRAP1_CLK_ENA_S(s);
struct sc7180_qupv3_clock *qup_clk = qup < QUP_WRAP1_S0 ?
&gcc->qup_wrap0_s[s] : &gcc->qup_wrap1_s[s];
clock_enable_vote(&qup_clk->mnd_clk, &gcc->apcs_clk_br_en1,
clk_en_off);
}
static int pll_init_and_set(struct sc7180_apss_clock *apss, u32 l_val)
{
u32 gfmux_val;
/* Configure and Enable PLL */
write32(&apss->pll.config_ctl_lo, 0x0);
setbits32(&apss->pll.config_ctl_lo, 0x2 << CTUNE_SHFT |
0x2 << K_I_SHFT | 0x5 << K_P_SHFT |
0x2 << PFA_MSB_SHFT | 0x2 << REF_CONT_SHFT);
write32(&apss->pll.config_ctl_hi, 0x0);
setbits32(&apss->pll.config_ctl_hi, 0x2 << CUR_ADJ_SHFT |
BIT(DMET_SHFT) | 0xF << RES_SHFT);
write32(&apss->pll.config_ctl_u1, 0x0);
write32(&apss->pll.l_val, l_val);
setbits32(&apss->pll.mode, BIT(BYPASSNL_SHFT));
udelay(5);
setbits32(&apss->pll.mode, BIT(RESET_SHFT));
setbits32(&apss->pll.opmode, RUN_MODE);
if (!wait_us(100, read32(&apss->pll.mode) & LOCK_DET_BMSK)) {
printk(BIOS_ERR, "ERROR: PLL did not lock!\n");
return -1;
}
setbits32(&apss->pll.mode, BIT(OUTCTRL_SHFT));
gfmux_val = read32(&apss->cfg_gfmux) & ~GFMUX_SRC_SEL_BMSK;
gfmux_val |= APCS_SRC_EARLY;
write32(&apss->cfg_gfmux, gfmux_val);
return 0;
}
static void speed_up_boot_cpu(void)
{
/* 1516.8 MHz */
if (!pll_init_and_set(apss_silver, L_VAL_1516P8MHz))
printk(BIOS_DEBUG, "Silver Frequency bumped to 1.5168(GHz)\n");
/* 1209.6 MHz */
if (!pll_init_and_set(apss_l3, L_VAL_1209P6MHz))
printk(BIOS_DEBUG, "L3 Frequency bumped to 1.2096(GHz)\n");
}
int mdss_clock_configure(enum mdss_clock clk_type, uint32_t source,
uint32_t half_divider, uint32_t m,
uint32_t n, uint32_t d_2)
{
struct clock_config mdss_clk_cfg;
uint32_t reg_val;
if (clk_type >= MDSS_CLK_COUNT)
return -1;
/* Initialize it with received arguments */
mdss_clk_cfg.hz = 0;
mdss_clk_cfg.src = source;
/*
* client is expected to provide 2n divider value,
* as the divider value in register is in form "2n-1"
*/
mdss_clk_cfg.div = half_divider ? (half_divider - 1) : 0;
mdss_clk_cfg.m = m;
mdss_clk_cfg.n = n;
mdss_clk_cfg.d_2 = d_2;
/* configure and set the clock */
reg_val = (mdss_clk_cfg.src << CLK_CTL_CFG_SRC_SEL_SHFT) |
(mdss_clk_cfg.div << CLK_CTL_CFG_SRC_DIV_SHFT);
write32(&mdss_clock[clk_type]->clock.rcg_cfg, reg_val);
/* Set m/n/d values for a specific clock */
if (mdss_clk_cfg.m != 0)
clock_configure_mnd((struct sc7180_clock *)mdss_clock[clk_type],
mdss_clk_cfg.m, mdss_clk_cfg.n, mdss_clk_cfg.d_2);
/* Commit config to RCG */
setbits32(&mdss_clock[clk_type]->clock.rcg_cmd,
BIT(CLK_CTL_CMD_UPDATE_SHFT));
return 0;
}
int mdss_clock_enable(enum mdss_clock clk_type)
{
if (clk_type >= MDSS_CLK_COUNT)
return -1;
/* Enable clock*/
clock_enable(mdss_cbcr[clk_type]);
return 0;
}
void clock_init(void)
{
clock_configure_gpll0();
clock_enable_vote(&gcc->qup_wrap0_core_2x_cbcr,
&gcc->apcs_clk_br_en1,
QUPV3_WRAP0_CORE_2X_CLK_ENA);
clock_enable_vote(&gcc->qup_wrap0_core_cbcr,
&gcc->apcs_clk_br_en1,
QUPV3_WRAP0_CORE_CLK_ENA);
clock_enable_vote(&gcc->qup_wrap0_m_ahb_cbcr,
&gcc->apcs_clk_br_en1,
QUPV3_WRAP_0_M_AHB_CLK_ENA);
clock_enable_vote(&gcc->qup_wrap0_s_ahb_cbcr,
&gcc->apcs_clk_br_en1,
QUPV3_WRAP_0_S_AHB_CLK_ENA);
clock_enable_vote(&gcc->qup_wrap1_core_2x_cbcr,
&gcc->apcs_clk_br_en1,
QUPV3_WRAP1_CORE_2X_CLK_ENA);
clock_enable_vote(&gcc->qup_wrap1_core_cbcr,
&gcc->apcs_clk_br_en1,
QUPV3_WRAP1_CORE_CLK_ENA);
clock_enable_vote(&gcc->qup_wrap1_m_ahb_cbcr,
&gcc->apcs_clk_br_en1,
QUPV3_WRAP_1_M_AHB_CLK_ENA);
clock_enable_vote(&gcc->qup_wrap1_s_ahb_cbcr,
&gcc->apcs_clk_br_en1,
QUPV3_WRAP_1_S_AHB_CLK_ENA);
speed_up_boot_cpu();
}