blob: ab8430f6fffdb90fcb13f46ef10dfa1ce7be395b [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
#include <console/console.h>
#include <commonlib/helpers.h>
#include <delay.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <device/pci_ops.h>
#include <device/pciexp.h>
static unsigned int ext_cap_id(unsigned int cap)
{
return cap & 0xffff;
}
static unsigned int ext_cap_next_offset(unsigned int cap)
{
return cap >> 20 & 0xffc;
}
static unsigned int find_ext_cap_offset(const struct device *dev, unsigned int cap_id,
unsigned int offset)
{
unsigned int this_cap_offset = offset;
while (this_cap_offset >= PCIE_EXT_CAP_OFFSET) {
const unsigned int this_cap = pci_read_config32(dev, this_cap_offset);
/* Bail out when this request is unsupported */
if (this_cap == 0xffffffff)
break;
if (ext_cap_id(this_cap) == cap_id)
return this_cap_offset;
this_cap_offset = ext_cap_next_offset(this_cap);
}
return 0;
}
/*
* Search for an extended capability with the ID `cap`.
*
* Returns the offset of the first matching extended
* capability if found, or 0 otherwise.
*
* A new search is started with `offset == 0`.
* To continue a search, the prior return value
* should be passed as `offset`.
*/
unsigned int pciexp_find_extended_cap(const struct device *dev, unsigned int cap,
unsigned int offset)
{
unsigned int next_cap_offset;
if (offset)
next_cap_offset = ext_cap_next_offset(pci_read_config32(dev, offset));
else
next_cap_offset = PCIE_EXT_CAP_OFFSET;
return find_ext_cap_offset(dev, cap, next_cap_offset);
}
/*
* Search for a vendor-specific extended capability,
* with the vendor-specific ID `cap`.
*
* Returns the offset of the vendor-specific header,
* i.e. the offset of the extended capability + 4,
* or 0 if none is found.
*
* A new search is started with `offset == 0`.
* To continue a search, the prior return value
* should be passed as `offset`.
*/
unsigned int pciexp_find_ext_vendor_cap(const struct device *dev, unsigned int cap,
unsigned int offset)
{
/* Reconstruct capability offset from vendor-specific header offset. */
if (offset >= 4)
offset -= 4;
for (;;) {
offset = pciexp_find_extended_cap(dev, PCI_EXT_CAP_ID_VNDR, offset);
if (!offset)
return 0;
const unsigned int vndr_cap = pci_read_config32(dev, offset + 4);
if ((vndr_cap & 0xffff) == cap)
return offset + 4;
}
}
/**
* Find a PCIe device with a given serial number, and a given VID if applicable
*
* @param serial The serial number of the device.
* @param vid Vendor ID of the device, may be 0 if not applicable.
* @param from Pointer to the device structure, used as a starting point in
* the linked list of all_devices, which can be 0 to start at the
* head of the list (i.e. all_devices).
* @return Pointer to the device struct.
*/
struct device *pcie_find_dsn(const uint64_t serial, const uint16_t vid,
struct device *from)
{
union dsn {
struct {
uint32_t dsn_low;
uint32_t dsn_high;
};
uint64_t dsn;
} dsn;
unsigned int cap;
uint16_t vendor_id;
if (!from)
from = all_devices;
else
from = from->next;
while (from) {
if (from->path.type == DEVICE_PATH_PCI) {
cap = pciexp_find_extended_cap(from, PCI_EXT_CAP_ID_DSN, 0);
/*
* For PCIe device, find extended capability for serial number.
* The capability header is 4 bytes, followed by lower 4 bytes
* of serial number, then higher 4 byes of serial number.
*/
if (cap != 0) {
dsn.dsn_low = pci_read_config32(from, cap + 4);
dsn.dsn_high = pci_read_config32(from, cap + 8);
vendor_id = pci_read_config16(from, PCI_VENDOR_ID);
if ((dsn.dsn == serial) && (vid == 0 || vendor_id == vid))
return from;
}
}
from = from->next;
}
return from;
}
/*
* Re-train a PCIe link
*/
#define PCIE_TRAIN_RETRY 10000
static int pciexp_retrain_link(struct device *dev, unsigned int cap)
{
unsigned int try;
u16 lnk;
/*
* Implementation note (page 633) in PCIe Specification 3.0 suggests
* polling the Link Training bit in the Link Status register until the
* value returned is 0 before setting the Retrain Link bit to 1.
* This is meant to avoid a race condition when using the
* Retrain Link mechanism.
*/
for (try = PCIE_TRAIN_RETRY; try > 0; try--) {
lnk = pci_read_config16(dev, cap + PCI_EXP_LNKSTA);
if (!(lnk & PCI_EXP_LNKSTA_LT))
break;
udelay(100);
}
if (try == 0) {
printk(BIOS_ERR, "%s: Link Retrain timeout\n", dev_path(dev));
return -1;
}
/* Start link retraining */
lnk = pci_read_config16(dev, cap + PCI_EXP_LNKCTL);
lnk |= PCI_EXP_LNKCTL_RL;
pci_write_config16(dev, cap + PCI_EXP_LNKCTL, lnk);
/* Wait for training to complete */
for (try = PCIE_TRAIN_RETRY; try > 0; try--) {
lnk = pci_read_config16(dev, cap + PCI_EXP_LNKSTA);
if (!(lnk & PCI_EXP_LNKSTA_LT))
return 0;
udelay(100);
}
printk(BIOS_ERR, "%s: Link Retrain timeout\n", dev_path(dev));
return -1;
}
static bool pciexp_is_ccc_active(struct device *root, unsigned int root_cap,
struct device *endp, unsigned int endp_cap)
{
u16 root_ccc, endp_ccc;
root_ccc = pci_read_config16(root, root_cap + PCI_EXP_LNKCTL) & PCI_EXP_LNKCTL_CCC;
endp_ccc = pci_read_config16(endp, endp_cap + PCI_EXP_LNKCTL) & PCI_EXP_LNKCTL_CCC;
if (root_ccc && endp_ccc) {
printk(BIOS_INFO, "PCIe: Common Clock Configuration already enabled\n");
return true;
}
return false;
}
/*
* Check the Slot Clock Configuration for root port and endpoint
* and enable Common Clock Configuration if possible. If CCC is
* enabled the link must be retrained.
*/
static void pciexp_enable_common_clock(struct device *root, unsigned int root_cap,
struct device *endp, unsigned int endp_cap)
{
u16 root_scc, endp_scc, lnkctl;
/* No need to enable common clock if it is already active. */
if (pciexp_is_ccc_active(root, root_cap, endp, endp_cap))
return;
/* Get Slot Clock Configuration for root port */
root_scc = pci_read_config16(root, root_cap + PCI_EXP_LNKSTA);
root_scc &= PCI_EXP_LNKSTA_SLC;
/* Get Slot Clock Configuration for endpoint */
endp_scc = pci_read_config16(endp, endp_cap + PCI_EXP_LNKSTA);
endp_scc &= PCI_EXP_LNKSTA_SLC;
/* Enable Common Clock Configuration and retrain */
if (root_scc && endp_scc) {
printk(BIOS_INFO, "Enabling Common Clock Configuration\n");
/* Set in endpoint */
lnkctl = pci_read_config16(endp, endp_cap + PCI_EXP_LNKCTL);
lnkctl |= PCI_EXP_LNKCTL_CCC;
pci_write_config16(endp, endp_cap + PCI_EXP_LNKCTL, lnkctl);
/* Set in root port */
lnkctl = pci_read_config16(root, root_cap + PCI_EXP_LNKCTL);
lnkctl |= PCI_EXP_LNKCTL_CCC;
pci_write_config16(root, root_cap + PCI_EXP_LNKCTL, lnkctl);
/* Retrain link if CCC was enabled */
pciexp_retrain_link(root, root_cap);
}
}
static void pciexp_enable_clock_power_pm(struct device *endp, unsigned int endp_cap)
{
/* check if per port clkreq is supported in device */
u32 endp_ca;
u16 lnkctl;
endp_ca = pci_read_config32(endp, endp_cap + PCI_EXP_LNKCAP);
if ((endp_ca & PCI_EXP_CLK_PM) == 0) {
printk(BIOS_INFO, "PCIE CLK PM is not supported by endpoint\n");
return;
}
lnkctl = pci_read_config16(endp, endp_cap + PCI_EXP_LNKCTL);
lnkctl = lnkctl | PCI_EXP_EN_CLK_PM;
pci_write_config16(endp, endp_cap + PCI_EXP_LNKCTL, lnkctl);
}
static bool _pciexp_ltr_supported(struct device *dev, unsigned int cap)
{
return pci_read_config16(dev, cap + PCI_EXP_DEVCAP2) & PCI_EXP_DEVCAP2_LTR;
}
static bool _pciexp_ltr_enabled(struct device *dev, unsigned int cap)
{
return pci_read_config16(dev, cap + PCI_EXP_DEVCTL2) & PCI_EXP_DEV2_LTR;
}
static bool _pciexp_enable_ltr(struct device *parent, unsigned int parent_cap,
struct device *dev, unsigned int cap)
{
if (!_pciexp_ltr_supported(dev, cap)) {
printk(BIOS_DEBUG, "%s: No LTR support\n", dev_path(dev));
return false;
}
if (_pciexp_ltr_enabled(dev, cap))
return true;
if (parent &&
(!_pciexp_ltr_supported(parent, parent_cap) ||
!_pciexp_ltr_enabled(parent, parent_cap)))
return false;
pci_or_config16(dev, cap + PCI_EXP_DEVCTL2, PCI_EXP_DEV2_LTR);
printk(BIOS_INFO, "%s: Enabled LTR\n", dev_path(dev));
return true;
}
static void pciexp_enable_ltr(struct device *dev)
{
const unsigned int cap = pci_find_capability(dev, PCI_CAP_ID_PCIE);
if (!cap)
return;
/*
* If we have get_ltr_max_latencies(), treat `dev` as the root.
* If not, let _pciexp_enable_ltr() query the parent's state.
*/
struct device *parent = NULL;
unsigned int parent_cap = 0;
if (!dev->ops->ops_pci || !dev->ops->ops_pci->get_ltr_max_latencies) {
parent = dev->bus->dev;
if (parent->path.type != DEVICE_PATH_PCI)
return;
parent_cap = pci_find_capability(parent, PCI_CAP_ID_PCIE);
if (!parent_cap)
return;
}
(void)_pciexp_enable_ltr(parent, parent_cap, dev, cap);
}
bool pciexp_get_ltr_max_latencies(struct device *dev, u16 *max_snoop, u16 *max_nosnoop)
{
/* Walk the hierarchy up to find get_ltr_max_latencies(). */
do {
if (dev->ops->ops_pci && dev->ops->ops_pci->get_ltr_max_latencies)
break;
if (dev->bus->dev == dev || dev->bus->dev->path.type != DEVICE_PATH_PCI)
return false;
dev = dev->bus->dev;
} while (true);
dev->ops->ops_pci->get_ltr_max_latencies(max_snoop, max_nosnoop);
return true;
}
static void pciexp_configure_ltr(struct device *parent, unsigned int parent_cap,
struct device *dev, unsigned int cap)
{
if (!_pciexp_enable_ltr(parent, parent_cap, dev, cap))
return;
const unsigned int ltr_cap = pciexp_find_extended_cap(dev, PCIE_EXT_CAP_LTR_ID, 0);
if (!ltr_cap)
return;
u16 max_snoop, max_nosnoop;
if (!pciexp_get_ltr_max_latencies(dev, &max_snoop, &max_nosnoop))
return;
pci_write_config16(dev, ltr_cap + PCI_LTR_MAX_SNOOP, max_snoop);
pci_write_config16(dev, ltr_cap + PCI_LTR_MAX_NOSNOOP, max_nosnoop);
printk(BIOS_INFO, "%s: Programmed LTR max latencies\n", dev_path(dev));
}
static unsigned char pciexp_L1_substate_cal(struct device *dev, unsigned int endp_cap,
unsigned int *data)
{
unsigned char mult[4] = {2, 10, 100, 0};
unsigned int L1SubStateSupport = *data & 0xf;
unsigned int comm_mode_rst_time = (*data >> 8) & 0xff;
unsigned int power_on_scale = (*data >> 16) & 0x3;
unsigned int power_on_value = (*data >> 19) & 0x1f;
unsigned int endp_data = pci_read_config32(dev, endp_cap + 4);
unsigned int endp_L1SubStateSupport = endp_data & 0xf;
unsigned int endp_comm_mode_restore_time = (endp_data >> 8) & 0xff;
unsigned int endp_power_on_scale = (endp_data >> 16) & 0x3;
unsigned int endp_power_on_value = (endp_data >> 19) & 0x1f;
L1SubStateSupport &= endp_L1SubStateSupport;
if (L1SubStateSupport == 0)
return 0;
if (power_on_value * mult[power_on_scale] <
endp_power_on_value * mult[endp_power_on_scale]) {
power_on_value = endp_power_on_value;
power_on_scale = endp_power_on_scale;
}
if (comm_mode_rst_time < endp_comm_mode_restore_time)
comm_mode_rst_time = endp_comm_mode_restore_time;
*data = (comm_mode_rst_time << 8) | (power_on_scale << 16)
| (power_on_value << 19) | L1SubStateSupport;
return 1;
}
static void pciexp_L1_substate_commit(struct device *root, struct device *dev,
unsigned int root_cap, unsigned int end_cap)
{
struct device *dev_t;
unsigned char L1_ss_ok;
unsigned int rp_L1_support = pci_read_config32(root, root_cap + 4);
unsigned int L1SubStateSupport;
unsigned int comm_mode_rst_time;
unsigned int power_on_scale;
unsigned int endp_power_on_value;
for (dev_t = dev; dev_t; dev_t = dev_t->sibling) {
/*
* rp_L1_support is init'd above from root port.
* it needs coordination with endpoints to reach in common.
* if certain endpoint doesn't support L1 Sub-State, abort
* this feature enabling.
*/
L1_ss_ok = pciexp_L1_substate_cal(dev_t, end_cap,
&rp_L1_support);
if (!L1_ss_ok)
return;
}
L1SubStateSupport = rp_L1_support & 0xf;
comm_mode_rst_time = (rp_L1_support >> 8) & 0xff;
power_on_scale = (rp_L1_support >> 16) & 0x3;
endp_power_on_value = (rp_L1_support >> 19) & 0x1f;
printk(BIOS_INFO, "L1 Sub-State supported from root port %d\n",
root->path.pci.devfn >> 3);
printk(BIOS_INFO, "L1 Sub-State Support = 0x%x\n", L1SubStateSupport);
printk(BIOS_INFO, "CommonModeRestoreTime = 0x%x\n", comm_mode_rst_time);
printk(BIOS_INFO, "Power On Value = 0x%x, Power On Scale = 0x%x\n",
endp_power_on_value, power_on_scale);
pci_update_config32(root, root_cap + 0x08, ~0xff00,
(comm_mode_rst_time << 8));
pci_update_config32(root, root_cap + 0x0c, 0xffffff04,
(endp_power_on_value << 3) | (power_on_scale));
/* TODO: 0xa0, 2 are values that work on some chipsets but really
* should be determined dynamically by looking at downstream devices.
*/
pci_update_config32(root, root_cap + 0x08,
~(ASPM_LTR_L12_THRESHOLD_VALUE_MASK |
ASPM_LTR_L12_THRESHOLD_SCALE_MASK),
(0xa0 << ASPM_LTR_L12_THRESHOLD_VALUE_OFFSET) |
(2 << ASPM_LTR_L12_THRESHOLD_SCALE_OFFSET));
pci_update_config32(root, root_cap + 0x08, ~0x1f,
L1SubStateSupport);
for (dev_t = dev; dev_t; dev_t = dev_t->sibling) {
pci_update_config32(dev_t, end_cap + 0x0c, 0xffffff04,
(endp_power_on_value << 3) | (power_on_scale));
pci_update_config32(dev_t, end_cap + 0x08,
~(ASPM_LTR_L12_THRESHOLD_VALUE_MASK |
ASPM_LTR_L12_THRESHOLD_SCALE_MASK),
(0xa0 << ASPM_LTR_L12_THRESHOLD_VALUE_OFFSET) |
(2 << ASPM_LTR_L12_THRESHOLD_SCALE_OFFSET));
pci_update_config32(dev_t, end_cap + 0x08, ~0x1f,
L1SubStateSupport);
}
}
static void pciexp_config_L1_sub_state(struct device *root, struct device *dev)
{
unsigned int root_cap, end_cap;
/* Do it for function 0 only */
if (dev->path.pci.devfn & 0x7)
return;
root_cap = pciexp_find_extended_cap(root, PCIE_EXT_CAP_L1SS_ID, 0);
if (!root_cap)
return;
end_cap = pciexp_find_extended_cap(dev, PCIE_EXT_CAP_L1SS_ID, 0);
if (!end_cap) {
if (dev->vendor != PCI_VID_INTEL)
return;
end_cap = pciexp_find_ext_vendor_cap(dev, 0xcafe, 0);
if (!end_cap)
return;
}
pciexp_L1_substate_commit(root, dev, root_cap, end_cap);
}
/*
* Determine the ASPM L0s or L1 exit latency for a link
* by checking both root port and endpoint and returning
* the highest latency value.
*/
static int pciexp_aspm_latency(struct device *root, unsigned int root_cap,
struct device *endp, unsigned int endp_cap,
enum aspm_type type)
{
int root_lat = 0, endp_lat = 0;
u32 root_lnkcap, endp_lnkcap;
root_lnkcap = pci_read_config32(root, root_cap + PCI_EXP_LNKCAP);
endp_lnkcap = pci_read_config32(endp, endp_cap + PCI_EXP_LNKCAP);
/* Make sure the link supports this ASPM type by checking
* capability bits 11:10 with aspm_type offset by 1 */
if (!(root_lnkcap & (1 << (type + 9))) ||
!(endp_lnkcap & (1 << (type + 9))))
return -1;
/* Find the one with higher latency */
switch (type) {
case PCIE_ASPM_L0S:
root_lat = (root_lnkcap & PCI_EXP_LNKCAP_L0SEL) >> 12;
endp_lat = (endp_lnkcap & PCI_EXP_LNKCAP_L0SEL) >> 12;
break;
case PCIE_ASPM_L1:
root_lat = (root_lnkcap & PCI_EXP_LNKCAP_L1EL) >> 15;
endp_lat = (endp_lnkcap & PCI_EXP_LNKCAP_L1EL) >> 15;
break;
default:
return -1;
}
return (endp_lat > root_lat) ? endp_lat : root_lat;
}
/*
* Enable ASPM on PCIe root port and endpoint.
*/
static void pciexp_enable_aspm(struct device *root, unsigned int root_cap,
struct device *endp, unsigned int endp_cap)
{
const char *aspm_type_str[] = { "None", "L0s", "L1", "L0s and L1" };
enum aspm_type apmc = PCIE_ASPM_NONE;
int exit_latency, ok_latency;
u16 lnkctl;
u32 devcap;
if (endp->disable_pcie_aspm)
return;
/* Get endpoint device capabilities for acceptable limits */
devcap = pci_read_config32(endp, endp_cap + PCI_EXP_DEVCAP);
/* Enable L0s if it is within endpoint acceptable limit */
ok_latency = (devcap & PCI_EXP_DEVCAP_L0S) >> 6;
exit_latency = pciexp_aspm_latency(root, root_cap, endp, endp_cap,
PCIE_ASPM_L0S);
if (exit_latency >= 0 && exit_latency <= ok_latency)
apmc |= PCIE_ASPM_L0S;
/* Enable L1 if it is within endpoint acceptable limit */
ok_latency = (devcap & PCI_EXP_DEVCAP_L1) >> 9;
exit_latency = pciexp_aspm_latency(root, root_cap, endp, endp_cap,
PCIE_ASPM_L1);
if (exit_latency >= 0 && exit_latency <= ok_latency)
apmc |= PCIE_ASPM_L1;
if (apmc != PCIE_ASPM_NONE) {
/* Set APMC in root port first */
lnkctl = pci_read_config16(root, root_cap + PCI_EXP_LNKCTL);
lnkctl |= apmc;
pci_write_config16(root, root_cap + PCI_EXP_LNKCTL, lnkctl);
/* Set APMC in endpoint device next */
lnkctl = pci_read_config16(endp, endp_cap + PCI_EXP_LNKCTL);
lnkctl |= apmc;
pci_write_config16(endp, endp_cap + PCI_EXP_LNKCTL, lnkctl);
}
printk(BIOS_INFO, "ASPM: Enabled %s\n", aspm_type_str[apmc]);
}
/*
* Set max payload size of endpoint in accordance with max payload size of root port.
*/
static void pciexp_set_max_payload_size(struct device *root, unsigned int root_cap,
struct device *endp, unsigned int endp_cap)
{
unsigned int endp_max_payload, root_max_payload, max_payload;
u16 endp_devctl, root_devctl;
u32 endp_devcap, root_devcap;
/* Get max payload size supported by endpoint */
endp_devcap = pci_read_config32(endp, endp_cap + PCI_EXP_DEVCAP);
endp_max_payload = endp_devcap & PCI_EXP_DEVCAP_PAYLOAD;
/* Get max payload size supported by root port */
root_devcap = pci_read_config32(root, root_cap + PCI_EXP_DEVCAP);
root_max_payload = root_devcap & PCI_EXP_DEVCAP_PAYLOAD;
/* Set max payload to smaller of the reported device capability. */
max_payload = MIN(endp_max_payload, root_max_payload);
if (max_payload > 5) {
/* Values 6 and 7 are reserved in PCIe 3.0 specs. */
printk(BIOS_ERR, "PCIe: Max_Payload_Size field restricted from %d to 5\n",
max_payload);
max_payload = 5;
}
endp_devctl = pci_read_config16(endp, endp_cap + PCI_EXP_DEVCTL);
endp_devctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
endp_devctl |= max_payload << 5;
pci_write_config16(endp, endp_cap + PCI_EXP_DEVCTL, endp_devctl);
root_devctl = pci_read_config16(root, root_cap + PCI_EXP_DEVCTL);
root_devctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
root_devctl |= max_payload << 5;
pci_write_config16(root, root_cap + PCI_EXP_DEVCTL, root_devctl);
printk(BIOS_INFO, "PCIe: Max_Payload_Size adjusted to %d\n", (1 << (max_payload + 7)));
}
/*
* Clear Lane Error State at the end of PCIe link training.
* Lane error status is cleared if PCIEXP_LANE_ERR_STAT_CLEAR is set.
* Lane error is normal during link training, so we need to clear it.
* At this moment, link has been used, but for a very short duration.
*/
static void clear_lane_error_status(struct device *dev)
{
u32 reg32;
u16 pos;
pos = pciexp_find_extended_cap(dev, PCI_EXP_SEC_CAP_ID, 0);
if (pos == 0)
return;
reg32 = pci_read_config32(dev, pos + PCI_EXP_SEC_LANE_ERR_STATUS);
if (reg32 == 0)
return;
printk(BIOS_DEBUG, "%s: Clear Lane Error Status.\n", dev_path(dev));
printk(BIOS_DEBUG, "LaneErrStat:0x%x\n", reg32);
pci_write_config32(dev, pos + PCI_EXP_SEC_LANE_ERR_STATUS, reg32);
}
static void pciexp_tune_dev(struct device *dev)
{
struct device *root = dev->bus->dev;
unsigned int root_cap, cap;
cap = pci_find_capability(dev, PCI_CAP_ID_PCIE);
if (!cap)
return;
root_cap = pci_find_capability(root, PCI_CAP_ID_PCIE);
if (!root_cap)
return;
/* Check for and enable Common Clock */
if (CONFIG(PCIEXP_COMMON_CLOCK))
pciexp_enable_common_clock(root, root_cap, dev, cap);
/* Check if per port CLK req is supported by endpoint*/
if (CONFIG(PCIEXP_CLK_PM))
pciexp_enable_clock_power_pm(dev, cap);
/* Enable L1 Sub-State when both root port and endpoint support */
if (CONFIG(PCIEXP_L1_SUB_STATE))
pciexp_config_L1_sub_state(root, dev);
/* Check for and enable ASPM */
if (CONFIG(PCIEXP_ASPM))
pciexp_enable_aspm(root, root_cap, dev, cap);
/* Clear PCIe Lane Error Status */
if (CONFIG(PCIEXP_LANE_ERR_STAT_CLEAR))
clear_lane_error_status(root);
/* Adjust Max_Payload_Size of link ends. */
pciexp_set_max_payload_size(root, root_cap, dev, cap);
pciexp_configure_ltr(root, root_cap, dev, cap);
}
void pciexp_scan_bus(struct bus *bus, unsigned int min_devfn,
unsigned int max_devfn)
{
struct device *child;
pciexp_enable_ltr(bus->dev);
pci_scan_bus(bus, min_devfn, max_devfn);
for (child = bus->children; child; child = child->sibling) {
if (child->path.type != DEVICE_PATH_PCI)
continue;
if ((child->path.pci.devfn < min_devfn) ||
(child->path.pci.devfn > max_devfn)) {
continue;
}
pciexp_tune_dev(child);
}
}
void pciexp_scan_bridge(struct device *dev)
{
do_pci_scan_bridge(dev, pciexp_scan_bus);
}
/** Default device operations for PCI Express bridges */
static struct pci_operations pciexp_bus_ops_pci = {
.set_subsystem = 0,
};
struct device_operations default_pciexp_ops_bus = {
.read_resources = pci_bus_read_resources,
.set_resources = pci_dev_set_resources,
.enable_resources = pci_bus_enable_resources,
.scan_bus = pciexp_scan_bridge,
.reset_bus = pci_bus_reset,
.ops_pci = &pciexp_bus_ops_pci,
};
static void pciexp_hotplug_dummy_read_resources(struct device *dev)
{
struct resource *resource;
/* Add extra memory space */
resource = new_resource(dev, 0x10);
resource->size = CONFIG_PCIEXP_HOTPLUG_MEM;
resource->align = 12;
resource->gran = 12;
resource->limit = 0xffffffff;
resource->flags |= IORESOURCE_MEM;
/* Add extra prefetchable memory space */
resource = new_resource(dev, 0x14);
resource->size = CONFIG_PCIEXP_HOTPLUG_PREFETCH_MEM;
resource->align = 12;
resource->gran = 12;
resource->limit = 0xffffffffffffffff;
resource->flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
/* Set resource flag requesting allocation above 4G boundary. */
if (CONFIG(PCIEXP_HOTPLUG_PREFETCH_MEM_ABOVE_4G))
resource->flags |= IORESOURCE_ABOVE_4G;
/* Add extra I/O space */
resource = new_resource(dev, 0x18);
resource->size = CONFIG_PCIEXP_HOTPLUG_IO;
resource->align = 12;
resource->gran = 12;
resource->limit = 0xffff;
resource->flags |= IORESOURCE_IO;
}
static struct device_operations pciexp_hotplug_dummy_ops = {
.read_resources = pciexp_hotplug_dummy_read_resources,
.set_resources = noop_set_resources,
};
void pciexp_hotplug_scan_bridge(struct device *dev)
{
dev->hotplug_port = 1;
dev->hotplug_buses = CONFIG_PCIEXP_HOTPLUG_BUSES;
/* Normal PCIe Scan */
pciexp_scan_bridge(dev);
/* Add dummy slot to preserve resources, must happen after bus scan */
struct device *dummy;
struct device_path dummy_path = { .type = DEVICE_PATH_NONE };
dummy = alloc_dev(dev->link_list, &dummy_path);
dummy->ops = &pciexp_hotplug_dummy_ops;
}
struct device_operations default_pciexp_hotplug_ops_bus = {
.read_resources = pci_bus_read_resources,
.set_resources = pci_dev_set_resources,
.enable_resources = pci_bus_enable_resources,
.scan_bus = pciexp_hotplug_scan_bridge,
.reset_bus = pci_bus_reset,
.ops_pci = &pciexp_bus_ops_pci,
};