blob: b453e8ba871891077dc13586ec70273d778985dc [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2005 Eric W. Biederman and Tom Zimmerman
* Copyright (C) 2008 Arastra, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <cpu/x86/mtrr.h>
#include <cpu/x86/cache.h>
#include <stdlib.h>
#include "raminit.h"
#include "i3100.h"
/* DDR2 memory controller register space */
#define MCBAR 0x90000000
static void sdram_set_registers(const struct mem_controller *ctrl)
{
static const u32 register_values[] = {
/* CKDIS 0x8c disable clocks */
PCI_ADDR(0, 0x00, 0, CKDIS), 0xffff0000, 0x0000ffff,
/* 0x9c Device present and extended RAM control
* DEVPRES is very touchy, hard code the initialization
* of PCI-E ports here.
*/
PCI_ADDR(0, 0x00, 0, DEVPRES), 0x00000000, 0x07020801 | DEVPRES_CONFIG,
/* 0xc8 Remap RAM base and limit off */
PCI_ADDR(0, 0x00, 0, REMAPLIMIT), 0x00000000, 0x03df0000,
/* ??? */
PCI_ADDR(0, 0x00, 0, 0xd8), 0x00000000, 0xb5930000,
PCI_ADDR(0, 0x00, 0, 0xe8), 0x00000000, 0x00004a2a,
/* 0x50 scrub */
PCI_ADDR(0, 0x00, 0, MCHCFG0), 0xfce0ffff, 0x00006000, /* 6000 */
/* 0x58 0x5c PAM */
PCI_ADDR(0, 0x00, 0, PAM-1), 0xcccccc7f, 0x33333000,
PCI_ADDR(0, 0x00, 0, PAM+3), 0xcccccccc, 0x33333333,
/* 0xf4 */
PCI_ADDR(0, 0x00, 0, DEVPRES1), 0xffbffff, (1<<22)|(6<<2) | DEVPRES1_CONFIG,
/* 0x14 */
PCI_ADDR(0, 0x00, 0, IURBASE), 0x00000fff, MCBAR |0,
};
int i;
int max;
max = ARRAY_SIZE(register_values);
for(i = 0; i < max; i += 3) {
device_t dev;
u32 where;
u32 reg;
dev = (register_values[i] & ~0xff) - PCI_DEV(0, 0x00, 0) + ctrl->f0;
where = register_values[i] & 0xff;
reg = pci_read_config32(dev, where);
reg &= register_values[i+1];
reg |= register_values[i+2];
pci_write_config32(dev, where, reg);
}
print_spew("done.\n");
}
struct dimm_size {
u32 side1;
u32 side2;
};
static struct dimm_size spd_get_dimm_size(u16 device)
{
/* Calculate the log base 2 size of a DIMM in bits */
struct dimm_size sz;
int value, low;
sz.side1 = 0;
sz.side2 = 0;
/* Note it might be easier to use byte 31 here, it has the DIMM size as
* a multiple of 4MB. The way we do it now we can size both
* sides of an assymetric dimm.
*/
value = spd_read_byte(device, 3); /* rows */
if (value < 0) goto hw_err;
if ((value & 0xf) == 0) goto val_err;
sz.side1 += value & 0xf;
value = spd_read_byte(device, 4); /* columns */
if (value < 0) goto hw_err;
if ((value & 0xf) == 0) goto val_err;
sz.side1 += value & 0xf;
value = spd_read_byte(device, 17); /* banks */
if (value < 0) goto hw_err;
if ((value & 0xff) == 0) goto val_err;
sz.side1 += log2(value & 0xff);
/* Get the module data width and convert it to a power of two */
value = spd_read_byte(device, 7); /* (high byte) */
if (value < 0) goto hw_err;
value &= 0xff;
value <<= 8;
low = spd_read_byte(device, 6); /* (low byte) */
if (low < 0) goto hw_err;
value = value | (low & 0xff);
if ((value != 72) && (value != 64)) goto val_err;
sz.side1 += log2(value);
/* side 2 */
value = spd_read_byte(device, 5); /* number of physical banks */
if (value < 0) goto hw_err;
value &= 7;
value++;
if (value == 1) goto out;
if (value != 2) goto val_err;
/* Start with the symmetrical case */
sz.side2 = sz.side1;
value = spd_read_byte(device, 3); /* rows */
if (value < 0) goto hw_err;
if ((value & 0xf0) == 0) goto out; /* If symmetrical we are done */
sz.side2 -= (value & 0x0f); /* Subtract out rows on side 1 */
sz.side2 += ((value >> 4) & 0x0f); /* Add in rows on side 2 */
value = spd_read_byte(device, 4); /* columns */
if (value < 0) goto hw_err;
if ((value & 0xff) == 0) goto val_err;
sz.side2 -= (value & 0x0f); /* Subtract out columns on side 1 */
sz.side2 += ((value >> 4) & 0x0f); /* Add in columns on side 2 */
goto out;
val_err:
die("Bad SPD value\n");
/* If an hw_error occurs report that I have no memory */
hw_err:
sz.side1 = 0;
sz.side2 = 0;
out:
return sz;
}
static long spd_set_ram_size(const struct mem_controller *ctrl, long dimm_mask)
{
int i;
int cum;
for(i = cum = 0; i < DIMM_SOCKETS; i++) {
struct dimm_size sz;
if (dimm_mask & (1 << i)) {
sz = spd_get_dimm_size(ctrl->channel0[i]);
if (sz.side1 < 29) {
return -1; /* Report SPD error */
}
/* convert bits to multiples of 64MB */
sz.side1 -= 29;
cum += (1 << sz.side1);
/* DRB = 0x60 */
pci_write_config8(ctrl->f0, DRB + (i*2), cum);
if( sz.side2 > 28) {
sz.side2 -= 29;
cum += (1 << sz.side2);
}
pci_write_config8(ctrl->f0, DRB+1 + (i*2), cum);
}
else {
pci_write_config8(ctrl->f0, DRB + (i*2), cum);
pci_write_config8(ctrl->f0, DRB+1 + (i*2), cum);
}
}
cum >>= 1;
/* set TOM top of memory 0xcc */
pci_write_config16(ctrl->f0, TOM, cum);
/* set TOLM top of low memory */
if(cum > 0x18) {
cum = 0x18;
}
cum <<= 11;
/* 0xc4 TOLM */
pci_write_config16(ctrl->f0, TOLM, cum);
return 0;
}
static u32 spd_detect_dimms(const struct mem_controller *ctrl)
{
u32 dimm_mask;
int i;
dimm_mask = 0;
for(i = 0; i < DIMM_SOCKETS; i++) {
int byte;
u16 device;
device = ctrl->channel0[i];
if (device) {
byte = spd_read_byte(device, 2); /* Type */
if (byte == 8) {
dimm_mask |= (1 << i);
}
}
device = ctrl->channel1[i];
if (device) {
byte = spd_read_byte(device, 2);
if (byte == 8) {
dimm_mask |= (1 << (i + DIMM_SOCKETS));
}
}
}
return dimm_mask;
}
static int spd_set_row_attributes(const struct mem_controller *ctrl,
long dimm_mask)
{
int value;
int reg;
int dra;
int cnt;
dra = 0;
for(cnt=0; cnt < 4; cnt++) {
if (!(dimm_mask & (1 << cnt))) {
continue;
}
reg =0;
value = spd_read_byte(ctrl->channel0[cnt], 3); /* rows */
if (value < 0) goto hw_err;
if ((value & 0xf) == 0) goto val_err;
reg += value & 0xf;
value = spd_read_byte(ctrl->channel0[cnt], 4); /* columns */
if (value < 0) goto hw_err;
if ((value & 0xf) == 0) goto val_err;
reg += value & 0xf;
value = spd_read_byte(ctrl->channel0[cnt], 17); /* banks */
if (value < 0) goto hw_err;
if ((value & 0xff) == 0) goto val_err;
reg += log2(value & 0xff);
/* Get the device width and convert it to a power of two */
value = spd_read_byte(ctrl->channel0[cnt], 13);
if (value < 0) goto hw_err;
value = log2(value & 0xff);
reg += value;
if(reg < 27) goto hw_err;
reg -= 27;
reg += (value << 2);
dra += reg << (cnt*8);
value = spd_read_byte(ctrl->channel0[cnt], 5);
if (value & 2)
dra += reg << ((cnt*8)+4);
}
/* 0x70 DRA */
pci_write_config32(ctrl->f0, DRA, dra);
goto out;
val_err:
die("Bad SPD value\n");
/* If an hw_error occurs report that I have no memory */
hw_err:
dra = 0;
out:
return dra;
}
static int spd_set_drt_attributes(const struct mem_controller *ctrl,
long dimm_mask, u32 drc)
{
int value;
int reg;
u32 drt;
int cnt;
int first_dimm;
int cas_latency=0;
int latency;
u32 index = 0;
u32 index2 = 0;
static const u8 cycle_time[3] = { 0x75, 0x60, 0x50 };
static const u8 latency_indicies[] = { 26, 23, 9 };
/* 0x78 DRT */
drt = pci_read_config32(ctrl->f0, DRT);
drt &= 3; /* save bits 1:0 */
for(first_dimm = 0; first_dimm < 4; first_dimm++) {
if (dimm_mask & (1 << first_dimm))
break;
}
drt |= (1<<6); /* back to back write turn around */
drt |= (3<<18); /* Trasmax */
for(cnt=0; cnt < 4; cnt++) {
if (!(dimm_mask & (1 << cnt))) {
continue;
}
reg = spd_read_byte(ctrl->channel0[cnt], 18); /* CAS Latency */
/* Compute the lowest cas latency supported */
latency = log2(reg) -2;
/* Loop through and find a fast clock with a low latency */
for(index = 0; index < 3; index++, latency++) {
if ((latency < 2) || (latency > 4) ||
(!(reg & (1 << latency)))) {
continue;
}
value = spd_read_byte(ctrl->channel0[cnt],
latency_indicies[index]);
if(value <= cycle_time[drc&3]) {
if( latency > cas_latency) {
cas_latency = latency;
}
break;
}
}
}
index = (cas_latency-2);
if((index)==0) cas_latency = 20;
else if((index)==1) cas_latency = 25;
else cas_latency = 30;
for(cnt=0;cnt<4;cnt++) {
if (!(dimm_mask & (1 << cnt))) {
continue;
}
reg = spd_read_byte(ctrl->channel0[cnt], 27)&0x0ff;
if(((index>>8)&0x0ff)<reg) {
index &= ~(0x0ff << 8);
index |= (reg << 8);
}
reg = spd_read_byte(ctrl->channel0[cnt], 28)&0x0ff;
if(((index>>16)&0x0ff)<reg) {
index &= ~(0x0ff << 16);
index |= (reg<<16);
}
reg = spd_read_byte(ctrl->channel0[cnt], 29)&0x0ff;
if(((index2>>0)&0x0ff)<reg) {
index2 &= ~(0x0ff << 0);
index2 |= (reg<<0);
}
reg = spd_read_byte(ctrl->channel0[cnt], 41)&0x0ff;
if(((index2>>8)&0x0ff)<reg) {
index2 &= ~(0x0ff << 8);
index2 |= (reg<<8);
}
reg = spd_read_byte(ctrl->channel0[cnt], 42)&0x0ff;
if(((index2>>16)&0x0ff)<reg) {
index2 &= ~(0x0ff << 16);
index2 |= (reg<<16);
}
}
/* get dimm speed */
value = cycle_time[drc&3];
if(value <= 0x50) { /* 200 MHz */
if((index&7) > 2) {
drt |= (2<<2); /* CAS latency 4 */
cas_latency = 40;
} else {
drt |= (1<<2); /* CAS latency 3 */
cas_latency = 30;
}
if((index&0x0ff00)<=0x03c00) {
drt |= (1<<8); /* Trp RAS Precharg */
} else {
drt |= (2<<8); /* Trp RAS Precharg */
}
/* Trcd RAS to CAS delay */
if((index2&0x0ff)<=0x03c) {
drt |= (0<<10);
} else {
drt |= (1<<10);
}
/* Tdal Write auto precharge recovery delay */
drt |= (1<<12);
/* Trc TRS min */
if((index2&0x0ff00)<=0x03700)
drt |= (0<<14);
else if((index2&0xff00)<=0x03c00)
drt |= (1<<14);
else
drt |= (2<<14); /* spd 41 */
drt |= (2<<16); /* Twr not defined for DDR docs say use 2 */
/* Trrd Row Delay */
if((index&0x0ff0000)<=0x0140000) {
drt |= (0<<20);
} else if((index&0x0ff0000)<=0x0280000) {
drt |= (1<<20);
} else if((index&0x0ff0000)<=0x03c0000) {
drt |= (2<<20);
} else {
drt |= (3<<20);
}
/* Trfc Auto refresh cycle time */
if((index2&0x0ff0000)<=0x04b0000) {
drt |= (0<<22);
} else if((index2&0x0ff0000)<=0x0690000) {
drt |= (1<<22);
} else {
drt |= (2<<22);
}
/* Docs say use 55 for all 200Mhz */
drt |= (0x055<<24);
}
else if(value <= 0x60) { /* 167 Mhz */
/* according to new documentation CAS latency is 00
* for bits 3:2 for all 167 Mhz
drt |= ((index&3)<<2); */ /* set CAS latency */
if((index&0x0ff00)<=0x03000) {
drt |= (1<<8); /* Trp RAS Precharg */
} else {
drt |= (2<<8); /* Trp RAS Precharg */
}
/* Trcd RAS to CAS delay */
if((index2&0x0ff)<=0x030) {
drt |= (0<<10);
} else {
drt |= (1<<10);
}
/* Tdal Write auto precharge recovery delay */
drt |= (2<<12);
/* Trc TRS min */
drt |= (2<<14); /* spd 41, but only one choice */
drt |= (2<<16); /* Twr not defined for DDR docs say 2 */
/* Trrd Row Delay */
if((index&0x0ff0000)<=0x0180000) {
drt |= (0<<20);
} else if((index&0x0ff0000)<=0x0300000) {
drt |= (1<<20);
} else {
drt |= (2<<20);
}
/* Trfc Auto refresh cycle time */
if((index2&0x0ff0000)<=0x0480000) {
drt |= (0<<22);
} else if((index2&0x0ff0000)<=0x0780000) {
drt |= (2<<22);
} else {
drt |= (2<<22);
}
/* Docs state to use 99 for all 167 Mhz */
drt |= (0x099<<24);
}
else if(value <= 0x75) { /* 133 Mhz */
drt |= ((index&3)<<2); /* set CAS latency */
if((index&0x0ff00)<=0x03c00) {
drt |= (1<<8); /* Trp RAS Precharg */
} else {
drt |= (2<<8); /* Trp RAS Precharg */
}
/* Trcd RAS to CAS delay */
if((index2&0x0ff)<=0x03c) {
drt |= (0<<10);
} else {
drt |= (1<<10);
}
/* Tdal Write auto precharge recovery delay */
drt |= (1<<12);
/* Trc TRS min */
drt |= (2<<14); /* spd 41, but only one choice */
drt |= (1<<16); /* Twr not defined for DDR docs say 1 */
/* Trrd Row Delay */
if((index&0x0ff0000)<=0x01e0000) {
drt |= (0<<20);
} else if((index&0x0ff0000)<=0x03c0000) {
drt |= (1<<20);
} else {
drt |= (2<<20);
}
/* Trfc Auto refresh cycle time */
if((index2&0x0ff0000)<=0x04b0000) {
drt |= (0<<22);
} else if((index2&0x0ff0000)<=0x0780000) {
drt |= (2<<22);
} else {
drt |= (2<<22);
}
/* Based on CAS latency */
if(index&7)
drt |= (0x099<<24);
else
drt |= (0x055<<24);
}
else {
die("Invalid SPD 9 bus speed.\n");
}
/* 0x78 DRT */
pci_write_config32(ctrl->f0, DRT, drt);
return(cas_latency);
}
static int spd_set_dram_controller_mode(const struct mem_controller *ctrl,
long dimm_mask)
{
int value;
int drc;
int cnt;
msr_t msr;
u8 rate = 62;
static const u8 spd_rates[6] = {15,3,7,7,62,62};
static const u8 drc_rates[5] = {0,15,7,62,3};
static const u8 fsb_conversion[8] = {0,1,3,2,3,0,3,3};
/* 0x7c DRC */
drc = pci_read_config32(ctrl->f0, DRC);
for(cnt=0; cnt < 4; cnt++) {
if (!(dimm_mask & (1 << cnt))) {
continue;
}
value = spd_read_byte(ctrl->channel0[cnt], 11); /* ECC */
if (value != 2) die("ERROR - Non ECC memory dimm\n");
value = spd_read_byte(ctrl->channel0[cnt], 12); /*refresh rate*/
value &= 0x0f; /* clip self refresh bit */
if (value > 5) goto hw_err;
if (rate > spd_rates[value])
rate = spd_rates[value];
value = spd_read_byte(ctrl->channel0[cnt], 9); /* cycle time */
if (value > 0x75) goto hw_err;
}
drc |= (1 << 20); /* enable ECC */
for (cnt = 1; cnt < 5; cnt++)
if (drc_rates[cnt] == rate)
break;
if (cnt < 5) {
drc &= ~(7 << 8); /* clear the rate bits */
drc |= (cnt << 8);
}
drc |= (1 << 26); /* set the overlap bit - the factory BIOS does */
drc |= (1 << 27); /* set DED retry enable - the factory BIOS does */
drc |= (1 << 7);
drc &= ~(1 << 5); /* enable ODT */
drc |= (1 << 4); /* independent clocks */
/* set front side bus speed */
msr = rdmsr(0xcd); /* returns 0 on Pentium M 90nm */
value = msr.lo & 0x07;
drc &= ~(3 << 2);
drc |= (fsb_conversion[value] << 2);
/* set dram type to ddr2 */
drc &= ~(3 << 0);
drc |= (2 << 0);
goto out;
/* If an hw_error occurs report that I have no memory */
hw_err:
drc = 0;
out:
return drc;
}
static void sdram_set_spd_registers(const struct mem_controller *ctrl)
{
long dimm_mask;
/* Test if we can read the spd and if ram is ddr or ddr2 */
dimm_mask = spd_detect_dimms(ctrl);
if (!(dimm_mask & ((1 << DIMM_SOCKETS) - 1))) {
print_err("No memory for this cpu\n");
return;
}
return;
}
static void do_delay(void)
{
int i;
u8 b;
for(i=0;i<16;i++)
b=inb(0x80);
}
#define TIMEOUT_LOOPS 300000
#define DCALCSR 0x100
#define DCALADDR 0x104
#define DCALDATA 0x108
static void set_on_dimm_termination_enable(const struct mem_controller *ctrl)
{
u8 c1,c2;
u32 dimm,i;
u32 data32;
u32 t4;
/* Set up northbridge values */
/* ODT enable */
pci_write_config32(ctrl->f0, SDRC, 0x30000000);
/* Figure out which slots are Empty, Single, or Double sided */
for(i=0,t4=0,c2=0;i<8;i+=2) {
c1 = pci_read_config8(ctrl->f0, DRB+i);
if(c1 == c2) continue;
c2 = pci_read_config8(ctrl->f0, DRB+1+i);
if(c1 == c2)
t4 |= (1 << (i*4));
else
t4 |= (2 << (i*4));
}
for(i=0;i<1;i++) {
if((t4&0x0f) == 1) {
if( ((t4>>8)&0x0f) == 0 ) {
data32 = 0x00000010; /* EEES */
break;
}
if ( ((t4>>16)&0x0f) == 0 ) {
data32 = 0x00003132; /* EESS */
break;
}
if ( ((t4>>24)&0x0f) == 0 ) {
data32 = 0x00335566; /* ESSS */
break;
}
data32 = 0x77bbddee; /* SSSS */
break;
}
if((t4&0x0f) == 2) {
if( ((t4>>8)&0x0f) == 0 ) {
data32 = 0x00003132; /* EEED */
break;
}
if ( ((t4>>8)&0x0f) == 2 ) {
data32 = 0xb373ecdc; /* EEDD */
break;
}
if ( ((t4>>16)&0x0f) == 0 ) {
data32 = 0x00b3a898; /* EESD */
break;
}
data32 = 0x777becdc; /* ESSD */
break;
}
die("Error - First dimm slot empty\n");
}
print_debug("ODT Value = ");
print_debug_hex32(data32);
print_debug("\n");
pci_write_config32(ctrl->f0, DDR2ODTC, data32);
for(dimm=0;dimm<8;dimm+=2) {
write32(MCBAR+DCALADDR, 0x0b840001);
write32(MCBAR+DCALCSR, 0x81000003 | (dimm << 20));
for(i=0;i<1001;i++) {
data32 = read32(MCBAR+DCALCSR);
if(!(data32 & (1<<31)))
break;
}
}
}
static void set_receive_enable(const struct mem_controller *ctrl)
{
u32 i;
u32 cnt;
u32 recena=0;
u32 recenb=0;
{
u32 dimm;
u32 edge;
int32_t data32;
u32 dcal_data32_0;
u32 dcal_data32_1;
u32 dcal_data32_2;
u32 dcal_data32_3;
u32 work32l;
u32 work32h;
u32 data32r;
int32_t recen;
for(dimm=0;dimm<8;dimm+=1) {
if(!(dimm&1)) {
write32(MCBAR+DCALDATA+(17*4), 0x04020000);
write32(MCBAR+DCALCSR, 0x81800004 | (dimm << 20));
for(i=0;i<1001;i++) {
data32 = read32(MCBAR+DCALCSR);
if(!(data32 & (1<<31)))
break;
}
if(i>=1000)
continue;
dcal_data32_0 = read32(MCBAR+DCALDATA + 0);
dcal_data32_1 = read32(MCBAR+DCALDATA + 4);
dcal_data32_2 = read32(MCBAR+DCALDATA + 8);
dcal_data32_3 = read32(MCBAR+DCALDATA + 12);
}
else {
dcal_data32_0 = read32(MCBAR+DCALDATA + 16);
dcal_data32_1 = read32(MCBAR+DCALDATA + 20);
dcal_data32_2 = read32(MCBAR+DCALDATA + 24);
dcal_data32_3 = read32(MCBAR+DCALDATA + 28);
}
/* check if bank is installed */
if((dcal_data32_0 == 0) && (dcal_data32_2 == 0))
continue;
/* Calculate the timing value */
{
u32 bit;
for(i=0,edge=0,bit=63,cnt=31,data32r=0,
work32l=dcal_data32_1,work32h=dcal_data32_3;
(i<4) && bit; i++) {
for(;;bit--,cnt--) {
if(work32l & (1<<cnt))
break;
if(!cnt) {
work32l = dcal_data32_0;
work32h = dcal_data32_2;
cnt = 32;
}
if(!bit) break;
}
for(;;bit--,cnt--) {
if(!(work32l & (1<<cnt)))
break;
if(!cnt) {
work32l = dcal_data32_0;
work32h = dcal_data32_2;
cnt = 32;
}
if(!bit) break;
}
if(!bit) {
break;
}
data32 = ((bit%8) << 1);
if(work32h & (1<<cnt))
data32 += 1;
if(data32 < 4) {
if(!edge) {
edge = 1;
}
else {
if(edge != 1) {
data32 = 0x0f;
}
}
}
if(data32 > 12) {
if(!edge) {
edge = 2;
}
else {
if(edge != 2) {
data32 = 0x00;
}
}
}
data32r += data32;
}
}
work32l = dcal_data32_0;
work32h = dcal_data32_2;
recen = data32r;
recen += 3;
recen = recen>>2;
for(cnt=5;cnt<24;) {
for(;;cnt++)
if(!(work32l & (1<<cnt)))
break;
for(;;cnt++) {
if(work32l & (1<<cnt))
break;
}
data32 = (((cnt-1)%8)<<1);
if(work32h & (1<<(cnt-1))) {
data32++;
}
/* test for frame edge cross overs */
if((edge == 1) && (data32 > 12) &&
(((recen+16)-data32) < 3)) {
data32 = 0;
cnt += 2;
}
if((edge == 2) && (data32 < 4) &&
((recen - data32) > 12)) {
data32 = 0x0f;
cnt -= 2;
}
if(((recen+3) >= data32) && ((recen-3) <= data32))
break;
}
cnt--;
cnt /= 8;
cnt--;
if(recen&1)
recen+=2;
recen >>= 1;
recen += (cnt*8);
recen+=2; /* this is not in the spec, but matches
the factory output, and has less failure */
recen <<= (dimm/2) * 8;
if(!(dimm&1)) {
recena |= recen;
}
else {
recenb |= recen;
}
}
}
/* Check for Eratta problem */
for(i=cnt=0;i<32;i+=8) {
if (((recena>>i)&0x0f)>7) {
cnt+= 0x101;
}
else {
if((recena>>i)&0x0f) {
cnt++;
}
}
}
if(cnt&0x0f00) {
cnt = (cnt&0x0f) - (cnt>>16);
if(cnt>1) {
for(i=0;i<32;i+=8) {
if(((recena>>i)&0x0f)>7) {
recena &= ~(0x0f<<i);
recena |= (7<<i);
}
}
}
else {
for(i=0;i<32;i+=8) {
if(((recena>>i)&0x0f)<8) {
recena &= ~(0x0f<<i);
recena |= (8<<i);
}
}
}
}
for(i=cnt=0;i<32;i+=8) {
if (((recenb>>i)&0x0f)>7) {
cnt+= 0x101;
}
else {
if((recenb>>i)&0x0f) {
cnt++;
}
}
}
if(cnt & 0x0f00) {
cnt = (cnt&0x0f) - (cnt>>16);
if(cnt>1) {
for(i=0;i<32;i+=8) {
if(((recenb>>i)&0x0f)>7) {
recenb &= ~(0x0f<<i);
recenb |= (7<<i);
}
}
}
else {
for(i=0;i<32;i+=8) {
if(((recenb>>8)&0x0f)<8) {
recenb &= ~(0x0f<<i);
recenb |= (8<<i);
}
}
}
}
print_debug("Receive enable A = ");
print_debug_hex32(recena);
print_debug(", Receive enable B = ");
print_debug_hex32(recenb);
print_debug("\n");
/* clear out the calibration area */
write32(MCBAR+DCALDATA+(16*4), 0x00000000);
write32(MCBAR+DCALDATA+(17*4), 0x00000000);
write32(MCBAR+DCALDATA+(18*4), 0x00000000);
write32(MCBAR+DCALDATA+(19*4), 0x00000000);
/* No command */
write32(MCBAR+DCALCSR, 0x0000000f);
write32(MCBAR+0x150, recena);
write32(MCBAR+0x154, recenb);
}
static void sdram_enable(int controllers, const struct mem_controller *ctrl)
{
int i;
int cs;
int cnt;
int cas_latency;
long mask;
u32 drc;
u32 data32;
u32 mode_reg;
const u32 *iptr;
u16 data16;
static const struct {
u32 clkgr[4];
} gearing [] = {
/* FSB 100 */
{{ 0x00000010, 0x00000000, 0x00000002, 0x00000001}},
/* FSB 133 */
{{ 0x00000120, 0x00000000, 0x00000032, 0x00000010}},
/* FSB 167 */
{{ 0x00154320, 0x00000000, 0x00065432, 0x00010000}},
/* FSB 200 DIMM 400 */
{{ 0x00000001, 0x00000000, 0x00000001, 0x00000000}},
};
static const u32 dqs_data[] = {
0xffffffff, 0xffffffff, 0x000000ff,
0xffffffff, 0xffffffff, 0x000000ff,
0xffffffff, 0xffffffff, 0x000000ff,
0xffffffff, 0xffffffff, 0x000000ff,
0xffffffff, 0xffffffff, 0x000000ff,
0xffffffff, 0xffffffff, 0x000000ff,
0xffffffff, 0xffffffff, 0x000000ff,
0xffffffff, 0xffffffff, 0x000000ff};
mask = spd_detect_dimms(ctrl);
print_debug("Starting SDRAM Enable\n");
/* 0x80 */
pci_write_config32(ctrl->f0, DRM,
0x00410000 | CONFIG_DIMM_MAP_LOGICAL);
/* set dram type and Front Side Bus freq. */
drc = spd_set_dram_controller_mode(ctrl, mask);
if( drc == 0) {
die("Error calculating DRC\n");
}
data32 = drc & ~(3 << 20); /* clear ECC mode */
data32 = data32 & ~(7 << 8); /* clear refresh rates */
data32 = data32 | (1 << 5); /* temp turn off ODT */
/* Set gearing, then dram controller mode */
/* drc bits 3:2 = FSB speed */
for(iptr = gearing[(drc>>2)&3].clkgr,cnt=0;cnt<4;cnt++) {
pci_write_config32(ctrl->f0, 0xa0+(cnt*4), iptr[cnt]);
}
/* 0x7c DRC */
pci_write_config32(ctrl->f0, DRC, data32);
/* turn the clocks on */
/* 0x8c CKDIS */
pci_write_config16(ctrl->f0, CKDIS, 0x0000);
/* 0x9a DDRCSR Take subsystem out of idle */
data16 = pci_read_config16(ctrl->f0, DDRCSR);
data16 &= ~(7 << 12);
data16 |= (1 << 12);
pci_write_config16(ctrl->f0, DDRCSR, data16);
/* program row size DRB */
spd_set_ram_size(ctrl, mask);
/* program page size DRA */
spd_set_row_attributes(ctrl, mask);
/* program DRT timing values */
cas_latency = spd_set_drt_attributes(ctrl, mask, drc);
for(i=0;i<8;i+=2) { /* loop through each dimm to test */
print_debug("DIMM ");
print_debug_hex8(i);
print_debug("\n");
/* Apply NOP */
do_delay();
write32(MCBAR+DCALCSR, (0x01000000 | (i<<20)));
write32(MCBAR+DCALCSR, (0x81000000 | (i<<20)));
do data32 = read32(MCBAR+DCALCSR);
while(data32 & 0x80000000);
}
/* Apply NOP */
do_delay();
for(cs=0;cs<8;cs+=2) {
write32(MCBAR + DCALCSR, (0x81000000 | (cs<<20)));
do data32 = read32(MCBAR+DCALCSR);
while(data32 & 0x80000000);
}
/* Precharg all banks */
do_delay();
for(cs=0;cs<8;cs+=2) {
write32(MCBAR+DCALADDR, 0x04000000);
write32(MCBAR+DCALCSR, (0x81000002 | (cs<<20)));
do data32 = read32(MCBAR+DCALCSR);
while(data32 & 0x80000000);
}
/* EMRS dll's enabled */
do_delay();
for(cs=0;cs<8;cs+=2) {
/* fixme hard code AL additive latency */
write32(MCBAR+DCALADDR, 0x0b940001);
write32(MCBAR+DCALCSR, (0x81000003 | (cs<<20)));
do data32 = read32(MCBAR+DCALCSR);
while(data32 & 0x80000000);
}
/* MRS reset dll's */
do_delay();
if(cas_latency == 30)
mode_reg = 0x053a0000;
else
mode_reg = 0x054a0000;
for(cs=0;cs<8;cs+=2) {
write32(MCBAR+DCALADDR, mode_reg);
write32(MCBAR+DCALCSR, (0x81000003 | (cs<<20)));
do data32 = read32(MCBAR+DCALCSR);
while(data32 & 0x80000000);
}
/* Precharg all banks */
do_delay();
do_delay();
do_delay();
for(cs=0;cs<8;cs+=2) {
write32(MCBAR+DCALADDR, 0x04000000);
write32(MCBAR+DCALCSR, (0x81000002 | (cs<<20)));
do data32 = read32(MCBAR+DCALCSR);
while(data32 & 0x80000000);
}
/* Do 2 refreshes */
do_delay();
for(cs=0;cs<8;cs+=2) {
write32(MCBAR+DCALCSR, (0x81000001 | (cs<<20)));
do data32 = read32(MCBAR+DCALCSR);
while(data32 & 0x80000000);
}
do_delay();
for(cs=0;cs<8;cs+=2) {
write32(MCBAR+DCALCSR, (0x81000001 | (cs<<20)));
do data32 = read32(MCBAR+DCALCSR);
while(data32 & 0x80000000);
}
do_delay();
/* for good luck do 6 more */
for(cs=0;cs<8;cs+=2) {
write32(MCBAR+DCALCSR, (0x81000001 | (cs<<20)));
}
do_delay();
for(cs=0;cs<8;cs+=2) {
write32(MCBAR+DCALCSR, (0x81000001 | (cs<<20)));
}
do_delay();
for(cs=0;cs<8;cs+=2) {
write32(MCBAR+DCALCSR, (0x81000001 | (cs<<20)));
}
do_delay();
for(cs=0;cs<8;cs+=2) {
write32(MCBAR+DCALCSR, (0x81000001 | (cs<<20)));
}
do_delay();
for(cs=0;cs<8;cs+=2) {
write32(MCBAR+DCALCSR, (0x81000001 | (cs<<20)));
}
do_delay();
for(cs=0;cs<8;cs+=2) {
write32(MCBAR+DCALCSR, (0x81000001 | (cs<<20)));
}
do_delay();
/* MRS reset dll's normal */
do_delay();
for(cs=0;cs<8;cs+=2) {
write32(MCBAR+DCALADDR, (mode_reg & ~(1<<24)));
write32(MCBAR+DCALCSR, (0x81000003 | (cs<<20)));
do data32 = read32(MCBAR+DCALCSR);
while(data32 & 0x80000000);
}
/* Do only if DDR2 EMRS dll's enabled */
do_delay();
for(cs=0;cs<8;cs+=2) {
write32(MCBAR+DCALADDR, (0x0b940001));
write32(MCBAR+DCALCSR, (0x81000003 | (cs<<20)));
do data32 = read32(MCBAR+DCALCSR);
while(data32 & 0x80000000);
}
do_delay();
/* No command */
write32(MCBAR+DCALCSR, 0x0000000f);
/* enable on dimm termination */
set_on_dimm_termination_enable(ctrl);
/* receive enable calibration */
set_receive_enable(ctrl);
/* DQS */
pci_write_config32(ctrl->f0, 0x94, 0x3904aa00);
for(i = 0, cnt = (MCBAR+0x200); i < 24; i++, cnt+=4) {
write32(cnt, dqs_data[i]);
}
pci_write_config32(ctrl->f0, 0x94, 0x3900aa00);
/* Enable refresh */
/* 0x7c DRC */
data32 = drc & ~(3 << 20); /* clear ECC mode */
pci_write_config32(ctrl->f0, DRC, data32);
write32(MCBAR+DCALCSR, 0x0008000f);
/* clear memory and init ECC */
print_debug("Clearing memory\n");
for(i=0;i<64;i+=4) {
write32(MCBAR+DCALDATA+i, 0x00000000);
}
for(cs=0;cs<8;cs+=2) {
write32(MCBAR+DCALCSR, (0x810831d8 | (cs<<20)));
do data32 = read32(MCBAR+DCALCSR);
while(data32 & 0x80000000);
}
/* Bring memory subsystem on line */
data32 = pci_read_config32(ctrl->f0, 0x98);
data32 |= (1 << 31);
pci_write_config32(ctrl->f0, 0x98, data32);
/* wait for completion */
print_debug("Waiting for mem complete\n");
while(1) {
data32 = pci_read_config32(ctrl->f0, 0x98);
if( (data32 & (1<<31)) == 0)
break;
}
print_debug("Done\n");
/* Set initialization complete */
/* 0x7c DRC */
drc |= (1 << 29);
data32 = drc & ~(3 << 20); /* clear ECC mode */
pci_write_config32(ctrl->f0, DRC, data32);
/* Set the ecc mode */
pci_write_config32(ctrl->f0, DRC, drc);
/* Enable memory scrubbing */
/* 0x52 MCHSCRB */
data16 = pci_read_config16(ctrl->f0, MCHSCRB);
data16 &= ~0x0f;
data16 |= ((2 << 2) | (2 << 0));
pci_write_config16(ctrl->f0, MCHSCRB, data16);
/* The memory is now setup, use it */
#if !CONFIG_CACHE_AS_RAM
cache_ramstage();
#endif
}