blob: 15bcc348cdd1b66e54fbc1664500faeba10873b4 [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2014 Google Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* This is a ramstage driver for the Intel Management Engine found in the
* southbridge. It handles the required boot-time messages over the
* MMIO-based Management Engine Interface to tell the ME that the BIOS is
* finished with POST. Additional messages are defined for debug but are
* not used unless the console loglevel is high enough.
*/
#include <arch/acpi.h>
#include <arch/hlt.h>
#include <arch/io.h>
#include <console/console.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <device/pci_def.h>
#include <string.h>
#include <delay.h>
#include <elog.h>
#include <broadwell/me.h>
#include <broadwell/lpc.h>
#include <broadwell/pch.h>
#include <broadwell/pci_devs.h>
#include <broadwell/ramstage.h>
#include <broadwell/rcba.h>
#include <chip.h>
#if CONFIG_CHROMEOS
#include <vendorcode/google/chromeos/chromeos.h>
#include <vendorcode/google/chromeos/gnvs.h>
#endif
/* Path that the BIOS should take based on ME state */
static const char *me_bios_path_values[] = {
[ME_NORMAL_BIOS_PATH] = "Normal",
[ME_S3WAKE_BIOS_PATH] = "S3 Wake",
[ME_ERROR_BIOS_PATH] = "Error",
[ME_RECOVERY_BIOS_PATH] = "Recovery",
[ME_DISABLE_BIOS_PATH] = "Disable",
[ME_FIRMWARE_UPDATE_BIOS_PATH] = "Firmware Update",
};
static int intel_me_read_mbp(me_bios_payload *mbp_data, device_t dev);
/* MMIO base address for MEI interface */
static u32 mei_base_address;
void intel_me_mbp_clear(device_t dev);
#if CONFIG_DEBUG_INTEL_ME
static void mei_dump(void *ptr, int dword, int offset, const char *type)
{
struct mei_csr *csr;
printk(BIOS_SPEW, "%-9s[%02x] : ", type, offset);
switch (offset) {
case MEI_H_CSR:
case MEI_ME_CSR_HA:
csr = ptr;
if (!csr) {
printk(BIOS_SPEW, "ERROR: 0x%08x\n", dword);
break;
}
printk(BIOS_SPEW, "cbd=%u cbrp=%02u cbwp=%02u ready=%u "
"reset=%u ig=%u is=%u ie=%u\n", csr->buffer_depth,
csr->buffer_read_ptr, csr->buffer_write_ptr,
csr->ready, csr->reset, csr->interrupt_generate,
csr->interrupt_status, csr->interrupt_enable);
break;
case MEI_ME_CB_RW:
case MEI_H_CB_WW:
printk(BIOS_SPEW, "CB: 0x%08x\n", dword);
break;
default:
printk(BIOS_SPEW, "0x%08x\n", offset);
break;
}
}
#else
# define mei_dump(ptr,dword,offset,type) do {} while (0)
#endif
/*
* ME/MEI access helpers using memcpy to avoid aliasing.
*/
static inline void mei_read_dword_ptr(void *ptr, int offset)
{
u32 dword = read32(mei_base_address + offset);
memcpy(ptr, &dword, sizeof(dword));
mei_dump(ptr, dword, offset, "READ");
}
static inline void mei_write_dword_ptr(void *ptr, int offset)
{
u32 dword = 0;
memcpy(&dword, ptr, sizeof(dword));
write32(mei_base_address + offset, dword);
mei_dump(ptr, dword, offset, "WRITE");
}
static inline void pci_read_dword_ptr(device_t dev, void *ptr, int offset)
{
u32 dword = pci_read_config32(dev, offset);
memcpy(ptr, &dword, sizeof(dword));
mei_dump(ptr, dword, offset, "PCI READ");
}
static inline void read_host_csr(struct mei_csr *csr)
{
mei_read_dword_ptr(csr, MEI_H_CSR);
}
static inline void write_host_csr(struct mei_csr *csr)
{
mei_write_dword_ptr(csr, MEI_H_CSR);
}
static inline void read_me_csr(struct mei_csr *csr)
{
mei_read_dword_ptr(csr, MEI_ME_CSR_HA);
}
static inline void write_cb(u32 dword)
{
write32(mei_base_address + MEI_H_CB_WW, dword);
mei_dump(NULL, dword, MEI_H_CB_WW, "WRITE");
}
static inline u32 read_cb(void)
{
u32 dword = read32(mei_base_address + MEI_ME_CB_RW);
mei_dump(NULL, dword, MEI_ME_CB_RW, "READ");
return dword;
}
/* Wait for ME ready bit to be asserted */
static int mei_wait_for_me_ready(void)
{
struct mei_csr me;
unsigned try = ME_RETRY;
while (try--) {
read_me_csr(&me);
if (me.ready)
return 0;
udelay(ME_DELAY);
}
printk(BIOS_ERR, "ME: failed to become ready\n");
return -1;
}
static void mei_reset(void)
{
struct mei_csr host;
if (mei_wait_for_me_ready() < 0)
return;
/* Reset host and ME circular buffers for next message */
read_host_csr(&host);
host.reset = 1;
host.interrupt_generate = 1;
write_host_csr(&host);
if (mei_wait_for_me_ready() < 0)
return;
/* Re-init and indicate host is ready */
read_host_csr(&host);
host.interrupt_generate = 1;
host.ready = 1;
host.reset = 0;
write_host_csr(&host);
}
static int mei_send_packet(struct mei_header *mei, void *req_data)
{
struct mei_csr host;
unsigned ndata, n;
u32 *data;
/* Number of dwords to write */
ndata = mei->length >> 2;
/* Pad non-dword aligned request message length */
if (mei->length & 3)
ndata++;
if (!ndata) {
printk(BIOS_DEBUG, "ME: request has no data\n");
return -1;
}
ndata++; /* Add MEI header */
/*
* Make sure there is still room left in the circular buffer.
* Reset the buffer pointers if the requested message will not fit.
*/
read_host_csr(&host);
if ((host.buffer_depth - host.buffer_write_ptr) < ndata) {
printk(BIOS_ERR, "ME: circular buffer full, resetting...\n");
mei_reset();
read_host_csr(&host);
}
/* Ensure the requested length will fit in the circular buffer. */
if ((host.buffer_depth - host.buffer_write_ptr) < ndata) {
printk(BIOS_ERR, "ME: message (%u) too large for buffer (%u)\n",
ndata + 2, host.buffer_depth);
return -1;
}
/* Write MEI header */
mei_write_dword_ptr(mei, MEI_H_CB_WW);
ndata--;
/* Write message data */
data = req_data;
for (n = 0; n < ndata; ++n)
write_cb(*data++);
/* Generate interrupt to the ME */
read_host_csr(&host);
host.interrupt_generate = 1;
write_host_csr(&host);
/* Make sure ME is ready after sending request data */
return mei_wait_for_me_ready();
}
static int mei_send_data(u8 me_address, u8 host_address,
void *req_data, int req_bytes)
{
struct mei_header header = {
.client_address = me_address,
.host_address = host_address,
};
struct mei_csr host;
int current = 0;
u8 *req_ptr = req_data;
while (!header.is_complete) {
int remain = req_bytes - current;
int buf_len;
read_host_csr(&host);
buf_len = host.buffer_depth - host.buffer_write_ptr;
if (buf_len > remain) {
/* Send all remaining data as final message */
header.length = req_bytes - current;
header.is_complete = 1;
} else {
/* Send as much data as the buffer can hold */
header.length = buf_len;
}
mei_send_packet(&header, req_ptr);
req_ptr += header.length;
current += header.length;
}
return 0;
}
static int mei_send_header(u8 me_address, u8 host_address,
void *header, int header_len, int complete)
{
struct mei_header mei = {
.client_address = me_address,
.host_address = host_address,
.length = header_len,
.is_complete = complete,
};
return mei_send_packet(&mei, header);
}
static int mei_recv_msg(void *header, int header_bytes,
void *rsp_data, int rsp_bytes)
{
struct mei_header mei_rsp;
struct mei_csr me, host;
unsigned ndata, n;
unsigned expected;
u32 *data;
/* Total number of dwords to read from circular buffer */
expected = (rsp_bytes + sizeof(mei_rsp) + header_bytes) >> 2;
if (rsp_bytes & 3)
expected++;
if (mei_wait_for_me_ready() < 0)
return -1;
/*
* The interrupt status bit does not appear to indicate that the
* message has actually been received. Instead we wait until the
* expected number of dwords are present in the circular buffer.
*/
for (n = ME_RETRY; n; --n) {
read_me_csr(&me);
if ((me.buffer_write_ptr - me.buffer_read_ptr) >= expected)
break;
udelay(ME_DELAY);
}
if (!n) {
printk(BIOS_ERR, "ME: timeout waiting for data: expected "
"%u, available %u\n", expected,
me.buffer_write_ptr - me.buffer_read_ptr);
return -1;
}
/* Read and verify MEI response header from the ME */
mei_read_dword_ptr(&mei_rsp, MEI_ME_CB_RW);
if (!mei_rsp.is_complete) {
printk(BIOS_ERR, "ME: response is not complete\n");
return -1;
}
/* Handle non-dword responses and expect at least the header */
ndata = mei_rsp.length >> 2;
if (mei_rsp.length & 3)
ndata++;
if (ndata != (expected - 1)) {
printk(BIOS_ERR, "ME: response is missing data %d != %d\n",
ndata, (expected - 1));
return -1;
}
/* Read response header from the ME */
data = header;
for (n = 0; n < (header_bytes >> 2); ++n)
*data++ = read_cb();
ndata -= header_bytes >> 2;
/* Make sure caller passed a buffer with enough space */
if (ndata != (rsp_bytes >> 2)) {
printk(BIOS_ERR, "ME: not enough room in response buffer: "
"%u != %u\n", ndata, rsp_bytes >> 2);
return -1;
}
/* Read response data from the circular buffer */
data = rsp_data;
for (n = 0; n < ndata; ++n)
*data++ = read_cb();
/* Tell the ME that we have consumed the response */
read_host_csr(&host);
host.interrupt_status = 1;
host.interrupt_generate = 1;
write_host_csr(&host);
return mei_wait_for_me_ready();
}
static inline int mei_sendrecv_mkhi(struct mkhi_header *mkhi,
void *req_data, int req_bytes,
void *rsp_data, int rsp_bytes)
{
struct mkhi_header mkhi_rsp;
/* Send header */
if (mei_send_header(MEI_ADDRESS_MKHI, MEI_HOST_ADDRESS,
mkhi, sizeof(*mkhi), req_bytes ? 0 : 1) < 0)
return -1;
/* Send data if available */
if (req_bytes && mei_send_data(MEI_ADDRESS_MKHI, MEI_HOST_ADDRESS,
req_data, req_bytes) < 0)
return -1;
/* Return now if no response expected */
if (!rsp_bytes)
return 0;
/* Read header and data */
if (mei_recv_msg(&mkhi_rsp, sizeof(mkhi_rsp),
rsp_data, rsp_bytes) < 0)
return -1;
if (!mkhi_rsp.is_response ||
mkhi->group_id != mkhi_rsp.group_id ||
mkhi->command != mkhi_rsp.command) {
printk(BIOS_ERR, "ME: invalid response, group %u ?= %u,"
"command %u ?= %u, is_response %u\n", mkhi->group_id,
mkhi_rsp.group_id, mkhi->command, mkhi_rsp.command,
mkhi_rsp.is_response);
return -1;
}
return 0;
}
static inline int mei_sendrecv_icc(struct icc_header *icc,
void *req_data, int req_bytes,
void *rsp_data, int rsp_bytes)
{
struct icc_header icc_rsp;
/* Send header */
if (mei_send_header(MEI_ADDRESS_ICC, MEI_HOST_ADDRESS,
icc, sizeof(*icc), req_bytes ? 0 : 1) < 0)
return -1;
/* Send data if available */
if (req_bytes && mei_send_data(MEI_ADDRESS_ICC, MEI_HOST_ADDRESS,
req_data, req_bytes) < 0)
return -1;
/* Read header and data, if needed */
if (rsp_bytes && mei_recv_msg(&icc_rsp, sizeof(icc_rsp),
rsp_data, rsp_bytes) < 0)
return -1;
return 0;
}
/*
* mbp give up routine. This path is taken if hfs.mpb_rdy is 0 or the read
* state machine on the BIOS end doesn't match the ME's state machine.
*/
static void intel_me_mbp_give_up(device_t dev)
{
struct mei_csr csr;
pci_write_config32(dev, PCI_ME_H_GS2, PCI_ME_MBP_GIVE_UP);
read_host_csr(&csr);
csr.reset = 1;
csr.interrupt_generate = 1;
write_host_csr(&csr);
}
/*
* mbp clear routine. This will wait for the ME to indicate that
* the MBP has been read and cleared.
*/
void intel_me_mbp_clear(device_t dev)
{
int count;
struct me_hfs2 hfs2;
/* Wait for the mbp_cleared indicator */
for (count = ME_RETRY; count > 0; --count) {
pci_read_dword_ptr(dev, &hfs2, PCI_ME_HFS2);
if (hfs2.mbp_cleared)
break;
udelay(ME_DELAY);
}
if (count == 0) {
printk(BIOS_WARNING, "ME: Timeout waiting for mbp_cleared\n");
intel_me_mbp_give_up(dev);
} else {
printk(BIOS_INFO, "ME: MBP cleared\n");
}
}
#if (CONFIG_DEFAULT_CONSOLE_LOGLEVEL >= BIOS_DEBUG)
static inline void print_cap(const char *name, int state)
{
printk(BIOS_DEBUG, "ME Capability: %-41s : %sabled\n",
name, state ? " en" : "dis");
}
static void me_print_fw_version(mbp_fw_version_name *vers_name)
{
if (!vers_name) {
printk(BIOS_ERR, "ME: mbp missing version report\n");
return;
}
printk(BIOS_DEBUG, "ME: found version %d.%d.%d.%d\n",
vers_name->major_version, vers_name->minor_version,
vers_name->hotfix_version, vers_name->build_version);
}
#if CONFIG_DEBUG_INTEL_ME
/* Get ME Firmware Capabilities */
static int mkhi_get_fwcaps(mbp_mefwcaps *cap)
{
u32 rule_id = 0;
struct me_fwcaps cap_msg;
struct mkhi_header mkhi = {
.group_id = MKHI_GROUP_ID_FWCAPS,
.command = MKHI_FWCAPS_GET_RULE,
};
/* Send request and wait for response */
if (mei_sendrecv_mkhi(&mkhi, &rule_id, sizeof(u32),
&cap_msg, sizeof(cap_msg)) < 0) {
printk(BIOS_ERR, "ME: GET FWCAPS message failed\n");
return -1;
}
*cap = cap_msg.caps_sku;
return 0;
}
/* Get ME Firmware Capabilities */
static void me_print_fwcaps(mbp_mefwcaps *cap)
{
mbp_mefwcaps local_caps;
if (!cap) {
cap = &local_caps;
printk(BIOS_ERR, "ME: mbp missing fwcaps report\n");
if (mkhi_get_fwcaps(cap))
return;
}
print_cap("Full Network manageability", cap->full_net);
print_cap("Regular Network manageability", cap->std_net);
print_cap("Manageability", cap->manageability);
print_cap("IntelR Anti-Theft (AT)", cap->intel_at);
print_cap("IntelR Capability Licensing Service (CLS)", cap->intel_cls);
print_cap("IntelR Power Sharing Technology (MPC)", cap->intel_mpc);
print_cap("ICC Over Clocking", cap->icc_over_clocking);
print_cap("Protected Audio Video Path (PAVP)", cap->pavp);
print_cap("IPV6", cap->ipv6);
print_cap("KVM Remote Control (KVM)", cap->kvm);
print_cap("Outbreak Containment Heuristic (OCH)", cap->och);
print_cap("Virtual LAN (VLAN)", cap->vlan);
print_cap("TLS", cap->tls);
print_cap("Wireless LAN (WLAN)", cap->wlan);
}
#endif
#endif
/* Send END OF POST message to the ME */
static int mkhi_end_of_post(void)
{
struct mkhi_header mkhi = {
.group_id = MKHI_GROUP_ID_GEN,
.command = MKHI_END_OF_POST,
};
u32 eop_ack;
/* Send request and wait for response */
printk(BIOS_NOTICE, "ME: %s\n", __FUNCTION__);
if (mei_sendrecv_mkhi(&mkhi, NULL, 0, &eop_ack, sizeof(eop_ack)) < 0) {
printk(BIOS_ERR, "ME: END OF POST message failed\n");
return -1;
}
printk(BIOS_INFO, "ME: END OF POST message successful (%d)\n", eop_ack);
return 0;
}
void intel_me_finalize(void)
{
device_t dev = PCH_DEV_ME;
struct me_hfs hfs;
u32 reg32;
/* S3 path will have hidden this device already */
if (!mei_base_address || mei_base_address == 0xfffffff0)
return;
#if CONFIG_ME_MBP_CLEAR_LATE
/* Wait for ME MBP Cleared indicator */
intel_me_mbp_clear(dev);
#endif
/* Make sure ME is in a mode that expects EOP */
reg32 = pci_read_config32(dev, PCI_ME_HFS);
memcpy(&hfs, &reg32, sizeof(u32));
/* Abort and leave device alone if not normal mode */
if (hfs.fpt_bad ||
hfs.working_state != ME_HFS_CWS_NORMAL ||
hfs.operation_mode != ME_HFS_MODE_NORMAL)
return;
/* Try to send EOP command so ME stops accepting other commands */
mkhi_end_of_post();
/* Make sure IO is disabled */
reg32 = pci_read_config32(dev, PCI_COMMAND);
reg32 &= ~(PCI_COMMAND_MASTER |
PCI_COMMAND_MEMORY | PCI_COMMAND_IO);
pci_write_config32(dev, PCI_COMMAND, reg32);
/* Hide the PCI device */
RCBA32_OR(FD2, PCH_DISABLE_MEI1);
}
static int me_icc_set_clock_enables(u32 mask)
{
struct icc_clock_enables_msg clk = {
.clock_enables = 0, /* Turn off specified clocks */
.clock_mask = mask,
.no_response = 1, /* Do not expect response */
};
struct icc_header icc = {
.api_version = ICC_API_VERSION_LYNXPOINT,
.icc_command = ICC_SET_CLOCK_ENABLES,
.length = sizeof(clk),
};
/* Send request and wait for response */
if (mei_sendrecv_icc(&icc, &clk, sizeof(clk), NULL, 0) < 0) {
printk(BIOS_ERR, "ME: ICC SET CLOCK ENABLES message failed\n");
return -1;
} else {
printk(BIOS_INFO, "ME: ICC SET CLOCK ENABLES 0x%08x\n", mask);
}
return 0;
}
/* Determine the path that we should take based on ME status */
static me_bios_path intel_me_path(device_t dev)
{
me_bios_path path = ME_DISABLE_BIOS_PATH;
struct me_hfs hfs;
struct me_hfs2 hfs2;
/* Check and dump status */
intel_me_status();
pci_read_dword_ptr(dev, &hfs, PCI_ME_HFS);
pci_read_dword_ptr(dev, &hfs2, PCI_ME_HFS2);
/* Check Current Working State */
switch (hfs.working_state) {
case ME_HFS_CWS_NORMAL:
path = ME_NORMAL_BIOS_PATH;
break;
case ME_HFS_CWS_REC:
path = ME_RECOVERY_BIOS_PATH;
break;
default:
path = ME_DISABLE_BIOS_PATH;
break;
}
/* Check Current Operation Mode */
switch (hfs.operation_mode) {
case ME_HFS_MODE_NORMAL:
break;
case ME_HFS_MODE_DEBUG:
case ME_HFS_MODE_DIS:
case ME_HFS_MODE_OVER_JMPR:
case ME_HFS_MODE_OVER_MEI:
default:
path = ME_DISABLE_BIOS_PATH;
break;
}
/* Check for any error code and valid firmware and MBP */
if (hfs.error_code || hfs.fpt_bad)
path = ME_ERROR_BIOS_PATH;
/* Check if the MBP is ready */
if (!hfs2.mbp_rdy) {
printk(BIOS_CRIT, "%s: mbp is not ready!\n",
__FUNCTION__);
path = ME_ERROR_BIOS_PATH;
}
#if CONFIG_ELOG
if (path != ME_NORMAL_BIOS_PATH) {
struct elog_event_data_me_extended data = {
.current_working_state = hfs.working_state,
.operation_state = hfs.operation_state,
.operation_mode = hfs.operation_mode,
.error_code = hfs.error_code,
.progress_code = hfs2.progress_code,
.current_pmevent = hfs2.current_pmevent,
.current_state = hfs2.current_state,
};
elog_add_event_byte(ELOG_TYPE_MANAGEMENT_ENGINE, path);
elog_add_event_raw(ELOG_TYPE_MANAGEMENT_ENGINE_EXT,
&data, sizeof(data));
}
#endif
return path;
}
/* Prepare ME for MEI messages */
static int intel_mei_setup(device_t dev)
{
struct resource *res;
struct mei_csr host;
u32 reg32;
/* Find the MMIO base for the ME interface */
res = find_resource(dev, PCI_BASE_ADDRESS_0);
if (!res || res->base == 0 || res->size == 0) {
printk(BIOS_DEBUG, "ME: MEI resource not present!\n");
return -1;
}
mei_base_address = res->base;
/* Ensure Memory and Bus Master bits are set */
reg32 = pci_read_config32(dev, PCI_COMMAND);
reg32 |= PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY;
pci_write_config32(dev, PCI_COMMAND, reg32);
/* Clean up status for next message */
read_host_csr(&host);
host.interrupt_generate = 1;
host.ready = 1;
host.reset = 0;
write_host_csr(&host);
return 0;
}
/* Read the Extend register hash of ME firmware */
static int intel_me_extend_valid(device_t dev)
{
struct me_heres status;
u32 extend[8] = {0};
int i, count = 0;
pci_read_dword_ptr(dev, &status, PCI_ME_HERES);
if (!status.extend_feature_present) {
printk(BIOS_ERR, "ME: Extend Feature not present\n");
return -1;
}
if (!status.extend_reg_valid) {
printk(BIOS_ERR, "ME: Extend Register not valid\n");
return -1;
}
switch (status.extend_reg_algorithm) {
case PCI_ME_EXT_SHA1:
count = 5;
printk(BIOS_DEBUG, "ME: Extend SHA-1: ");
break;
case PCI_ME_EXT_SHA256:
count = 8;
printk(BIOS_DEBUG, "ME: Extend SHA-256: ");
break;
default:
printk(BIOS_ERR, "ME: Extend Algorithm %d unknown\n",
status.extend_reg_algorithm);
return -1;
}
for (i = 0; i < count; ++i) {
extend[i] = pci_read_config32(dev, PCI_ME_HER(i));
printk(BIOS_DEBUG, "%08x", extend[i]);
}
printk(BIOS_DEBUG, "\n");
#if CONFIG_CHROMEOS
/* Save hash in NVS for the OS to verify */
chromeos_set_me_hash(extend, count);
#endif
return 0;
}
/* Check whether ME is present and do basic init */
static void intel_me_init(device_t dev)
{
config_t *config = dev->chip_info;
me_bios_path path = intel_me_path(dev);
me_bios_payload mbp_data;
/* Do initial setup and determine the BIOS path */
printk(BIOS_NOTICE, "ME: BIOS path: %s\n", me_bios_path_values[path]);
if (path == ME_NORMAL_BIOS_PATH) {
/* Validate the extend register */
intel_me_extend_valid(dev);
}
memset(&mbp_data, 0, sizeof(mbp_data));
/*
* According to the ME9 BWG, BIOS is required to fetch MBP data in
* all boot flows except S3 Resume.
*/
/* Prepare MEI MMIO interface */
if (intel_mei_setup(dev) < 0)
return;
if (intel_me_read_mbp(&mbp_data, dev))
return;
#if (CONFIG_DEFAULT_CONSOLE_LOGLEVEL >= BIOS_DEBUG)
me_print_fw_version(mbp_data.fw_version_name);
#if CONFIG_DEBUG_INTEL_ME
me_print_fwcaps(mbp_data.fw_capabilities);
#endif
if (mbp_data.plat_time) {
printk(BIOS_DEBUG, "ME: Wake Event to ME Reset: %u ms\n",
mbp_data.plat_time->wake_event_mrst_time_ms);
printk(BIOS_DEBUG, "ME: ME Reset to Platform Reset: %u ms\n",
mbp_data.plat_time->mrst_pltrst_time_ms);
printk(BIOS_DEBUG, "ME: Platform Reset to CPU Reset: %u ms\n",
mbp_data.plat_time->pltrst_cpurst_time_ms);
}
#endif
/* Set clock enables according to devicetree */
if (config && config->icc_clock_disable)
me_icc_set_clock_enables(config->icc_clock_disable);
/*
* Leave the ME unlocked. It will be locked via SMI command later.
*/
}
static void intel_me_enable(device_t dev)
{
#if CONFIG_HAVE_ACPI_RESUME
/* Avoid talking to the device in S3 path */
if (acpi_slp_type == 3) {
dev->enabled = 0;
pch_disable_devfn(dev);
}
#endif
}
static struct device_operations device_ops = {
.read_resources = &pci_dev_read_resources,
.set_resources = &pci_dev_set_resources,
.enable_resources = &pci_dev_enable_resources,
.enable = &intel_me_enable,
.init = &intel_me_init,
.ops_pci = &broadwell_pci_ops,
};
static const unsigned short pci_device_ids[] = {
0x9c3a, /* Low Power */
0x9cba, /* WildcatPoint */
0
};
static const struct pci_driver intel_me __pci_driver = {
.ops = &device_ops,
.vendor = PCI_VENDOR_ID_INTEL,
.devices= pci_device_ids,
};
/******************************************************************************
* */
static u32 me_to_host_words_pending(void)
{
struct mei_csr me;
read_me_csr(&me);
if (!me.ready)
return 0;
return (me.buffer_write_ptr - me.buffer_read_ptr) &
(me.buffer_depth - 1);
}
struct mbp_payload {
mbp_header header;
u32 data[0];
};
/*
* mbp seems to be following its own flow, let's retrieve it in a dedicated
* function.
*/
static int intel_me_read_mbp(me_bios_payload *mbp_data, device_t dev)
{
mbp_header mbp_hdr;
u32 me2host_pending;
struct mei_csr host;
struct me_hfs2 hfs2;
struct mbp_payload *mbp;
int i;
pci_read_dword_ptr(dev, &hfs2, PCI_ME_HFS2);
if (!hfs2.mbp_rdy) {
printk(BIOS_ERR, "ME: MBP not ready\n");
goto mbp_failure;
}
me2host_pending = me_to_host_words_pending();
if (!me2host_pending) {
printk(BIOS_ERR, "ME: no mbp data!\n");
goto mbp_failure;
}
/* we know for sure that at least the header is there */
mei_read_dword_ptr(&mbp_hdr, MEI_ME_CB_RW);
if ((mbp_hdr.num_entries > (mbp_hdr.mbp_size / 2)) ||
(me2host_pending < mbp_hdr.mbp_size)) {
printk(BIOS_ERR, "ME: mbp of %d entries, total size %d words"
" buffer contains %d words\n",
mbp_hdr.num_entries, mbp_hdr.mbp_size,
me2host_pending);
goto mbp_failure;
}
mbp = malloc(mbp_hdr.mbp_size * sizeof(u32));
if (!mbp)
goto mbp_failure;
mbp->header = mbp_hdr;
me2host_pending--;
i = 0;
while (i != me2host_pending) {
mei_read_dword_ptr(&mbp->data[i], MEI_ME_CB_RW);
i++;
}
/* Signal to the ME that the host has finished reading the MBP. */
read_host_csr(&host);
host.interrupt_generate = 1;
write_host_csr(&host);
#if !CONFIG_ME_MBP_CLEAR_LATE
/* Wait for the mbp_cleared indicator. */
intel_me_mbp_clear(dev);
#endif
/* Dump out the MBP contents. */
#if (CONFIG_DEFAULT_CONSOLE_LOGLEVEL >= BIOS_DEBUG)
printk(BIOS_INFO, "ME MBP: Header: items: %d, size dw: %d\n",
mbp->header.num_entries, mbp->header.mbp_size);
#if CONFIG_DEBUG_INTEL_ME
for (i = 0; i < mbp->header.mbp_size - 1; i++) {
printk(BIOS_INFO, "ME MBP: %04x: 0x%08x\n", i, mbp->data[i]);
}
#endif
#endif
#define ASSIGN_FIELD_PTR(field_,val_) \
{ \
mbp_data->field_ = (typeof(mbp_data->field_))(void *)val_; \
break; \
}
/* Setup the pointers in the me_bios_payload structure. */
for (i = 0; i < mbp->header.mbp_size - 1;) {
mbp_item_header *item = (void *)&mbp->data[i];
switch(MBP_MAKE_IDENT(item->app_id, item->item_id)) {
case MBP_IDENT(KERNEL, FW_VER):
ASSIGN_FIELD_PTR(fw_version_name, &mbp->data[i+1]);
case MBP_IDENT(ICC, PROFILE):
ASSIGN_FIELD_PTR(icc_profile, &mbp->data[i+1]);
case MBP_IDENT(INTEL_AT, STATE):
ASSIGN_FIELD_PTR(at_state, &mbp->data[i+1]);
case MBP_IDENT(KERNEL, FW_CAP):
ASSIGN_FIELD_PTR(fw_capabilities, &mbp->data[i+1]);
case MBP_IDENT(KERNEL, ROM_BIST):
ASSIGN_FIELD_PTR(rom_bist_data, &mbp->data[i+1]);
case MBP_IDENT(KERNEL, PLAT_KEY):
ASSIGN_FIELD_PTR(platform_key, &mbp->data[i+1]);
case MBP_IDENT(KERNEL, FW_TYPE):
ASSIGN_FIELD_PTR(fw_plat_type, &mbp->data[i+1]);
case MBP_IDENT(KERNEL, MFS_FAILURE):
ASSIGN_FIELD_PTR(mfsintegrity, &mbp->data[i+1]);
case MBP_IDENT(KERNEL, PLAT_TIME):
ASSIGN_FIELD_PTR(plat_time, &mbp->data[i+1]);
case MBP_IDENT(NFC, SUPPORT_DATA):
ASSIGN_FIELD_PTR(nfc_data, &mbp->data[i+1]);
default:
printk(BIOS_ERR, "ME MBP: unknown item 0x%x @ "
"dw offset 0x%x\n", mbp->data[i], i);
break;
}
i += item->length;
}
#undef ASSIGN_FIELD_PTR
return 0;
mbp_failure:
intel_me_mbp_give_up(dev);
return -1;
}