blob: a308f68fe123eb2086cb4d773888267e119c33d0 [file] [log] [blame]
/*
* drivers/video/tegra/dc/dp.c
*
* Copyright (c) 2011-2013, NVIDIA Corporation.
* Copyright 2014 Google Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <arch/io.h>
#include <console/console.h>
#include <delay.h>
#include <device/device.h>
#include <device/i2c.h>
#include <edid.h>
#include <soc/addressmap.h>
#include <soc/nvidia/tegra/i2c.h>
#include <soc/nvidia/tegra/dc.h>
#include <soc/nvidia/tegra/displayport.h>
#include <soc/sor.h>
#include <stdlib.h>
#include <string.h>
#include "chip.h"
enum {
DP_LT_SUCCESS = 0,
DP_LT_FAILED = -1,
};
struct tegra_dc_dp_data dp_data;
static inline u32 tegra_dpaux_readl(struct tegra_dc_dp_data *dp, u32 reg)
{
void *addr = dp->aux_base + (u32) (reg << 2);
u32 reg_val = READL(addr);
return reg_val;
}
static inline void tegra_dpaux_writel(struct tegra_dc_dp_data *dp,
u32 reg, u32 val)
{
void *addr = dp->aux_base + (u32) (reg << 2);
WRITEL(val, addr);
}
static inline u32 tegra_dc_dpaux_poll_register(struct tegra_dc_dp_data *dp,
u32 reg, u32 mask, u32 exp_val,
u32 poll_interval_us,
u32 timeout_us)
{
u32 reg_val = 0;
u32 temp = timeout_us;
do {
udelay(poll_interval_us);
reg_val = tegra_dpaux_readl(dp, reg);
if (timeout_us > poll_interval_us)
timeout_us -= poll_interval_us;
else
break;
} while ((reg_val & mask) != exp_val);
if ((reg_val & mask) == exp_val)
return 0; /* success */
printk(BIOS_ERR,
"dpaux_poll_register 0x%x: timeout: "
"(reg_val)0x%08x & (mask)0x%08x != (exp_val)0x%08x\n",
reg, reg_val, mask, exp_val);
return temp;
}
static inline int tegra_dpaux_wait_transaction(struct tegra_dc_dp_data *dp)
{
/* According to DP spec, each aux transaction needs to finish
within 40ms. */
if (tegra_dc_dpaux_poll_register(dp, DPAUX_DP_AUXCTL,
DPAUX_DP_AUXCTL_TRANSACTREQ_MASK,
DPAUX_DP_AUXCTL_TRANSACTREQ_DONE,
100, DP_AUX_TIMEOUT_MS * 1000) != 0) {
printk(BIOS_INFO, "dp: DPAUX transaction timeout\n");
return -1;
}
return 0;
}
static int tegra_dc_dpaux_write_chunk(struct tegra_dc_dp_data *dp, u32 cmd,
u32 addr, u8 *data, u32 *size,
u32 *aux_stat)
{
int i;
u32 reg_val;
u32 timeout_retries = DP_AUX_TIMEOUT_MAX_TRIES;
u32 defer_retries = DP_AUX_DEFER_MAX_TRIES;
u32 temp_data;
if (*size > DP_AUX_MAX_BYTES)
return -1; /* only write one chunk of data */
/* Make sure the command is write command */
switch (cmd) {
case DPAUX_DP_AUXCTL_CMD_I2CWR:
case DPAUX_DP_AUXCTL_CMD_MOTWR:
case DPAUX_DP_AUXCTL_CMD_AUXWR:
break;
default:
printk(BIOS_ERR, "dp: aux write cmd 0x%x is invalid\n",
cmd);
return -1;
}
tegra_dpaux_writel(dp, DPAUX_DP_AUXADDR, addr);
for (i = 0; i < DP_AUX_MAX_BYTES / 4; ++i) {
memcpy(&temp_data, data, 4);
tegra_dpaux_writel(dp, DPAUX_DP_AUXDATA_WRITE_W(i), temp_data);
data += 4;
}
reg_val = tegra_dpaux_readl(dp, DPAUX_DP_AUXCTL);
reg_val &= ~DPAUX_DP_AUXCTL_CMD_MASK;
reg_val |= cmd;
reg_val &= ~DPAUX_DP_AUXCTL_CMDLEN_FIELD;
reg_val |= ((*size - 1) << DPAUX_DP_AUXCTL_CMDLEN_SHIFT);
while ((timeout_retries > 0) && (defer_retries > 0)) {
if ((timeout_retries != DP_AUX_TIMEOUT_MAX_TRIES) ||
(defer_retries != DP_AUX_DEFER_MAX_TRIES))
udelay(1);
reg_val |= DPAUX_DP_AUXCTL_TRANSACTREQ_PENDING;
tegra_dpaux_writel(dp, DPAUX_DP_AUXCTL, reg_val);
if (tegra_dpaux_wait_transaction(dp))
printk(BIOS_ERR, "dp: aux write transaction timeout\n");
*aux_stat = tegra_dpaux_readl(dp, DPAUX_DP_AUXSTAT);
if ((*aux_stat & DPAUX_DP_AUXSTAT_TIMEOUT_ERROR_PENDING) ||
(*aux_stat & DPAUX_DP_AUXSTAT_RX_ERROR_PENDING) ||
(*aux_stat & DPAUX_DP_AUXSTAT_SINKSTAT_ERROR_PENDING) ||
(*aux_stat & DPAUX_DP_AUXSTAT_NO_STOP_ERROR_PENDING)) {
if (timeout_retries-- > 0) {
printk(BIOS_INFO, "dp: aux write retry (0x%x) -- %d\n",
*aux_stat, timeout_retries);
/* clear the error bits */
tegra_dpaux_writel(dp, DPAUX_DP_AUXSTAT, *aux_stat);
continue;
} else {
printk(BIOS_ERR, "dp: aux write got error (0x%x)\n",
*aux_stat);
return -1;
}
}
if ((*aux_stat & DPAUX_DP_AUXSTAT_REPLYTYPE_I2CDEFER) ||
(*aux_stat & DPAUX_DP_AUXSTAT_REPLYTYPE_DEFER)) {
if (defer_retries-- > 0) {
printk(BIOS_INFO, "dp: aux write defer (0x%x) -- %d\n",
*aux_stat, defer_retries);
/* clear the error bits */
tegra_dpaux_writel(dp, DPAUX_DP_AUXSTAT, *aux_stat);
continue;
} else {
printk(BIOS_ERR, "dp: aux write defer exceeds max retries "
"(0x%x)\n", *aux_stat);
return -1;
}
}
if ((*aux_stat & DPAUX_DP_AUXSTAT_REPLYTYPE_MASK) ==
DPAUX_DP_AUXSTAT_REPLYTYPE_ACK) {
*size = ((*aux_stat) & DPAUX_DP_AUXSTAT_REPLY_M_MASK);
return 0;
} else {
printk(BIOS_ERR, "dp: aux write failed (0x%x)\n",
*aux_stat);
return -1;
}
}
/* Should never come to here */
return -1;
}
static int tegra_dc_dpaux_read_chunk(struct tegra_dc_dp_data *dp, u32 cmd,
u32 addr, u8 *data, u32 *size,
u32 *aux_stat)
{
u32 reg_val;
u32 timeout_retries = DP_AUX_TIMEOUT_MAX_TRIES;
u32 defer_retries = DP_AUX_DEFER_MAX_TRIES;
if (*size > DP_AUX_MAX_BYTES)
return -1; /* only read one chunk */
/* Check to make sure the command is read command */
switch (cmd) {
case DPAUX_DP_AUXCTL_CMD_I2CRD:
case DPAUX_DP_AUXCTL_CMD_I2CREQWSTAT:
case DPAUX_DP_AUXCTL_CMD_MOTRD:
case DPAUX_DP_AUXCTL_CMD_AUXRD:
break;
default:
printk(BIOS_ERR, "dp: aux read cmd 0x%x is invalid\n",
cmd);
return -1;
}
*aux_stat = tegra_dpaux_readl(dp, DPAUX_DP_AUXSTAT);
if (!(*aux_stat & DPAUX_DP_AUXSTAT_HPD_STATUS_PLUGGED)) {
printk(BIOS_SPEW, "dp: HPD is not detected\n");
return -1;
}
tegra_dpaux_writel(dp, DPAUX_DP_AUXADDR, addr);
reg_val = tegra_dpaux_readl(dp, DPAUX_DP_AUXCTL);
reg_val &= ~DPAUX_DP_AUXCTL_CMD_MASK;
reg_val |= cmd;
reg_val &= ~DPAUX_DP_AUXCTL_CMDLEN_FIELD;
reg_val |= ((*size - 1) << DPAUX_DP_AUXCTL_CMDLEN_SHIFT);
while ((timeout_retries > 0) && (defer_retries > 0)) {
if ((timeout_retries != DP_AUX_TIMEOUT_MAX_TRIES) ||
(defer_retries != DP_AUX_DEFER_MAX_TRIES))
udelay(DP_DPCP_RETRY_SLEEP_NS * 2);
reg_val |= DPAUX_DP_AUXCTL_TRANSACTREQ_PENDING;
tegra_dpaux_writel(dp, DPAUX_DP_AUXCTL, reg_val);
if (tegra_dpaux_wait_transaction(dp))
printk(BIOS_INFO, "dp: aux read transaction timeout\n");
*aux_stat = tegra_dpaux_readl(dp, DPAUX_DP_AUXSTAT);
if ((*aux_stat & DPAUX_DP_AUXSTAT_TIMEOUT_ERROR_PENDING) ||
(*aux_stat & DPAUX_DP_AUXSTAT_RX_ERROR_PENDING) ||
(*aux_stat & DPAUX_DP_AUXSTAT_SINKSTAT_ERROR_PENDING) ||
(*aux_stat & DPAUX_DP_AUXSTAT_NO_STOP_ERROR_PENDING)) {
if (timeout_retries-- > 0) {
printk(BIOS_INFO, "dp: aux read retry (0x%x)"
" -- %d\n", *aux_stat,
timeout_retries);
/* clear the error bits */
tegra_dpaux_writel(dp, DPAUX_DP_AUXSTAT,
*aux_stat);
continue; /* retry */
} else {
printk(BIOS_ERR, "dp: aux read got error"
" (0x%x)\n", *aux_stat);
return -1;
}
}
if ((*aux_stat & DPAUX_DP_AUXSTAT_REPLYTYPE_I2CDEFER) ||
(*aux_stat & DPAUX_DP_AUXSTAT_REPLYTYPE_DEFER)) {
if (defer_retries-- > 0) {
printk(BIOS_INFO, "dp: aux read defer (0x%x) -- %d\n",
*aux_stat, defer_retries);
/* clear the error bits */
tegra_dpaux_writel(dp, DPAUX_DP_AUXSTAT, *aux_stat);
continue;
} else {
printk(BIOS_INFO, "dp: aux read defer exceeds max retries "
"(0x%x)\n", *aux_stat);
return -1;
}
}
if ((*aux_stat & DPAUX_DP_AUXSTAT_REPLYTYPE_MASK) ==
DPAUX_DP_AUXSTAT_REPLYTYPE_ACK) {
int i;
u32 temp_data[4];
for (i = 0; i < DP_AUX_MAX_BYTES / 4; ++i)
temp_data[i] = tegra_dpaux_readl(dp,
DPAUX_DP_AUXDATA_READ_W(i));
*size = ((*aux_stat) & DPAUX_DP_AUXSTAT_REPLY_M_MASK);
memcpy(data, temp_data, *size);
return 0;
} else {
printk(BIOS_ERR, "dp: aux read failed (0x%x\n",
*aux_stat);
return -1;
}
}
/* Should never come to here */
printk(BIOS_ERR, "%s: can't\n", __func__);
return -1;
}
static int tegra_dc_dpaux_read(struct tegra_dc_dp_data *dp, u32 cmd, u32 addr,
u8 *data, u32 *size, u32 *aux_stat)
{
u32 finished = 0;
u32 cur_size;
int ret = 0;
do {
cur_size = *size - finished;
if (cur_size > DP_AUX_MAX_BYTES)
cur_size = DP_AUX_MAX_BYTES;
ret = tegra_dc_dpaux_read_chunk(dp, cmd, addr,
data, &cur_size, aux_stat);
if (ret)
break;
/* cur_size should be the real size returned */
addr += cur_size;
data += cur_size;
finished += cur_size;
} while (*size > finished);
*size = finished;
return ret;
}
static int tegra_dc_dp_dpcd_read(struct tegra_dc_dp_data *dp, u32 cmd,
u8 * data_ptr)
{
u32 size = 1;
u32 status = 0;
int ret;
ret = tegra_dc_dpaux_read_chunk(dp, DPAUX_DP_AUXCTL_CMD_AUXRD,
cmd, data_ptr, &size, &status);
if (ret)
printk(BIOS_ERR,
"dp: Failed to read DPCD data. CMD 0x%x, Status 0x%x\n",
cmd, status);
return ret;
}
static int tegra_dc_dp_dpcd_write(struct tegra_dc_dp_data *dp, u32 cmd,
u8 data)
{
u32 size = 1;
u32 status = 0;
int ret;
ret = tegra_dc_dpaux_write_chunk(dp, DPAUX_DP_AUXCTL_CMD_AUXWR,
cmd, &data, &size, &status);
if (ret)
printk(BIOS_ERR,
"dp: Failed to write DPCD data. CMD 0x%x, Status 0x%x\n",
cmd, status);
return ret;
}
static int tegra_dc_i2c_aux_read(struct tegra_dc_dp_data *dp, u32 i2c_addr,
u8 addr, u8 *data, u32 *size, u32 *aux_stat)
{
u32 finished = 0;
int ret = 0;
do {
u32 cur_size = MIN(DP_AUX_MAX_BYTES, *size - finished);
u32 len = 1;
ret = tegra_dc_dpaux_write_chunk(
dp, DPAUX_DP_AUXCTL_CMD_MOTWR, i2c_addr,
&addr, &len, aux_stat);
if (ret) {
printk(BIOS_ERR, "%s: error sending address to read.\n",
__func__);
break;
}
ret = tegra_dc_dpaux_read_chunk(
dp, DPAUX_DP_AUXCTL_CMD_I2CRD, i2c_addr,
data, &cur_size, aux_stat);
if (ret) {
printk(BIOS_ERR, "%s: error reading data.\n", __func__);
break;
}
/* cur_size should be the real size returned */
addr += cur_size;
data += cur_size;
finished += cur_size;
} while (*size > finished);
*size = finished;
return ret;
}
static void tegra_dc_dpaux_enable(struct tegra_dc_dp_data *dp)
{
/* clear interrupt */
tegra_dpaux_writel(dp, DPAUX_INTR_AUX, 0xffffffff);
/* do not enable interrupt for now. Enable them when Isr in place */
tegra_dpaux_writel(dp, DPAUX_INTR_EN_AUX, 0x0);
tegra_dpaux_writel(dp, DPAUX_HYBRID_PADCTL,
DPAUX_HYBRID_PADCTL_AUX_DRVZ_OHM_50 |
DPAUX_HYBRID_PADCTL_AUX_CMH_V0_70 |
0x18 << DPAUX_HYBRID_PADCTL_AUX_DRVI_SHIFT |
DPAUX_HYBRID_PADCTL_AUX_INPUT_RCV_ENABLE);
tegra_dpaux_writel(dp, DPAUX_HYBRID_SPARE,
DPAUX_HYBRID_SPARE_PAD_PWR_POWERUP);
}
static void tegra_dc_dp_dump_link_cfg(struct tegra_dc_dp_data *dp,
const struct tegra_dc_dp_link_config *link_cfg)
{
printk(BIOS_INFO, "DP config: cfg_name "
"cfg_value\n");
printk(BIOS_INFO, " Lane Count %d\n",
link_cfg->max_lane_count);
printk(BIOS_INFO, " SupportEnhancedFraming %s\n",
link_cfg->support_enhanced_framing ? "Y" : "N");
printk(BIOS_INFO, " Bandwidth %d\n",
link_cfg->max_link_bw);
printk(BIOS_INFO, " bpp %d\n",
link_cfg->bits_per_pixel);
printk(BIOS_INFO, " EnhancedFraming %s\n",
link_cfg->enhanced_framing ? "Y" : "N");
printk(BIOS_INFO, " Scramble_enabled %s\n",
link_cfg->scramble_ena ? "Y" : "N");
printk(BIOS_INFO, " LinkBW %d\n",
link_cfg->link_bw);
printk(BIOS_INFO, " lane_count %d\n",
link_cfg->lane_count);
printk(BIOS_INFO, " activespolarity %d\n",
link_cfg->activepolarity);
printk(BIOS_INFO, " active_count %d\n",
link_cfg->active_count);
printk(BIOS_INFO, " tu_size %d\n",
link_cfg->tu_size);
printk(BIOS_INFO, " active_frac %d\n",
link_cfg->active_frac);
printk(BIOS_INFO, " watermark %d\n",
link_cfg->watermark);
printk(BIOS_INFO, " hblank_sym %d\n",
link_cfg->hblank_sym);
printk(BIOS_INFO, " vblank_sym %d\n",
link_cfg->vblank_sym);
}
static int _tegra_dp_lower_link_config(struct tegra_dc_dp_data *dp,
struct tegra_dc_dp_link_config *cfg)
{
switch (cfg->link_bw){
case SOR_LINK_SPEED_G1_62:
if (cfg->max_link_bw > SOR_LINK_SPEED_G1_62)
cfg->link_bw = SOR_LINK_SPEED_G2_7;
cfg->lane_count /= 2;
break;
case SOR_LINK_SPEED_G2_7:
cfg->link_bw = SOR_LINK_SPEED_G1_62;
break;
case SOR_LINK_SPEED_G5_4:
if (cfg->lane_count == 1) {
cfg->link_bw = SOR_LINK_SPEED_G2_7;
cfg->lane_count = cfg->max_lane_count;
} else
cfg->lane_count /= 2;
break;
default:
printk(BIOS_ERR,"dp: Error link rate %d\n", cfg->link_bw);
return DP_LT_FAILED;
}
return (cfg->lane_count > 0) ? DP_LT_SUCCESS : DP_LT_FAILED;
}
/* Calcuate if given cfg can meet the mode request. */
/* Return true if mode is possible, false otherwise. */
static int tegra_dc_dp_calc_config(struct tegra_dc_dp_data *dp,
const struct soc_nvidia_tegra124_config *config,
struct tegra_dc_dp_link_config *link_cfg)
{
const u32 link_rate = 27 * link_cfg->link_bw * 1000 * 1000;
const u64 f = 100000; /* precision factor */
u32 num_linkclk_line; /* Number of link clocks per line */
u64 ratio_f; /* Ratio of incoming to outgoing data rate */
u64 frac_f;
u64 activesym_f; /* Activesym per TU */
u64 activecount_f;
u32 activecount;
u32 activepolarity;
u64 approx_value_f;
u32 activefrac = 0;
u64 accumulated_error_f = 0;
u32 lowest_neg_activecount = 0;
u32 lowest_neg_activepolarity = 0;
u32 lowest_neg_tusize = 64;
u32 num_symbols_per_line;
u64 lowest_neg_activefrac = 0;
u64 lowest_neg_error_f = 64 * f;
u64 watermark_f;
int i;
int neg;
if (!link_rate || !link_cfg->lane_count || !config->pixel_clock ||
!link_cfg->bits_per_pixel)
return -1;
if ((u64)config->pixel_clock * link_cfg->bits_per_pixel >=
(u64)link_rate * 8 * link_cfg->lane_count)
return -1;
num_linkclk_line = (u32)((u64)link_rate * (u64)config->xres / config->pixel_clock);
ratio_f = (u64)config->pixel_clock * link_cfg->bits_per_pixel * f;
ratio_f /= 8;
ratio_f = (u64)(ratio_f / (link_rate * link_cfg->lane_count));
for (i = 64; i >= 32; --i) {
activesym_f = ratio_f * i;
activecount_f = (u64)(activesym_f / (u32)f) * f;
frac_f = activesym_f - activecount_f;
activecount = (u32)((u64)(activecount_f / (u32)f));
if (frac_f < (f / 2)) /* fraction < 0.5 */
activepolarity = 0;
else {
activepolarity = 1;
frac_f = f - frac_f;
}
if (frac_f != 0) {
frac_f = (u64)((f * f) / frac_f); /* 1/fraction */
if (frac_f > (15 * f))
activefrac = activepolarity ? 1 : 15;
else
activefrac = activepolarity ?
(u32)((u64)(frac_f / (u32)f)) + 1 :
(u32)((u64)(frac_f / (u32)f));
}
if (activefrac == 1)
activepolarity = 0;
if (activepolarity == 1)
approx_value_f = activefrac ? (u64)(
(activecount_f + (activefrac * f - f) * f) /
(activefrac * f)) :
activecount_f + f;
else
approx_value_f = activefrac ?
activecount_f + (u64)(f / activefrac) :
activecount_f;
if (activesym_f < approx_value_f) {
accumulated_error_f = num_linkclk_line *
(u64)((approx_value_f - activesym_f) / i);
neg = 1;
} else {
accumulated_error_f = num_linkclk_line *
(u64)((activesym_f - approx_value_f) / i);
neg = 0;
}
if ((neg && (lowest_neg_error_f > accumulated_error_f)) ||
(accumulated_error_f == 0)) {
lowest_neg_error_f = accumulated_error_f;
lowest_neg_tusize = i;
lowest_neg_activecount = activecount;
lowest_neg_activepolarity = activepolarity;
lowest_neg_activefrac = activefrac;
if (accumulated_error_f == 0)
break;
}
}
if (lowest_neg_activefrac == 0) {
link_cfg->activepolarity = 0;
link_cfg->active_count = lowest_neg_activepolarity ?
lowest_neg_activecount : lowest_neg_activecount - 1;
link_cfg->tu_size = lowest_neg_tusize;
link_cfg->active_frac = 1;
} else {
link_cfg->activepolarity = lowest_neg_activepolarity;
link_cfg->active_count = (u32)lowest_neg_activecount;
link_cfg->tu_size = lowest_neg_tusize;
link_cfg->active_frac = (u32)lowest_neg_activefrac;
}
watermark_f = (u64)((ratio_f * link_cfg->tu_size * (f - ratio_f)) / f);
link_cfg->watermark = (u32)((u64)((watermark_f + lowest_neg_error_f) /
f)) + link_cfg->bits_per_pixel / 4 - 1;
num_symbols_per_line = (config->xres * link_cfg->bits_per_pixel) /
(8 * link_cfg->lane_count);
if (link_cfg->watermark > 30) {
printk(BIOS_INFO,
"dp: sor setting: unable to get a good tusize, "
"force watermark to 30.\n");
link_cfg->watermark = 30;
return -1;
} else if (link_cfg->watermark > num_symbols_per_line) {
printk(BIOS_INFO,
"dp: sor setting: force watermark to the number "
"of symbols in the line.\n");
link_cfg->watermark = num_symbols_per_line;
return -1;
}
/* Refer to dev_disp.ref for more information. */
/* # symbols/hblank = ((SetRasterBlankEnd.X + SetRasterSize.Width - */
/* SetRasterBlankStart.X - 7) * link_clk / pclk) */
/* - 3 * enhanced_framing - Y */
/* where Y = (# lanes == 4) 3 : (# lanes == 2) ? 6 : 12 */
link_cfg->hblank_sym = (int)((u64)(((u64)(config->hback_porch +
config->hfront_porch + config->hsync_width - 7) *
link_rate) / config->pixel_clock)) -
3 * link_cfg->enhanced_framing -
(12 / link_cfg->lane_count);
if (link_cfg->hblank_sym < 0)
link_cfg->hblank_sym = 0;
/* Refer to dev_disp.ref for more information. */
/* # symbols/vblank = ((SetRasterBlankStart.X - */
/* SetRasterBlankEen.X - 25) * link_clk / pclk) */
/* - Y - 1; */
/* where Y = (# lanes == 4) 12 : (# lanes == 2) ? 21 : 39 */
link_cfg->vblank_sym = (int)((u64)((u64)(config->xres - 25)
* link_rate / config->pixel_clock)) - (36 /
link_cfg->lane_count) - 4;
if (link_cfg->vblank_sym < 0)
link_cfg->vblank_sym = 0;
link_cfg->is_valid = 1;
tegra_dc_dp_dump_link_cfg(dp, link_cfg);
return 0;
}
static int tegra_dc_dp_init_max_link_cfg(
struct soc_nvidia_tegra124_config *config,
struct tegra_dc_dp_data *dp,
struct tegra_dc_dp_link_config *link_cfg)
{
u8 dpcd_data;
int ret;
CHECK_RET(tegra_dc_dp_dpcd_read(dp, NV_DPCD_MAX_LANE_COUNT,
&dpcd_data));
link_cfg->max_lane_count = dpcd_data & NV_DPCD_MAX_LANE_COUNT_MASK;
link_cfg->tps3_supported = (dpcd_data &
NV_DPCD_MAX_LANE_COUNT_TPS3_SUPPORTED_YES) ? 1 : 0;
link_cfg->support_enhanced_framing =
(dpcd_data & NV_DPCD_MAX_LANE_COUNT_ENHANCED_FRAMING_YES) ?
1 : 0;
CHECK_RET(tegra_dc_dp_dpcd_read(dp, NV_DPCD_MAX_DOWNSPREAD,
&dpcd_data));
link_cfg->downspread = (dpcd_data & NV_DPCD_MAX_DOWNSPREAD_VAL_0_5_PCT)?
1 : 0;
CHECK_RET(tegra_dc_dp_dpcd_read(dp, NV_DPCD_TRAINING_AUX_RD_INTERVAL,
&link_cfg->aux_rd_interval));
CHECK_RET(tegra_dc_dp_dpcd_read(dp, NV_DPCD_MAX_LINK_BANDWIDTH,
&link_cfg->max_link_bw));
link_cfg->bits_per_pixel = config->panel_bits_per_pixel;
/*
* Set to a high value for link training and attach.
* Will be re-programmed when dp is enabled.
*/
link_cfg->drive_current = config->drive_current;
link_cfg->preemphasis = config->preemphasis;
link_cfg->postcursor = config->postcursor;
CHECK_RET(tegra_dc_dp_dpcd_read(dp, NV_DPCD_EDP_CONFIG_CAP,
&dpcd_data));
link_cfg->alt_scramber_reset_cap =
(dpcd_data & NV_DPCD_EDP_CONFIG_CAP_ASC_RESET_YES) ?
1 : 0;
link_cfg->only_enhanced_framing =
(dpcd_data & NV_DPCD_EDP_CONFIG_CAP_FRAMING_CHANGE_YES) ?
1 : 0;
link_cfg->lane_count = link_cfg->max_lane_count;
link_cfg->link_bw = link_cfg->max_link_bw;
link_cfg->enhanced_framing = link_cfg->support_enhanced_framing;
tegra_dc_dp_calc_config(dp, config, link_cfg);
return 0;
}
static int tegra_dc_dp_set_assr(struct tegra_dc_dp_data *dp, int ena)
{
int ret;
u8 dpcd_data = ena ?
NV_DPCD_EDP_CONFIG_SET_ASC_RESET_ENABLE :
NV_DPCD_EDP_CONFIG_SET_ASC_RESET_DISABLE;
CHECK_RET(tegra_dc_dp_dpcd_write(dp, NV_DPCD_EDP_CONFIG_SET,
dpcd_data));
/* Also reset the scrambler to 0xfffe */
tegra_dc_sor_set_internal_panel(&dp->sor, ena);
return 0;
}
static int tegra_dp_set_link_bandwidth(struct tegra_dc_dp_data *dp, u8 link_bw)
{
tegra_dc_sor_set_link_bandwidth(&dp->sor, link_bw);
/* Sink side */
return tegra_dc_dp_dpcd_write(dp, NV_DPCD_LINK_BANDWIDTH_SET, link_bw);
}
static int tegra_dp_set_lane_count(struct tegra_dc_dp_data *dp,
const struct tegra_dc_dp_link_config *link_cfg)
{
u8 dpcd_data;
int ret;
/* check if panel support enhanched_framing */
dpcd_data = link_cfg->lane_count;
if (link_cfg->enhanced_framing)
dpcd_data |= NV_DPCD_LANE_COUNT_SET_ENHANCEDFRAMING_T;
CHECK_RET(tegra_dc_dp_dpcd_write(dp, NV_DPCD_LANE_COUNT_SET,
dpcd_data));
tegra_dc_sor_set_lane_count(&dp->sor, link_cfg->lane_count);
/* Also power down lanes that will not be used */
return 0;
}
static int tegra_dc_dp_link_trained(struct tegra_dc_dp_data *dp,
const struct tegra_dc_dp_link_config *cfg)
{
u32 lane;
u8 mask;
u8 data;
int ret;
for (lane = 0; lane < cfg->lane_count; ++lane) {
CHECK_RET(tegra_dc_dp_dpcd_read(dp, (lane/2) ?
NV_DPCD_LANE2_3_STATUS : NV_DPCD_LANE0_1_STATUS,
&data));
mask = (lane & 1) ?
NV_DPCD_STATUS_LANEXPLUS1_CR_DONE_YES |
NV_DPCD_STATUS_LANEXPLUS1_CHN_EQ_DONE_YES |
NV_DPCD_STATUS_LANEXPLUS1_SYMBOL_LOCKED_YES :
NV_DPCD_STATUS_LANEX_CR_DONE_YES |
NV_DPCD_STATUS_LANEX_CHN_EQ_DONE_YES |
NV_DPCD_STATUS_LANEX_SYMBOL_LOCKED_YES;
if ((data & mask) != mask)
return -1;
}
return 0;
}
static int tegra_dp_channel_eq_status(struct tegra_dc_dp_data *dp)
{
u32 cnt;
u32 n_lanes = dp->link_cfg.lane_count;
u8 data;
u8 ce_done = 1;
for (cnt = 0; cnt < n_lanes / 2; cnt++) {
tegra_dc_dp_dpcd_read(dp, (NV_DPCD_LANE0_1_STATUS + cnt), &data);
if (n_lanes == 1) {
ce_done = (data &
(0x1 << NV_DPCD_STATUS_LANEX_CHN_EQ_DONE_SHIFT)) &&
(data & (0x1 << NV_DPCD_STATUS_LANEX_SYMBOL_LOCKED_SHFIT));
break;
} else if (!(data & (0x1 << NV_DPCD_STATUS_LANEX_CHN_EQ_DONE_SHIFT)) ||
!(data & (0x1 << NV_DPCD_STATUS_LANEX_SYMBOL_LOCKED_SHFIT)) ||
!(data & (0x1 << NV_DPCD_STATUS_LANEXPLUS1_CHN_EQ_DONE_SHIFT)) ||
!(data & (0x1 << NV_DPCD_STATUS_LANEXPLUS1_SYMBOL_LOCKED_SHIFT)))
return 0;
}
if (ce_done) {
tegra_dc_dp_dpcd_read(dp, NV_DPCD_LANE_ALIGN_STATUS_UPDATED, &data);
if (!(data & NV_DPCD_LANE_ALIGN_STATUS_UPDATED_DONE_YES))
ce_done = 0;
}
return ce_done;
}
static u8 tegra_dp_clock_recovery_status(struct tegra_dc_dp_data *dp)
{
u32 cnt;
u32 n_lanes = dp->link_cfg.lane_count;
u8 data_ptr;
for (cnt = 0; cnt < n_lanes / 2; cnt++) {
tegra_dc_dp_dpcd_read(dp,
(NV_DPCD_LANE0_1_STATUS + cnt), &data_ptr);
if (n_lanes == 1)
return (data_ptr & NV_DPCD_STATUS_LANEX_CR_DONE_YES) ? 1 : 0;
else if (!(data_ptr & NV_DPCD_STATUS_LANEX_CR_DONE_YES) ||
!(data_ptr &
(NV_DPCD_STATUS_LANEXPLUS1_CR_DONE_YES)))
return 0;
}
return 1;
}
static void tegra_dp_lt_adjust(struct tegra_dc_dp_data *dp,
u32 pe[4], u32 vs[4], u32 pc[4],
u8 pc_supported)
{
size_t cnt;
u8 data_ptr;
u32 n_lanes = dp->link_cfg.lane_count;
for (cnt = 0; cnt < n_lanes / 2; cnt++) {
tegra_dc_dp_dpcd_read(dp,
(NV_DPCD_LANE0_1_ADJUST_REQ + cnt), &data_ptr);
pe[2 * cnt] = (data_ptr & NV_DPCD_ADJUST_REQ_LANEX_PE_MASK) >>
NV_DPCD_ADJUST_REQ_LANEX_PE_SHIFT;
vs[2 * cnt] = (data_ptr & NV_DPCD_ADJUST_REQ_LANEX_DC_MASK) >>
NV_DPCD_ADJUST_REQ_LANEX_DC_SHIFT;
pe[1 + 2 * cnt] =
(data_ptr & NV_DPCD_ADJUST_REQ_LANEXPLUS1_PE_MASK) >>
NV_DPCD_ADJUST_REQ_LANEXPLUS1_PE_SHIFT;
vs[1 + 2 * cnt] =
(data_ptr & NV_DPCD_ADJUST_REQ_LANEXPLUS1_DC_MASK) >>
NV_DPCD_ADJUST_REQ_LANEXPLUS1_DC_SHIFT;
}
if (pc_supported) {
tegra_dc_dp_dpcd_read(dp,
NV_DPCD_ADJUST_REQ_POST_CURSOR2, &data_ptr);
for (cnt = 0; cnt < n_lanes; cnt++) {
pc[cnt] = (data_ptr >>
NV_DPCD_ADJUST_REQ_POST_CURSOR2_LANE_SHIFT(cnt)) &
NV_DPCD_ADJUST_REQ_POST_CURSOR2_LANE_MASK;
}
}
}
static inline u32 tegra_dp_wait_aux_training(struct tegra_dc_dp_data *dp,
u8 is_clk_recovery)
{
if (!dp->link_cfg.aux_rd_interval)
is_clk_recovery ? udelay(200) :
udelay(500);
else
mdelay(dp->link_cfg.aux_rd_interval * 4);
return dp->link_cfg.aux_rd_interval;
}
static void tegra_dp_tpg(struct tegra_dc_dp_data *dp, u32 tp, u32 n_lanes)
{
u8 data = (tp == training_pattern_disabled)
? (tp | NV_DPCD_TRAINING_PATTERN_SET_SC_DISABLED_F)
: (tp | NV_DPCD_TRAINING_PATTERN_SET_SC_DISABLED_T);
tegra_dc_sor_set_dp_linkctl(&dp->sor, 1, tp, &dp->link_cfg);
tegra_dc_dp_dpcd_write(dp, NV_DPCD_TRAINING_PATTERN_SET, data);
}
static int tegra_dp_link_config(struct tegra_dc_dp_data *dp,
const struct tegra_dc_dp_link_config *link_cfg)
{
u8 dpcd_data;
u32 retry;
if (link_cfg->lane_count == 0) {
printk(BIOS_ERR, "dp: error: lane count is 0. "
"Can not set link config.\n");
return DP_LT_FAILED;
}
/* Set power state if it is not in normal level */
if (tegra_dc_dp_dpcd_read(dp, NV_DPCD_SET_POWER, &dpcd_data))
return DP_LT_FAILED;
if (dpcd_data == NV_DPCD_SET_POWER_VAL_D3_PWRDWN) {
dpcd_data = NV_DPCD_SET_POWER_VAL_D0_NORMAL;
/* DP spec requires 3 retries */
for (retry = 3; retry > 0; --retry){
if (tegra_dc_dp_dpcd_write(dp, NV_DPCD_SET_POWER, dpcd_data))
break;
if (retry == 1){
printk(BIOS_ERR, "dp: Failed to set DP panel power\n");
return DP_LT_FAILED;
}
}
}
/* Enable ASSR if possible */
if (link_cfg->alt_scramber_reset_cap)
if (tegra_dc_dp_set_assr(dp, 1))
return DP_LT_FAILED;
if (tegra_dp_set_link_bandwidth(dp, link_cfg->link_bw)) {
printk(BIOS_ERR, "dp: Failed to set link bandwidth\n");
return DP_LT_FAILED;
}
if (tegra_dp_set_lane_count(dp, link_cfg)) {
printk(BIOS_ERR, "dp: Failed to set lane count\n");
return DP_LT_FAILED;
}
tegra_dc_sor_set_dp_linkctl(&dp->sor, 1, training_pattern_none,
link_cfg);
return DP_LT_SUCCESS;
}
static int tegra_dp_lower_link_config(struct tegra_dc_dp_data *dp,
struct tegra_dc_dp_link_config *cfg)
{
struct tegra_dc_dp_link_config tmp_cfg;
tmp_cfg = dp->link_cfg;
cfg->is_valid = 0;
if (_tegra_dp_lower_link_config(dp, cfg))
goto fail;
if (tegra_dc_dp_calc_config(dp, dp->dc->config, cfg))
goto fail;
tegra_dp_link_config(dp, cfg);
return DP_LT_SUCCESS;
fail:
dp->link_cfg = tmp_cfg;
tegra_dp_link_config(dp, &tmp_cfg);
return DP_LT_FAILED;
}
static void tegra_dp_lt_config(struct tegra_dc_dp_data *dp,
u32 pe[4], u32 vs[4], u32 pc[4])
{
struct tegra_dc_sor_data *sor = &dp->sor;
u32 n_lanes = dp->link_cfg.lane_count;
u8 pc_supported = dp->link_cfg.tps3_supported;
u32 cnt;
u32 val;
for (cnt = 0; cnt < n_lanes; cnt++) {
u32 mask = 0;
u32 pe_reg, vs_reg, pc_reg;
u32 shift = 0;
switch (cnt) {
case 0:
mask = NV_SOR_PR_LANE2_DP_LANE0_MASK;
shift = NV_SOR_PR_LANE2_DP_LANE0_SHIFT;
break;
case 1:
mask = NV_SOR_PR_LANE1_DP_LANE1_MASK;
shift = NV_SOR_PR_LANE1_DP_LANE1_SHIFT;
break;
case 2:
mask = NV_SOR_PR_LANE0_DP_LANE2_MASK;
shift = NV_SOR_PR_LANE0_DP_LANE2_SHIFT;
break;
case 3:
mask = NV_SOR_PR_LANE3_DP_LANE3_MASK;
shift = NV_SOR_PR_LANE3_DP_LANE3_SHIFT;
break;
default:
printk(BIOS_ERR,
"dp: incorrect lane cnt\n");
}
pe_reg = tegra_dp_pe_regs[pc[cnt]][vs[cnt]][pe[cnt]];
vs_reg = tegra_dp_vs_regs[pc[cnt]][vs[cnt]][pe[cnt]];
pc_reg = tegra_dp_pc_regs[pc[cnt]][vs[cnt]][pe[cnt]];
tegra_dp_set_pe_vs_pc(sor, mask, pe_reg << shift,
vs_reg << shift, pc_reg << shift, pc_supported);
}
tegra_dp_disable_tx_pu(&dp->sor);
udelay(20);
for (cnt = 0; cnt < n_lanes; cnt++) {
u32 max_vs_flag = tegra_dp_is_max_vs(pe[cnt], vs[cnt]);
u32 max_pe_flag = tegra_dp_is_max_pe(pe[cnt], vs[cnt]);
val = (vs[cnt] << NV_DPCD_TRAINING_LANEX_SET_DC_SHIFT) |
(max_vs_flag ?
NV_DPCD_TRAINING_LANEX_SET_DC_MAX_REACHED_T :
NV_DPCD_TRAINING_LANEX_SET_DC_MAX_REACHED_F) |
(pe[cnt] << NV_DPCD_TRAINING_LANEX_SET_PE_SHIFT) |
(max_pe_flag ?
NV_DPCD_TRAINING_LANEX_SET_PE_MAX_REACHED_T :
NV_DPCD_TRAINING_LANEX_SET_PE_MAX_REACHED_F);
tegra_dc_dp_dpcd_write(dp,
(NV_DPCD_TRAINING_LANE0_SET + cnt), val);
}
if (pc_supported) {
for (cnt = 0; cnt < n_lanes / 2; cnt++) {
u32 max_pc_flag0 = tegra_dp_is_max_pc(pc[cnt]);
u32 max_pc_flag1 = tegra_dp_is_max_pc(pc[cnt + 1]);
val = (pc[cnt] << NV_DPCD_LANEX_SET2_PC2_SHIFT) |
(max_pc_flag0 ?
NV_DPCD_LANEX_SET2_PC2_MAX_REACHED_T :
NV_DPCD_LANEX_SET2_PC2_MAX_REACHED_F) |
(pc[cnt + 1] <<
NV_DPCD_LANEXPLUS1_SET2_PC2_SHIFT) |
(max_pc_flag1 ?
NV_DPCD_LANEXPLUS1_SET2_PC2_MAX_REACHED_T :
NV_DPCD_LANEXPLUS1_SET2_PC2_MAX_REACHED_F);
tegra_dc_dp_dpcd_write(dp,
(NV_DPCD_TRAINING_LANE0_1_SET2 + cnt), val);
}
}
}
static int _tegra_dp_channel_eq(struct tegra_dc_dp_data *dp, u32 pe[4],
u32 vs[4], u32 pc[4], u8 pc_supported,
u32 n_lanes)
{
u32 retry_cnt;
for (retry_cnt = 0; retry_cnt < 4; retry_cnt++) {
if (retry_cnt){
tegra_dp_lt_adjust(dp, pe, vs, pc, pc_supported);
tegra_dp_lt_config(dp, pe, vs, pc);
}
tegra_dp_wait_aux_training(dp, 0);
if (!tegra_dp_clock_recovery_status(dp)) {
printk(BIOS_ERR,"dp: CR failed in channel EQ sequence!\n");
break;
}
if (tegra_dp_channel_eq_status(dp))
return DP_LT_SUCCESS;
}
return DP_LT_FAILED;
}
static int tegra_dp_channel_eq(struct tegra_dc_dp_data *dp,
u32 pe[4], u32 vs[4], u32 pc[4])
{
u32 n_lanes = dp->link_cfg.lane_count;
u8 pc_supported = dp->link_cfg.tps3_supported;
int err;
u32 tp_src = training_pattern_2;
if (pc_supported)
tp_src = training_pattern_3;
tegra_dp_tpg(dp, tp_src, n_lanes);
err = _tegra_dp_channel_eq(dp, pe, vs, pc, pc_supported, n_lanes);
tegra_dp_tpg(dp, training_pattern_disabled, n_lanes);
return err;
}
static int _tegra_dp_clk_recovery(struct tegra_dc_dp_data *dp, u32 pe[4],
u32 vs[4], u32 pc[4], u8 pc_supported,
u32 n_lanes)
{
u32 vs_temp[4];
u32 retry_cnt = 0;
do {
tegra_dp_lt_config(dp, pe, vs, pc);
tegra_dp_wait_aux_training(dp, 1);
if (tegra_dp_clock_recovery_status(dp))
return DP_LT_SUCCESS;
memcpy(vs_temp, vs, sizeof(vs_temp));
tegra_dp_lt_adjust(dp, pe, vs, pc, pc_supported);
if (memcmp(vs_temp, vs, sizeof(vs_temp)))
retry_cnt = 0;
else
++retry_cnt;
} while (retry_cnt < 5);
return DP_LT_FAILED;
}
static int tegra_dp_clk_recovery(struct tegra_dc_dp_data *dp,
u32 pe[4], u32 vs[4], u32 pc[4])
{
u32 n_lanes = dp->link_cfg.lane_count;
u8 pc_supported = dp->link_cfg.tps3_supported;
int err;
tegra_dp_tpg(dp, training_pattern_1, n_lanes);
err = _tegra_dp_clk_recovery(dp, pe, vs, pc, pc_supported, n_lanes);
if (err < 0)
tegra_dp_tpg(dp, training_pattern_disabled, n_lanes);
return err;
}
static int tegra_dc_dp_full_link_training(struct tegra_dc_dp_data *dp)
{
struct tegra_dc_sor_data *sor = &dp->sor;
int err;
u32 pe[4], vs[4], pc[4];
tegra_sor_precharge_lanes(sor);
retry_cr:
memset(pe, preEmphasis_Disabled, sizeof(pe));
memset(vs, driveCurrent_Level0, sizeof(vs));
memset(pc, postCursor2_Level0, sizeof(pc));
err = tegra_dp_clk_recovery(dp, pe, vs, pc);
if (err != DP_LT_SUCCESS) {
if (!tegra_dp_lower_link_config(dp, &dp->link_cfg))
goto retry_cr;
printk(BIOS_ERR, "dp: clk recovery failed\n");
goto fail;
}
err = tegra_dp_channel_eq(dp, pe, vs, pc);
if (err != DP_LT_SUCCESS) {
if (!tegra_dp_lower_link_config(dp, &dp->link_cfg))
goto retry_cr;
printk(BIOS_ERR,
"dp: channel equalization failed\n");
goto fail;
}
tegra_dc_dp_dump_link_cfg(dp, &dp->link_cfg);
return 0;
fail:
return err;
}
/*
* All link training functions are ported from kernel dc driver.
* See more details at drivers/video/tegra/dc/dp.c
*/
static int tegra_dc_dp_fast_link_training(struct tegra_dc_dp_data *dp,
const struct tegra_dc_dp_link_config *link_cfg)
{
struct tegra_dc_sor_data *sor = &dp->sor;
u8 link_bw;
u8 lane_count;
u16 data16;
u32 data32;
u32 size;
u32 status;
int j;
u32 mask = 0xffff >> ((4 - link_cfg->lane_count) * 4);
tegra_dc_sor_set_lane_parm(sor, link_cfg);
tegra_dc_dp_dpcd_write(dp, NV_DPCD_MAIN_LINK_CHANNEL_CODING_SET,
NV_DPCD_MAIN_LINK_CHANNEL_CODING_SET_ANSI_8B10B);
/* Send TP1 */
tegra_dc_sor_set_dp_linkctl(sor, 1, training_pattern_1, link_cfg);
tegra_dc_dp_dpcd_write(dp, NV_DPCD_TRAINING_PATTERN_SET,
NV_DPCD_TRAINING_PATTERN_SET_TPS_TP1);
for (j = 0; j < link_cfg->lane_count; ++j)
tegra_dc_dp_dpcd_write(dp, NV_DPCD_TRAINING_LANE0_SET + j,
0x24);
udelay(520);
size = sizeof(data16);
tegra_dc_dpaux_read(dp, DPAUX_DP_AUXCTL_CMD_AUXRD,
NV_DPCD_LANE0_1_STATUS, (u8 *)&data16, &size, &status);
status = mask & 0x1111;
if ((data16 & status) != status) {
printk(BIOS_ERR,
"dp: Link training error for TP1 (%#x)\n", data16);
return -EFAULT;
}
/* enable ASSR */
tegra_dc_dp_set_assr(dp, link_cfg->scramble_ena);
tegra_dc_sor_set_dp_linkctl(sor, 1, training_pattern_3, link_cfg);
tegra_dc_dp_dpcd_write(dp, NV_DPCD_TRAINING_PATTERN_SET,
link_cfg->link_bw == 20 ? 0x23 : 0x22);
for (j = 0; j < link_cfg->lane_count; ++j)
tegra_dc_dp_dpcd_write(dp, NV_DPCD_TRAINING_LANE0_SET + j,
0x24);
udelay(520);
size = sizeof(data32);
tegra_dc_dpaux_read(dp, DPAUX_DP_AUXCTL_CMD_AUXRD,
NV_DPCD_LANE0_1_STATUS, (u8 *)&data32, &size, &status);
if ((data32 & mask) != (0x7777 & mask)) {
printk(BIOS_ERR,
"dp: Link training error for TP2/3 (0x%x)\n", data32);
return -EFAULT;
}
tegra_dc_sor_set_dp_linkctl(sor, 1, training_pattern_disabled,
link_cfg);
tegra_dc_dp_dpcd_write(dp, NV_DPCD_TRAINING_PATTERN_SET, 0);
if (tegra_dc_dp_link_trained(dp, link_cfg)) {
tegra_dc_sor_read_link_config(&dp->sor, &link_bw,
&lane_count);
printk(BIOS_ERR,
"Fast link trainging failed, link bw %d, lane # %d\n",
link_bw, lane_count);
return -EFAULT;
}
printk(BIOS_INFO,
"Fast link trainging succeeded, link bw %d, lane %d\n",
link_cfg->link_bw, link_cfg->lane_count);
return 0;
}
static int tegra_dp_do_link_training(struct tegra_dc_dp_data *dp,
const struct tegra_dc_dp_link_config *link_cfg)
{
u8 link_bw;
u8 lane_count;
int ret;
/* Now do the fast link training for eDP */
ret = tegra_dc_dp_fast_link_training(dp, link_cfg);
if (ret) {
printk(BIOS_ERR, "dp: fast link training failed\n");
/* Try full link training then */
if (tegra_dc_dp_full_link_training(dp)){
printk(BIOS_ERR, "dp: full link training failed\n");
return ret;
}
} else {
/* set to a known-good drive setting if fast link succeeded */
tegra_dc_sor_set_voltage_swing(&dp->sor);
}
/* Everything goes well, double check the link config */
/* TODO: record edc/c2 data for debugging */
tegra_dc_sor_read_link_config(&dp->sor, &link_bw, &lane_count);
if ((link_cfg->link_bw == link_bw) &&
(link_cfg->lane_count == lane_count))
return 0;
else
return -EFAULT;
}
static int tegra_dc_dp_explore_link_cfg(struct tegra_dc_dp_data *dp,
struct tegra_dc_dp_link_config *link_cfg,
const struct soc_nvidia_tegra124_config *config)
{
struct tegra_dc_dp_link_config temp_cfg;
if (!config->pixel_clock || !config->xres || !config->yres) {
printk(BIOS_ERR,
"dp: error mode configuration");
return -EINVAL;
}
if (!link_cfg->max_link_bw || !link_cfg->max_lane_count) {
printk(BIOS_ERR,
"dp: error link configuration");
return -EINVAL;
}
link_cfg->is_valid = 0;
memcpy(&temp_cfg, link_cfg, sizeof(temp_cfg));
temp_cfg.link_bw = temp_cfg.max_link_bw;
temp_cfg.lane_count = temp_cfg.max_lane_count;
/*
* set to max link config
*/
if ((!tegra_dc_dp_calc_config(dp, config, &temp_cfg)) &&
(!tegra_dp_link_config(dp, &temp_cfg)) &&
(!tegra_dp_do_link_training(dp, &temp_cfg)))
/* the max link cfg is doable */
memcpy(link_cfg, &temp_cfg, sizeof(temp_cfg));
return link_cfg->is_valid ? 0 : -EFAULT;
}
static void tegra_dp_update_config(struct tegra_dc_dp_data *dp,
struct soc_nvidia_tegra124_config *config)
{
struct edid edid;
u8 buf[128] = {0};
u32 size = sizeof(buf), aux_stat = 0;
tegra_dc_dpaux_enable(dp);
if (tegra_dc_i2c_aux_read(dp, TEGRA_EDID_I2C_ADDRESS, 0, buf, &size,
&aux_stat)) {
printk(BIOS_ERR, "%s: Failed to read EDID. Use defaults.\n",
__func__);
return;
}
if (decode_edid(buf, sizeof(buf), &edid)) {
printk(BIOS_ERR, "%s: Failed to decode EDID. Use defaults.\n",
__func__);
return;
}
config->xres = edid.mode.ha;
config->yres = edid.mode.va;
config->pixel_clock = edid.mode.pixel_clock * 1000;
config->hfront_porch = edid.mode.hso;
config->hsync_width = edid.mode.hspw;
config->hback_porch = edid.mode.hbl - edid.mode.hso - edid.mode.hspw;
config->vfront_porch = edid.mode.vso;
config->vsync_width = edid.mode.vspw;
config->vback_porch = edid.mode.vbl - edid.mode.vso - edid.mode.vspw;
/**
* Note edid->framebuffer_bits_per_pixel is currently hard-coded as 32,
* so we should keep the default value in device config.
*
* EDID v1.3 panels may not have color depth info, so we need to check
* if these values are zero before updating config.
*/
if (edid.panel_bits_per_pixel)
config->panel_bits_per_pixel = edid.panel_bits_per_pixel;
if (edid.panel_bits_per_color)
config->color_depth = edid.panel_bits_per_color;
printk(BIOS_SPEW, "%s: configuration updated by EDID.\n", __func__);
}
void dp_init(void * _config)
{
struct soc_nvidia_tegra124_config *config = (void *)_config;
struct tegra_dc *dc = config->dc_data;
struct tegra_dc_dp_data *dp = &dp_data;
// set up links among config, dc, dp and sor
dp->dc = dc;
dc->out = dp;
dp->sor.dc = dc;
dp->sor.power_is_up = 0;
dp->sor.base = (void *)TEGRA_ARM_SOR;
dp->sor.pmc_base = (void *)TEGRA_PMC_BASE;
dp->sor.portnum = 0;
dp->sor.link_cfg = &dp->link_cfg;
dp->aux_base = (void *)TEGRA_ARM_DPAUX;
dp->link_cfg.is_valid = 0;
dp->enabled = 0;
tegra_dp_update_config(dp, config);
}
static void tegra_dp_hpd_config(struct tegra_dc_dp_data *dp,
struct soc_nvidia_tegra124_config *config)
{
u32 val;
val = config->hpd_plug_min_us |
(config->hpd_unplug_min_us <<
DPAUX_HPD_CONFIG_UNPLUG_MIN_TIME_SHIFT);
tegra_dpaux_writel(dp, DPAUX_HPD_CONFIG, val);
tegra_dpaux_writel(dp, DPAUX_HPD_IRQ_CONFIG, config->hpd_irq_min_us);
}
static int tegra_dp_hpd_plug(struct tegra_dc_dp_data *dp, int timeout_ms)
{
u32 val;
u32 timeout = timeout_ms * 1000;
do {
val = tegra_dpaux_readl(dp, DPAUX_DP_AUXSTAT);
if (val & DPAUX_DP_AUXSTAT_HPD_STATUS_PLUGGED)
return 0;
udelay(100);
timeout -= 100;
} while (timeout > 0);
return -1;
}
void dp_enable(void * _dp)
{
struct tegra_dc_dp_data *dp = _dp;
struct tegra_dc *dc = dp->dc;
struct soc_nvidia_tegra124_config *config = dc->config;
u8 data;
u32 retry;
int ret;
tegra_dc_dpaux_enable(dp);
tegra_dp_hpd_config(dp, config);
if (tegra_dp_hpd_plug(dp, config->vdd_to_hpd_delay_ms) < 0) {
printk(BIOS_ERR, "dp: hpd plug failed\n");
goto error_enable;
}
if (tegra_dc_dp_init_max_link_cfg(config, dp, &dp->link_cfg)) {
printk(BIOS_ERR, "dp: failed to init link configuration\n");
goto error_enable;
}
tegra_dc_sor_enable_dp(&dp->sor);
tegra_dc_sor_set_panel_power(&dp->sor, 1);
/* Write power on to DPCD */
data = NV_DPCD_SET_POWER_VAL_D0_NORMAL;
retry = 0;
do {
ret = tegra_dc_dp_dpcd_write(dp,
NV_DPCD_SET_POWER, data);
} while ((retry++ < DP_POWER_ON_MAX_TRIES) && ret);
if (ret || retry >= DP_POWER_ON_MAX_TRIES) {
printk(BIOS_ERR,
"dp: failed to power on panel (0x%x)\n", ret);
goto error_enable;
}
/* Confirm DP is plugging status */
if (!(tegra_dpaux_readl(dp, DPAUX_DP_AUXSTAT) &
DPAUX_DP_AUXSTAT_HPD_STATUS_PLUGGED)) {
printk(BIOS_ERR, "dp: could not detect HPD\n");
goto error_enable;
}
/* Check DP version */
if (tegra_dc_dp_dpcd_read(dp, NV_DPCD_REV, &dp->revision))
printk(BIOS_ERR,
"dp: failed to read the revision number from sink\n");
if (tegra_dc_dp_explore_link_cfg(dp, &dp->link_cfg, config)) {
printk(BIOS_ERR, "dp: error to configure link\n");
goto error_enable;
}
tegra_dc_sor_set_power_state(&dp->sor, 1);
tegra_dc_sor_attach(&dp->sor);
/*
* Power down the unused lanes to save power
* (about hundreds milli-watts, varies from boards).
*/
tegra_dc_sor_power_down_unused_lanes(&dp->sor);
dp->enabled = 1;
error_enable:
return;
}