blob: 85b9b9d9849d934b977d1b4e11764e3d6344e60c [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
* Copyright © 2008 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Keith Packard <keithp@keithp.com>
*
*/
/* This code was created by the coccinnelle filters in the i915tool,
* with some final hand filtering.
*/
#include <console/console.h>
#include <stdint.h>
#include <delay.h>
#include <drivers/intel/gma/i915.h>
#include <string.h>
/**
* is_edp - is the given port attached to an eDP panel (either CPU or PCH)
* @intel_dp: DP struct
*
* If a CPU or PCH DP output is attached to an eDP panel, this function
* will return 1, and 0 otherwise.
*/
static int is_edp(struct intel_dp *intel_dp)
{
return intel_dp->type == INTEL_OUTPUT_EDP;
}
/**
* is_pch_edp - is the port on the PCH and attached to an eDP panel?
* @intel_dp: DP struct
*
* Returns 1 if the given DP struct corresponds to a PCH DP port attached
* to an eDP panel, 0 otherwise. Helpful for determining whether we
* may need FDI resources for a given DP output or not.
*/
static int is_pch_edp(struct intel_dp *intel_dp)
{
return intel_dp->is_pch_edp;
}
/**
* is_cpu_edp - is the port on the CPU and attached to an eDP panel?
* @intel_dp: DP struct
*
* Returns 1 if the given DP struct corresponds to a CPU eDP port.
*/
static int is_cpu_edp(struct intel_dp *intel_dp)
{
return is_edp(intel_dp) && !is_pch_edp(intel_dp);
}
static uint32_t
pack_aux(uint8_t *src, int src_bytes)
{
int i;
uint32_t v = 0;
if (src_bytes > 4)
src_bytes = 4;
for (i = 0; i < src_bytes; i++)
v |= ((uint32_t) src[i]) << ((3-i) * 8);
return v;
}
void
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
{
int i;
if (dst_bytes > 4)
dst_bytes = 4;
for (i = 0; i < dst_bytes; i++)
dst[i] = src >> ((3-i) * 8);
}
static int ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
{
return (gtt_read(PCH_PP_STATUS) & PP_ON) != 0;
}
static int ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
{
return (gtt_read(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
}
int
intel_dp_aux_ch(struct intel_dp *intel_dp,
uint8_t *send, int send_bytes,
uint8_t *recv, int recv_size)
{
uint32_t output_reg = intel_dp->output_reg;
uint32_t ch_ctl = output_reg + 0x10;
uint32_t ch_data = ch_ctl + 4;
int i;
int recv_bytes;
uint32_t status;
int try;
/* Try to wait for any previous AUX channel activity */
for (try = 0; try < 3; try++) {
status = gtt_read(ch_ctl);
if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
break;
mdelay(1);
}
if (try == 3) {
if (1) {
status = gtt_read(ch_ctl);
printk(BIOS_ERR,
"dp_aux_ch not started status 0x%08x\n",
status);
}
return -1;
}
/* Must try at least 3 times according to DP spec */
for (try = 0; try < 5; try++) {
/* Load the send data into the aux channel data registers */
for (i = 0; i < send_bytes; i += 4){
u32 val, addr;
val = pack_aux(send + i, send_bytes - i);
addr = ch_data + i;
gtt_write(addr,val);
}
/* Send the command and wait for it to complete */
gtt_write(ch_ctl, DP_AUX_CH_CTL_SEND_BUSY |
DP_AUX_CH_CTL_TIME_OUT_400us |
(send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
(intel_dp->precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
(intel_dp->aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
DP_AUX_CH_CTL_DONE |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
DP_AUX_CH_CTL_RECEIVE_ERROR);
for (;;) {
status = gtt_read(ch_ctl);
if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
break;
udelay(100);
}
/* Clear done status and any errors */
gtt_write(ch_ctl, status |
DP_AUX_CH_CTL_DONE |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
DP_AUX_CH_CTL_RECEIVE_ERROR);
if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
DP_AUX_CH_CTL_RECEIVE_ERROR))
continue;
if (status & DP_AUX_CH_CTL_DONE)
break;
}
if ((status & DP_AUX_CH_CTL_DONE) == 0) {
printk(BIOS_ERR, "dp_aux_ch not done status 0x%08x\n", status);
return -1;
}
/* Check for timeout or receive error.
* Timeouts occur when the sink is not connected
*/
if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
printk(BIOS_ERR,
"dp_aux_ch receive error status 0x%08x\n", status);
return -1;
}
/* Timeouts occur when the device isn't connected, so they're
* "normal" -- don't fill the kernel log with these */
if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
printk(BIOS_ERR, "dp_aux_ch timeout status 0x%08x\n", status);
return -1;
}
/* Unload any bytes sent back from the other side */
recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
if (recv_bytes > recv_size)
recv_bytes = recv_size;
for (i = 0; i < recv_bytes; i += 4)
unpack_aux(gtt_read(ch_data + i),
recv + i, recv_bytes - i);
return recv_bytes;
}
/* Write data to the aux channel in native mode */
static int
intel_dp_aux_native_write(struct intel_dp *intel_dp,
uint16_t address, uint8_t *send, int send_bytes)
{
int ret;
uint8_t msg[20];
int msg_bytes;
uint8_t ack;
if (send_bytes > 16)
return -1;
msg[0] = AUX_NATIVE_WRITE << 4;
msg[1] = address >> 8;
msg[2] = address & 0xff;
msg[3] = send_bytes - 1;
memcpy(&msg[4], send, send_bytes);
msg_bytes = send_bytes + 4;
for (;;) {
ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
if (ret < 0)
return ret;
if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
break;
else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
udelay(100);
else
return -1;
}
return send_bytes;
}
/* Write a single byte to the aux channel in native mode */
static int
intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
uint16_t address, uint8_t byte)
{
return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
}
int intel_dp_set_bw(struct intel_dp *intel_dp)
{
printk(BIOS_SPEW, "DP_LINK_BW_SET");
return intel_dp_aux_native_write_1(intel_dp,
DP_LINK_BW_SET,
intel_dp->link_bw);
}
int intel_dp_set_lane_count(struct intel_dp *intel_dp)
{
printk(BIOS_SPEW, "DP_LANE_COUNT_SET %d ", intel_dp->lane_count);
return intel_dp_aux_native_write_1(intel_dp,
DP_LANE_COUNT_SET,
intel_dp->lane_count);
}
int intel_dp_set_training_pattern(struct intel_dp *intel_dp,
u8 pat)
{
printk(BIOS_SPEW, "DP_TRAINING_PATTERN_SET");
return intel_dp_aux_native_write_1(intel_dp,
DP_TRAINING_PATTERN_SET,
pat);
}
int intel_dp_set_training_lane0(struct intel_dp *intel_dp,
u8 val)
{
printk(BIOS_SPEW, "DP_TRAINING_LANE0_SET");
return intel_dp_aux_native_write_1(intel_dp,
DP_TRAINING_LANE0_SET,
val);
}
/* read bytes from a native aux channel */
static int
intel_dp_aux_native_read(struct intel_dp *intel_dp,
uint16_t address, uint8_t *recv, int recv_bytes)
{
uint8_t msg[4];
int msg_bytes;
uint8_t reply[20];
int reply_bytes;
uint8_t ack;
int ret;
msg[0] = AUX_NATIVE_READ << 4;
msg[1] = address >> 8;
msg[2] = address & 0xff;
msg[3] = recv_bytes - 1;
msg_bytes = 4;
reply_bytes = recv_bytes + 1;
for (;;) {
ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
reply, reply_bytes);
if (ret == 0)
return -1;
if (ret < 0)
return ret;
ack = reply[0];
if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
memcpy(recv, reply + 1, ret - 1);
return ret - 1;
}
else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
udelay(100);
else
return -1;
}
}
int
intel_dp_i2c_aux_ch(struct intel_dp *intel_dp,
int mode, uint8_t write_byte, uint8_t *read_byte)
{
uint8_t msg[5];
uint8_t reply[2];
unsigned retry;
int msg_bytes;
int reply_bytes;
int ret;
/* Set up the command byte */
if (mode & MODE_I2C_READ)
msg[0] = AUX_I2C_READ << 4;
else
msg[0] = AUX_I2C_WRITE << 4;
if (!(mode & MODE_I2C_STOP))
msg[0] |= AUX_I2C_MOT << 4;
msg[1] = intel_dp->address >> 8;
msg[2] = intel_dp->address;
switch (mode) {
case MODE_I2C_WRITE:
msg[3] = 0;
msg[4] = write_byte;
msg_bytes = 5;
reply_bytes = 1;
break;
case MODE_I2C_READ:
msg[3] = 0;
msg_bytes = 4;
reply_bytes = 2;
break;
default:
msg_bytes = 3;
reply_bytes = 1;
break;
}
for (retry = 0; retry < 5; retry++) {
ret = intel_dp_aux_ch(intel_dp,
msg, msg_bytes,
reply, reply_bytes);
if (ret < 0) {
printk(BIOS_ERR, "aux_ch failed %d\n", ret);
return ret;
}
switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
case AUX_NATIVE_REPLY_ACK:
/* I2C-over-AUX Reply field is only valid
* when paired with AUX ACK.
*/
break;
case AUX_NATIVE_REPLY_NACK:
printk(BIOS_ERR, "aux_ch native nack\n");
return -1;
case AUX_NATIVE_REPLY_DEFER:
udelay(100);
continue;
default:
printk(BIOS_ERR, "aux_ch invalid native reply 0x%02x\n",
reply[0]);
return -1;
}
switch (reply[0] & AUX_I2C_REPLY_MASK) {
case AUX_I2C_REPLY_ACK:
if (mode == MODE_I2C_READ) {
*read_byte = reply[1];
}
return reply_bytes - 1;
case AUX_I2C_REPLY_NACK:
printk(BIOS_ERR, "aux_i2c nack\n");
return -1;
case AUX_I2C_REPLY_DEFER:
printk(BIOS_ERR, "aux_i2c defer\n");
udelay(100);
break;
default:
printk(BIOS_ERR,
"aux_i2c invalid reply 0x%02x\n", reply[0]);
return -1;
}
}
printk(BIOS_ERR, "too many retries, giving up\n");
return -1;
}
int intel_dp_i2c_write(struct intel_dp *intel_dp,
u8 val)
{
return intel_dp_i2c_aux_ch(intel_dp,
MODE_I2C_WRITE,
val,
NULL);
}
int intel_dp_i2c_read(struct intel_dp *intel_dp,
u8 *val)
{
return intel_dp_i2c_aux_ch(intel_dp,
MODE_I2C_READ,
0,
val);
}
int
intel_dp_i2c_init(struct intel_dp *intel_dp)
{
int ret = 0;
/* not clear what we need to do here, if anything.
* this function was more about setting up the kernel.
* it's a handy placeholder, so we leave it in for now.
*/
return ret;
}
static void
intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
{
while (*num > DATA_LINK_M_N_MASK || *den > DATA_LINK_M_N_MASK) {
*num >>= 1;
*den >>= 1;
}
}
unsigned int roundup_power_of_two(unsigned int n);
unsigned int roundup_power_of_two(unsigned int n)
{
n--;
n |= n >> 1;
n |= n >> 2;
n |= n >> 4;
n |= n >> 8;
n |= n >> 16;
n++;
return n;
}
static void compute_m_n(unsigned int m, unsigned int n,
unsigned int *ret_m, unsigned int *ret_n)
{
/* We noticed in the IO operations that
* the VBIOS was setting N to DATA_LINK_N_MAX.
* This makes sense, actually: the bigger N is, i.e.
* the bigger the denominator is, the bigger
* the numerator can be, and the more
* bits of numerator you get, the better the result.
* So, first pick the max of the two powers of two.
* And, in the (unlikely) event that you end up with
* something bigger than DATA_LINK_N_MAX, catch that
* case with a MIN. Note the second case is unlikely,
* but we are best off being careful.
*/
*ret_n = MAX(roundup_power_of_two(n), DATA_LINK_N_MAX);
*ret_n = MIN(*ret_n, DATA_LINK_N_MAX);
*ret_m = ( (unsigned long long)m * *ret_n) / n;
intel_reduce_m_n_ratio(ret_m, ret_n);
}
void intel_dp_compute_m_n(unsigned int bits_per_pixel,
unsigned int nlanes,
unsigned int pixel_clock,
unsigned int link_clock,
struct intel_dp_m_n *m_n)
{
m_n->tu = 64;
compute_m_n(bits_per_pixel * pixel_clock,
link_clock * nlanes * 8,
&m_n->gmch_m, &m_n->gmch_n);
compute_m_n(pixel_clock, link_clock,
&m_n->link_m, &m_n->link_n);
}
static void ironlake_edp_pll_off(void);
void
intel_dp_mode_set(struct intel_dp *intel_dp)
{
/* Turn on the eDP PLL if needed */
if (is_edp(intel_dp)) {
if (!is_pch_edp(intel_dp))
ironlake_edp_pll_on();
else
ironlake_edp_pll_off();
}
/*
* There are four kinds of DP registers:
*
* IBX PCH
* SNB CPU
* IVB CPU
* CPT PCH
*
* IBX PCH and CPU are the same for almost everything,
* except that the CPU DP PLL is configured in this
* register
*
* CPT PCH is quite different, having many bits moved
* to the TRANS_DP_CTL register instead. That
* configuration happens (oddly) in ironlake_pch_enable
*/
/* Preserve the BIOS-computed detected bit. This is
* supposed to be read-only.
*/
intel_dp->DP = gtt_read(intel_dp->output_reg) & DP_DETECTED;
printk(BIOS_SPEW, "%s: initial value is %08lx\n", __func__,
(unsigned long)intel_dp->DP);
/* | 0 essentially */
intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
/* Handle DP bits in common between all three register formats */
switch (intel_dp->lane_count) {
case 1:
intel_dp->DP |= DP_PORT_WIDTH_1;
break;
case 2:
intel_dp->DP |= DP_PORT_WIDTH_2;
break;
case 4:
intel_dp->DP |= DP_PORT_WIDTH_4;
break;
}
memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
intel_dp->link_configuration[0] = intel_dp->link_bw;
intel_dp->link_configuration[1] = intel_dp->lane_count;
intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
/*
* Check for DPCD version > 1.1 and enhanced framing support
*/
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
(intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
}
/* Split out the IBX/CPU vs CPT settings */
if (is_cpu_edp(intel_dp) && (intel_dp->gen == 7)) {
/* what are these? We're not sure.
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
intel_dp->DP |= DP_SYNC_HS_HIGH;
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
*/
intel_dp->DP |= DP_SYNC_VS_HIGH;
/* */
intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
if (intel_dp->link_configuration[1] &
DP_LANE_COUNT_ENHANCED_FRAME_EN)
intel_dp->DP |= DP_ENHANCED_FRAMING;
intel_dp->DP |= intel_dp->pipe << 29;
/* don't miss out required setting for eDP */
intel_dp->DP |= DP_PLL_ENABLE;
if (intel_dp->clock < 200000)
intel_dp->DP |= DP_PLL_FREQ_160MHZ;
else
intel_dp->DP |= DP_PLL_FREQ_270MHZ;
} else if (!intel_dp->has_pch_cpt || is_cpu_edp(intel_dp)) {
intel_dp->DP |= intel_dp->color_range;
intel_dp->DP |= DP_LINK_TRAIN_OFF;
if (intel_dp->link_configuration[1] &
DP_LANE_COUNT_ENHANCED_FRAME_EN)
intel_dp->DP |= DP_ENHANCED_FRAMING;
if (intel_dp->pipe == 1)
intel_dp->DP |= DP_PIPEB_SELECT;
if (is_cpu_edp(intel_dp)) {
/* don't miss out required setting for eDP */
intel_dp->DP |= DP_PLL_ENABLE;
if (intel_dp->clock < 200000)
intel_dp->DP |= DP_PLL_FREQ_160MHZ;
else
intel_dp->DP |= DP_PLL_FREQ_270MHZ;
}
} else {
intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
}
}
#define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
#define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
#define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
#define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
u32 mask,
u32 value)
{
int i;
u32 status;
printk(BIOS_ERR, "[000000.0] [drm:%s], ", __func__);
printk(BIOS_ERR, "mask %08lx value %08lx status %08lx control %08lx\n",
(unsigned long) mask, (unsigned long) value,
(unsigned long)gtt_read(PCH_PP_STATUS),
(unsigned long)gtt_read(PCH_PP_CONTROL));
for(i = 0, status = gtt_read(PCH_PP_STATUS); ((status & mask) != value) && (i < 5000);
status = gtt_read(PCH_PP_STATUS)){
udelay(10);
}
if (i > 5000){
printk(BIOS_ERR,
"Panel status timeout: status %08lx control %08lx\n",
(unsigned long)gtt_read(PCH_PP_STATUS),
(unsigned long)gtt_read(PCH_PP_CONTROL));
}
}
static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
{
printk(BIOS_ERR, "Wait for panel power on\n");
ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
}
static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
{
printk(BIOS_ERR, "Wait for panel power off time\n");
ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
}
static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
{
printk(BIOS_ERR, "Wait for panel power cycle\n");
ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
}
void intel_dp_wait_reg(unsigned long addr,
unsigned long val)
{
unsigned long newval;
int tries = 0;
while ((newval = gtt_read(addr)) != val) {
udelay(1);
if (tries++ > 1000) {
printk(BIOS_ERR, "%s: Waiting on %08lx to be %08lx, got %08lx\n",
__func__, addr, val, newval);
break;
}
}
}
void intel_dp_wait_panel_power_control(unsigned long val)
{
intel_dp_wait_reg(PCH_PP_CONTROL, val);
}
/* Read the current pp_control value, unlocking the register if it
* is locked
*/
static u32 ironlake_get_pp_control(void)
{
u32 control = gtt_read(PCH_PP_CONTROL);
control &= ~PANEL_UNLOCK_MASK;
control |= PANEL_UNLOCK_REGS;
return control;
}
void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
{
u32 pp;
if (!is_edp(intel_dp))
return;
printk(BIOS_ERR, "Turn eDP VDD on\n");
if (intel_dp->want_panel_vdd) {
printk(BIOS_ERR, "eDP VDD already requested on\n");
}
intel_dp->want_panel_vdd = 1;
if (ironlake_edp_have_panel_vdd(intel_dp)) {
printk(BIOS_ERR, "eDP VDD already on\n");
return;
}
if (!ironlake_edp_have_panel_power(intel_dp))
ironlake_wait_panel_power_cycle(intel_dp);
pp = ironlake_get_pp_control();
pp |= EDP_FORCE_VDD;
gtt_write(PCH_PP_CONTROL,pp);
// remember this if we need it later. Not sure yet.
////POSTING_READ(PCH_PP_CONTROL);
printk(BIOS_ERR, "PCH_PP_STATUS: 0x%08lx PCH_PP_CONTROL: 0x%08lx\n",
gtt_read(PCH_PP_STATUS), gtt_read(PCH_PP_CONTROL));
/*
* If the panel wasn't on, delay before accessing aux channel
*/
if (!ironlake_edp_have_panel_power(intel_dp)) {
printk(BIOS_ERR, "eDP was not running\n");
mdelay(intel_dp->panel_power_up_delay);
}
}
static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
{
u32 pp;
if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
pp = ironlake_get_pp_control();
pp &= ~EDP_FORCE_VDD;
gtt_write(PCH_PP_CONTROL,pp);
////POSTING_READ(PCH_PP_CONTROL);
/* Make sure sequencer is idle before allowing subsequent activity */
printk(BIOS_ERR, "PCH_PP_STATUS: 0x%08lx PCH_PP_CONTROL: 0x%08lx\n",
gtt_read(PCH_PP_STATUS), gtt_read(PCH_PP_CONTROL));
mdelay(intel_dp->panel_power_down_delay);
}
}
void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, int sync)
{
if (!is_edp(intel_dp))
return;
printk(BIOS_ERR, "Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
if (!intel_dp->want_panel_vdd) {
printk(BIOS_ERR, "eDP VDD not forced on");
}
intel_dp->want_panel_vdd = 0;
if (sync)
ironlake_panel_vdd_off_sync(intel_dp);
}
void ironlake_edp_panel_on(struct intel_dp *intel_dp)
{
u32 pp;
if (!is_edp(intel_dp))
return;
printk(BIOS_ERR, "Turn eDP power on\n");
if (ironlake_edp_have_panel_power(intel_dp)) {
printk(BIOS_ERR, "eDP power already on\n");
return;
}
ironlake_wait_panel_power_cycle(intel_dp);
pp = ironlake_get_pp_control();
if ((intel_dp->gen == 5)) {
/* ILK workaround: disable reset around power sequence */
pp &= ~PANEL_POWER_RESET;
gtt_write(PCH_PP_CONTROL,pp);
////POSTING_READ(PCH_PP_CONTROL);
}
pp |= POWER_TARGET_ON;
if (!(intel_dp->gen == 5))
pp |= PANEL_POWER_RESET;
gtt_write(PCH_PP_CONTROL,pp);
////POSTING_READ(PCH_PP_CONTROL);
ironlake_wait_panel_on(intel_dp);
if ((intel_dp->gen == 5)) {
pp |= PANEL_POWER_RESET; /* restore panel reset bit */
gtt_write(PCH_PP_CONTROL,pp);
////POSTING_READ(PCH_PP_CONTROL);
}
}
static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
{
u32 pp;
if (!is_edp(intel_dp))
return;
printk(BIOS_ERR, "Turn eDP power off\n");
if (intel_dp->want_panel_vdd) {
printk(BIOS_ERR, "Cannot turn power off while VDD is on\n");
}
pp = ironlake_get_pp_control();
pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD |
PANEL_POWER_RESET | EDP_BLC_ENABLE);
gtt_write(PCH_PP_CONTROL,pp);
////POSTING_READ(PCH_PP_CONTROL);
ironlake_wait_panel_off(intel_dp);
}
void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
{
u32 pp;
if (!is_edp(intel_dp))
return;
/*
* If we enable the backlight right away following a panel power
* on, we may see slight flicker as the panel syncs with the eDP
* link. So delay a bit to make sure the image is solid before
* allowing it to appear.
*/
mdelay(intel_dp->backlight_on_delay);
pp = ironlake_get_pp_control();
pp |= EDP_BLC_ENABLE;
gtt_write(PCH_PP_CONTROL,pp);
////POSTING_READ(PCH_PP_CONTROL);
}
static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
{
u32 pp;
if (!is_edp(intel_dp))
return;
pp = ironlake_get_pp_control();
pp &= ~EDP_BLC_ENABLE;
gtt_write(PCH_PP_CONTROL,pp);
////POSTING_READ(PCH_PP_CONTROL);
mdelay(intel_dp->backlight_off_delay);
}
void ironlake_edp_pll_on(void)
{
u32 dpa_ctl;
dpa_ctl = gtt_read(DP_A);
dpa_ctl |= DP_PLL_ENABLE;
gtt_write(DP_A,dpa_ctl);
////POSTING_READ(DP_A);
udelay(200);
}
static void ironlake_edp_pll_off(void)
{
u32 dpa_ctl;
dpa_ctl = gtt_read(DP_A);
dpa_ctl &= ~DP_PLL_ENABLE;
gtt_write(DP_A,dpa_ctl);
////POSTING_READ(DP_A);
udelay(200);
}
/* If the sink supports it, try to set the power state appropriately */
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
{
int ret, i;
/* Should have a valid DPCD by this point */
if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
return;
/* the convention, for whatever reason, is that mode > 0 means 'off' */
if (mode) {
ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
DP_SET_POWER_D3);
if (ret != 1) {
printk(BIOS_ERR, "failed to write sink power state\n");
}
} else {
/*
* When turning on, we need to retry for 1ms to give the sink
* time to wake up.
*/
for (i = 0; i < 3; i++) {
ret = intel_dp_aux_native_write_1(intel_dp,
DP_SET_POWER,
DP_SET_POWER_D0);
if (ret == 1)
break;
mdelay(1);
}
}
}
// not sure if needed yet or not.
void intel_dp_prepare(struct intel_dp *intel_dp);
void intel_dp_prepare(struct intel_dp *intel_dp)
{
ironlake_edp_backlight_off(intel_dp);
ironlake_edp_panel_off(intel_dp);
/* Wake up the sink first */
ironlake_edp_panel_vdd_on(intel_dp);
intel_dp_sink_dpms(intel_dp, 0);
intel_dp_link_down(intel_dp);
ironlake_edp_panel_vdd_off(intel_dp, 0);
/* Make sure the panel is off before trying to
* change the mode
*/
}
// might be useful.
void intel_dp_commit(struct intel_dp *intel_dp);
void intel_dp_commit(struct intel_dp *intel_dp)
{
ironlake_edp_panel_vdd_on(intel_dp);
intel_dp_sink_dpms(intel_dp, 0);
intel_dp_start_link_train(intel_dp);
ironlake_edp_panel_on(intel_dp);
ironlake_edp_panel_vdd_off(intel_dp, 1);
intel_dp_complete_link_train(intel_dp);
ironlake_edp_backlight_on(intel_dp);
intel_dp->dpms_mode = 0;
}
void
intel_dp_dpms(struct intel_dp *intel_dp, int mode)
{
uint32_t dp_reg = gtt_read(intel_dp->output_reg);
printk(BIOS_SPEW, "%s: power %s\n", __func__, mode ? "off" : "on");
if (mode){
ironlake_edp_backlight_off(intel_dp);
ironlake_edp_panel_off(intel_dp);
ironlake_edp_panel_vdd_on(intel_dp);
intel_dp_sink_dpms(intel_dp, mode);
intel_dp_link_down(intel_dp);
ironlake_edp_panel_vdd_off(intel_dp, 0);
if (is_cpu_edp(intel_dp))
ironlake_edp_pll_off();
} else {
if (is_cpu_edp(intel_dp))
ironlake_edp_pll_on();
ironlake_edp_panel_vdd_on(intel_dp);
intel_dp_sink_dpms(intel_dp, mode);
if (!(dp_reg & DP_PORT_EN)) {
intel_dp_start_link_train(intel_dp);
ironlake_edp_panel_on(intel_dp);
ironlake_edp_panel_vdd_off(intel_dp, 1);
intel_dp_complete_link_train(intel_dp);
} else
ironlake_edp_panel_vdd_off(intel_dp, 0);
ironlake_edp_backlight_on(intel_dp);
}
intel_dp->dpms_mode = mode;
}
/*
* Native read with retry for link status and receiver capability reads for
* cases where the sink may still be asleep.
*/
static int
intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
uint8_t *recv, int recv_bytes)
{
int ret, i;
/*
* Sinks are *supposed* to come up within 1ms from an off state,
* but we're also supposed to retry 3 times per the spec.
*/
for (i = 0; i < 3; i++) {
ret = intel_dp_aux_native_read(intel_dp, address, recv,
recv_bytes);
if (ret == recv_bytes)
return ret;
mdelay(1);
}
return ret;
}
/*
* Fetch AUX CH registers 0x202 - 0x207 which contain
* link status information
*/
int
intel_dp_get_link_status(struct intel_dp *intel_dp,
uint8_t link_status[DP_LINK_STATUS_SIZE])
{
int ret, i;
ret = intel_dp_aux_native_read_retry(intel_dp,
DP_LANE0_1_STATUS,
link_status,
DP_LINK_STATUS_SIZE);
printk(BIOS_SPEW, "%s:", __func__);
for(i = 0; i < /* !!sizeof(link_status) == 4*/
DP_LINK_STATUS_SIZE; i++)
printk(BIOS_SPEW, " %02x", link_status[i]);
printk(BIOS_SPEW, "\n");
return ret;
}
static uint8_t
intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
int r)
{
return link_status[r - DP_LANE0_1_STATUS];
}
#if 0
static uint8_t
intel_get_adjust_request_voltage(uint8_t adjust_request[2],
int lane)
{
int s = ((lane & 1) ?
DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
uint8_t l = adjust_request[lane>>1];
return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
}
static uint8_t
intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
int lane)
{
int s = ((lane & 1) ?
DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
uint8_t l = adjust_request[lane>>1];
return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
}
#endif
const char *voltage_names[] = {
"0.4V", "0.6V", "0.8V", "1.2V"
};
const char *pre_emph_names[] = {
"0dB", "3.5dB", "6dB", "9.5dB"
};
const char *link_train_names[] = {
"pattern 1", "pattern 2", "idle", "off"
};
/*
* These are source-specific values; current Intel hardware supports
* a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
*/
static uint8_t
intel_dp_voltage_max(struct intel_dp *intel_dp)
{
if ((intel_dp->gen == 7) && is_cpu_edp(intel_dp))
return DP_TRAIN_VOLTAGE_SWING_800;
else if (intel_dp->has_pch_cpt && !is_cpu_edp(intel_dp))
return DP_TRAIN_VOLTAGE_SWING_1200;
else
return DP_TRAIN_VOLTAGE_SWING_800;
}
static uint8_t
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
{
if (intel_dp->is_haswell){
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_400:
return DP_TRAIN_PRE_EMPHASIS_9_5;
case DP_TRAIN_VOLTAGE_SWING_600:
return DP_TRAIN_PRE_EMPHASIS_6;
case DP_TRAIN_VOLTAGE_SWING_800:
return DP_TRAIN_PRE_EMPHASIS_3_5;
case DP_TRAIN_VOLTAGE_SWING_1200:
default:
return DP_TRAIN_PRE_EMPHASIS_0;
}
} else if ((intel_dp->gen == 7) && is_cpu_edp(intel_dp)) {
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_400:
return DP_TRAIN_PRE_EMPHASIS_6;
case DP_TRAIN_VOLTAGE_SWING_600:
case DP_TRAIN_VOLTAGE_SWING_800:
return DP_TRAIN_PRE_EMPHASIS_3_5;
default:
return DP_TRAIN_PRE_EMPHASIS_0;
}
} else {
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_400:
return DP_TRAIN_PRE_EMPHASIS_6;
case DP_TRAIN_VOLTAGE_SWING_600:
return DP_TRAIN_PRE_EMPHASIS_6;
case DP_TRAIN_VOLTAGE_SWING_800:
return DP_TRAIN_PRE_EMPHASIS_3_5;
case DP_TRAIN_VOLTAGE_SWING_1200:
default:
return DP_TRAIN_PRE_EMPHASIS_0;
}
}
}
static void
intel_get_adjust_train(struct intel_dp *intel_dp,
uint8_t link_status[DP_LINK_STATUS_SIZE])
{
uint8_t v = 0;
uint8_t p = 0;
int lane;
uint8_t voltage_max;
uint8_t preemph_max;
for (lane = 0; lane < intel_dp->lane_count; lane++) {
uint8_t this_v = drm_dp_get_adjust_request_voltage(
link_status, lane);
uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(
link_status, lane);
if (this_v > v)
v = this_v;
if (this_p > p)
p = this_p;
}
voltage_max = intel_dp_voltage_max(intel_dp);
if (v >= voltage_max)
v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
if (p >= preemph_max)
p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
printk(BIOS_SPEW, "%s: set to %s %s%s %s\n",
__func__,
voltage_names[v&3], pre_emph_names[p&3],
v & DP_TRAIN_MAX_SWING_REACHED ? ",max volt swing reached":"",
p & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ?
", max pre emph reached" : "");
for (lane = 0; lane < 4; lane++)
intel_dp->train_set[lane] = v | p;
}
static uint32_t
intel_dp_signal_levels(uint8_t train_set)
{
uint32_t signal_levels = 0;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_400:
default:
signal_levels |= DP_VOLTAGE_0_4;
break;
case DP_TRAIN_VOLTAGE_SWING_600:
signal_levels |= DP_VOLTAGE_0_6;
break;
case DP_TRAIN_VOLTAGE_SWING_800:
signal_levels |= DP_VOLTAGE_0_8;
break;
case DP_TRAIN_VOLTAGE_SWING_1200:
signal_levels |= DP_VOLTAGE_1_2;
break;
}
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
case DP_TRAIN_PRE_EMPHASIS_0:
default:
signal_levels |= DP_PRE_EMPHASIS_0;
break;
case DP_TRAIN_PRE_EMPHASIS_3_5:
signal_levels |= DP_PRE_EMPHASIS_3_5;
break;
case DP_TRAIN_PRE_EMPHASIS_6:
signal_levels |= DP_PRE_EMPHASIS_6;
break;
case DP_TRAIN_PRE_EMPHASIS_9_5:
signal_levels |= DP_PRE_EMPHASIS_9_5;
break;
}
return signal_levels;
}
/* Gen6's DP voltage swing and pre-emphasis control */
static uint32_t
intel_gen6_edp_signal_levels(uint8_t train_set)
{
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
DP_TRAIN_PRE_EMPHASIS_MASK);
switch (signal_levels) {
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
default:
printk(BIOS_ERR, "[000000.0] [drm:%s], ", __func__);
printk(BIOS_ERR, "Unsupported voltage swing/pre-emphasis level:"
"0x%x\n", signal_levels);
return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
}
}
/* Gen7's DP voltage swing and pre-emphasis control */
static uint32_t
intel_gen7_edp_signal_levels(uint8_t train_set)
{
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
DP_TRAIN_PRE_EMPHASIS_MASK);
switch (signal_levels) {
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
return EDP_LINK_TRAIN_400MV_0DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
return EDP_LINK_TRAIN_400MV_6DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
return EDP_LINK_TRAIN_600MV_0DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
return EDP_LINK_TRAIN_800MV_0DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
default:
printk(BIOS_ERR, "[000000.0] [drm:%s], ", __func__);
printk(BIOS_ERR, "Unsupported voltage swing/pre-emphasis level:"
"0x%x\n", signal_levels);
return EDP_LINK_TRAIN_500MV_0DB_IVB;
}
}
/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
static uint32_t
intel_dp_signal_levels_hsw(uint8_t train_set)
{
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
DP_TRAIN_PRE_EMPHASIS_MASK);
switch (signal_levels) {
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
return DDI_BUF_EMP_400MV_0DB_HSW;
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
return DDI_BUF_EMP_400MV_3_5DB_HSW;
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
return DDI_BUF_EMP_400MV_6DB_HSW;
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
return DDI_BUF_EMP_400MV_9_5DB_HSW;
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
return DDI_BUF_EMP_600MV_0DB_HSW;
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
return DDI_BUF_EMP_600MV_3_5DB_HSW;
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
return DDI_BUF_EMP_600MV_6DB_HSW;
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
return DDI_BUF_EMP_800MV_0DB_HSW;
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
return DDI_BUF_EMP_800MV_3_5DB_HSW;
default:
printk(BIOS_SPEW,
"Unsupported voltage swing/pre-emphasis level:"
"0x%x\n", signal_levels);
return DDI_BUF_EMP_400MV_0DB_HSW;
}
}
static uint8_t
intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
int lane)
{
int s = (lane & 1) * 4;
uint8_t l = link_status[lane>>1];
return (l >> s) & 0xf;
}
/* Check for clock recovery is done on all channels */
static int
intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE],
int lane_count)
{
int lane;
uint8_t lane_status;
for (lane = 0; lane < lane_count; lane++) {
lane_status = intel_get_lane_status(link_status, lane);
printk(BIOS_SPEW,
"%s: Lane %d, status %02x\n", __func__,
lane, lane_status);
if ((lane_status & DP_LANE_CR_DONE) == 0)
return 0;
}
return 1;
}
/* Check to see if channel eq is done on all channels */
#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE| \
DP_LANE_CHANNEL_EQ_DONE| \
DP_LANE_SYMBOL_LOCKED)
static int
intel_channel_eq_ok(struct intel_dp *intel_dp,
uint8_t link_status[DP_LINK_STATUS_SIZE])
{
uint8_t lane_align;
uint8_t lane_status;
int lane;
lane_align = intel_dp_link_status(link_status,
DP_LANE_ALIGN_STATUS_UPDATED);
if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
return 0;
for (lane = 0; lane < intel_dp->lane_count; lane++) {
lane_status = intel_get_lane_status(link_status, lane);
if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
return 0;
}
return 1;
}
static int
intel_dp_set_link_train(struct intel_dp *intel_dp,
uint32_t dp_reg_value,
uint8_t dp_train_pat)
{
int ret;
u32 temp;
int port = intel_dp->port;
int i;
printk(BIOS_SPEW, "%s: dp_reg_value %08lx dp_train_pat %02x\n",
__func__, (unsigned long) dp_reg_value, dp_train_pat);
if (intel_dp->is_haswell){
temp = gtt_read(DP_TP_CTL(port));
if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
else
temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
case DP_TRAINING_PATTERN_DISABLE:
temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
gtt_write(DP_TP_CTL(port), temp);
for(i = 0; i < 10; i++){
u32 status;
status = gtt_read(DP_TP_STATUS(port));
if (status & DP_TP_STATUS_IDLE_DONE)
break;
}
if (i == 10)
printk(BIOS_ERR,
"Timed out waiting for DP idle patterns\n");
temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
break;
case DP_TRAINING_PATTERN_1:
temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
break;
case DP_TRAINING_PATTERN_2:
temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
break;
case DP_TRAINING_PATTERN_3:
temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
break;
}
gtt_write(DP_TP_CTL(port), temp);
} else if (intel_dp->has_pch_cpt &&
(intel_dp->gen != 7 || !is_cpu_edp(intel_dp))) {
dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
case DP_TRAINING_PATTERN_DISABLE:
dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
break;
case DP_TRAINING_PATTERN_1:
dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
break;
case DP_TRAINING_PATTERN_2:
dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
break;
case DP_TRAINING_PATTERN_3:
printk(BIOS_ERR,
"DP training pattern 3 not supported\n");
dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
break;
}
} else {
dp_reg_value &= ~DP_LINK_TRAIN_MASK;
switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
case DP_TRAINING_PATTERN_DISABLE:
dp_reg_value |= DP_LINK_TRAIN_OFF;
break;
case DP_TRAINING_PATTERN_1:
dp_reg_value |= DP_LINK_TRAIN_PAT_1;
break;
case DP_TRAINING_PATTERN_2:
dp_reg_value |= DP_LINK_TRAIN_PAT_2;
break;
case DP_TRAINING_PATTERN_3:
printk(BIOS_ERR,"DP training pattern 3 not supported\n");
dp_reg_value |= DP_LINK_TRAIN_PAT_2;
break;
}
}
gtt_write(intel_dp->output_reg, dp_reg_value);
//POSTING_READ(intel_dp->output_reg);
intel_dp_aux_native_write_1(intel_dp,
DP_TRAINING_PATTERN_SET,
dp_train_pat);
if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
DP_TRAINING_PATTERN_DISABLE) {
ret = intel_dp_aux_native_write(intel_dp,
DP_TRAINING_LANE0_SET,
intel_dp->train_set,
intel_dp->lane_count);
if (ret != intel_dp->lane_count){
printk(BIOS_ERR, "%s: wanted %d, got %d\n", __func__,
intel_dp->lane_count, ret);
return 0;
}
}
printk(BIOS_SPEW, "%s: success\n", __func__);
return 1;
}
/* Enable corresponding port and start training pattern 1 */
void
intel_dp_start_link_train(struct intel_dp *intel_dp)
{
int i;
uint8_t voltage;
int clock_recovery = 0;
int voltage_tries, loop_tries;
u32 reg;
uint32_t DP = intel_dp->DP;
if (intel_dp->is_haswell)
intel_ddi_prepare_link_retrain(intel_dp, intel_dp->port);
/* Write the link configuration data */
printk(BIOS_SPEW, "Write the link configuration data\n");
intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
intel_dp->link_configuration,
DP_LINK_CONFIGURATION_SIZE);
printk(BIOS_SPEW, "Written\n");
DP |= DP_PORT_EN;
memset(intel_dp->train_set, 0, 4);
voltage = 0xff;
voltage_tries = 0;
loop_tries = 0;
clock_recovery = 0;
for (;;) {
/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
uint8_t link_status[DP_LINK_STATUS_SIZE];
uint32_t signal_levels;
if (intel_dp->is_haswell){
signal_levels =
intel_dp_signal_levels_hsw(intel_dp->train_set[0]);
DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
printk(BIOS_SPEW, "Haswell: levels %08x DP %08x\n", signal_levels, DP);
} else if ((intel_dp->gen == 7) && is_cpu_edp(intel_dp)) {
signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
} else if ((intel_dp->gen == 6) && is_cpu_edp(intel_dp)) {
signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
} else {
signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
}
printk(BIOS_ERR, "training pattern 1 signal levels %08x\n", signal_levels);
if (intel_dp->has_pch_cpt && ((intel_dp->gen == 7) || !is_cpu_edp(intel_dp)))
reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
else
reg = DP | DP_LINK_TRAIN_PAT_1;
if (!intel_dp_set_link_train(intel_dp, reg,
DP_TRAINING_PATTERN_1 |
DP_LINK_SCRAMBLING_DISABLE))
break;
/* Set training pattern 1 */
udelay(100);
if (!intel_dp_get_link_status(intel_dp, link_status)) {
printk(BIOS_ERR, "failed to get link status\n");
break;
}
if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
printk(BIOS_ERR, "clock recovery OK\n");
clock_recovery = 1;
break;
}
/* Check to see if we've tried the max voltage */
for (i = 0; i < intel_dp->lane_count; i++)
if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
break;
if (i == intel_dp->lane_count) {
++loop_tries;
if (loop_tries == 5) {
printk(BIOS_ERR, "too many full retries, give up\n");
break;
}
printk(BIOS_SPEW, "%s: reset train set\n", __func__);
memset(intel_dp->train_set, 0, 4);
voltage_tries = 0;
continue;
}
/* Check to see if we've tried the same voltage 5 times */
if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
++voltage_tries;
if (voltage_tries == 5) {
printk(BIOS_ERR, "too many voltage retries, give up\n");
break;
}
} else
voltage_tries = 0;
voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
printk(BIOS_SPEW, "%s: voltage now %s\n", __func__,
voltage_names[voltage]);
/* Compute new intel_dp->train_set as requested by target */
intel_get_adjust_train(intel_dp, link_status);
printk(BIOS_SPEW, "%s: new intel train set is "
"%02x%02x%02x%02x",
__func__,
intel_dp->train_set[0], intel_dp->train_set[1],
intel_dp->train_set[2], intel_dp->train_set[3]);
}
intel_dp->DP = DP;
}
void
intel_dp_complete_link_train(struct intel_dp *intel_dp)
{
int channel_eq = 0;
int tries, cr_tries;
uint32_t DP = intel_dp->DP;
/* channel equalization */
tries = 0;
cr_tries = 0;
channel_eq = 0;
for (;;) {
/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
uint32_t signal_levels;
uint8_t link_status[DP_LINK_STATUS_SIZE];
if (cr_tries > 5) {
printk(BIOS_ERR, "failed to train DP, aborting\n");
intel_dp_link_down(intel_dp);
break;
}
if (intel_dp->is_haswell) {
signal_levels = intel_dp_signal_levels_hsw(intel_dp->train_set[0]);
DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
printk(BIOS_SPEW, "%s: new DP %08x\n", __func__,
DP);
} else if ((intel_dp->gen == 7) && is_cpu_edp(intel_dp)) {
signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
} else if ((intel_dp->gen == 6) && is_cpu_edp(intel_dp)) {
signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
} else {
signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
}
/* channel eq pattern */
if (!intel_dp_set_link_train(intel_dp, DP,
DP_TRAINING_PATTERN_2 |
DP_LINK_SCRAMBLING_DISABLE))
break;
udelay(40000); /* was 400 */
if (!intel_dp_get_link_status(intel_dp, link_status))
break;
/* Make sure clock is still ok */
if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
printk(BIOS_SPEW, "%s: Clock recovery is NOT ok"
": restarting from the start\n", __func__);
intel_dp_start_link_train(intel_dp);
cr_tries++;
continue;
}
if (intel_channel_eq_ok(intel_dp, link_status)) {
printk(BIOS_SPEW, "%s: success\n", __func__);
channel_eq = 1;
break;
}
/* Try 5 times, then try clock recovery if that fails */
if (tries > 5) {
printk(BIOS_SPEW, "%s: tries > 5,recovering. \n",
__func__);
intel_dp_link_down(intel_dp);
intel_dp_start_link_train(intel_dp);
tries = 0;
cr_tries++;
continue;
}
/* Compute new intel_dp->train_set as requested by target */
printk(BIOS_SPEW, "%s: adjust the train\n", __func__);
intel_get_adjust_train(intel_dp, link_status);
++tries;
}
//gtt_write(intel_dp->output_reg,reg);
////POSTING_READ(intel_dp->output_reg);
intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
}
void
intel_dp_link_down(struct intel_dp *intel_dp)
{
uint32_t DP = intel_dp->DP;
if ((gtt_read(intel_dp->output_reg) & DP_PORT_EN) == 0)
return;
if (intel_dp->is_haswell){
printk(BIOS_SPEW, "%s: It's a haswell, skip this\n", __func__);
return;
}
if (is_edp(intel_dp)) {
DP &= ~DP_PLL_ENABLE;
gtt_write(intel_dp->output_reg,DP);
////POSTING_READ(intel_dp->output_reg);
udelay(100);
}
if (intel_dp->has_pch_cpt && ((intel_dp->gen == 7) || !is_cpu_edp(intel_dp))) {
DP &= ~DP_LINK_TRAIN_MASK_CPT;
gtt_write(intel_dp->output_reg,DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
} else {
DP &= ~DP_LINK_TRAIN_MASK;
gtt_write(intel_dp->output_reg,DP | DP_LINK_TRAIN_PAT_IDLE);
}
////POSTING_READ(intel_dp->output_reg);
mdelay(17);
if (is_edp(intel_dp)) {
if (intel_dp->has_pch_cpt && ((intel_dp->gen == 7) || !is_cpu_edp(intel_dp)))
DP |= DP_LINK_TRAIN_OFF_CPT;
else
DP |= DP_LINK_TRAIN_OFF;
}
DP &= ~DP_AUDIO_OUTPUT_ENABLE;
gtt_write(intel_dp->output_reg,DP & ~DP_PORT_EN);
////POSTING_READ(intel_dp->output_reg);
mdelay(600000); //intel_dp->panel_power_down_delay);
}
int
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
int got = 0, want = sizeof(intel_dp->dpcd), rev;
got = intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
want);
if (got < want) {
printk(BIOS_SPEW, "%s: got %d, wanted %d\n", __func__, got, want);
return 0;
}
rev = intel_dp->dpcd[DP_DPCD_REV];
if (!rev){
printk(BIOS_SPEW, "%s: intel->dp[DP_DPCD_REV] is 0\n",
__func__);
return 0;
}
printk(BIOS_SPEW, "DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
intel_dp->dpcd[6], intel_dp->dpcd[7]);
return 1;
}
/* I have no idea how big max downspread is. 1 byte? Hard as hell to find. */
int
intel_dp_get_max_downspread(struct intel_dp *intel_dp, u8 *max_downspread)
{
int got, want = 1;
got = intel_dp_aux_native_read_retry(intel_dp, DP_MAX_DOWNSPREAD, max_downspread,
want);
if (got < want) {
printk(BIOS_SPEW, "%s: got %d, wanted %d\n", __func__, got, want);
return 0;
}
printk(BIOS_SPEW, "%s: max_downspread is %02x\n", __func__, *max_downspread);
return 1;
}
void intel_dp_set_m_n_regs(struct intel_dp *dp)
{
gtt_write(PIPE_DATA_M1(dp->transcoder),
TU_SIZE(dp->m_n.tu) | dp->m_n.gmch_m);
gtt_write(PIPE_DATA_N1(dp->transcoder),dp->m_n.gmch_n);
gtt_write(PIPE_LINK_M1(dp->transcoder),dp->m_n.link_m);
gtt_write(PIPE_LINK_N1(dp->transcoder),dp->m_n.link_n);
}
void intel_dp_set_resolution(struct intel_dp *intel_dp)
{
gtt_write(HTOTAL(intel_dp->transcoder),intel_dp->htotal);
gtt_write(HBLANK(intel_dp->transcoder),intel_dp->hblank);
gtt_write(HSYNC(intel_dp->transcoder),intel_dp->hsync);
gtt_write(VTOTAL(intel_dp->transcoder),intel_dp->vtotal);
gtt_write(VBLANK(intel_dp->transcoder),intel_dp->vblank);
gtt_write(VSYNC(intel_dp->transcoder),intel_dp->vsync);
}
int intel_dp_get_training_pattern(struct intel_dp *intel_dp,
u8 *recv)
{
return intel_dp_aux_native_read_retry(intel_dp,
DP_TRAINING_PATTERN_SET,
recv,
0);
}
int intel_dp_get_lane_count(struct intel_dp *intel_dp,
u8 *recv)
{
int val = intel_dp_aux_native_read_retry(intel_dp,
DP_LANE_COUNT_SET,
recv,
0);
*recv &= DP_LANE_COUNT_MASK;
printk(BIOS_SPEW, "Lane count %s:%d\n", val < 0 ? "fail" : "ok", *recv);
return val;
}
int intel_dp_get_lane_align_status(struct intel_dp *intel_dp,
u8 *recv)
{
return intel_dp_aux_native_read_retry(intel_dp,
DP_LANE_ALIGN_STATUS_UPDATED,
recv,
0);
}