blob: bf5a32542a18fcab65044903b56a6e814590f668 [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright 2014 Google Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <string.h>
#include <console/console.h>
#include <arch/io.h>
#include <cbfs.h>
#include <timer.h>
#include <soc/addressmap.h>
#include <soc/romstage.h>
#include "clk_rst.h"
#include "ccplex.h"
#include "flow.h"
#include "mc.h"
#include "pmc.h"
#include "power.h"
#define EVP_CPU_RESET_VECTOR (void *)(uintptr_t)(TEGRA_EVP_BASE + 0x100)
#define CLK_RST_REGS (void *)(uintptr_t)(TEGRA_CLK_RST_BASE)
#define PMC_REGS (void *)(uintptr_t)(TEGRA_PMC_BASE)
#define MTS_FILE_NAME "mts"
static int ccplex_start(void)
{
struct mono_time t1, t2;
const long timeout_us = 1500000;
long wait_time;
const uint32_t handshake_mask = 1;
const uint32_t cxreset1_mask = 1 << 21;
uint32_t reg;
struct tegra_pmc_regs * const pmc = PMC_REGS;
struct clk_rst_ctlr * const clk_rst = CLK_RST_REGS;
/* Set the handshake bit to be knocked down. */
write32(handshake_mask, &pmc->scratch118);
/* Assert nCXRSET[1] */
reg = read32(&clk_rst->rst_cpu_cmplx_set);
reg |= cxreset1_mask;
write32(reg, &clk_rst->rst_cpu_cmplx_set);
timer_monotonic_get(&t1);
while (1) {
reg = read32(&pmc->scratch118);
timer_monotonic_get(&t2);
wait_time = mono_time_diff_microseconds(&t1, &t2);
/* Wait for the bit to be knocked down. */
if ((reg & handshake_mask) != handshake_mask)
break;
if (wait_time >= timeout_us) {
printk(BIOS_DEBUG, "MTS handshake timeout.\n");
return -1;
}
}
printk(BIOS_DEBUG, "MTS handshake took %ld us.\n", wait_time);
return 0;
}
int ccplex_load_mts(void)
{
struct cbfs_file file;
ssize_t offset;
size_t nread;
/*
* MTS location is hard coded to this magic address. The hardware will
* take the MTS from this location and place it in the final resting
* place in the carveout region.
*/
void * const mts = (void *)(uintptr_t)MTS_LOAD_ADDRESS;
struct cbfs_media *media = CBFS_DEFAULT_MEDIA;
offset = cbfs_locate_file(media, &file, MTS_FILE_NAME);
if (offset < 0) {
printk(BIOS_DEBUG, "MTS file not found: %s\n", MTS_FILE_NAME);
return -1;
}
/* Read MTS file into the carveout region. */
nread = cbfs_read(media, mts, offset, file.len);
if (nread != file.len) {
printk(BIOS_DEBUG, "MTS bytes read (%zu) != file length(%u)!\n",
nread, file.len);
return -1;
}
printk(BIOS_DEBUG, "MTS: %zu bytes loaded @ %p\n", nread, mts);
return ccplex_start();
}
static void enable_cpu_clocks(void)
{
struct clk_rst_ctlr * const clk_rst = CLK_RST_REGS;
uint32_t reg;
reg = read32(&clk_rst->clk_enb_l_set);
reg |= CLK_ENB_CPU;
write32(reg, &clk_rst->clk_enb_l_set);
reg = read32(&clk_rst->clk_enb_v_set);
reg |= SET_CLK_ENB_CPUG_ENABLE | SET_CLK_ENB_CPULP_ENABLE;
write32(reg, &clk_rst->clk_enb_v_set);
}
static void enable_cpu_power_partitions(void)
{
/* Bring up fast cluster, non-CPU, CPU0, and CPU1 partitions. */
power_ungate_partition(POWER_PARTID_CRAIL);
power_ungate_partition(POWER_PARTID_C0NC);
power_ungate_partition(POWER_PARTID_CE0);
power_ungate_partition(POWER_PARTID_CE1);
}
static void request_ram_repair(void)
{
struct flow_ctlr * const flow = (void *)(uintptr_t)TEGRA_FLOW_BASE;
const uint32_t req = 1 << 0;
const uint32_t sts = 1 << 1;
uint32_t reg;
struct mono_time t1, t2;
printk(BIOS_DEBUG, "Requesting RAM repair.\n");
reg = read32(&flow->ram_repair);
reg |= req;
write32(reg, &flow->ram_repair);
timer_monotonic_get(&t1);
while ((read32(&flow->ram_repair) & sts) != sts);
timer_monotonic_get(&t2);
printk(BIOS_DEBUG, "RAM repair complete in %ld usecs.\n",
mono_time_diff_microseconds(&t1, &t2));
}
void ccplex_cpu_prepare(void)
{
enable_cpu_clocks();
enable_cpu_power_partitions();
mainboard_configure_pmc();
mainboard_enable_vdd_cpu();
request_ram_repair();
}
static void start_cpu0(void)
{
struct clk_rst_ctlr * const clk_rst = CLK_RST_REGS;
/* Clear fast CPU partition reset. */
write32(CRC_RST_CPUG_CLR_NONCPU, &clk_rst->rst_cpug_cmplx_clr);
/* Clear reset of CPU0 components. */
write32(CRC_RST_CPUG_CLR_CPU0 |
CRC_RST_CPUG_CLR_DBG0 |
CRC_RST_CPUG_CLR_CORE0 |
CRC_RST_CPUG_CLR_CX0 |
CRC_RST_CPUG_CLR_L2 |
CRC_RST_CPUG_CLR_PDBG, &clk_rst->rst_cpug_cmplx_clr);
}
/*
* The Denver cores come up in aarch32 mode. In order to transition to
* 64-bit mode a write to the RMR (reest mangement register) with the
* AA64 bit (0) set while setting RR (reset request bit 1).
*/
static const uint32_t aarch32to64[] = {
0xe3a00003, /* mov r0, #3 */
0xee0c0f50, /* mcr 15, 0, r0, cr12, cr0, {2} */
};
static void load_aarch64_trampoline(void *addr)
{
const size_t trampoline_size = sizeof(aarch32to64);
const void * const trampoline = &aarch32to64[0];
/* Copy trampoline into ram. */
memcpy(addr, trampoline, trampoline_size);
}
void ccplex_cpu_start(void *entry_addr)
{
struct tegra_pmc_regs * const pmc = PMC_REGS;
void * const evp_cpu_reset_vector = EVP_CPU_RESET_VECTOR;
void *trampoline;
uint32_t entry_point;
/*
* Just place the trampoline at the MTS_LOAD_ADDRESS. This assumes
* the program to run doesn't overlap this address.
* */
const uint32_t trampoline_addr = MTS_LOAD_ADDRESS;
trampoline = (void *)(uintptr_t)trampoline_addr;
/* The arm entry points have bit 0 set if thumb code. Mask that off. */
entry_point = (uint32_t)(uintptr_t)entry_addr;
load_aarch64_trampoline(trampoline);
/* Warm reset vector is pulled from the PMC scratch registers. */
write32(entry_point, &pmc->secure_scratch34);
write32(0, &pmc->secure_scratch35);
printk(BIOS_DEBUG, "Starting CPU0 @ %p trampolining to %08x.\n",
trampoline, entry_point);
/*
* The Denver cores start in 32-bit mode. Therefore a trampoline
* is needed to get into 64-bit mode. Point the cold reset vector
* to the traompoline location.
*/
write32(trampoline_addr, evp_cpu_reset_vector);
start_cpu0();
}