blob: 43894e98c8e6387b4fa302cd68204255e071e87d [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
#include <acpi/acpi_device.h>
#include <amdblocks/data_fabric.h>
#include <arch/hpet.h>
#include <console/console.h>
#include <cpu/x86/lapic_def.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <soc/data_fabric.h>
#include <soc/iomap.h>
#include <types.h>
void data_fabric_set_mmio_np(void)
{
/*
* Mark region from HPET-LAPIC or 0xfed00000-0xfee00000-1 as NP.
*
* AGESA has already programmed the NB MMIO routing, however nothing
* is yet marked as non-posted.
*
* If there exists an overlapping routing base/limit pair, trim its
* base or limit to avoid the new NP region. If any pair exists
* completely within HPET-LAPIC range, remove it. If any pair surrounds
* HPET-LAPIC, it must be split into two regions.
*
* TODO(b/156296146): Remove the settings from AGESA and allow coreboot
* to own everything. If not practical, consider erasing all settings
* and have coreboot reprogram them. At that time, make the source
* below more flexible.
* * Note that the code relies on the granularity of the HPET and
* LAPIC addresses being sufficiently large that the shifted limits
* +/-1 are always equivalent to the non-shifted values +/-1.
*/
unsigned int i;
int reg;
uint32_t base, limit, ctrl;
const uint32_t np_bot = HPET_BASE_ADDRESS >> D18F0_MMIO_SHIFT;
const uint32_t np_top = (LAPIC_DEFAULT_BASE - 1) >> D18F0_MMIO_SHIFT;
data_fabric_print_mmio_conf();
for (i = 0; i < NUM_NB_MMIO_REGS; i++) {
/* Adjust all registers that overlap */
ctrl = data_fabric_broadcast_read32(0, NB_MMIO_CONTROL(i));
if (!(ctrl & (DF_MMIO_WE | DF_MMIO_RE)))
continue; /* not enabled */
base = data_fabric_broadcast_read32(0, NB_MMIO_BASE(i));
limit = data_fabric_broadcast_read32(0, NB_MMIO_LIMIT(i));
if (base > np_top || limit < np_bot)
continue; /* no overlap at all */
if (base >= np_bot && limit <= np_top) {
data_fabric_disable_mmio_reg(i); /* 100% within, so remove */
continue;
}
if (base < np_bot && limit > np_top) {
/* Split the configured region */
data_fabric_broadcast_write32(0, NB_MMIO_LIMIT(i), np_bot - 1);
reg = data_fabric_find_unused_mmio_reg();
if (reg < 0) {
/* Although a pair could be freed later, this condition is
* very unusual and deserves analysis. Flag an error and
* leave the topmost part unconfigured. */
printk(BIOS_ERR, "Not enough NB MMIO routing registers\n");
continue;
}
data_fabric_broadcast_write32(0, NB_MMIO_BASE(reg), np_top + 1);
data_fabric_broadcast_write32(0, NB_MMIO_LIMIT(reg), limit);
data_fabric_broadcast_write32(0, NB_MMIO_CONTROL(reg), ctrl);
continue;
}
/* If still here, adjust only the base or limit */
if (base <= np_bot)
data_fabric_broadcast_write32(0, NB_MMIO_LIMIT(i), np_bot - 1);
else
data_fabric_broadcast_write32(0, NB_MMIO_BASE(i), np_top + 1);
}
reg = data_fabric_find_unused_mmio_reg();
if (reg < 0) {
printk(BIOS_ERR, "cannot configure region as NP\n");
return;
}
data_fabric_broadcast_write32(0, NB_MMIO_BASE(reg), np_bot);
data_fabric_broadcast_write32(0, NB_MMIO_LIMIT(reg), np_top);
data_fabric_broadcast_write32(0, NB_MMIO_CONTROL(reg),
(IOMS0_FABRIC_ID << DF_MMIO_DST_FABRIC_ID_SHIFT) | DF_MMIO_NP
| DF_MMIO_WE | DF_MMIO_RE);
data_fabric_print_mmio_conf();
}
static const char *data_fabric_acpi_name(const struct device *dev)
{
switch (dev->device) {
case PCI_DID_AMD_FAM17H_MODEL60H_DF0:
case PCI_DID_AMD_FAM19H_MODEL51H_DF0:
return "DFD0";
case PCI_DID_AMD_FAM17H_MODEL60H_DF1:
case PCI_DID_AMD_FAM19H_MODEL51H_DF1:
return "DFD1";
case PCI_DID_AMD_FAM17H_MODEL60H_DF2:
case PCI_DID_AMD_FAM19H_MODEL51H_DF2:
return "DFD2";
case PCI_DID_AMD_FAM17H_MODEL60H_DF3:
case PCI_DID_AMD_FAM19H_MODEL51H_DF3:
return "DFD3";
case PCI_DID_AMD_FAM17H_MODEL60H_DF4:
case PCI_DID_AMD_FAM19H_MODEL51H_DF4:
return "DFD4";
case PCI_DID_AMD_FAM17H_MODEL60H_DF5:
case PCI_DID_AMD_FAM19H_MODEL51H_DF5:
return "DFD5";
case PCI_DID_AMD_FAM17H_MODEL60H_DF6:
case PCI_DID_AMD_FAM19H_MODEL51H_DF6:
return "DFD6";
case PCI_DID_AMD_FAM17H_MODEL60H_DF7:
case PCI_DID_AMD_FAM19H_MODEL51H_DF7:
return "DFD7";
default:
printk(BIOS_ERR, "%s: Unhandled device id 0x%x\n", __func__, dev->device);
}
return NULL;
}
static struct device_operations data_fabric_ops = {
.read_resources = noop_read_resources,
.set_resources = noop_set_resources,
.acpi_name = data_fabric_acpi_name,
.acpi_fill_ssdt = acpi_device_write_pci_dev,
};
static const unsigned short pci_device_ids[] = {
/* Renoir DF devices */
PCI_DID_AMD_FAM17H_MODEL60H_DF0,
PCI_DID_AMD_FAM17H_MODEL60H_DF1,
PCI_DID_AMD_FAM17H_MODEL60H_DF2,
PCI_DID_AMD_FAM17H_MODEL60H_DF3,
PCI_DID_AMD_FAM17H_MODEL60H_DF4,
PCI_DID_AMD_FAM17H_MODEL60H_DF5,
PCI_DID_AMD_FAM17H_MODEL60H_DF6,
PCI_DID_AMD_FAM17H_MODEL60H_DF7,
/* Cezanne DF devices */
PCI_DID_AMD_FAM19H_MODEL51H_DF0,
PCI_DID_AMD_FAM19H_MODEL51H_DF1,
PCI_DID_AMD_FAM19H_MODEL51H_DF2,
PCI_DID_AMD_FAM19H_MODEL51H_DF3,
PCI_DID_AMD_FAM19H_MODEL51H_DF4,
PCI_DID_AMD_FAM19H_MODEL51H_DF5,
PCI_DID_AMD_FAM19H_MODEL51H_DF6,
PCI_DID_AMD_FAM19H_MODEL51H_DF7,
0
};
static const struct pci_driver data_fabric_driver __pci_driver = {
.ops = &data_fabric_ops,
.vendor = PCI_VID_AMD,
.devices = pci_device_ids,
};