blob: 3996739d6288ce64361aad01e7cf75408080dccb [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
#include <acpi/acpi_device.h>
#include <acpi/acpigen.h>
#include <acpi/acpigen_pci.h>
#include <console/console.h>
#include <device/pci_ids.h>
#include <sar.h>
#include <stdlib.h>
#include <wrdd.h>
#include "chip.h"
#include "wifi.h"
#include "wifi_private.h"
/* WIFI Domain type */
#define DOMAIN_TYPE_WIFI 0x7
/* Maximum number DSM UUID bifurcations in _DSM */
#define MAX_DSM_FUNCS 2
/*
* WIFI ACPI NAME = "WF" + hex value of last 8 bits of dev_path_encode + '\0'
* The above representation returns unique and consistent name every time
* generate_wifi_acpi_name is invoked. The last 8 bits of dev_path_encode is
* chosen since it contains the bus address of the device.
*/
#define WIFI_ACPI_NAME_MAX_LEN 5
/* Unique ID for the WIFI _DSM */
#define ACPI_DSM_OEM_WIFI_UUID "F21202BF-8F78-4DC6-A5B3-1F738E285ADE"
/* Unique ID for CnviDdrRfim entry in WIFI _DSM */
#define ACPI_DSM_RFIM_WIFI_UUID "7266172C-220B-4B29-814F-75E4DD26B5FD"
__weak int get_wifi_sar_limits(union wifi_sar_limits *sar_limits)
{
return -1;
}
/*
* Function 1: Allow PC OEMs to set ETSI 5.8GHz SRD in Passive/Disabled ESTI SRD
* Channels: 149, 153, 157, 161, 165
* 0 - ETSI 5.8GHz SRD active scan
* 1 - ETSI 5.8GHz SRD passive scan
* 2 - ETSI 5.8GHz SRD disabled
*/
static void wifi_dsm_srd_active_channels(void *args)
{
struct dsm_profile *dsm_config = (struct dsm_profile *)args;
acpigen_write_return_integer(dsm_config->disable_active_sdr_channels);
}
/*
* Function 2 : Supported Indonesia 5.15-5.35 GHz Band
* 0 - Set 5.115-5.35GHz to Disable in Indonesia
* 1 - Set 5.115-5.35GHz to Enable (Passive) in Indonesia
* 2 - Reserved
*/
static void wifi_dsm_indonasia_5Ghz_band_enable(void *args)
{
struct dsm_profile *dsm_config = (struct dsm_profile *)args;
acpigen_write_return_integer(dsm_config->support_indonesia_5g_band);
}
/*
* Function 3: Support Wi-Fi 6 11ax Rev 2 new channels on 6-7 GHz.
* Bit 0:
* 0 - No override; use device settings 0
* 1 - Force disable all countries that are not defined in the following bits
*
* Bit 1:
* 0 No override; USA 6GHz disable 0
* 1 6GHz allowed in the USA (enabled only if the device is certified to the USA)
*/
static void wifi_dsm_supported_ultra_high_band(void *args)
{
struct dsm_profile *dsm_config = (struct dsm_profile *)args;
acpigen_write_return_integer(dsm_config->support_ultra_high_band);
}
/*
* Function 4: Regulatory Special Configurations Enablements
*/
static void wifi_dsm_regulatory_configurations(void *args)
{
struct dsm_profile *dsm_config = (struct dsm_profile *)args;
acpigen_write_return_integer(dsm_config->regulatory_configurations);
}
/*
* Function 5: M.2 UART Interface Configuration
*/
static void wifi_dsm_uart_configurations(void *args)
{
struct dsm_profile *dsm_config = (struct dsm_profile *)args;
acpigen_write_return_integer(dsm_config->uart_configurations);
}
/*
* Function 6: Control Enablement 11ax on certificated modules
* Bit 0 - Apply changes to country Ukraine. 11Ax Setting within module certification
* 0 - None. Work with Wi-Fi FW/OTP definitions [Default]
* 1 - Apply changes.
*
* Bit 1 - 11Ax Mode. Effective only if Bit 0 set to 1
* 0 - Disable 11Ax on country Ukraine [Default]
* 1 - Enable 11Ax on country Ukraine
*
* Bit 2 - Apply changes to country Russia. 11Ax Setting within module certification
* 0 - None. Work with Wi-Fi FW/OTP definitions [Default]
* 1 - Apply changes.
*
* Bit 3 - 11Ax Mode. Effective only if Bit 2 set to 1
* 0 - Disable 11Ax on country Russia [Default]
* 1 - Enable 11Ax on country Russia
*
* Bit 31:04 - Reserved
*
* Note: Assumed Russia Work with Wi-Fi FW/OTP definitions
*/
static void wifi_dsm_ukrane_russia_11ax_enable(void *args)
{
struct dsm_profile *dsm_config = (struct dsm_profile *)args;
acpigen_write_return_integer(dsm_config->enablement_11ax);
}
/*
* Function 7: Control Enablement UNII-4 over certificate modules
*/
static void wifi_dsm_unii4_control_enable(void *args)
{
struct dsm_profile *dsm_config = (struct dsm_profile *)args;
acpigen_write_return_integer(dsm_config->unii_4);
}
static void wifi_dsm_ddrrfim_func3_cb(void *ptr)
{
const bool is_cnvi_ddr_rfim_enabled = *(bool *)ptr;
acpigen_write_return_integer(is_cnvi_ddr_rfim_enabled ? 1 : 0);
}
static void (*wifi_dsm_callbacks[])(void *) = {
NULL, /* Function 0 */
wifi_dsm_srd_active_channels, /* Function 1 */
wifi_dsm_indonasia_5Ghz_band_enable, /* Function 2 */
wifi_dsm_supported_ultra_high_band, /* Function 3 */
wifi_dsm_regulatory_configurations, /* Function 4 */
wifi_dsm_uart_configurations, /* Function 5 */
wifi_dsm_ukrane_russia_11ax_enable, /* Function 6 */
wifi_dsm_unii4_control_enable, /* Function 7 */
};
/*
* The current DSM2 table is only exporting one function (function 3), some more
* functions are reserved so marking them NULL.
*/
static void (*wifi_dsm2_callbacks[])(void *) = {
NULL, /* Function 0 */
NULL, /* Function 1 */
NULL, /* Function 2 */
wifi_dsm_ddrrfim_func3_cb, /* Function 3 */
};
static const uint8_t *sar_fetch_set(const struct sar_profile *sar, size_t set_num)
{
const uint8_t *sar_table = &sar->sar_table[0];
return sar_table + (sar->chains_count * sar->subbands_count * set_num);
}
static const uint8_t *wgds_fetch_set(struct geo_profile *wgds, size_t set_num)
{
const uint8_t *wgds_table = &wgds->wgds_table[0];
return wgds_table + (wgds->bands_count * set_num);
}
static const uint8_t *ppag_fetch_set(struct gain_profile *ppag, size_t set_num)
{
const uint8_t *ppag_table = &ppag->ppag_table[0];
return ppag_table + (ppag->bands_count * set_num);
}
static void sar_emit_wrds(const struct sar_profile *sar)
{
int i;
size_t package_size, table_size;
const uint8_t *set;
if (sar == NULL)
return;
/*
* Name ("WRDS", Package () {
* Revision,
* Package () {
* Domain Type, // 0x7:WiFi
* WiFi SAR BIOS, // BIOS SAR Enable/disable
* SAR Table Set // Set#1 of SAR Table
* }
* })
*/
if (sar->revision > MAX_SAR_REVISION) {
printk(BIOS_ERR, "Invalid SAR table revision: %d\n", sar->revision);
return;
}
acpigen_write_name("WRDS");
acpigen_write_package(2);
acpigen_write_dword(sar->revision);
table_size = sar->chains_count * sar->subbands_count;
/* Emit 'Domain Type' + 'WiFi SAR Enable' + Set#1 */
package_size = 1 + 1 + table_size;
acpigen_write_package(package_size);
acpigen_write_dword(DOMAIN_TYPE_WIFI);
acpigen_write_dword(1);
set = sar_fetch_set(sar, 0);
for (i = 0; i < table_size; i++)
acpigen_write_byte(set[i]);
acpigen_write_package_end();
acpigen_write_package_end();
}
static void sar_emit_ewrd(const struct sar_profile *sar)
{
int i;
size_t package_size, set_num, table_size;
const uint8_t *set;
if (sar == NULL)
return;
/*
* Name ("EWRD", Package () {
* Revision,
* Package () {
* Domain Type, // 0x7:WiFi
* Dynamic SAR Enable, // Dynamic SAR Enable/disable
* Extended SAR sets, // Number of optional SAR table sets
* SAR Table Set, // Set#2 of SAR Table
* SAR Table Set, // Set#3 of SAR Table
* SAR Table Set // Set#4 of SAR Table
* }
* })
*/
if (sar->revision > MAX_SAR_REVISION) {
printk(BIOS_ERR, "Invalid SAR table revision: %d\n", sar->revision);
return;
}
if (sar->dsar_set_count == 0) {
printk(BIOS_WARNING, "DSAR set count is 0\n");
return;
}
acpigen_write_name("EWRD");
acpigen_write_package(2);
acpigen_write_dword(sar->revision);
table_size = sar->chains_count * sar->subbands_count;
/*
* Emit 'Domain Type' + 'Dynamic SAR Enable' + 'Extended SAR sets count'
* + number of bytes for Set#2 & 3 & 4
*/
package_size = 1 + 1 + 1 + table_size * MAX_DSAR_SET_COUNT;
acpigen_write_package(package_size);
acpigen_write_dword(DOMAIN_TYPE_WIFI);
acpigen_write_dword(1);
acpigen_write_dword(sar->dsar_set_count);
for (set_num = 1; set_num <= sar->dsar_set_count; set_num++) {
set = sar_fetch_set(sar, set_num);
for (i = 0; i < table_size; i++)
acpigen_write_byte(set[i]);
}
/* wifi driver always expects 3 DSAR sets */
for (i = 0; i < (table_size * (MAX_DSAR_SET_COUNT - sar->dsar_set_count)); i++)
acpigen_write_byte(0);
acpigen_write_package_end();
acpigen_write_package_end();
}
static void sar_emit_wgds(struct geo_profile *wgds)
{
int i;
size_t package_size, set_num;
const uint8_t *set;
if (wgds == NULL)
return;
/*
* Name ("WGDS", Package() {
* Revision,
* Package() {
* DomainType, // 0x7:WiFi
* WgdsWiFiSarDeltaGroup1PowerMax1, // Group 1 FCC 2400 Max
* WgdsWiFiSarDeltaGroup1PowerChainA1, // Group 1 FCC 2400 A Offset
* WgdsWiFiSarDeltaGroup1PowerChainB1, // Group 1 FCC 2400 B Offset
* WgdsWiFiSarDeltaGroup1PowerMax2, // Group 1 FCC 5200 Max
* WgdsWiFiSarDeltaGroup1PowerChainA2, // Group 1 FCC 5200 A Offset
* WgdsWiFiSarDeltaGroup1PowerChainB2, // Group 1 FCC 5200 B Offset
* WgdsWiFiSarDeltaGroup1PowerMax3, // Group 1 FCC 6000-7000 Max
* WgdsWiFiSarDeltaGroup1PowerChainA3, // Group 1 FCC 6000-7000 A Offset
* WgdsWiFiSarDeltaGroup1PowerChainB3, // Group 1 FCC 6000-7000 B Offset
* WgdsWiFiSarDeltaGroup2PowerMax1, // Group 2 EC Jap 2400 Max
* WgdsWiFiSarDeltaGroup2PowerChainA1, // Group 2 EC Jap 2400 A Offset
* WgdsWiFiSarDeltaGroup2PowerChainB1, // Group 2 EC Jap 2400 B Offset
* WgdsWiFiSarDeltaGroup2PowerMax2, // Group 2 EC Jap 5200 Max
* WgdsWiFiSarDeltaGroup2PowerChainA2, // Group 2 EC Jap 5200 A Offset
* WgdsWiFiSarDeltaGroup2PowerChainB2, // Group 2 EC Jap 5200 B Offset
* WgdsWiFiSarDeltaGroup2PowerMax3, // Group 2 EC Jap 6000-7000 Max
* WgdsWiFiSarDeltaGroup2PowerChainA3, // Group 2 EC Jap 6000-7000 A Offset
* WgdsWiFiSarDeltaGroup2PowerChainB3, // Group 2 EC Jap 6000-7000 B Offset
* WgdsWiFiSarDeltaGroup3PowerMax1, // Group 3 ROW 2400 Max
* WgdsWiFiSarDeltaGroup3PowerChainA1, // Group 3 ROW 2400 A Offset
* WgdsWiFiSarDeltaGroup3PowerChainB1, // Group 3 ROW 2400 B Offset
* WgdsWiFiSarDeltaGroup3PowerMax2, // Group 3 ROW 5200 Max
* WgdsWiFiSarDeltaGroup3PowerChainA2, // Group 3 ROW 5200 A Offset
* WgdsWiFiSarDeltaGroup3PowerChainB2, // Group 3 ROW 5200 B Offset
* WgdsWiFiSarDeltaGroup3PowerMax3, // Group 3 ROW 6000-7000 Max
* WgdsWiFiSarDeltaGroup3PowerChainA3, // Group 3 ROW 6000-7000 A Offset
* WgdsWiFiSarDeltaGroup3PowerChainB3, // Group 3 ROW 6000-7000 B Offset
* }
* })
*/
if (wgds->revision > MAX_GEO_OFFSET_REVISION) {
printk(BIOS_ERR, "Invalid WGDS revision: %d\n", wgds->revision);
return;
}
package_size = 1 + wgds->chains_count * wgds->bands_count;
acpigen_write_name("WGDS");
acpigen_write_package(2);
acpigen_write_dword(wgds->revision);
/* Emit 'Domain Type' +
* Group specific delta of power (6 bytes * NUM_WGDS_SAR_GROUPS)
*/
acpigen_write_package(package_size);
acpigen_write_dword(DOMAIN_TYPE_WIFI);
for (set_num = 0; set_num < wgds->chains_count; set_num++) {
set = wgds_fetch_set(wgds, set_num);
for (i = 0; i < wgds->bands_count; i++)
acpigen_write_byte(set[i]);
}
acpigen_write_package_end();
acpigen_write_package_end();
}
static void sar_emit_ppag(struct gain_profile *ppag)
{
int i;
size_t package_size, set_num;
const uint8_t *set;
if (ppag == NULL)
return;
/*
* Name ("PPAG", Package () {
* Revision,
* Package () {
* Domain Type, // 0x7:WiFi
* PPAG Mode, // Defines the mode of ANT_gain control to be used
* ANT_gain Table Chain A // Defines the ANT_gain in dBi for chain A
* ANT_gain Table Chain B // Defines the ANT_gain in dBi for chain B
* }
* })
*/
if (ppag->revision > MAX_ANT_GAINS_REVISION) {
printk(BIOS_ERR, "Invalid PPAG revision: %d\n", ppag->revision);
return;
}
package_size = 1 + 1 + ppag->chains_count * ppag->bands_count;
acpigen_write_name("PPAG");
acpigen_write_package(2);
acpigen_write_dword(ppag->revision);
acpigen_write_package(package_size);
acpigen_write_dword(DOMAIN_TYPE_WIFI);
acpigen_write_dword(ppag->mode);
for (set_num = 0; set_num < ppag->chains_count; set_num++) {
set = ppag_fetch_set(ppag, set_num);
for (i = 0; i < ppag->bands_count; i++)
acpigen_write_byte(set[i]);
}
acpigen_write_package_end();
acpigen_write_package_end();
}
static void sar_emit_wtas(struct avg_profile *wtas)
{
int i;
size_t package_size;
if (wtas == NULL)
return;
/*
* Name (WTAS, Package() {
* {
* Revision,
* Package()
* {
* DomainType, // 0x7:WiFi
* WifiTASSelection, // Enable/Disable the TAS feature
* WifiTASListEntries, // No. of blocked countries not approved by OEM to
* BlockedListEntry1, support this feature
* BlockedListEntry2,
* BlockedListEntry3,
* BlockedListEntry4,
* BlockedListEntry5,
* BlockedListEntry6,
* BlockedListEntry7,
* BlockedListEntry8,
* BlockedListEntry9,
* BlockedListEntry10,
* BlockedListEntry11,
* BlockedListEntry12,
* BlockedListEntry13,
* BlockedListEntry14,
* BlockedListEntry15,
* BlockedListEntry16,
* }
* })
*/
package_size = 1 + 1 + 1 + MAX_DENYLIST_ENTRY;
acpigen_write_name("WTAS");
acpigen_write_package(2);
acpigen_write_dword(wtas->revision);
acpigen_write_package(package_size);
acpigen_write_dword(DOMAIN_TYPE_WIFI);
acpigen_write_byte(wtas->tas_selection);
acpigen_write_byte(wtas->tas_list_size);
for (i = 0; i < MAX_DENYLIST_ENTRY; i++)
acpigen_write_word(wtas->deny_list_entry[i]);
acpigen_write_package_end();
acpigen_write_package_end();
}
static void emit_sar_acpi_structures(const struct device *dev, struct dsm_profile *dsm)
{
union wifi_sar_limits sar_limits = {{NULL, NULL, NULL, NULL, NULL} };
/*
* If device type is PCI, ensure that the device has Intel vendor ID. CBFS SAR and SAR
* ACPI tables are currently used only by Intel WiFi devices.
*/
if (dev->path.type == DEVICE_PATH_PCI && dev->vendor != PCI_VID_INTEL)
return;
/* Retrieve the sar limits data */
if (get_wifi_sar_limits(&sar_limits) < 0) {
printk(BIOS_ERR, "failed getting SAR limits!\n");
return;
}
sar_emit_wrds(sar_limits.sar);
sar_emit_ewrd(sar_limits.sar);
sar_emit_wgds(sar_limits.wgds);
sar_emit_ppag(sar_limits.ppag);
sar_emit_wtas(sar_limits.wtas);
/* copy the dsm data to be later used for creating _DSM function */
if (sar_limits.dsm != NULL)
memcpy(dsm, sar_limits.dsm, sizeof(struct dsm_profile));
free(sar_limits.sar);
}
static void wifi_ssdt_write_device(const struct device *dev, const char *path)
{
/* Device */
acpigen_write_device(path);
acpi_device_write_uid(dev);
if (dev->chip_ops)
acpigen_write_name_string("_DDN", dev->chip_ops->name);
/* Address */
acpigen_write_ADR_pci_device(dev);
acpigen_pop_len(); /* Device */
}
static void wifi_ssdt_write_properties(const struct device *dev, const char *scope)
{
const struct drivers_wifi_generic_config *config = dev->chip_info;
bool is_cnvi_ddr_rfim_enabled = config && config->enable_cnvi_ddr_rfim;
/* Scope */
acpigen_write_scope(scope);
if (config) {
/* Wake capabilities */
acpigen_write_PRW(config->wake, ACPI_S3);
/* Add _DSD for DmaProperty property. */
if (config->add_acpi_dma_property)
acpi_device_add_dma_property(NULL);
}
/* Fill regulatory domain structure */
if (CONFIG(HAVE_REGULATORY_DOMAIN)) {
/*
* Name ("WRDD", Package () {
* WRDD_REVISION, // Revision
* Package () {
* DOMAIN_TYPE_WIFI, // Domain Type, 7:WiFi
* wifi_regulatory_domain() // Country Identifier
* }
* })
*/
acpigen_write_name("WRDD");
acpigen_write_package(2);
acpigen_write_integer(WRDD_REVISION);
acpigen_write_package(2);
acpigen_write_dword(DOMAIN_TYPE_WIFI);
acpigen_write_dword(wifi_regulatory_domain());
acpigen_pop_len();
acpigen_pop_len();
}
struct dsm_uuid dsm_ids[MAX_DSM_FUNCS];
/* We will need a copy dsm data to be used later for creating _DSM function */
struct dsm_profile dsm = {0};
uint8_t dsm_count = 0;
/* Fill Wifi sar related ACPI structures */
if (CONFIG(USE_SAR)) {
emit_sar_acpi_structures(dev, &dsm);
if (dsm.supported_functions != 0) {
for (int i = 1; i < ARRAY_SIZE(wifi_dsm_callbacks); i++)
if (!(dsm.supported_functions & (1 << i)))
wifi_dsm_callbacks[i] = NULL;
dsm_ids[dsm_count].uuid = ACPI_DSM_OEM_WIFI_UUID;
dsm_ids[dsm_count].callbacks = &wifi_dsm_callbacks[0];
dsm_ids[dsm_count].count = ARRAY_SIZE(wifi_dsm_callbacks);
dsm_ids[dsm_count].arg = &dsm;
dsm_count++;
}
}
if (is_cnvi_ddr_rfim_enabled) {
dsm_ids[dsm_count].uuid = ACPI_DSM_RFIM_WIFI_UUID;
dsm_ids[dsm_count].callbacks = &wifi_dsm2_callbacks[0];
dsm_ids[dsm_count].count = ARRAY_SIZE(wifi_dsm2_callbacks);
dsm_ids[dsm_count].arg = &is_cnvi_ddr_rfim_enabled;
dsm_count++;
}
acpigen_write_dsm_uuid_arr(dsm_ids, dsm_count);
acpigen_pop_len(); /* Scope */
printk(BIOS_INFO, "%s: %s %s\n", scope, dev->chip_ops ? dev->chip_ops->name : "",
dev_path(dev));
}
void wifi_pcie_fill_ssdt(const struct device *dev)
{
const char *path;
path = acpi_device_path(dev);
if (!path)
return;
wifi_ssdt_write_device(dev, path);
wifi_ssdt_write_properties(dev, path);
}
const char *wifi_pcie_acpi_name(const struct device *dev)
{
static char wifi_acpi_name[WIFI_ACPI_NAME_MAX_LEN];
/* ACPI 6.3, ASL 20.2.2: (Name Objects Encoding). */
snprintf(wifi_acpi_name, sizeof(wifi_acpi_name), "WF%02X",
(dev_path_encode(dev) & 0xff));
return wifi_acpi_name;
}
void wifi_cnvi_fill_ssdt(const struct device *dev)
{
const char *path;
if (!dev)
return;
path = acpi_device_path(dev->bus->dev);
if (!path)
return;
wifi_ssdt_write_properties(dev, path);
}