blob: 1d30a8d0d57f8d6e2fd25edab493755320c48940 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
#include <acpi/acpi.h>
#include <arch/cpu.h>
#include <bootstate.h>
#include <console/console.h>
#include <cbfs.h>
#include <commonlib/region.h>
#include <fmap.h>
#include <intelblocks/cse.h>
#include <intelblocks/cse_layout.h>
#include <intelbasecode/debug_feature.h>
#include <security/vboot/vboot_common.h>
#include <security/vboot/misc.h>
#include <soc/intel/common/reset.h>
#include <timestamp.h>
#define BPDT_HEADER_SZ sizeof(struct bpdt_header)
#define BPDT_ENTRY_SZ sizeof(struct bpdt_entry)
#define SUBPART_HEADER_SZ sizeof(struct subpart_hdr)
#define SUBPART_ENTRY_SZ sizeof(struct subpart_entry)
#define SUBPART_MANIFEST_HDR_SZ sizeof(struct subpart_entry_manifest_header)
/* Converts bp index to boot partition string */
#define GET_BP_STR(bp_index) (bp_index ? "RW" : "RO")
/* CSE RW boot partition signature */
#define CSE_RW_SIGNATURE 0x000055aa
/* CSE RW boot partition signature size */
#define CSE_RW_SIGN_SIZE sizeof(uint32_t)
/*
* CSE Firmware supports 3 boot partitions. For CSE Lite SKU, only 2 boot partitions are
* used and 3rd boot partition is set to BP_STATUS_PARTITION_NOT_PRESENT.
* CSE Lite SKU Image Layout:
* +------------+ +----+------+----+ +-----+------+-----+
* | CSE REGION | => | RO | DATA | RW | => | BP1 | DATA | BP2 |
* +------------+ +----+------+----+ +-----+------+-----+
*/
#define CSE_MAX_BOOT_PARTITIONS 3
/* CSE Lite SKU's valid bootable partition identifiers */
enum boot_partition_id {
/* RO(BP1) contains recovery/minimal boot firmware */
RO = 0,
/* RW(BP2) contains fully functional CSE firmware */
RW = 1
};
/*
* Boot partition status.
* The status is returned in response to MKHI_BUP_COMMON_GET_BOOT_PARTITION_INFO cmd.
*/
enum bp_status {
/* This value is returned when a partition has no errors */
BP_STATUS_SUCCESS = 0,
/*
* This value is returned when a partition should be present based on layout, but it is
* not valid.
*/
BP_STATUS_GENERAL_FAILURE = 1,
/* This value is returned when a partition is not present per initial image layout */
BP_STATUS_PARTITION_NOT_PRESENT = 2,
/*
* This value is returned when unexpected issues are detected in CSE Data area
* and CSE TCB-SVN downgrade scenario.
*/
BP_STATUS_DATA_FAILURE = 3,
};
/*
* Boot Partition Info Flags
* The flags are returned in response to MKHI_BUP_COMMON_GET_BOOT_PARTITION_INFO cmd.
*/
enum bp_info_flags {
/* Redundancy Enabled: It indicates CSE supports RO(BP1) and RW(BP2) regions */
BP_INFO_REDUNDANCY_EN = 1 << 0,
/* It indicates RO(BP1) supports Minimal Recovery Mode */
BP_INFO_MIN_RECOV_MODE_EN = 1 << 1,
/*
* Read-only Config Enabled: It indicates HW protection to CSE RO region is enabled.
* The option is relevant only if the BP_INFO_MIN_RECOV_MODE_EN flag is enabled.
*/
BP_INFO_READ_ONLY_CFG = 1 << 2,
};
/* CSE boot partition entry info */
struct cse_bp_entry {
/* Boot partition version */
struct fw_version fw_ver;
/* Boot partition status */
uint32_t status;
/* Starting offset of the partition within CSE region */
uint32_t start_offset;
/* Ending offset of the partition within CSE region */
uint32_t end_offset;
uint8_t reserved[12];
} __packed;
/* CSE boot partition info */
struct cse_bp_info {
/* Number of boot partitions */
uint8_t total_number_of_bp;
/* Current boot partition */
uint8_t current_bp;
/* Next boot partition */
uint8_t next_bp;
/* Boot Partition Info Flags */
uint8_t flags;
/* Boot Partition Entry Info */
struct cse_bp_entry bp_entries[CSE_MAX_BOOT_PARTITIONS];
} __packed;
struct get_bp_info_rsp {
struct mkhi_hdr hdr;
struct cse_bp_info bp_info;
} __packed;
static const char * const cse_regions[] = {"RO", "RW"};
bool cse_get_boot_performance_data(struct cse_boot_perf_rsp *boot_perf_rsp)
{
struct cse_boot_perf_req {
struct mkhi_hdr hdr;
uint32_t reserved;
} __packed;
struct cse_boot_perf_req req = {
.hdr.group_id = MKHI_GROUP_ID_BUP_COMMON,
.hdr.command = MKHI_BUP_COMMON_GET_BOOT_PERF_DATA,
.reserved = 0,
};
size_t resp_size = sizeof(struct cse_boot_perf_rsp);
if (heci_send_receive(&req, sizeof(req), boot_perf_rsp, &resp_size,
HECI_MKHI_ADDR)) {
printk(BIOS_ERR, "cse_lite: Could not get boot performance data\n");
return false;
}
if (boot_perf_rsp->hdr.result) {
printk(BIOS_ERR, "cse_lite: Get boot performance data resp failed: %d\n",
boot_perf_rsp->hdr.result);
return false;
}
return true;
}
static uint8_t cse_get_current_bp(const struct cse_bp_info *cse_bp_info)
{
return cse_bp_info->current_bp;
}
static const struct cse_bp_entry *cse_get_bp_entry(enum boot_partition_id bp,
const struct cse_bp_info *cse_bp_info)
{
return &cse_bp_info->bp_entries[bp];
}
static void cse_print_boot_partition_info(const struct cse_bp_info *cse_bp_info)
{
const struct cse_bp_entry *cse_bp;
printk(BIOS_DEBUG, "cse_lite: Number of partitions = %d\n",
cse_bp_info->total_number_of_bp);
printk(BIOS_DEBUG, "cse_lite: Current partition = %s\n",
GET_BP_STR(cse_bp_info->current_bp));
printk(BIOS_DEBUG, "cse_lite: Next partition = %s\n", GET_BP_STR(cse_bp_info->next_bp));
printk(BIOS_DEBUG, "cse_lite: Flags = 0x%x\n", cse_bp_info->flags);
/* Log version info of RO & RW partitions */
cse_bp = cse_get_bp_entry(RO, cse_bp_info);
printk(BIOS_DEBUG, "cse_lite: %s version = %d.%d.%d.%d (Status=0x%x, Start=0x%x, End=0x%x)\n",
GET_BP_STR(RO), cse_bp->fw_ver.major, cse_bp->fw_ver.minor,
cse_bp->fw_ver.hotfix, cse_bp->fw_ver.build,
cse_bp->status, cse_bp->start_offset,
cse_bp->end_offset);
cse_bp = cse_get_bp_entry(RW, cse_bp_info);
printk(BIOS_DEBUG, "cse_lite: %s version = %d.%d.%d.%d (Status=0x%x, Start=0x%x, End=0x%x)\n",
GET_BP_STR(RW), cse_bp->fw_ver.major, cse_bp->fw_ver.minor,
cse_bp->fw_ver.hotfix, cse_bp->fw_ver.build,
cse_bp->status, cse_bp->start_offset,
cse_bp->end_offset);
}
/*
* Checks prerequisites for MKHI_BUP_COMMON_GET_BOOT_PARTITION_INFO and
* MKHI_BUP_COMMON_SET_BOOT_PARTITION_INFO HECI commands.
* It allows execution of the Boot Partition commands in below scenarios:
* - When CSE boots from RW partition (COM: Normal and CWS: Normal)
* - When CSE boots from RO partition (COM: Soft Temp Disable and CWS: Normal)
* - After HMRFPO_ENABLE command is issued to CSE (COM: SECOVER_MEI_MSG and CWS: Normal)
* The prerequisite check should be handled in cse_get_bp_info() and
* cse_set_next_boot_partition() since the CSE's current operation mode is changed between these
* cmd handler calls.
*/
static bool cse_is_bp_cmd_info_possible(void)
{
if (cse_is_hfs1_cws_normal()) {
if (cse_is_hfs1_com_normal())
return true;
if (cse_is_hfs1_com_secover_mei_msg())
return true;
if (cse_is_hfs1_com_soft_temp_disable())
return true;
}
return false;
}
static bool cse_get_bp_info(struct get_bp_info_rsp *bp_info_rsp)
{
struct get_bp_info_req {
struct mkhi_hdr hdr;
uint8_t reserved[4];
} __packed;
struct get_bp_info_req info_req = {
.hdr.group_id = MKHI_GROUP_ID_BUP_COMMON,
.hdr.command = MKHI_BUP_COMMON_GET_BOOT_PARTITION_INFO,
.reserved = {0},
};
if (!cse_is_bp_cmd_info_possible()) {
printk(BIOS_ERR, "cse_lite: CSE does not meet prerequisites\n");
return false;
}
size_t resp_size = sizeof(struct get_bp_info_rsp);
if (heci_send_receive(&info_req, sizeof(info_req), bp_info_rsp, &resp_size,
HECI_MKHI_ADDR)) {
printk(BIOS_ERR, "cse_lite: Could not get partition info\n");
return false;
}
if (bp_info_rsp->hdr.result) {
printk(BIOS_ERR, "cse_lite: Get partition info resp failed: %d\n",
bp_info_rsp->hdr.result);
return false;
}
cse_print_boot_partition_info(&bp_info_rsp->bp_info);
return true;
}
/*
* It sends HECI command to notify CSE about its next boot partition. When coreboot wants
* CSE to boot from certain partition (BP1 <RO> or BP2 <RW>), then this command can be used.
* The CSE's valid bootable partitions are BP1(RO) and BP2(RW).
* This function must be used before EOP.
* Returns false on failure and true on success.
*/
static bool cse_set_next_boot_partition(enum boot_partition_id bp)
{
struct set_boot_partition_info_req {
struct mkhi_hdr hdr;
uint8_t next_bp;
uint8_t reserved[3];
} __packed;
struct set_boot_partition_info_req switch_req = {
.hdr.group_id = MKHI_GROUP_ID_BUP_COMMON,
.hdr.command = MKHI_BUP_COMMON_SET_BOOT_PARTITION_INFO,
.next_bp = bp,
.reserved = {0},
};
if (bp != RO && bp != RW) {
printk(BIOS_ERR, "cse_lite: Incorrect partition id(%d) is provided", bp);
return false;
}
printk(BIOS_INFO, "cse_lite: Set Boot Partition Info Command (%s)\n", GET_BP_STR(bp));
if (!cse_is_bp_cmd_info_possible()) {
printk(BIOS_ERR, "cse_lite: CSE does not meet prerequisites\n");
return false;
}
struct mkhi_hdr switch_resp;
size_t sw_resp_sz = sizeof(struct mkhi_hdr);
if (heci_send_receive(&switch_req, sizeof(switch_req), &switch_resp, &sw_resp_sz,
HECI_MKHI_ADDR))
return false;
if (switch_resp.result) {
printk(BIOS_ERR, "cse_lite: Set Boot Partition Info Response Failed: %d\n",
switch_resp.result);
return false;
}
return true;
}
static bool cse_data_clear_request(const struct cse_bp_info *cse_bp_info)
{
struct data_clr_request {
struct mkhi_hdr hdr;
uint8_t reserved[4];
} __packed;
struct data_clr_request data_clr_rq = {
.hdr.group_id = MKHI_GROUP_ID_BUP_COMMON,
.hdr.command = MKHI_BUP_COMMON_DATA_CLEAR,
.reserved = {0},
};
if (!cse_is_hfs1_cws_normal() || !cse_is_hfs1_com_soft_temp_disable() ||
cse_get_current_bp(cse_bp_info) != RO) {
printk(BIOS_ERR, "cse_lite: CSE doesn't meet DATA CLEAR cmd prerequisites\n");
return false;
}
printk(BIOS_DEBUG, "cse_lite: Sending DATA CLEAR HECI command\n");
struct mkhi_hdr data_clr_rsp;
size_t data_clr_rsp_sz = sizeof(data_clr_rsp);
if (heci_send_receive(&data_clr_rq, sizeof(data_clr_rq), &data_clr_rsp,
&data_clr_rsp_sz, HECI_MKHI_ADDR)) {
return false;
}
if (data_clr_rsp.result) {
printk(BIOS_ERR, "cse_lite: CSE DATA CLEAR command response failed: %d\n",
data_clr_rsp.result);
return false;
}
return true;
}
__weak void cse_board_reset(void)
{
/* Default weak implementation, does nothing. */
}
/* Set the CSE's next boot partition and issues system reset */
static bool cse_set_and_boot_from_next_bp(enum boot_partition_id bp)
{
if (!cse_set_next_boot_partition(bp))
return false;
/* Allow the board to perform a reset for CSE RO<->RW jump */
cse_board_reset();
/* If board does not perform the reset, then perform global_reset */
do_global_reset();
die("cse_lite: Failed to reset the system\n");
/* Control never reaches here */
return false;
}
static bool cse_boot_to_rw(const struct cse_bp_info *cse_bp_info)
{
if (cse_get_current_bp(cse_bp_info) == RW)
return true;
return cse_set_and_boot_from_next_bp(RW);
}
/* Check if CSE RW data partition is valid or not */
static bool cse_is_rw_dp_valid(const struct cse_bp_info *cse_bp_info)
{
const struct cse_bp_entry *rw_bp;
rw_bp = cse_get_bp_entry(RW, cse_bp_info);
return rw_bp->status != BP_STATUS_DATA_FAILURE;
}
/*
* It returns true if RW partition doesn't indicate BP_STATUS_DATA_FAILURE
* otherwise false if any operation fails.
*/
static bool cse_fix_data_failure_err(const struct cse_bp_info *cse_bp_info)
{
/*
* If RW partition status indicates BP_STATUS_DATA_FAILURE,
* - Send DATA CLEAR HECI command to CSE
* - Send SET BOOT PARTITION INFO(RW) command to set CSE's next partition
* - Issue GLOBAL RESET HECI command.
*/
if (cse_is_rw_dp_valid(cse_bp_info))
return true;
if (!cse_data_clear_request(cse_bp_info))
return false;
return cse_boot_to_rw(cse_bp_info);
}
static const struct fw_version *cse_get_bp_entry_version(enum boot_partition_id bp,
const struct cse_bp_info *bp_info)
{
const struct cse_bp_entry *cse_bp;
cse_bp = cse_get_bp_entry(bp, bp_info);
return &cse_bp->fw_ver;
}
static const struct fw_version *cse_get_rw_version(const struct cse_bp_info *cse_bp_info)
{
return cse_get_bp_entry_version(RW, cse_bp_info);
}
static void cse_get_bp_entry_range(const struct cse_bp_info *cse_bp_info,
enum boot_partition_id bp, uint32_t *start_offset, uint32_t *end_offset)
{
const struct cse_bp_entry *cse_bp;
cse_bp = cse_get_bp_entry(bp, cse_bp_info);
if (start_offset)
*start_offset = cse_bp->start_offset;
if (end_offset)
*end_offset = cse_bp->end_offset;
}
static bool cse_is_rw_bp_status_valid(const struct cse_bp_info *cse_bp_info)
{
const struct cse_bp_entry *rw_bp;
rw_bp = cse_get_bp_entry(RW, cse_bp_info);
if (rw_bp->status == BP_STATUS_PARTITION_NOT_PRESENT ||
rw_bp->status == BP_STATUS_GENERAL_FAILURE) {
printk(BIOS_ERR, "cse_lite: RW BP (status:%u) is not valid\n", rw_bp->status);
return false;
}
return true;
}
static bool cse_boot_to_ro(const struct cse_bp_info *cse_bp_info)
{
if (cse_get_current_bp(cse_bp_info) == RO)
return true;
return cse_set_and_boot_from_next_bp(RO);
}
static bool cse_get_rw_rdev(struct region_device *rdev)
{
if (fmap_locate_area_as_rdev_rw(CONFIG_SOC_INTEL_CSE_FMAP_NAME, rdev) < 0) {
printk(BIOS_ERR, "cse_lite: Failed to locate %s in FMAP\n",
CONFIG_SOC_INTEL_CSE_FMAP_NAME);
return false;
}
return true;
}
static bool cse_is_rw_bp_sign_valid(const struct region_device *target_rdev)
{
uint32_t cse_bp_sign;
if (rdev_readat(target_rdev, &cse_bp_sign, 0, CSE_RW_SIGN_SIZE) != CSE_RW_SIGN_SIZE) {
printk(BIOS_ERR, "cse_lite: Failed to read RW boot partition signature\n");
return false;
}
return cse_bp_sign == CSE_RW_SIGNATURE;
}
static bool cse_get_target_rdev(const struct cse_bp_info *cse_bp_info,
struct region_device *target_rdev)
{
struct region_device cse_region_rdev;
size_t size;
uint32_t start_offset;
uint32_t end_offset;
if (!cse_get_rw_rdev(&cse_region_rdev))
return false;
cse_get_bp_entry_range(cse_bp_info, RW, &start_offset, &end_offset);
size = end_offset + 1 - start_offset;
if (rdev_chain(target_rdev, &cse_region_rdev, start_offset, size))
return false;
printk(BIOS_DEBUG, "cse_lite: CSE RW partition: offset = 0x%x, size = 0x%x\n",
(uint32_t)start_offset, (uint32_t) size);
return true;
}
static const char *cse_get_source_rdev_fmap(void)
{
struct vb2_context *ctx = vboot_get_context();
if (ctx == NULL)
return NULL;
if (vboot_is_firmware_slot_a(ctx))
return CONFIG_SOC_INTEL_CSE_RW_A_FMAP_NAME;
return CONFIG_SOC_INTEL_CSE_RW_B_FMAP_NAME;
}
/*
* Compare versions of CSE CBFS sub-component and CSE sub-component partition
* In case of CSE component comparison:
* If ver_cmp_status = 0, no update is required
* If ver_cmp_status < 0, coreboot downgrades CSE RW region
* If ver_cmp_status > 0, coreboot upgrades CSE RW region
*/
static int cse_compare_sub_part_version(const struct fw_version *a, const struct fw_version *b)
{
if (a->major != b->major)
return a->major - b->major;
else if (a->minor != b->minor)
return a->minor - b->minor;
else if (a->hotfix != b->hotfix)
return a->hotfix - b->hotfix;
else
return a->build - b->build;
}
/* The function calculates SHA-256 of CSE RW blob and compares it with the provided SHA value */
static bool cse_verify_cbfs_rw_sha256(const uint8_t *expected_rw_blob_sha,
const void *rw_blob, const size_t rw_blob_sz)
{
struct vb2_hash calculated;
if (vb2_hash_calculate(vboot_hwcrypto_allowed(), rw_blob, rw_blob_sz,
VB2_HASH_SHA256, &calculated)) {
printk(BIOS_ERR, "cse_lite: CSE CBFS RW's SHA-256 calculation has failed\n");
return false;
}
if (memcmp(expected_rw_blob_sha, calculated.sha256, sizeof(calculated.sha256))) {
printk(BIOS_ERR, "cse_lite: Computed CBFS RW's SHA-256 does not match with"
"the provided SHA in the metadata\n");
return false;
}
printk(BIOS_SPEW, "cse_lite: Computed SHA of CSE CBFS RW Image matches the"
" provided hash in the metadata\n");
return true;
}
static bool cse_erase_rw_region(const struct region_device *target_rdev)
{
if (rdev_eraseat(target_rdev, 0, region_device_sz(target_rdev)) < 0) {
printk(BIOS_ERR, "cse_lite: CSE RW partition could not be erased\n");
return false;
}
return true;
}
static bool cse_copy_rw(const struct region_device *target_rdev, const void *buf,
size_t offset, size_t size)
{
if (rdev_writeat(target_rdev, buf, offset, size) < 0) {
printk(BIOS_ERR, "cse_lite: Failed to update CSE firmware\n");
return false;
}
return true;
}
enum cse_update_status {
CSE_UPDATE_NOT_REQUIRED,
CSE_UPDATE_UPGRADE,
CSE_UPDATE_DOWNGRADE,
CSE_UPDATE_CORRUPTED,
CSE_UPDATE_METADATA_ERROR,
};
static bool read_ver_field(const char *start, char **curr, size_t size, uint16_t *ver_field)
{
if ((*curr - start) >= size) {
printk(BIOS_ERR, "cse_lite: Version string read overflow!\n");
return false;
}
*ver_field = skip_atoi(curr);
(*curr)++;
return true;
}
static enum cse_update_status cse_check_update_status(const struct cse_bp_info *cse_bp_info,
struct region_device *target_rdev)
{
int ret;
struct fw_version cbfs_rw_version;
char *version_str, *ptr;
size_t size;
if (!cse_is_rw_bp_sign_valid(target_rdev))
return CSE_UPDATE_CORRUPTED;
ptr = version_str = cbfs_map(CONFIG_SOC_INTEL_CSE_RW_VERSION_CBFS_NAME, &size);
if (!version_str) {
printk(BIOS_ERR, "cse_lite: Failed to get %s\n",
CONFIG_SOC_INTEL_CSE_RW_VERSION_CBFS_NAME);
return CSE_UPDATE_METADATA_ERROR;
}
if (!read_ver_field(version_str, &ptr, size, &cbfs_rw_version.major) ||
!read_ver_field(version_str, &ptr, size, &cbfs_rw_version.minor) ||
!read_ver_field(version_str, &ptr, size, &cbfs_rw_version.hotfix) ||
!read_ver_field(version_str, &ptr, size, &cbfs_rw_version.build)) {
cbfs_unmap(version_str);
return CSE_UPDATE_METADATA_ERROR;
}
printk(BIOS_DEBUG, "cse_lite: CSE CBFS RW version : %d.%d.%d.%d\n",
cbfs_rw_version.major,
cbfs_rw_version.minor,
cbfs_rw_version.hotfix,
cbfs_rw_version.build);
cbfs_unmap(version_str);
ret = cse_compare_sub_part_version(&cbfs_rw_version, cse_get_rw_version(cse_bp_info));
if (ret == 0)
return CSE_UPDATE_NOT_REQUIRED;
else if (ret < 0)
return CSE_UPDATE_DOWNGRADE;
else
return CSE_UPDATE_UPGRADE;
}
static bool cse_write_rw_region(const struct region_device *target_rdev,
const void *cse_cbfs_rw, const size_t cse_cbfs_rw_sz)
{
/* Points to CSE CBFS RW image after boot partition signature */
uint8_t *cse_cbfs_rw_wo_sign = (uint8_t *)cse_cbfs_rw + CSE_RW_SIGN_SIZE;
/* Size of CSE CBFS RW image without boot partition signature */
uint32_t cse_cbfs_rw_wo_sign_sz = cse_cbfs_rw_sz - CSE_RW_SIGN_SIZE;
/* Update except CSE RW signature */
if (!cse_copy_rw(target_rdev, cse_cbfs_rw_wo_sign, CSE_RW_SIGN_SIZE,
cse_cbfs_rw_wo_sign_sz))
return false;
/* Update CSE RW signature to indicate update is complete */
if (!cse_copy_rw(target_rdev, (void *)cse_cbfs_rw, 0, CSE_RW_SIGN_SIZE))
return false;
printk(BIOS_INFO, "cse_lite: CSE RW Update Successful\n");
return true;
}
static bool is_cse_fw_update_enabled(void)
{
if (!CONFIG(SOC_INTEL_CSE_RW_UPDATE))
return false;
if (CONFIG(SOC_INTEL_COMMON_BASECODE_DEBUG_FEATURE))
return !is_debug_cse_fw_update_disable();
return true;
}
static enum csme_failure_reason cse_update_rw(const struct cse_bp_info *cse_bp_info,
const void *cse_cbfs_rw, const size_t cse_blob_sz,
struct region_device *target_rdev)
{
if (region_device_sz(target_rdev) < cse_blob_sz) {
printk(BIOS_ERR, "RW update does not fit. CSE RW flash region size: %zx,"
"Update blob size:%zx\n", region_device_sz(target_rdev), cse_blob_sz);
return CSE_LITE_SKU_LAYOUT_MISMATCH_ERROR;
}
if (!cse_erase_rw_region(target_rdev))
return CSE_LITE_SKU_FW_UPDATE_ERROR;
if (!cse_write_rw_region(target_rdev, cse_cbfs_rw, cse_blob_sz))
return CSE_LITE_SKU_FW_UPDATE_ERROR;
return CSE_NO_ERROR;
}
static bool cse_prep_for_rw_update(const struct cse_bp_info *cse_bp_info,
enum cse_update_status status)
{
/*
* To set CSE's operation mode to HMRFPO mode:
* 1. Ensure CSE to boot from RO(BP1)
* 2. Send HMRFPO_ENABLE command to CSE
*/
if (!cse_boot_to_ro(cse_bp_info))
return false;
if ((status == CSE_UPDATE_DOWNGRADE) || (status == CSE_UPDATE_CORRUPTED)) {
if (!cse_data_clear_request(cse_bp_info)) {
printk(BIOS_ERR, "cse_lite: CSE data clear failed!\n");
return false;
}
}
return cse_hmrfpo_enable();
}
static enum csme_failure_reason cse_trigger_fw_update(const struct cse_bp_info *cse_bp_info,
enum cse_update_status status,
struct region_device *target_rdev)
{
enum csme_failure_reason rv;
uint8_t *cbfs_rw_hash;
void *cse_cbfs_rw = NULL;
size_t size;
const char *area_name = cse_get_source_rdev_fmap();
if (!area_name)
return CSE_LITE_SKU_RW_BLOB_NOT_FOUND;
if (CONFIG(SOC_INTEL_CSE_LITE_COMPRESS_ME_RW)) {
cse_cbfs_rw = cbfs_unverified_area_cbmem_alloc(area_name,
CONFIG_SOC_INTEL_CSE_RW_CBFS_NAME, CBMEM_ID_CSE_UPDATE, &size);
} else {
cse_cbfs_rw = cbfs_unverified_area_map(area_name,
CONFIG_SOC_INTEL_CSE_RW_CBFS_NAME, &size);
}
if (!cse_cbfs_rw) {
printk(BIOS_ERR, "cse_lite: CSE CBFS RW blob could not be mapped\n");
return CSE_LITE_SKU_RW_BLOB_NOT_FOUND;
}
cbfs_rw_hash = cbfs_map(CONFIG_SOC_INTEL_CSE_RW_HASH_CBFS_NAME, NULL);
if (!cbfs_rw_hash) {
printk(BIOS_ERR, "cse_lite: Failed to get %s\n",
CONFIG_SOC_INTEL_CSE_RW_HASH_CBFS_NAME);
rv = CSE_LITE_SKU_RW_METADATA_NOT_FOUND;
goto error_exit;
}
if (!cse_verify_cbfs_rw_sha256(cbfs_rw_hash, cse_cbfs_rw, size)) {
rv = CSE_LITE_SKU_RW_BLOB_SHA256_MISMATCH;
goto error_exit;
}
if (!cse_prep_for_rw_update(cse_bp_info, status)) {
rv = CSE_COMMUNICATION_ERROR;
goto error_exit;
}
rv = cse_update_rw(cse_bp_info, cse_cbfs_rw, size, target_rdev);
error_exit:
cbfs_unmap(cbfs_rw_hash);
cbfs_unmap(cse_cbfs_rw);
return rv;
}
static uint8_t cse_fw_update(const struct cse_bp_info *cse_bp_info)
{
struct region_device target_rdev;
enum cse_update_status status;
if (!cse_get_target_rdev(cse_bp_info, &target_rdev)) {
printk(BIOS_ERR, "cse_lite: Failed to get CSE RW Partition\n");
return CSE_LITE_SKU_RW_ACCESS_ERROR;
}
status = cse_check_update_status(cse_bp_info, &target_rdev);
if (status == CSE_UPDATE_NOT_REQUIRED)
return CSE_NO_ERROR;
if (status == CSE_UPDATE_METADATA_ERROR)
return CSE_LITE_SKU_RW_METADATA_NOT_FOUND;
printk(BIOS_DEBUG, "cse_lite: CSE RW update is initiated\n");
return cse_trigger_fw_update(cse_bp_info, status, &target_rdev);
}
static const char *cse_sub_part_str(enum bpdt_entry_type type)
{
switch (type) {
case IOM_FW:
return "IOM";
case NPHY_FW:
return "NPHY";
default:
return "Unknown";
}
}
static bool cse_locate_area_as_rdev_rw(const struct cse_bp_info *cse_bp_info,
size_t bp, struct region_device *cse_rdev)
{
struct region_device cse_region_rdev;
uint32_t size;
uint32_t start_offset;
uint32_t end_offset;
if (!cse_get_rw_rdev(&cse_region_rdev))
return false;
if (!strcmp(cse_regions[bp], "RO"))
cse_get_bp_entry_range(cse_bp_info, RO, &start_offset, &end_offset);
else
cse_get_bp_entry_range(cse_bp_info, RW, &start_offset, &end_offset);
size = end_offset + 1 - start_offset;
if (rdev_chain(cse_rdev, &cse_region_rdev, start_offset, size))
return false;
printk(BIOS_DEBUG, "cse_lite: CSE %s partition: offset = 0x%x, size = 0x%x\n",
cse_regions[bp], start_offset, size);
return true;
}
static bool cse_sub_part_get_target_rdev(const struct cse_bp_info *cse_bp_info,
struct region_device *target_rdev, size_t bp, enum bpdt_entry_type type)
{
struct bpdt_header bpdt_hdr;
struct region_device cse_rdev;
struct bpdt_entry bpdt_entries[MAX_SUBPARTS];
uint8_t i;
if (!cse_locate_area_as_rdev_rw(cse_bp_info, bp, &cse_rdev)) {
printk(BIOS_ERR, "cse_lite: Failed to locate %s in the CSE Region\n",
cse_regions[bp]);
return false;
}
if ((rdev_readat(&cse_rdev, &bpdt_hdr, 0, BPDT_HEADER_SZ)) != BPDT_HEADER_SZ) {
printk(BIOS_ERR, "cse_lite: Failed to read BPDT header from CSE region\n");
return false;
}
if ((rdev_readat(&cse_rdev, bpdt_entries, BPDT_HEADER_SZ,
(bpdt_hdr.descriptor_count * BPDT_ENTRY_SZ))) !=
(bpdt_hdr.descriptor_count * BPDT_ENTRY_SZ)) {
printk(BIOS_ERR, "cse_lite: Failed to read BPDT entries from CSE region\n");
return false;
}
/* walk through BPDT entries to identify sub-partition's payload offset and size */
for (i = 0; i < bpdt_hdr.descriptor_count; i++) {
if (bpdt_entries[i].type == type) {
printk(BIOS_INFO, "cse_lite: Sub-partition %s- offset = 0x%x,"
"size = 0x%x\n", cse_sub_part_str(type), bpdt_entries[i].offset,
bpdt_entries[i].size);
if (rdev_chain(target_rdev, &cse_rdev, bpdt_entries[i].offset,
bpdt_entries[i].size))
return false;
else
return true;
}
}
printk(BIOS_ERR, "cse_lite: Sub-partition %s is not found\n", cse_sub_part_str(type));
return false;
}
static bool cse_get_sub_part_fw_version(enum bpdt_entry_type type,
const struct region_device *rdev,
struct fw_version *fw_ver)
{
struct subpart_entry subpart_entry;
struct subpart_entry_manifest_header man_hdr;
if ((rdev_readat(rdev, &subpart_entry, SUBPART_HEADER_SZ, SUBPART_ENTRY_SZ))
!= SUBPART_ENTRY_SZ) {
printk(BIOS_ERR, "cse_lite: Failed to read %s sub partition entry\n",
cse_sub_part_str(type));
return false;
}
if ((rdev_readat(rdev, &man_hdr, subpart_entry.offset_bytes, SUBPART_MANIFEST_HDR_SZ))
!= SUBPART_MANIFEST_HDR_SZ) {
printk(BIOS_ERR, "cse_lite: Failed to read %s Sub part entry #0 manifest\n",
cse_sub_part_str(type));
return false;
}
fw_ver->major = man_hdr.binary_version.major;
fw_ver->minor = man_hdr.binary_version.minor;
fw_ver->hotfix = man_hdr.binary_version.hotfix;
fw_ver->build = man_hdr.binary_version.build;
return true;
}
static void cse_sub_part_get_source_fw_version(void *subpart_cbfs_rw, struct fw_version *fw_ver)
{
uint8_t *ptr = (uint8_t *)subpart_cbfs_rw;
struct subpart_entry *subpart_entry;
struct subpart_entry_manifest_header *man_hdr;
subpart_entry = (struct subpart_entry *) (ptr + SUBPART_HEADER_SZ);
man_hdr = (struct subpart_entry_manifest_header *) (ptr + subpart_entry->offset_bytes);
fw_ver->major = man_hdr->binary_version.major;
fw_ver->minor = man_hdr->binary_version.minor;
fw_ver->hotfix = man_hdr->binary_version.hotfix;
fw_ver->build = man_hdr->binary_version.build;
}
static bool cse_prep_for_component_update(const struct cse_bp_info *cse_bp_info)
{
/*
* To set CSE's operation mode to HMRFPO mode:
* 1. Ensure CSE to boot from RO(BP1)
* 2. Send HMRFPO_ENABLE command to CSE
*/
if (!cse_boot_to_ro(cse_bp_info))
return false;
return cse_hmrfpo_enable();
}
static uint8_t cse_sub_part_trigger_update(enum bpdt_entry_type type, uint8_t bp,
const void *subpart_cbfs_rw, const size_t blob_sz,
struct region_device *target_rdev)
{
if (region_device_sz(target_rdev) < blob_sz) {
printk(BIOS_ERR, "cse_lite: %s Target sub-partition size: %zx, "
"smaller than blob size:%zx, abort update\n",
cse_sub_part_str(type), region_device_sz(target_rdev), blob_sz);
return CSE_LITE_SKU_SUB_PART_LAYOUT_MISMATCH_ERROR;
}
/* Erase CSE Lite sub-partition */
if (!cse_erase_rw_region(target_rdev))
return CSE_LITE_SKU_SUB_PART_UPDATE_FAIL;
/* Update CSE Lite sub-partition */
if (!cse_copy_rw(target_rdev, (void *)subpart_cbfs_rw, 0, blob_sz))
return CSE_LITE_SKU_SUB_PART_UPDATE_FAIL;
printk(BIOS_INFO, "cse_lite: CSE %s %s Update successful\n", GET_BP_STR(bp),
cse_sub_part_str(type));
return CSE_LITE_SKU_PART_UPDATE_SUCCESS;
}
static uint8_t handle_cse_sub_part_fw_update_rv(uint8_t rv)
{
switch (rv) {
case CSE_LITE_SKU_PART_UPDATE_SUCCESS:
case CSE_LITE_SKU_SUB_PART_UPDATE_NOT_REQ:
return rv;
default:
cse_trigger_vboot_recovery(rv);
}
/* Control never reaches here */
return rv;
}
static enum csme_failure_reason cse_sub_part_fw_component_update(enum bpdt_entry_type type,
const struct cse_bp_info *cse_bp_info, const char *name)
{
struct region_device target_rdev;
struct fw_version target_fw_ver, source_fw_ver;
enum csme_failure_reason rv;
size_t size;
void *subpart_cbfs_rw = cbfs_map(name, &size);
if (!subpart_cbfs_rw) {
printk(BIOS_ERR, "cse_lite: Not able to map %s CBFS file\n",
cse_sub_part_str(type));
return CSE_LITE_SKU_SUB_PART_BLOB_ACCESS_ERR;
}
cse_sub_part_get_source_fw_version(subpart_cbfs_rw, &source_fw_ver);
printk(BIOS_INFO, "cse_lite: CBFS %s FW Version: %x.%x.%x.%x\n", cse_sub_part_str(type),
source_fw_ver.major, source_fw_ver.minor, source_fw_ver.hotfix,
source_fw_ver.build);
/* Trigger sub-partition update in CSE RO and CSE RW */
for (size_t bp = 0; bp < ARRAY_SIZE(cse_regions); bp++) {
if (!cse_sub_part_get_target_rdev(cse_bp_info, &target_rdev, bp, type)) {
rv = CSE_LITE_SKU_SUB_PART_ACCESS_ERR;
goto error_exit;
}
if (!cse_get_sub_part_fw_version(type, &target_rdev, &target_fw_ver)) {
rv = CSE_LITE_SKU_SUB_PART_ACCESS_ERR;
goto error_exit;
}
printk(BIOS_INFO, "cse_lite: %s %s FW Version: %x.%x.%x.%x\n", cse_regions[bp],
cse_sub_part_str(type), target_fw_ver.major,
target_fw_ver.minor, target_fw_ver.hotfix, target_fw_ver.build);
if (!cse_compare_sub_part_version(&target_fw_ver, &source_fw_ver)) {
printk(BIOS_INFO, "cse_lite: %s %s update is not required\n",
cse_regions[bp], cse_sub_part_str(type));
rv = CSE_LITE_SKU_SUB_PART_UPDATE_NOT_REQ;
continue;
}
printk(BIOS_INFO, "CSE %s %s Update initiated\n", GET_BP_STR(bp),
cse_sub_part_str(type));
if (!cse_prep_for_component_update(cse_bp_info)) {
rv = CSE_LITE_SKU_SUB_PART_ACCESS_ERR;
goto error_exit;
}
rv = cse_sub_part_trigger_update(type, bp, subpart_cbfs_rw,
size, &target_rdev);
if (rv != CSE_LITE_SKU_PART_UPDATE_SUCCESS)
goto error_exit;
}
error_exit:
cbfs_unmap(subpart_cbfs_rw);
return rv;
}
static uint8_t cse_sub_part_fw_update(const struct cse_bp_info *cse_bp_info)
{
if (skip_cse_sub_part_update()) {
printk(BIOS_INFO, "CSE Sub-partition update not required\n");
return CSE_LITE_SKU_SUB_PART_UPDATE_NOT_REQ;
}
int rv;
rv = cse_sub_part_fw_component_update(IOM_FW, cse_bp_info,
CONFIG_SOC_INTEL_CSE_IOM_CBFS_NAME);
handle_cse_sub_part_fw_update_rv(rv);
rv = cse_sub_part_fw_component_update(NPHY_FW, cse_bp_info,
CONFIG_SOC_INTEL_CSE_NPHY_CBFS_NAME);
return handle_cse_sub_part_fw_update_rv(rv);
}
void cse_fw_sync(void)
{
static struct get_bp_info_rsp cse_bp_info;
/*
* If system is in recovery mode, skip CSE Lite update if CSE sub-partition update
* is not enabled and continue to update CSE sub-partitions.
*/
if (vboot_recovery_mode_enabled() && !CONFIG(SOC_INTEL_CSE_SUB_PART_UPDATE)) {
printk(BIOS_DEBUG, "cse_lite: Skip switching to RW in the recovery path\n");
return;
}
/* If CSE SKU type is not Lite, skip enabling CSE Lite SKU */
if (!cse_is_hfs3_fw_sku_lite()) {
printk(BIOS_ERR, "cse_lite: Not a CSE Lite SKU\n");
return;
}
if (!cse_get_bp_info(&cse_bp_info)) {
printk(BIOS_ERR, "cse_lite: Failed to get CSE boot partition info\n");
/* If system is in recovery mode, don't trigger recovery again */
if (!vboot_recovery_mode_enabled()) {
cse_trigger_vboot_recovery(CSE_COMMUNICATION_ERROR);
} else {
printk(BIOS_ERR, "cse_lite: System is already in Recovery Mode, "
"so no action\n");
return;
}
}
/*
* If system is in recovery mode, CSE Lite update has to be skipped but CSE
* sub-partitions like NPHY and IOM have to to be updated. If CSE sub-parition update
* fails during recovery, just continue to boot.
*/
if (CONFIG(SOC_INTEL_CSE_SUB_PART_UPDATE) && vboot_recovery_mode_enabled()) {
if (cse_sub_part_fw_update(&cse_bp_info.bp_info) ==
CSE_LITE_SKU_PART_UPDATE_SUCCESS) {
cse_board_reset();
do_global_reset();
die("ERROR: GLOBAL RESET Failed to reset the system\n");
}
return;
}
if (!cse_fix_data_failure_err(&cse_bp_info.bp_info))
cse_trigger_vboot_recovery(CSE_LITE_SKU_DATA_WIPE_ERROR);
/*
* cse firmware update is skipped if SOC_INTEL_CSE_RW_UPDATE is not defined and
* runtime debug control flag is not enabled. The driver triggers recovery if CSE CBFS
* RW metadata or CSE CBFS RW blob is not available.
*/
if (is_cse_fw_update_enabled()) {
uint8_t rv;
rv = cse_fw_update(&cse_bp_info.bp_info);
if (rv)
cse_trigger_vboot_recovery(rv);
}
if (CONFIG(SOC_INTEL_CSE_SUB_PART_UPDATE))
cse_sub_part_fw_update(&cse_bp_info.bp_info);
if (!cse_is_rw_bp_status_valid(&cse_bp_info.bp_info))
cse_trigger_vboot_recovery(CSE_LITE_SKU_RW_JUMP_ERROR);
if (!cse_boot_to_rw(&cse_bp_info.bp_info)) {
printk(BIOS_ERR, "cse_lite: Failed to switch to RW\n");
cse_trigger_vboot_recovery(CSE_LITE_SKU_RW_SWITCH_ERROR);
}
}
static void ramstage_cse_fw_sync(void *unused)
{
bool s3wake;
s3wake = acpi_get_sleep_type() == ACPI_S3;
if (CONFIG(SOC_INTEL_CSE_LITE_SYNC_IN_RAMSTAGE) && !s3wake) {
timestamp_add_now(TS_CSE_FW_SYNC_START);
cse_fw_sync();
timestamp_add_now(TS_CSE_FW_SYNC_END);
}
}
BOOT_STATE_INIT_ENTRY(BS_PRE_DEVICE, BS_ON_EXIT, ramstage_cse_fw_sync, NULL);