blob: 9f0b2e1f2ccf2780f382d2a130ca35f635525fa4 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
#include <console/console.h>
#include <delay.h>
#include <device/i2c_simple.h>
#include <edid.h>
#include <gpio.h>
#include <string.h>
#include "anx7625.h"
#define ANXERROR(format, ...) \
printk(BIOS_ERR, "ERROR: %s: " format, __func__, ##__VA_ARGS__)
#define ANXINFO(format, ...) \
printk(BIOS_INFO, "%s: " format, __func__, ##__VA_ARGS__)
#define ANXDEBUG(format, ...) \
printk(BIOS_DEBUG, "%s: " format, __func__, ##__VA_ARGS__)
/*
* There is a sync issue while accessing I2C register between AP(CPU) and
* internal firmware(OCM). To avoid the race condition, AP should access the
* reserved slave address before slave address changes.
*/
static int i2c_access_workaround(uint8_t bus, uint8_t saddr)
{
uint8_t offset;
static uint8_t saddr_backup = 0;
int ret = 0;
if (saddr == saddr_backup)
return ret;
saddr_backup = saddr;
switch (saddr) {
case TCPC_INTERFACE_ADDR:
offset = RSVD_00_ADDR;
break;
case TX_P0_ADDR:
offset = RSVD_D1_ADDR;
break;
case TX_P1_ADDR:
offset = RSVD_60_ADDR;
break;
case RX_P0_ADDR:
offset = RSVD_39_ADDR;
break;
case RX_P1_ADDR:
offset = RSVD_7F_ADDR;
break;
default:
offset = RSVD_00_ADDR;
break;
}
ret = i2c_writeb(bus, saddr, offset, 0x00);
if (ret < 0)
ANXERROR("Failed to access %#x:%#x\n", saddr, offset);
return ret;
}
static int anx7625_reg_read(uint8_t bus, uint8_t saddr, uint8_t offset,
uint8_t *val)
{
int ret;
i2c_access_workaround(bus, saddr);
ret = i2c_readb(bus, saddr, offset, val);
if (ret < 0) {
ANXERROR("Failed to read i2c reg=%#x:%#x\n", saddr, offset);
return ret;
}
return *val;
}
static int anx7625_reg_block_read(uint8_t bus, uint8_t saddr, uint8_t reg_addr,
uint8_t len, uint8_t *buf)
{
int ret;
i2c_access_workaround(bus, saddr);
ret = i2c_read_bytes(bus, saddr, reg_addr, buf, len);
if (ret < 0)
ANXERROR("Failed to read i2c block=%#x:%#x[len=%#x]\n", saddr,
reg_addr, len);
return ret;
}
static int anx7625_reg_write(uint8_t bus, uint8_t saddr, uint8_t reg_addr,
uint8_t reg_val)
{
int ret;
i2c_access_workaround(bus, saddr);
ret = i2c_writeb(bus, saddr, reg_addr, reg_val);
if (ret < 0)
ANXERROR("Failed to write i2c id=%#x:%#x\n", saddr, reg_addr);
return ret;
}
static int anx7625_write_or(uint8_t bus, uint8_t saddr, uint8_t offset,
uint8_t mask)
{
uint8_t val;
int ret;
ret = anx7625_reg_read(bus, saddr, offset, &val);
if (ret < 0)
return ret;
return anx7625_reg_write(bus, saddr, offset, val | mask);
}
static int anx7625_write_and(uint8_t bus, uint8_t saddr, uint8_t offset,
uint8_t mask)
{
int ret;
uint8_t val;
ret = anx7625_reg_read(bus, saddr, offset, &val);
if (ret < 0)
return ret;
return anx7625_reg_write(bus, saddr, offset, val & mask);
}
static int wait_aux_op_finish(uint8_t bus)
{
uint8_t val;
int ret = -1;
int loop;
for (loop = 0; loop < 150; loop++) {
mdelay(2);
anx7625_reg_read(bus, RX_P0_ADDR, AP_AUX_CTRL_STATUS, &val);
if (!(val & AP_AUX_CTRL_OP_EN)) {
ret = 0;
break;
}
}
if (ret != 0) {
ANXERROR("Timed out waiting aux operation.\n");
return ret;
}
ret = anx7625_reg_read(bus, RX_P0_ADDR, AP_AUX_CTRL_STATUS, &val);
if (ret < 0 || val & 0x0F) {
ANXDEBUG("aux status %02x\n", val);
ret = -1;
}
return ret;
}
static unsigned long gcd(unsigned long a, unsigned long b)
{
if (a == 0)
return b;
while (b != 0) {
if (a > b)
a = a - b;
else
b = b - a;
}
return a;
}
/* Reduce fraction a/b */
static void anx7625_reduction_of_a_fraction(unsigned long *_a,
unsigned long *_b)
{
unsigned long gcd_num;
unsigned long a = *_a, b = *_b, old_a, old_b;
u32 denom = 1;
gcd_num = gcd(a, b);
a /= gcd_num;
b /= gcd_num;
old_a = a;
old_b = b;
while (a > MAX_UNSIGNED_24BIT || b > MAX_UNSIGNED_24BIT) {
denom++;
a = old_a / denom;
b = old_b / denom;
}
/* Increase a, b to have higher ODFC PLL output frequency accuracy. */
while ((a << 1) < MAX_UNSIGNED_24BIT && (b << 1) < MAX_UNSIGNED_24BIT) {
a <<= 1;
b <<= 1;
}
*_a = a;
*_b = b;
}
static int anx7625_calculate_m_n(u32 pixelclock,
unsigned long *m, unsigned long *n,
uint8_t *pd)
{
uint8_t post_divider = *pd;
if (pixelclock > PLL_OUT_FREQ_ABS_MAX / POST_DIVIDER_MIN) {
/* pixel clock frequency is too high */
ANXERROR("pixelclock %u higher than %lu, "
"output may be unstable\n",
pixelclock, PLL_OUT_FREQ_ABS_MAX / POST_DIVIDER_MIN);
return 1;
}
if (pixelclock < PLL_OUT_FREQ_ABS_MIN / POST_DIVIDER_MAX) {
/* pixel clock frequency is too low */
ANXERROR("pixelclock %u lower than %lu, "
"output may be unstable\n",
pixelclock, PLL_OUT_FREQ_ABS_MIN / POST_DIVIDER_MAX);
return 1;
}
post_divider = 1;
for (post_divider = 1;
pixelclock < PLL_OUT_FREQ_MIN / post_divider;
post_divider++)
;
if (post_divider > POST_DIVIDER_MAX) {
for (post_divider = 1;
pixelclock < PLL_OUT_FREQ_ABS_MIN / post_divider;
post_divider++)
;
if (post_divider > POST_DIVIDER_MAX) {
ANXERROR("cannot find property post_divider(%d)\n",
post_divider);
return 1;
}
}
/* Patch to improve the accuracy */
if (post_divider == 7) {
/* 27,000,000 is not divisible by 7 */
post_divider = 8;
} else if (post_divider == 11) {
/* 27,000,000 is not divisible by 11 */
post_divider = 12;
} else if (post_divider == 13 || post_divider == 14) {
/*27,000,000 is not divisible by 13 or 14*/
post_divider = 15;
}
if (pixelclock * post_divider > PLL_OUT_FREQ_ABS_MAX) {
ANXINFO("act clock(%u) large than maximum(%lu)\n",
pixelclock * post_divider, PLL_OUT_FREQ_ABS_MAX);
return 1;
}
*m = pixelclock;
*n = XTAL_FRQ / post_divider;
*pd = post_divider;
anx7625_reduction_of_a_fraction(m, n);
return 0;
}
static int anx7625_odfc_config(uint8_t bus, uint8_t post_divider)
{
int ret;
/* config input reference clock frequency 27MHz/19.2MHz */
ret = anx7625_write_and(bus, RX_P1_ADDR, MIPI_DIGITAL_PLL_16,
~(REF_CLK_27000kHz << MIPI_FREF_D_IND));
ret |= anx7625_write_or(bus, RX_P1_ADDR, MIPI_DIGITAL_PLL_16,
(REF_CLK_27000kHz << MIPI_FREF_D_IND));
/* post divider */
ret |= anx7625_write_and(bus, RX_P1_ADDR, MIPI_DIGITAL_PLL_8, 0x0f);
ret |= anx7625_write_or(bus, RX_P1_ADDR, MIPI_DIGITAL_PLL_8,
post_divider << 4);
/* add patch for MIS2-125 (5pcs ANX7625 fail ATE MBIST test) */
ret |= anx7625_write_and(bus, RX_P1_ADDR, MIPI_DIGITAL_PLL_7,
~MIPI_PLL_VCO_TUNE_REG_VAL);
/* reset ODFC PLL */
ret |= anx7625_write_and(bus, RX_P1_ADDR, MIPI_DIGITAL_PLL_7,
~MIPI_PLL_RESET_N);
ret |= anx7625_write_or(bus, RX_P1_ADDR, MIPI_DIGITAL_PLL_7,
MIPI_PLL_RESET_N);
if (ret < 0)
ANXERROR("IO error.\n");
return ret;
}
static int anx7625_dsi_video_config(uint8_t bus, struct display_timing *dt)
{
unsigned long m, n;
u16 htotal;
int ret;
uint8_t post_divider = 0;
ret = anx7625_calculate_m_n(dt->pixelclock * 1000, &m, &n,
&post_divider);
if (ret != 0) {
ANXERROR("cannot get property m n value.\n");
return -1;
}
ANXINFO("compute M(%lu), N(%lu), divider(%d).\n", m, n, post_divider);
/* configure pixel clock */
ret = anx7625_reg_write(bus, RX_P0_ADDR, PIXEL_CLOCK_L,
(dt->pixelclock / 1000) & 0xFF);
ret |= anx7625_reg_write(bus, RX_P0_ADDR, PIXEL_CLOCK_H,
(dt->pixelclock / 1000) >> 8);
/* lane count */
ret |= anx7625_write_and(bus, RX_P1_ADDR, MIPI_LANE_CTRL_0, 0xfc);
ret |= anx7625_write_or(bus, RX_P1_ADDR, MIPI_LANE_CTRL_0, 3);
/* Htotal */
htotal = dt->hactive + dt->hfront_porch +
dt->hback_porch + dt->hsync_len;
ret |= anx7625_reg_write(bus, RX_P2_ADDR,
HORIZONTAL_TOTAL_PIXELS_L, htotal & 0xFF);
ret |= anx7625_reg_write(bus, RX_P2_ADDR,
HORIZONTAL_TOTAL_PIXELS_H, htotal >> 8);
/* Hactive */
ret |= anx7625_reg_write(bus, RX_P2_ADDR,
HORIZONTAL_ACTIVE_PIXELS_L, dt->hactive & 0xFF);
ret |= anx7625_reg_write(bus, RX_P2_ADDR,
HORIZONTAL_ACTIVE_PIXELS_H, dt->hactive >> 8);
/* HFP */
ret |= anx7625_reg_write(bus, RX_P2_ADDR,
HORIZONTAL_FRONT_PORCH_L, dt->hfront_porch);
ret |= anx7625_reg_write(bus, RX_P2_ADDR,
HORIZONTAL_FRONT_PORCH_H,
dt->hfront_porch >> 8);
/* HWS */
ret |= anx7625_reg_write(bus, RX_P2_ADDR,
HORIZONTAL_SYNC_WIDTH_L, dt->hsync_len);
ret |= anx7625_reg_write(bus, RX_P2_ADDR,
HORIZONTAL_SYNC_WIDTH_H, dt->hsync_len >> 8);
/* HBP */
ret |= anx7625_reg_write(bus, RX_P2_ADDR,
HORIZONTAL_BACK_PORCH_L, dt->hback_porch);
ret |= anx7625_reg_write(bus, RX_P2_ADDR,
HORIZONTAL_BACK_PORCH_H, dt->hback_porch >> 8);
/* Vactive */
ret |= anx7625_reg_write(bus, RX_P2_ADDR, ACTIVE_LINES_L, dt->vactive);
ret |= anx7625_reg_write(bus, RX_P2_ADDR, ACTIVE_LINES_H,
dt->vactive >> 8);
/* VFP */
ret |= anx7625_reg_write(bus, RX_P2_ADDR,
VERTICAL_FRONT_PORCH, dt->vfront_porch);
/* VWS */
ret |= anx7625_reg_write(bus, RX_P2_ADDR,
VERTICAL_SYNC_WIDTH, dt->vsync_len);
/* VBP */
ret |= anx7625_reg_write(bus, RX_P2_ADDR,
VERTICAL_BACK_PORCH, dt->vback_porch);
/* M value */
ret |= anx7625_reg_write(bus, RX_P1_ADDR,
MIPI_PLL_M_NUM_23_16, (m >> 16) & 0xff);
ret |= anx7625_reg_write(bus, RX_P1_ADDR,
MIPI_PLL_M_NUM_15_8, (m >> 8) & 0xff);
ret |= anx7625_reg_write(bus, RX_P1_ADDR,
MIPI_PLL_M_NUM_7_0, (m & 0xff));
/* N value */
ret |= anx7625_reg_write(bus, RX_P1_ADDR,
MIPI_PLL_N_NUM_23_16, (n >> 16) & 0xff);
ret |= anx7625_reg_write(bus, RX_P1_ADDR,
MIPI_PLL_N_NUM_15_8, (n >> 8) & 0xff);
ret |= anx7625_reg_write(bus, RX_P1_ADDR, MIPI_PLL_N_NUM_7_0,
(n & 0xff));
/* diff */
ret |= anx7625_reg_write(bus, RX_P1_ADDR, MIPI_DIGITAL_ADJ_1, 0x37);
ret |= anx7625_odfc_config(bus, post_divider - 1);
if (ret < 0)
ANXERROR("mipi dsi setup IO error.\n");
return ret;
}
static int anx7625_swap_dsi_lane3(uint8_t bus)
{
int ret;
uint8_t val;
/* swap MIPI-DSI data lane 3 P and N */
ret = anx7625_reg_read(bus, RX_P1_ADDR, MIPI_SWAP, &val);
if (ret < 0) {
ANXERROR("IO error: access MIPI_SWAP.\n");
return -1;
}
val |= (1 << MIPI_SWAP_CH3);
return anx7625_reg_write(bus, RX_P1_ADDR, MIPI_SWAP, val);
}
static int anx7625_api_dsi_config(uint8_t bus, struct display_timing *dt)
{
int val, ret;
/* swap MIPI-DSI data lane 3 P and N */
ret = anx7625_swap_dsi_lane3(bus);
if (ret < 0) {
ANXERROR("IO error: swap dsi lane 3 failed.\n");
return ret;
}
/* DSI clock settings */
val = (0 << MIPI_HS_PWD_CLK) |
(0 << MIPI_HS_RT_CLK) |
(0 << MIPI_PD_CLK) |
(1 << MIPI_CLK_RT_MANUAL_PD_EN) |
(1 << MIPI_CLK_HS_MANUAL_PD_EN) |
(0 << MIPI_CLK_DET_DET_BYPASS) |
(0 << MIPI_CLK_MISS_CTRL) |
(0 << MIPI_PD_LPTX_CH_MANUAL_PD_EN);
ret = anx7625_reg_write(bus, RX_P1_ADDR, MIPI_PHY_CONTROL_3, val);
/*
* Decreased HS prepare tg delay from 160ns to 80ns work with
* a) Dragon board 810 series (Qualcomm AP)
* b) Moving Pixel DSI source (PG3A pattern generator +
* P332 D-PHY Probe) default D-PHY tg 5ns/step
*/
ret |= anx7625_reg_write(bus, RX_P1_ADDR, MIPI_TIME_HS_PRPR, 0x10);
/* enable DSI mode */
ret |= anx7625_write_or(bus, RX_P1_ADDR, MIPI_DIGITAL_PLL_18,
SELECT_DSI << MIPI_DPI_SELECT);
ret |= anx7625_dsi_video_config(bus, dt);
if (ret < 0) {
ANXERROR("dsi video tg config failed\n");
return ret;
}
/* toggle m, n ready */
ret = anx7625_write_and(bus, RX_P1_ADDR, MIPI_DIGITAL_PLL_6,
~(MIPI_M_NUM_READY | MIPI_N_NUM_READY));
mdelay(1);
ret |= anx7625_write_or(bus, RX_P1_ADDR, MIPI_DIGITAL_PLL_6,
MIPI_M_NUM_READY | MIPI_N_NUM_READY);
/* configure integer stable register */
ret |= anx7625_reg_write(bus, RX_P1_ADDR, MIPI_VIDEO_STABLE_CNT, 0x02);
/* power on MIPI RX */
ret |= anx7625_reg_write(bus, RX_P1_ADDR, MIPI_LANE_CTRL_10, 0x00);
ret |= anx7625_reg_write(bus, RX_P1_ADDR, MIPI_LANE_CTRL_10, 0x80);
if (ret < 0)
ANXERROR("IO error: mipi dsi enable init failed.\n");
return ret;
}
static int anx7625_dsi_config(uint8_t bus, struct display_timing *dt)
{
int ret;
ANXINFO("config dsi.\n");
/* DSC disable */
ret = anx7625_write_and(bus, RX_P0_ADDR, R_DSC_CTRL_0, ~DSC_EN);
ret |= anx7625_api_dsi_config(bus, dt);
if (ret < 0) {
ANXERROR("IO error: api dsi config error.\n");
return ret;
}
/* set MIPI RX EN */
ret = anx7625_write_or(bus, RX_P0_ADDR, AP_AV_STATUS, AP_MIPI_RX_EN);
/* clear mute flag */
ret |= anx7625_write_and(bus, RX_P0_ADDR, AP_AV_STATUS, ~AP_MIPI_MUTE);
if (ret < 0)
ANXERROR("IO error: enable mipi rx failed.\n");
else
ANXINFO("success to config DSI\n");
return ret;
}
static int sp_tx_rst_aux(uint8_t bus)
{
int ret;
ret = anx7625_write_or(bus, TX_P2_ADDR, RST_CTRL2, AUX_RST);
ret |= anx7625_write_and(bus, TX_P2_ADDR, RST_CTRL2, ~AUX_RST);
return ret;
}
static int sp_tx_aux_wr(uint8_t bus, uint8_t offset)
{
int ret;
ret = anx7625_reg_write(bus, RX_P0_ADDR, AP_AUX_BUFF_START, offset);
ret |= anx7625_reg_write(bus, RX_P0_ADDR, AP_AUX_COMMAND, 0x04);
ret |= anx7625_write_or(bus, RX_P0_ADDR,
AP_AUX_CTRL_STATUS, AP_AUX_CTRL_OP_EN);
return ret | wait_aux_op_finish(bus);
}
static int sp_tx_aux_rd(uint8_t bus, uint8_t len_cmd)
{
int ret;
ret = anx7625_reg_write(bus, RX_P0_ADDR, AP_AUX_COMMAND, len_cmd);
ret |= anx7625_write_or(bus, RX_P0_ADDR,
AP_AUX_CTRL_STATUS, AP_AUX_CTRL_OP_EN);
return ret | wait_aux_op_finish(bus);
}
static int sp_tx_get_edid_block(uint8_t bus)
{
int ret;
uint8_t val = 0;
sp_tx_aux_wr(bus, 0x7e);
sp_tx_aux_rd(bus, 0x01);
ret = anx7625_reg_read(bus, RX_P0_ADDR, AP_AUX_BUFF_START, &val);
if (ret < 0) {
ANXERROR("IO error: access AUX BUFF.\n");
return -1;
}
ANXINFO("EDID Block = %d\n", val + 1);
if (val > 3)
val = 1;
return val;
}
static int edid_read(uint8_t bus, uint8_t offset, uint8_t *pblock_buf)
{
uint8_t c, cnt = 0;
c = 0;
for (cnt = 0; cnt < 3; cnt++) {
sp_tx_aux_wr(bus, offset);
/* set I2C read com 0x01 mot = 0 and read 16 bytes */
c = sp_tx_aux_rd(bus, 0xf1);
if (c == 1) {
sp_tx_rst_aux(bus);
ANXERROR("edid read failed, reset!\n");
cnt++;
} else {
anx7625_reg_block_read(bus, RX_P0_ADDR,
AP_AUX_BUFF_START,
MAX_DPCD_BUFFER_SIZE, pblock_buf);
return 0;
}
}
return 1;
}
static int segments_edid_read(uint8_t bus, uint8_t segment, uint8_t *buf,
uint8_t offset)
{
uint8_t c, cnt = 0;
int ret;
/* write address only */
ret = anx7625_reg_write(bus, RX_P0_ADDR, AP_AUX_ADDR_7_0, 0x30);
ret |= anx7625_reg_write(bus, RX_P0_ADDR, AP_AUX_COMMAND, 0x04);
ret |= anx7625_reg_write(bus, RX_P0_ADDR, AP_AUX_CTRL_STATUS,
AP_AUX_CTRL_ADDRONLY | AP_AUX_CTRL_OP_EN);
ret |= wait_aux_op_finish(bus);
/* write segment address */
ret |= sp_tx_aux_wr(bus, segment);
/* data read */
ret |= anx7625_reg_write(bus, RX_P0_ADDR, AP_AUX_ADDR_7_0, 0x50);
if (ret < 0) {
ANXERROR("IO error: aux initial failed.\n");
return ret;
}
for (cnt = 0; cnt < 3; cnt++) {
sp_tx_aux_wr(bus, offset);
/* set I2C read com 0x01 mot = 0 and read 16 bytes */
c = sp_tx_aux_rd(bus, 0xf1);
if (c == 1) {
ret = sp_tx_rst_aux(bus);
ANXERROR("segment read failed, reset!\n");
cnt++;
} else {
ret = anx7625_reg_block_read(bus, RX_P0_ADDR,
AP_AUX_BUFF_START,
MAX_DPCD_BUFFER_SIZE, buf);
return ret;
}
}
return ret;
}
static int sp_tx_edid_read(uint8_t bus, uint8_t *pedid_blocks_buf,
uint32_t size)
{
uint8_t offset, edid_pos;
int count, blocks_num;
uint8_t pblock_buf[MAX_DPCD_BUFFER_SIZE];
uint8_t i;
uint8_t g_edid_break = 0;
int ret;
/* address initial */
ret = anx7625_reg_write(bus, RX_P0_ADDR, AP_AUX_ADDR_7_0, 0x50);
ret |= anx7625_reg_write(bus, RX_P0_ADDR, AP_AUX_ADDR_15_8, 0);
ret |= anx7625_write_and(bus, RX_P0_ADDR, AP_AUX_ADDR_19_16, 0xf0);
if (ret < 0) {
ANXERROR("access aux channel IO error.\n");
return -1;
}
blocks_num = sp_tx_get_edid_block(bus);
if (blocks_num < 0)
return blocks_num;
count = 0;
do {
switch (count) {
case 0:
case 1:
for (i = 0; i < 8; i++) {
offset = (i + count * 8) * MAX_DPCD_BUFFER_SIZE;
g_edid_break = edid_read(bus, offset,
pblock_buf);
if (g_edid_break == 1)
break;
if (offset <= size - MAX_DPCD_BUFFER_SIZE)
memcpy(&pedid_blocks_buf[offset],
pblock_buf,
MAX_DPCD_BUFFER_SIZE);
}
break;
case 2:
case 3:
offset = (count == 2) ? 0x00 : 0x80;
for (i = 0; i < 8; i++) {
edid_pos = (i + count * 8) *
MAX_DPCD_BUFFER_SIZE;
if (g_edid_break == 1)
break;
segments_edid_read(bus, count / 2,
pblock_buf, offset);
if (edid_pos <= size - MAX_DPCD_BUFFER_SIZE)
memcpy(&pedid_blocks_buf[edid_pos],
pblock_buf,
MAX_DPCD_BUFFER_SIZE);
offset = offset + 0x10;
}
break;
default:
die("%s: count should be <= 3", __func__);
break;
}
count++;
} while (blocks_num >= count);
/* reset aux channel */
sp_tx_rst_aux(bus);
return blocks_num;
}
static void anx7625_disable_pd_protocol(uint8_t bus)
{
int ret;
/* reset main ocm */
ret = anx7625_reg_write(bus, RX_P0_ADDR, 0x88, 0x40);
/* Disable PD */
ret |= anx7625_reg_write(bus, RX_P0_ADDR, AP_AV_STATUS, AP_DISABLE_PD);
/* release main ocm */
ret |= anx7625_reg_write(bus, RX_P0_ADDR, 0x88, 0x00);
if (ret < 0)
ANXERROR("Failed to disable PD feature.\n");
else
ANXINFO("Disabled PD feature.\n");
}
#define FLASH_LOAD_STA 0x05
#define FLASH_LOAD_STA_CHK (1 << 7)
static int anx7625_power_on_init(uint8_t bus)
{
int i, ret;
uint8_t val, version, revision;
anx7625_reg_write(bus, RX_P0_ADDR, XTAL_FRQ_SEL, XTAL_FRQ_27M);
for (i = 0; i < OCM_LOADING_TIME; i++) {
/* check interface */
ret = anx7625_reg_read(bus, RX_P0_ADDR, FLASH_LOAD_STA, &val);
if (ret < 0) {
ANXERROR("Failed to load flash\n");
return ret;
}
if ((val & FLASH_LOAD_STA_CHK) != FLASH_LOAD_STA_CHK) {
mdelay(1);
continue;
}
ANXINFO("Init interface.\n");
anx7625_disable_pd_protocol(bus);
anx7625_reg_read(bus, RX_P0_ADDR, OCM_FW_VERSION, &version);
anx7625_reg_read(bus, RX_P0_ADDR, OCM_FW_REVERSION, &revision);
ANXINFO("Firmware: ver %#02x, rev %#02x.\n", version, revision);
return 0;
}
return -1;
}
static void anx7625_start_dp_work(uint8_t bus)
{
int ret;
uint8_t val;
/* not support HDCP */
ret = anx7625_write_and(bus, RX_P1_ADDR, 0xee, 0x9f);
/* try auth flag */
ret |= anx7625_write_or(bus, RX_P1_ADDR, 0xec, 0x10);
/* interrupt for DRM */
ret |= anx7625_write_or(bus, RX_P1_ADDR, 0xff, 0x01);
if (ret < 0)
return;
ret = anx7625_reg_read(bus, RX_P1_ADDR, 0x86, &val);
if (ret < 0)
return;
ANXINFO("Secure OCM version=%02x\n", val);
}
static int anx7625_hpd_change_detect(uint8_t bus)
{
int ret;
uint8_t status;
ret = anx7625_reg_read(bus, RX_P0_ADDR, SYSTEM_STSTUS, &status);
if (ret < 0) {
ANXERROR("IO error: Failed to clear interrupt status.\n");
return ret;
}
if (status & HPD_STATUS) {
anx7625_start_dp_work(bus);
ANXINFO("HPD received 0x7e:0x45=%#x\n", status);
return 1;
}
return 0;
}
static void anx7625_parse_edid(const struct edid *edid,
struct display_timing *dt)
{
dt->pixelclock = edid->mode.pixel_clock;
dt->hactive = edid->mode.ha;
dt->hsync_len = edid->mode.hspw;
dt->hback_porch = (edid->mode.hbl - edid->mode.hso -
edid->mode.hborder - edid->mode.hspw);
dt->hfront_porch = edid->mode.hso - edid->mode.hborder;
dt->vactive = edid->mode.va;
dt->vsync_len = edid->mode.vspw;
dt->vfront_porch = edid->mode.vso - edid->mode.vborder;
dt->vback_porch = (edid->mode.vbl - edid->mode.vso -
edid->mode.vspw - edid->mode.vborder);
ANXINFO("pixelclock(%d).\n"
" hactive(%d), hsync(%d), hfp(%d), hbp(%d)\n"
" vactive(%d), vsync(%d), vfp(%d), vbp(%d)\n",
dt->pixelclock,
dt->hactive, dt->hsync_len, dt->hfront_porch, dt->hback_porch,
dt->vactive, dt->vsync_len, dt->vfront_porch, dt->vback_porch);
}
int anx7625_dp_start(uint8_t bus, const struct edid *edid)
{
int ret;
struct display_timing dt;
anx7625_parse_edid(edid, &dt);
ret = anx7625_dsi_config(bus, &dt);
if (ret < 0)
ANXERROR("MIPI phy setup error.\n");
else
ANXINFO("MIPI phy setup OK.\n");
return ret;
}
int anx7625_dp_get_edid(uint8_t bus, struct edid *out)
{
int block_num;
int ret;
u8 edid[FOUR_BLOCK_SIZE];
block_num = sp_tx_edid_read(bus, edid, FOUR_BLOCK_SIZE);
if (block_num < 0) {
ANXERROR("Failed to get eDP EDID.\n");
return -1;
}
ret = decode_edid(edid, (block_num + 1) * ONE_BLOCK_SIZE, out);
if (ret != EDID_CONFORMANT) {
ANXERROR("Failed to decode EDID.\n");
return -1;
}
return 0;
}
int anx7625_init(uint8_t bus)
{
int retry_hpd_change = 50;
int retry_power_on = 3;
while (--retry_power_on) {
if (anx7625_power_on_init(bus) == 0)
break;
}
if (!retry_power_on) {
ANXERROR("Failed to power on.\n");
return -1;
}
while (--retry_hpd_change) {
mdelay(10);
int detected = anx7625_hpd_change_detect(bus);
if (detected < 0)
return -1;
if (detected > 0)
return 0;
}
ANXERROR("Timed out to detect HPD change on bus %d.\n", bus);
return -1;
}