blob: 21b43529d7f8ef95b19db8831eba3c38a4d45ff2 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Originally based on the Linux kernel (drivers/pci/pci.c).
* PCI Bus Services, see include/linux/pci.h for further explanation.
*/
#include <acpi/acpi.h>
#include <assert.h>
#include <cbmem.h>
#include <device/pci_ops.h>
#include <bootmode.h>
#include <console/console.h>
#include <cpu/cpu.h>
#include <stdlib.h>
#include <string.h>
#include <delay.h>
#include <device/cardbus.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <device/pcix.h>
#include <device/pciexp.h>
#include <lib.h>
#include <pc80/i8259.h>
#include <security/vboot/vbnv.h>
#include <timestamp.h>
#include <types.h>
u8 pci_moving_config8(struct device *dev, unsigned int reg)
{
u8 value, ones, zeroes;
value = pci_read_config8(dev, reg);
pci_write_config8(dev, reg, 0xff);
ones = pci_read_config8(dev, reg);
pci_write_config8(dev, reg, 0x00);
zeroes = pci_read_config8(dev, reg);
pci_write_config8(dev, reg, value);
return ones ^ zeroes;
}
u16 pci_moving_config16(struct device *dev, unsigned int reg)
{
u16 value, ones, zeroes;
value = pci_read_config16(dev, reg);
pci_write_config16(dev, reg, 0xffff);
ones = pci_read_config16(dev, reg);
pci_write_config16(dev, reg, 0x0000);
zeroes = pci_read_config16(dev, reg);
pci_write_config16(dev, reg, value);
return ones ^ zeroes;
}
u32 pci_moving_config32(struct device *dev, unsigned int reg)
{
u32 value, ones, zeroes;
value = pci_read_config32(dev, reg);
pci_write_config32(dev, reg, 0xffffffff);
ones = pci_read_config32(dev, reg);
pci_write_config32(dev, reg, 0x00000000);
zeroes = pci_read_config32(dev, reg);
pci_write_config32(dev, reg, value);
return ones ^ zeroes;
}
/**
* Given a device and register, read the size of the BAR for that register.
*
* @param dev Pointer to the device structure.
* @param index Address of the PCI configuration register.
* @return TODO
*/
struct resource *pci_get_resource(struct device *dev, unsigned long index)
{
struct resource *resource;
unsigned long value, attr;
resource_t moving, limit;
/* Initialize the resources to nothing. */
resource = new_resource(dev, index);
/* Get the initial value. */
value = pci_read_config32(dev, index);
/* See which bits move. */
moving = pci_moving_config32(dev, index);
/* Initialize attr to the bits that do not move. */
attr = value & ~moving;
/* If it is a 64bit resource look at the high half as well. */
if (((attr & PCI_BASE_ADDRESS_SPACE_IO) == 0) &&
((attr & PCI_BASE_ADDRESS_MEM_LIMIT_MASK) ==
PCI_BASE_ADDRESS_MEM_LIMIT_64)) {
/* Find the high bits that move. */
moving |=
((resource_t)pci_moving_config32(dev, index + 4)) << 32;
}
/* Find the resource constraints.
* Start by finding the bits that move. From there:
* - Size is the least significant bit of the bits that move.
* - Limit is all of the bits that move plus all of the lower bits.
* See PCI Spec 6.2.5.1.
*/
limit = 0;
if (moving) {
resource->size = 1;
resource->align = resource->gran = 0;
while (!(moving & resource->size)) {
resource->size <<= 1;
resource->align += 1;
resource->gran += 1;
}
resource->limit = limit = moving | (resource->size - 1);
if (pci_base_address_is_memory_space(attr)) {
/* Page-align to allow individual mapping of devices. */
if (resource->align < 12)
resource->align = 12;
}
}
/*
* Some broken hardware has read-only registers that do not
* really size correctly.
*
* Example: the Acer M7229 has BARs 1-4 normally read-only,
* so BAR1 at offset 0x10 reads 0x1f1. If you size that register
* by writing 0xffffffff to it, it will read back as 0x1f1 -- which
* is a violation of the spec.
*
* We catch this case and ignore it by observing which bits move.
*
* This also catches the common case of unimplemented registers
* that always read back as 0.
*/
if (moving == 0) {
if (value != 0) {
printk(BIOS_DEBUG, "%s register %02lx(%08lx), read-only ignoring it\n",
dev_path(dev), index, value);
}
resource->flags = 0;
} else if (attr & PCI_BASE_ADDRESS_SPACE_IO) {
/* An I/O mapped base address. */
resource->flags |= IORESOURCE_IO;
/* I don't want to deal with 32bit I/O resources. */
resource->limit = 0xffff;
} else {
/* A Memory mapped base address. */
attr &= PCI_BASE_ADDRESS_MEM_ATTR_MASK;
resource->flags |= IORESOURCE_MEM;
if (attr & PCI_BASE_ADDRESS_MEM_PREFETCH) {
resource->flags |= IORESOURCE_PREFETCH;
if (CONFIG(PCIEXP_HOTPLUG_PREFETCH_MEM_ABOVE_4G)
&& dev_path_hotplug(dev))
resource->flags |= IORESOURCE_ABOVE_4G;
}
attr &= PCI_BASE_ADDRESS_MEM_LIMIT_MASK;
if (attr == PCI_BASE_ADDRESS_MEM_LIMIT_32) {
/* 32bit limit. */
resource->limit = 0xffffffffUL;
} else if (attr == PCI_BASE_ADDRESS_MEM_LIMIT_1M) {
/* 1MB limit. */
resource->limit = 0x000fffffUL;
} else if (attr == PCI_BASE_ADDRESS_MEM_LIMIT_64) {
/* 64bit limit. */
resource->limit = 0xffffffffffffffffULL;
resource->flags |= IORESOURCE_PCI64;
} else {
/* Invalid value. */
printk(BIOS_ERR, "Broken BAR with value %lx\n", attr);
printk(BIOS_ERR, " on dev %s at index %02lx\n",
dev_path(dev), index);
resource->flags = 0;
}
}
/* Don't let the limit exceed which bits can move. */
if (resource->limit > limit)
resource->limit = limit;
return resource;
}
/**
* Given a device and an index, read the size of the BAR for that register.
*
* @param dev Pointer to the device structure.
* @param index Address of the PCI configuration register.
*/
static void pci_get_rom_resource(struct device *dev, unsigned long index)
{
struct resource *resource;
unsigned long value;
resource_t moving;
/* Initialize the resources to nothing. */
resource = new_resource(dev, index);
/* Get the initial value. */
value = pci_read_config32(dev, index);
/* See which bits move. */
moving = pci_moving_config32(dev, index);
/* Clear the Enable bit. */
moving = moving & ~PCI_ROM_ADDRESS_ENABLE;
/* Find the resource constraints.
* Start by finding the bits that move. From there:
* - Size is the least significant bit of the bits that move.
* - Limit is all of the bits that move plus all of the lower bits.
* See PCI Spec 6.2.5.1.
*/
if (moving) {
resource->size = 1;
resource->align = resource->gran = 0;
while (!(moving & resource->size)) {
resource->size <<= 1;
resource->align += 1;
resource->gran += 1;
}
resource->limit = moving | (resource->size - 1);
resource->flags |= IORESOURCE_MEM | IORESOURCE_READONLY;
} else {
if (value != 0) {
printk(BIOS_DEBUG, "%s register %02lx(%08lx), read-only ignoring it\n",
dev_path(dev), index, value);
}
resource->flags = 0;
}
compact_resources(dev);
}
/**
* Given a device, read the size of the MSI-X table.
*
* @param dev Pointer to the device structure.
* @return MSI-X table size or 0 if not MSI-X capable device
*/
size_t pci_msix_table_size(struct device *dev)
{
const size_t pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
if (!pos)
return 0;
const u16 control = pci_read_config16(dev, pos + PCI_MSIX_FLAGS);
return (control & PCI_MSIX_FLAGS_QSIZE) + 1;
}
/**
* Given a device, return the table offset and bar the MSI-X tables resides in.
*
* @param dev Pointer to the device structure.
* @param offset Returned value gives the offset in bytes inside the PCI BAR.
* @param idx The returned value is the index of the PCI_BASE_ADDRESS register
* the MSI-X table is located in.
* @return Zero on success
*/
int pci_msix_table_bar(struct device *dev, u32 *offset, u8 *idx)
{
const size_t pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
if (!pos || !offset || !idx)
return 1;
*offset = pci_read_config32(dev, pos + PCI_MSIX_TABLE);
*idx = (u8)(*offset & PCI_MSIX_PBA_BIR);
*offset &= PCI_MSIX_PBA_OFFSET;
return 0;
}
/**
* Given a device, return a msix_entry pointer or NULL if no table was found.
*
* @param dev Pointer to the device structure.
*
* @return NULL on error
*/
struct msix_entry *pci_msix_get_table(struct device *dev)
{
struct resource *res;
u32 offset;
u8 idx;
if (pci_msix_table_bar(dev, &offset, &idx))
return NULL;
if (idx > 5)
return NULL;
res = probe_resource(dev, idx * 4 + PCI_BASE_ADDRESS_0);
if (!res || !res->base || offset >= res->size)
return NULL;
if ((res->flags & IORESOURCE_PCI64) &&
(uintptr_t)res->base != res->base)
return NULL;
return (struct msix_entry *)((uintptr_t)res->base + offset);
}
static unsigned int get_rebar_offset(const struct device *dev, unsigned long index)
{
uint32_t offset = pciexp_find_extended_cap(dev, PCIE_EXT_CAP_RESIZABLE_BAR, 0);
if (!offset)
return 0;
/* Convert PCI_BASE_ADDRESS_0, ..._1, ..._2 into 0, 1, 2... */
const unsigned int find_bar_idx = (index - PCI_BASE_ADDRESS_0) /
sizeof(uint32_t);
/* Although all of the Resizable BAR Control Registers contain an
"NBARs" field, it is only valid in the Control Register for BAR 0 */
const uint32_t rebar_ctrl0 = pci_read_config32(dev, offset + PCI_REBAR_CTRL_OFFSET);
const unsigned int nbars = (rebar_ctrl0 & PCI_REBAR_CTRL_NBARS_MASK) >>
PCI_REBAR_CTRL_NBARS_SHIFT;
for (unsigned int i = 0; i < nbars; i++, offset += sizeof(uint64_t)) {
const uint32_t rebar_ctrl = pci_read_config32(
dev, offset + PCI_REBAR_CTRL_OFFSET);
const uint32_t bar_idx = rebar_ctrl & PCI_REBAR_CTRL_IDX_MASK;
if (bar_idx == find_bar_idx)
return offset;
}
return 0;
}
/* Bit 20 = 1 MiB, bit 21 = 2 MiB, bit 22 = 4 MiB, ... bit 63 = 8 EiB */
static uint64_t get_rebar_sizes_mask(const struct device *dev,
unsigned long index)
{
uint64_t size_mask = 0ULL;
const uint32_t offset = get_rebar_offset(dev, index);
if (!offset)
return 0;
/* Get 1 MB - 128 TB support from CAP register */
const uint32_t cap = pci_read_config32(dev, offset + PCI_REBAR_CAP_OFFSET);
/* Shift the bits from 4-31 to 0-27 (i.e., down by 4 bits) */
size_mask |= ((cap & PCI_REBAR_CAP_SIZE_MASK) >> 4);
/* Get 256 TB - 8 EB support from CTRL register and store it in bits 28-43 */
const uint64_t ctrl = pci_read_config32(dev, offset + PCI_REBAR_CTRL_OFFSET);
/* Shift ctrl mask from bit 16 to bit 28, so that the two
masks (fom cap and ctrl) form a contiguous bitmask when
concatenated (i.e., up by 12 bits). */
size_mask |= ((ctrl & PCI_REBAR_CTRL_SIZE_MASK) << 12);
/* Now that the mask occupies bits 0-43, shift it up to 20-63, so they
represent the actual powers of 2. */
return size_mask << 20;
}
static void pci_store_rebar_size(const struct device *dev,
const struct resource *resource)
{
const unsigned int num_bits = __fls64(resource->size);
const uint32_t offset = get_rebar_offset(dev, resource->index);
if (!offset)
return;
pci_update_config32(dev, offset + PCI_REBAR_CTRL_OFFSET,
~PCI_REBAR_CTRL_SIZE_MASK,
num_bits << PCI_REBAR_CTRL_SIZE_SHIFT);
}
static void configure_adjustable_base(const struct device *dev,
unsigned long index,
struct resource *res)
{
/*
* Excerpt from an implementation note from the PCIe spec:
*
* System software uses this capability in place of the above mentioned
* method of determining the resource size[0], and prior to assigning
* the base address to the BAR. Potential usable resource sizes are
* reported by the Function via its Resizable BAR Capability and Control
* registers. It is intended that the software allocate the largest of
* the reported sizes that it can, since allocating less address space
* than the largest reported size can result in lower
* performance. Software then writes the size to the Resizable BAR
* Control register for the appropriate BAR for the Function. Following
* this, the base address is written to the BAR.
*
* [0] Referring to using the moving bits in the BAR to determine the
* requested size of the MMIO region
*/
const uint64_t size_mask = get_rebar_sizes_mask(dev, index);
if (!size_mask)
return;
int max_requested_bits = __fls64(size_mask);
if (max_requested_bits > CONFIG_PCIEXP_DEFAULT_MAX_RESIZABLE_BAR_BITS) {
printk(BIOS_WARNING, "Device %s requests a BAR with"
" %u bits of address space, which coreboot is not"
" configured to hand out, truncating to %u bits\n",
dev_path(dev), max_requested_bits,
CONFIG_PCIEXP_DEFAULT_MAX_RESIZABLE_BAR_BITS);
max_requested_bits = CONFIG_PCIEXP_DEFAULT_MAX_RESIZABLE_BAR_BITS;
}
if (!(res->flags & IORESOURCE_PCI64) && max_requested_bits > 32) {
printk(BIOS_ERR, "Resizable BAR requested"
" above 32 bits, but PCI function reported a"
" 32-bit BAR.");
return;
}
/* Configure the resource parameters for the adjustable BAR */
res->size = 1ULL << max_requested_bits;
res->align = max_requested_bits;
res->gran = max_requested_bits;
res->limit = (res->flags & IORESOURCE_PCI64) ? UINT64_MAX : UINT32_MAX;
res->flags |= (res->flags & IORESOURCE_PCI64) ?
IORESOURCE_PCIE_RESIZABLE_BAR | IORESOURCE_ABOVE_4G :
IORESOURCE_PCIE_RESIZABLE_BAR;
printk(BIOS_INFO, "%s: Adjusting resource index %lu: base: %llx size: %llx "
"align: %d gran: %d limit: %llx\n",
dev_path(dev), res->index, res->base, res->size,
res->align, res->gran, res->limit);
}
/**
* Read the base address registers for a given device.
*
* @param dev Pointer to the dev structure.
* @param howmany How many registers to read (6 for device, 2 for bridge).
*/
static void pci_read_bases(struct device *dev, unsigned int howmany)
{
unsigned long index;
for (index = PCI_BASE_ADDRESS_0;
(index < PCI_BASE_ADDRESS_0 + (howmany << 2));) {
struct resource *resource;
resource = pci_get_resource(dev, index);
const bool is_pcie = pci_find_capability(dev, PCI_CAP_ID_PCIE) != 0;
if (CONFIG(PCIEXP_SUPPORT_RESIZABLE_BARS) && is_pcie)
configure_adjustable_base(dev, index, resource);
index += (resource->flags & IORESOURCE_PCI64) ? 8 : 4;
}
compact_resources(dev);
}
static void pci_record_bridge_resource(struct device *dev, resource_t moving,
unsigned int index, unsigned long type)
{
struct resource *resource;
unsigned long gran;
resource_t step;
resource = NULL;
if (!moving)
return;
/* Initialize the constraints on the current bus. */
resource = new_resource(dev, index);
resource->size = 0;
gran = 0;
step = 1;
while ((moving & step) == 0) {
gran += 1;
step <<= 1;
}
resource->gran = gran;
resource->align = gran;
resource->limit = moving | (step - 1);
resource->flags = type | IORESOURCE_PCI_BRIDGE |
IORESOURCE_BRIDGE;
}
static void pci_bridge_read_bases(struct device *dev)
{
resource_t moving_base, moving_limit, moving;
/* See if the bridge I/O resources are implemented. */
moving_base = ((u32)pci_moving_config8(dev, PCI_IO_BASE)) << 8;
moving_base |=
((u32)pci_moving_config16(dev, PCI_IO_BASE_UPPER16)) << 16;
moving_limit = ((u32)pci_moving_config8(dev, PCI_IO_LIMIT)) << 8;
moving_limit |=
((u32)pci_moving_config16(dev, PCI_IO_LIMIT_UPPER16)) << 16;
moving = moving_base & moving_limit;
/* Initialize the I/O space constraints on the current bus. */
pci_record_bridge_resource(dev, moving, PCI_IO_BASE, IORESOURCE_IO);
/* See if the bridge prefmem resources are implemented. */
moving_base =
((resource_t)pci_moving_config16(dev, PCI_PREF_MEMORY_BASE)) << 16;
moving_base |=
((resource_t)pci_moving_config32(dev, PCI_PREF_BASE_UPPER32)) << 32;
moving_limit =
((resource_t)pci_moving_config16(dev, PCI_PREF_MEMORY_LIMIT)) << 16;
moving_limit |=
((resource_t)pci_moving_config32(dev, PCI_PREF_LIMIT_UPPER32)) << 32;
moving = moving_base & moving_limit;
/* Initialize the prefetchable memory constraints on the current bus. */
pci_record_bridge_resource(dev, moving, PCI_PREF_MEMORY_BASE,
IORESOURCE_MEM | IORESOURCE_PREFETCH);
/* See if the bridge mem resources are implemented. */
moving_base = ((u32)pci_moving_config16(dev, PCI_MEMORY_BASE)) << 16;
moving_limit = ((u32)pci_moving_config16(dev, PCI_MEMORY_LIMIT)) << 16;
moving = moving_base & moving_limit;
/* Initialize the memory resources on the current bus. */
pci_record_bridge_resource(dev, moving, PCI_MEMORY_BASE,
IORESOURCE_MEM);
compact_resources(dev);
}
void pci_dev_read_resources(struct device *dev)
{
pci_read_bases(dev, 6);
pci_get_rom_resource(dev, PCI_ROM_ADDRESS);
}
void pci_bus_read_resources(struct device *dev)
{
pci_bridge_read_bases(dev);
pci_read_bases(dev, 2);
pci_get_rom_resource(dev, PCI_ROM_ADDRESS1);
}
void pci_domain_read_resources(struct device *dev)
{
struct resource *res;
/* Initialize the system-wide I/O space constraints. */
res = new_resource(dev, IOINDEX_SUBTRACTIVE(0, 0));
res->limit = 0xffffUL;
res->flags = IORESOURCE_IO | IORESOURCE_SUBTRACTIVE |
IORESOURCE_ASSIGNED;
/*
* Initialize 32-bit memory resource constraints.
*
* There are often undeclared chipset resources in lower memory
* and memory right below the 4G barrier. Hence, only allow
* one big range from cbmem_top to the configured limit.
*/
res = new_resource(dev, IOINDEX_SUBTRACTIVE(1, 0));
res->base = (uintptr_t)cbmem_top();
res->limit = CONFIG_DOMAIN_RESOURCE_32BIT_LIMIT - 1;
res->flags = IORESOURCE_MEM | IORESOURCE_SUBTRACTIVE |
IORESOURCE_ASSIGNED;
/* Initialize 64-bit memory resource constraints above 4G. */
res = new_resource(dev, IOINDEX_SUBTRACTIVE(2, 0));
res->base = 4ULL * GiB;
res->limit = (1ULL << cpu_phys_address_size()) - 1;
res->flags = IORESOURCE_MEM | IORESOURCE_SUBTRACTIVE |
IORESOURCE_ASSIGNED;
}
void pci_domain_set_resources(struct device *dev)
{
assign_resources(dev->link_list);
}
static void pci_store_resource(const struct device *const dev,
const struct resource *const resource)
{
unsigned long base_lo, base_hi;
base_lo = resource->base & 0xffffffff;
base_hi = (resource->base >> 32) & 0xffffffff;
/*
* Some chipsets allow us to set/clear the I/O bit
* (e.g. VIA 82C686A). So set it to be safe.
*/
if (resource->flags & IORESOURCE_IO)
base_lo |= PCI_BASE_ADDRESS_SPACE_IO;
pci_write_config32(dev, resource->index, base_lo);
if (resource->flags & IORESOURCE_PCI64)
pci_write_config32(dev, resource->index + 4, base_hi);
}
static void pci_store_bridge_resource(const struct device *const dev,
struct resource *const resource)
{
resource_t base, end;
/*
* PCI bridges have no enable bit. They are disabled if the base of
* the range is greater than the limit. If the size is zero, disable
* by setting the base = limit and end = limit - 2^gran.
*/
if (resource->size == 0) {
base = resource->limit;
end = resource->limit - (1 << resource->gran);
resource->base = base;
} else {
base = resource->base;
end = resource_end(resource);
}
if (resource->index == PCI_IO_BASE) {
/* Set the I/O ranges. */
pci_write_config8(dev, PCI_IO_BASE, base >> 8);
pci_write_config16(dev, PCI_IO_BASE_UPPER16, base >> 16);
pci_write_config8(dev, PCI_IO_LIMIT, end >> 8);
pci_write_config16(dev, PCI_IO_LIMIT_UPPER16, end >> 16);
} else if (resource->index == PCI_MEMORY_BASE) {
/* Set the memory range. */
pci_write_config16(dev, PCI_MEMORY_BASE, base >> 16);
pci_write_config16(dev, PCI_MEMORY_LIMIT, end >> 16);
} else if (resource->index == PCI_PREF_MEMORY_BASE) {
/* Set the prefetchable memory range. */
pci_write_config16(dev, PCI_PREF_MEMORY_BASE, base >> 16);
pci_write_config32(dev, PCI_PREF_BASE_UPPER32, base >> 32);
pci_write_config16(dev, PCI_PREF_MEMORY_LIMIT, end >> 16);
pci_write_config32(dev, PCI_PREF_LIMIT_UPPER32, end >> 32);
} else {
/* Don't let me think I stored the resource. */
resource->flags &= ~IORESOURCE_STORED;
printk(BIOS_ERR, "invalid resource->index %lx\n", resource->index);
}
}
static void pci_set_resource(struct device *dev, struct resource *resource)
{
/* Make certain the resource has actually been assigned a value. */
if (!(resource->flags & IORESOURCE_ASSIGNED)) {
if (resource->flags & IORESOURCE_BRIDGE) {
/* If a bridge resource has no value assigned,
we can treat it like an empty resource. */
resource->size = 0;
} else {
printk(BIOS_ERR, "%s %02lx %s size: 0x%010llx not assigned\n",
dev_path(dev), resource->index,
resource_type(resource), resource->size);
return;
}
}
/* If this resource is fixed don't worry about it. */
if (resource->flags & IORESOURCE_FIXED)
return;
/* If I have already stored this resource don't worry about it. */
if (resource->flags & IORESOURCE_STORED)
return;
/* If the resource is subtractive don't worry about it. */
if (resource->flags & IORESOURCE_SUBTRACTIVE)
return;
/* Only handle PCI memory and I/O resources for now. */
if (!(resource->flags & (IORESOURCE_MEM | IORESOURCE_IO)))
return;
/* Enable the resources in the command register. */
if (resource->size) {
if (resource->flags & IORESOURCE_MEM)
dev->command |= PCI_COMMAND_MEMORY;
if (resource->flags & IORESOURCE_IO)
dev->command |= PCI_COMMAND_IO;
if (resource->flags & IORESOURCE_PCI_BRIDGE &&
CONFIG(PCI_SET_BUS_MASTER_PCI_BRIDGES))
dev->command |= PCI_COMMAND_MASTER;
}
/* Now store the resource. */
resource->flags |= IORESOURCE_STORED;
if (!(resource->flags & IORESOURCE_PCI_BRIDGE)) {
if (CONFIG(PCIEXP_SUPPORT_RESIZABLE_BARS) &&
(resource->flags & IORESOURCE_PCIE_RESIZABLE_BAR))
pci_store_rebar_size(dev, resource);
pci_store_resource(dev, resource);
} else {
pci_store_bridge_resource(dev, resource);
}
report_resource_stored(dev, resource, "");
}
void pci_dev_set_resources(struct device *dev)
{
struct resource *res;
struct bus *bus;
u8 line;
for (res = dev->resource_list; res; res = res->next)
pci_set_resource(dev, res);
for (bus = dev->link_list; bus; bus = bus->next) {
if (bus->children)
assign_resources(bus);
}
/* Set a default latency timer. */
pci_write_config8(dev, PCI_LATENCY_TIMER, 0x40);
/* Set a default secondary latency timer. */
if ((dev->hdr_type & 0x7f) == PCI_HEADER_TYPE_BRIDGE)
pci_write_config8(dev, PCI_SEC_LATENCY_TIMER, 0x40);
/* Zero the IRQ settings. */
line = pci_read_config8(dev, PCI_INTERRUPT_PIN);
if (line)
pci_write_config8(dev, PCI_INTERRUPT_LINE, 0);
/* Set the cache line size, so far 64 bytes is good for everyone. */
pci_write_config8(dev, PCI_CACHE_LINE_SIZE, 64 >> 2);
}
void pci_dev_enable_resources(struct device *dev)
{
const struct pci_operations *ops = NULL;
u16 command;
/* Set the subsystem vendor and device ID for mainboard devices. */
if (dev->ops)
ops = dev->ops->ops_pci;
if (dev->on_mainboard && ops && ops->set_subsystem) {
if (CONFIG_SUBSYSTEM_VENDOR_ID)
dev->subsystem_vendor = CONFIG_SUBSYSTEM_VENDOR_ID;
else if (!dev->subsystem_vendor)
dev->subsystem_vendor = pci_read_config16(dev,
PCI_VENDOR_ID);
if (CONFIG_SUBSYSTEM_DEVICE_ID)
dev->subsystem_device = CONFIG_SUBSYSTEM_DEVICE_ID;
else if (!dev->subsystem_device)
dev->subsystem_device = pci_read_config16(dev,
PCI_DEVICE_ID);
printk(BIOS_DEBUG, "%s subsystem <- %04x/%04x\n",
dev_path(dev), dev->subsystem_vendor,
dev->subsystem_device);
ops->set_subsystem(dev, dev->subsystem_vendor,
dev->subsystem_device);
}
command = pci_read_config16(dev, PCI_COMMAND);
command |= dev->command;
/* v3 has
* command |= (PCI_COMMAND_PARITY + PCI_COMMAND_SERR); // Error check.
*/
printk(BIOS_DEBUG, "%s cmd <- %02x\n", dev_path(dev), command);
pci_write_config16(dev, PCI_COMMAND, command);
}
void pci_bus_enable_resources(struct device *dev)
{
u16 ctrl;
/*
* Enable I/O in command register if there is VGA card
* connected with (even it does not claim I/O resource).
*/
if (dev->link_list->bridge_ctrl & PCI_BRIDGE_CTL_VGA)
dev->command |= PCI_COMMAND_IO;
ctrl = pci_read_config16(dev, PCI_BRIDGE_CONTROL);
ctrl |= dev->link_list->bridge_ctrl;
ctrl |= (PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR); /* Error check. */
printk(BIOS_DEBUG, "%s bridge ctrl <- %04x\n", dev_path(dev), ctrl);
pci_write_config16(dev, PCI_BRIDGE_CONTROL, ctrl);
pci_dev_enable_resources(dev);
}
void pci_bus_reset(struct bus *bus)
{
u16 ctl;
ctl = pci_read_config16(bus->dev, PCI_BRIDGE_CONTROL);
ctl |= PCI_BRIDGE_CTL_BUS_RESET;
pci_write_config16(bus->dev, PCI_BRIDGE_CONTROL, ctl);
mdelay(10);
ctl &= ~PCI_BRIDGE_CTL_BUS_RESET;
pci_write_config16(bus->dev, PCI_BRIDGE_CONTROL, ctl);
delay(1);
}
void pci_dev_set_subsystem(struct device *dev, unsigned int vendor,
unsigned int device)
{
uint8_t offset;
/* Header type */
switch (dev->hdr_type & 0x7f) {
case PCI_HEADER_TYPE_NORMAL:
offset = PCI_SUBSYSTEM_VENDOR_ID;
break;
case PCI_HEADER_TYPE_BRIDGE:
offset = pci_find_capability(dev, PCI_CAP_ID_SSVID);
if (!offset)
return;
offset += 4; /* Vendor ID at offset 4 */
break;
case PCI_HEADER_TYPE_CARDBUS:
offset = PCI_CB_SUBSYSTEM_VENDOR_ID;
break;
default:
return;
}
if (!vendor || !device) {
pci_write_config32(dev, offset,
pci_read_config32(dev, PCI_VENDOR_ID));
} else {
pci_write_config32(dev, offset,
((device & 0xffff) << 16) | (vendor & 0xffff));
}
}
static int should_run_oprom(struct device *dev, struct rom_header *rom)
{
static int should_run = -1;
if (CONFIG(VENDORCODE_ELTAN_VBOOT))
if (rom != NULL)
if (!verified_boot_should_run_oprom(rom))
return 0;
if (should_run >= 0)
return should_run;
if (CONFIG(ALWAYS_RUN_OPROM)) {
should_run = 1;
return should_run;
}
/* Don't run VGA option ROMs, unless we have to print
* something on the screen before the kernel is loaded.
*/
should_run = display_init_required();
if (!should_run)
printk(BIOS_DEBUG, "Not running VGA Option ROM\n");
return should_run;
}
static int should_load_oprom(struct device *dev)
{
/* If S3_VGA_ROM_RUN is disabled, skip running VGA option
* ROMs when coming out of an S3 resume.
*/
if (!CONFIG(S3_VGA_ROM_RUN) && acpi_is_wakeup_s3() &&
((dev->class >> 8) == PCI_CLASS_DISPLAY_VGA))
return 0;
if (CONFIG(ALWAYS_LOAD_OPROM))
return 1;
if (should_run_oprom(dev, NULL))
return 1;
return 0;
}
static void oprom_pre_graphics_stall(void)
{
if (CONFIG_PRE_GRAPHICS_DELAY_MS)
mdelay(CONFIG_PRE_GRAPHICS_DELAY_MS);
}
/** Default handler: only runs the relevant PCI BIOS. */
void pci_dev_init(struct device *dev)
{
struct rom_header *rom, *ram;
if (!CONFIG(VGA_ROM_RUN))
return;
/* Only execute VGA ROMs. */
if (((dev->class >> 8) != PCI_CLASS_DISPLAY_VGA))
return;
if (!should_load_oprom(dev))
return;
timestamp_add_now(TS_OPROM_INITIALIZE);
rom = pci_rom_probe(dev);
if (rom == NULL)
return;
ram = pci_rom_load(dev, rom);
if (ram == NULL)
return;
timestamp_add_now(TS_OPROM_COPY_END);
if (!should_run_oprom(dev, rom))
return;
/* Wait for any configured pre-graphics delay */
oprom_pre_graphics_stall();
run_bios(dev, (unsigned long)ram);
gfx_set_init_done(1);
printk(BIOS_DEBUG, "VGA Option ROM was run\n");
timestamp_add_now(TS_OPROM_END);
}
/** Default device operation for PCI devices */
struct pci_operations pci_dev_ops_pci = {
.set_subsystem = pci_dev_set_subsystem,
};
struct device_operations default_pci_ops_dev = {
.read_resources = pci_dev_read_resources,
.set_resources = pci_dev_set_resources,
.enable_resources = pci_dev_enable_resources,
#if CONFIG(HAVE_ACPI_TABLES)
.write_acpi_tables = pci_rom_write_acpi_tables,
.acpi_fill_ssdt = pci_rom_ssdt,
#endif
.init = pci_dev_init,
.ops_pci = &pci_dev_ops_pci,
};
/** Default device operations for PCI bridges */
struct device_operations default_pci_ops_bus = {
.read_resources = pci_bus_read_resources,
.set_resources = pci_dev_set_resources,
.enable_resources = pci_bus_enable_resources,
.scan_bus = pci_scan_bridge,
.reset_bus = pci_bus_reset,
};
/** Default device operations for PCI devices marked 'hidden' */
static struct device_operations default_hidden_pci_ops_dev = {
.read_resources = noop_read_resources,
.set_resources = noop_set_resources,
.scan_bus = scan_static_bus,
};
/**
* Check for compatibility to route legacy VGA cycles through a bridge.
*
* Originally, when decoding i/o ports for legacy VGA cycles, bridges
* should only consider the 10 least significant bits of the port address.
* This means all VGA registers were aliased every 1024 ports!
* e.g. 0x3b0 was also decoded as 0x7b0, 0xbb0 etc.
*
* To avoid this mess, a bridge control bit (VGA16) was introduced in
* 2003 to enable decoding of 16-bit port addresses. As we don't want
* to make this any more complex for now, we use this bit if possible
* and only warn if it's not supported (in set_vga_bridge_bits()).
*/
static void pci_bridge_vga_compat(struct bus *const bus)
{
uint16_t bridge_ctrl;
bridge_ctrl = pci_read_config16(bus->dev, PCI_BRIDGE_CONTROL);
/* Ensure VGA decoding is disabled during probing (it should
be by default, but we run blobs nowadays) */
bridge_ctrl &= ~PCI_BRIDGE_CTL_VGA;
pci_write_config16(bus->dev, PCI_BRIDGE_CONTROL, bridge_ctrl);
/* If the upstream bridge doesn't support VGA16, we don't have to check */
bus->no_vga16 |= bus->dev->bus->no_vga16;
if (bus->no_vga16)
return;
/* Test if we can enable 16-bit decoding */
bridge_ctrl |= PCI_BRIDGE_CTL_VGA16;
pci_write_config16(bus->dev, PCI_BRIDGE_CONTROL, bridge_ctrl);
bridge_ctrl = pci_read_config16(bus->dev, PCI_BRIDGE_CONTROL);
bus->no_vga16 = !(bridge_ctrl & PCI_BRIDGE_CTL_VGA16);
}
/**
* Detect the type of downstream bridge.
*
* This function is a heuristic to detect which type of bus is downstream
* of a PCI-to-PCI bridge. This functions by looking for various capability
* blocks to figure out the type of downstream bridge. PCI-X, PCI-E, and
* Hypertransport all seem to have appropriate capabilities.
*
* When only a PCI-Express capability is found the type is examined to see
* which type of bridge we have.
*
* @param dev Pointer to the device structure of the bridge.
* @return Appropriate bridge operations.
*/
static struct device_operations *get_pci_bridge_ops(struct device *dev)
{
#if CONFIG(PCIX_PLUGIN_SUPPORT)
unsigned int pcixpos;
pcixpos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
if (pcixpos) {
printk(BIOS_DEBUG, "%s subordinate bus PCI-X\n", dev_path(dev));
return &default_pcix_ops_bus;
}
#endif
#if CONFIG(PCIEXP_PLUGIN_SUPPORT)
unsigned int pciexpos;
pciexpos = pci_find_capability(dev, PCI_CAP_ID_PCIE);
if (pciexpos) {
u16 flags;
flags = pci_read_config16(dev, pciexpos + PCI_EXP_FLAGS);
switch ((flags & PCI_EXP_FLAGS_TYPE) >> 4) {
case PCI_EXP_TYPE_ROOT_PORT:
case PCI_EXP_TYPE_UPSTREAM:
case PCI_EXP_TYPE_DOWNSTREAM:
printk(BIOS_DEBUG, "%s subordinate bus PCI Express\n",
dev_path(dev));
if (CONFIG(PCIEXP_HOTPLUG)) {
u16 sltcap;
sltcap = pci_read_config16(dev, pciexpos + PCI_EXP_SLTCAP);
if (sltcap & PCI_EXP_SLTCAP_HPC) {
printk(BIOS_DEBUG, "%s hot-plug capable\n",
dev_path(dev));
return &default_pciexp_hotplug_ops_bus;
}
}
return &default_pciexp_ops_bus;
case PCI_EXP_TYPE_PCI_BRIDGE:
printk(BIOS_DEBUG, "%s subordinate PCI\n",
dev_path(dev));
return &default_pci_ops_bus;
default:
break;
}
}
#endif
return &default_pci_ops_bus;
}
/**
* Check if a device id matches a PCI driver entry.
*
* The driver entry can either point at a zero terminated array of acceptable
* device IDs, or include a single device ID.
*
* @param driver pointer to the PCI driver entry being checked
* @param device_id PCI device ID of the device being matched
*/
static int device_id_match(struct pci_driver *driver, unsigned short device_id)
{
if (driver->devices) {
unsigned short check_id;
const unsigned short *device_list = driver->devices;
while ((check_id = *device_list++) != 0)
if (check_id == device_id)
return 1;
}
return (driver->device == device_id);
}
/**
* Set up PCI device operation.
*
* Check if it already has a driver. If not, use find_device_operations(),
* or set to a default based on type.
*
* @param dev Pointer to the device whose pci_ops you want to set.
* @see pci_drivers
*/
static void set_pci_ops(struct device *dev)
{
struct pci_driver *driver;
if (dev->ops)
return;
/*
* Look through the list of setup drivers and find one for
* this PCI device.
*/
for (driver = &_pci_drivers[0]; driver != &_epci_drivers[0]; driver++) {
if ((driver->vendor == dev->vendor) &&
device_id_match(driver, dev->device)) {
dev->ops = (struct device_operations *)driver->ops;
break;
}
}
if (dev->ops) {
printk(BIOS_SPEW, "%s [%04x/%04x] %sops\n", dev_path(dev),
driver->vendor, driver->device, (driver->ops->scan_bus ? "bus " : ""));
return;
}
/* If I don't have a specific driver use the default operations. */
switch (dev->hdr_type & 0x7f) { /* Header type */
case PCI_HEADER_TYPE_NORMAL:
if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI)
goto bad;
dev->ops = &default_pci_ops_dev;
break;
case PCI_HEADER_TYPE_BRIDGE:
if ((dev->class >> 8) != PCI_CLASS_BRIDGE_PCI)
goto bad;
dev->ops = get_pci_bridge_ops(dev);
break;
#if CONFIG(CARDBUS_PLUGIN_SUPPORT)
case PCI_HEADER_TYPE_CARDBUS:
dev->ops = &default_cardbus_ops_bus;
break;
#endif
default:
bad:
if (dev->enabled) {
printk(BIOS_ERR,
"%s [%04x/%04x/%06x] has unknown header type %02x, ignoring.\n",
dev_path(dev), dev->vendor, dev->device,
dev->class >> 8, dev->hdr_type);
}
}
}
/**
* See if we have already allocated a device structure for a given devfn.
*
* Given a PCI bus structure and a devfn number, find the device structure
* corresponding to the devfn, if present. Then move the device structure
* as the last child on the bus.
*
* @param bus Pointer to the bus structure.
* @param devfn A device/function number.
* @return Pointer to the device structure found or NULL if we have not
* allocated a device for this devfn yet.
*/
static struct device *pci_scan_get_dev(struct bus *bus, unsigned int devfn)
{
struct device *dev, **prev;
prev = &bus->children;
for (dev = bus->children; dev; dev = dev->sibling) {
if (dev->path.type == DEVICE_PATH_PCI && dev->path.pci.devfn == devfn) {
/* Unlink from the list. */
*prev = dev->sibling;
dev->sibling = NULL;
break;
}
prev = &dev->sibling;
}
/*
* Just like alloc_dev() add the device to the list of devices on the
* bus. When the list of devices was formed we removed all of the
* parents children, and now we are interleaving static and dynamic
* devices in order on the bus.
*/
if (dev) {
struct device *child;
/* Find the last child on the bus. */
for (child = bus->children; child && child->sibling;)
child = child->sibling;
/* Place the device as last on the bus. */
if (child)
child->sibling = dev;
else
bus->children = dev;
}
return dev;
}
/**
* Scan a PCI bus.
*
* Determine the existence of a given PCI device. Allocate a new struct device
* if dev==NULL was passed in and the device exists in hardware.
*
* @param dev Pointer to the dev structure.
* @param bus Pointer to the bus structure.
* @param devfn A device/function number to look at.
* @return The device structure for the device (if found), NULL otherwise.
*/
struct device *pci_probe_dev(struct device *dev, struct bus *bus,
unsigned int devfn)
{
u32 id, class;
u8 hdr_type;
/* Detect if a device is present. */
if (!dev) {
struct device dummy;
dummy.bus = bus;
dummy.path.type = DEVICE_PATH_PCI;
dummy.path.pci.devfn = devfn;
id = pci_read_config32(&dummy, PCI_VENDOR_ID);
/*
* Have we found something? Some broken boards return 0 if a
* slot is empty, but the expected answer is 0xffffffff.
*/
if (id == 0xffffffff)
return NULL;
if ((id == 0x00000000) || (id == 0x0000ffff) ||
(id == 0xffff0000)) {
printk(BIOS_SPEW, "%s, bad id 0x%x\n",
dev_path(&dummy), id);
return NULL;
}
dev = alloc_dev(bus, &dummy.path);
} else {
/*
* Enable/disable the device. Once we have found the device-
* specific operations this operations we will disable the
* device with those as well.
*
* This is geared toward devices that have subfunctions
* that do not show up by default.
*
* If a device is a stuff option on the motherboard
* it may be absent and enable_dev() must cope.
*/
/* Run the magic enable sequence for the device. */
if (dev->chip_ops && dev->chip_ops->enable_dev)
dev->chip_ops->enable_dev(dev);
/* Now read the vendor and device ID. */
id = pci_read_config32(dev, PCI_VENDOR_ID);
/*
* If the device does not have a PCI ID disable it. Possibly
* this is because we have already disabled the device. But
* this also handles optional devices that may not always
* show up.
*/
/* If the chain is fully enumerated quit */
if ((id == 0xffffffff) || (id == 0x00000000) ||
(id == 0x0000ffff) || (id == 0xffff0000)) {
if (dev->enabled) {
printk(BIOS_INFO,
"PCI: Static device %s not found, disabling it.\n",
dev_path(dev));
dev->enabled = 0;
}
return dev;
}
}
/* Read the rest of the PCI configuration information. */
hdr_type = pci_read_config8(dev, PCI_HEADER_TYPE);
class = pci_read_config32(dev, PCI_CLASS_REVISION);
/* Store the interesting information in the device structure. */
dev->vendor = id & 0xffff;
dev->device = (id >> 16) & 0xffff;
dev->hdr_type = hdr_type;
/* Class code, the upper 3 bytes of PCI_CLASS_REVISION. */
dev->class = class >> 8;
/* Architectural/System devices always need to be bus masters. */
if ((dev->class >> 16) == PCI_BASE_CLASS_SYSTEM &&
CONFIG(PCI_ALLOW_BUS_MASTER_ANY_DEVICE))
dev->command |= PCI_COMMAND_MASTER;
/*
* Look at the vendor and device ID, or at least the header type and
* class and figure out which set of configuration methods to use.
* Unless we already have some PCI ops.
*/
set_pci_ops(dev);
/* Now run the magic enable/disable sequence for the device. */
if (dev->ops && dev->ops->enable)
dev->ops->enable(dev);
/* Display the device. */
printk(BIOS_DEBUG, "%s [%04x/%04x] %s%s\n", dev_path(dev),
dev->vendor, dev->device, dev->enabled ? "enabled" : "disabled",
dev->ops ? "" : " No operations");
return dev;
}
/**
* Test for match between romstage and ramstage device instance.
*
* @param dev Pointer to the device structure.
* @param sdev Simple device model identifier, created with PCI_DEV().
* @return Non-zero if bus:dev.fn of device matches.
*/
unsigned int pci_match_simple_dev(struct device *dev, pci_devfn_t sdev)
{
return dev->bus->secondary == PCI_DEV2SEGBUS(sdev) &&
dev->path.pci.devfn == PCI_DEV2DEVFN(sdev);
}
/**
* Test whether a capability is available along the whole path from the given
* device to the host bridge.
*
* @param dev Pointer to the device structure.
* @param cap PCI_CAP_LIST_ID of the PCI capability we're looking for.
* @return The next matching capability of the given device, if it is available
* along the whole path, or zero if not.
*/
uint16_t pci_find_cap_recursive(const struct device *dev, uint16_t cap)
{
assert(dev->bus);
uint16_t pos = pci_find_capability(dev, cap);
const struct device *bridge = dev->bus->dev;
while (bridge && (bridge->path.type == DEVICE_PATH_PCI)) {
assert(bridge->bus);
if (!pci_find_capability(bridge, cap))
return 0;
bridge = bridge->bus->dev;
}
return pos;
}
/**
* PCI devices that are marked as "hidden" do not get probed. However, the same
* initialization logic is still performed as if it were. This is useful when
* devices would like to be described in the devicetree.cb file, and/or present
* static PCI resources to the allocator, but the platform firmware hides the
* device (makes the device invisible to PCI enumeration) before PCI enumeration
* takes place.
*
* The expected semantics of PCI devices marked as 'hidden':
* 1) The device is actually present under the specified BDF
* 2) The device config space can still be accessed somehow, but the Vendor ID
* indicates there is no device there (it reads as 0xffffffff).
* 3) The device may still consume PCI resources. Typically, these would have
* been hardcoded elsewhere.
*
* @param dev Pointer to the device structure.
*/
static void pci_scan_hidden_device(struct device *dev)
{
if (dev->chip_ops && dev->chip_ops->enable_dev)
dev->chip_ops->enable_dev(dev);
/*
* If chip_ops->enable_dev did not set dev->ops, then set to a default
* .ops, because PCI enumeration is effectively being skipped, therefore
* no PCI driver will bind to this device. However, children may want to
* be enumerated, so this provides scan_static_bus for the .scan_bus
* callback.
*/
if (dev->ops == NULL)
dev->ops = &default_hidden_pci_ops_dev;
if (dev->ops->enable)
dev->ops->enable(dev);
/* Display the device almost as if it were probed normally */
printk(BIOS_DEBUG, "%s [0000/%04x] hidden%s\n", dev_path(dev),
dev->device, dev->ops ? "" : " No operations");
}
/**
* A PCIe Downstream Port normally leads to a Link with only Device 0 on it
* (PCIe spec r5.0, sec 7.3.1). As an optimization, scan only for Device 0 in
* that situation.
*
* @param bus Pointer to the bus structure.
*/
static bool pci_bus_only_one_child(struct bus *bus)
{
struct device *bridge = bus->dev;
u16 pcie_pos, pcie_flags_reg;
int pcie_type;
if (!bridge)
return false;
if (bridge->path.type != DEVICE_PATH_PCI)
return false;
pcie_pos = pci_find_capability(bridge, PCI_CAP_ID_PCIE);
if (!pcie_pos)
return false;
pcie_flags_reg = pci_read_config16(bridge, pcie_pos + PCI_EXP_FLAGS);
pcie_type = (pcie_flags_reg & PCI_EXP_FLAGS_TYPE) >> 4;
return pciexp_is_downstream_port(pcie_type);
}
/**
* Scan a PCI bus.
*
* Determine the existence of devices and bridges on a PCI bus. If there are
* bridges on the bus, recursively scan the buses behind the bridges.
*
* @param bus Pointer to the bus structure.
* @param min_devfn Minimum devfn to look at in the scan, usually 0x00.
* @param max_devfn Maximum devfn to look at in the scan, usually 0xff.
*/
void pci_scan_bus(struct bus *bus, unsigned int min_devfn,
unsigned int max_devfn)
{
unsigned int devfn;
struct device *dev, **prev;
int once = 0;
printk(BIOS_DEBUG, "PCI: %s for bus %02x\n", __func__, bus->secondary);
/* Maximum sane devfn is 0xFF. */
if (max_devfn > 0xff) {
printk(BIOS_ERR, "PCI: %s limits devfn %x - devfn %x\n",
__func__, min_devfn, max_devfn);
printk(BIOS_ERR, "PCI: %s upper limit too big. Using 0xff.\n", __func__);
max_devfn=0xff;
}
post_code(POSTCODE_ENTER_PCI_SCAN_BUS);
if (pci_bus_only_one_child(bus))
max_devfn = MIN(max_devfn, 0x07);
/*
* Probe all devices/functions on this bus with some optimization for
* non-existence and single function devices.
*/
for (devfn = min_devfn; devfn <= max_devfn; devfn++) {
if (CONFIG(MINIMAL_PCI_SCANNING)) {
dev = pcidev_path_behind(bus, devfn);
if (!dev || !dev->mandatory)
continue;
}
/* First thing setup the device structure. */
dev = pci_scan_get_dev(bus, devfn);
/* Devices marked 'hidden' do not get probed */
if (dev && dev->hidden) {
pci_scan_hidden_device(dev);
/* Skip pci_probe_dev, go to next devfn */
continue;
}
/* See if a device is present and setup the device structure. */
dev = pci_probe_dev(dev, bus, devfn);
/*
* If this is not a multi function device, or the device is
* not present don't waste time probing another function.
* Skip to next device.
*/
if ((PCI_FUNC(devfn) == 0x00) && (!dev
|| (dev->enabled && ((dev->hdr_type & 0x80) != 0x80)))) {
devfn += 0x07;
}
}
/*
* Warn if any leftover static devices are found.
* There's probably a problem in devicetree.cb.
*/
prev = &bus->children;
for (dev = bus->children; dev; dev = dev->sibling) {
/*
* If static device is not PCI then enable it here and don't
* treat it as a leftover device.
*/
if (dev->path.type != DEVICE_PATH_PCI) {
enable_static_device(dev);
continue;
}
/*
* The device is only considered leftover if it is not hidden
* and it has a Vendor ID of 0 (the default for a device that
* could not be probed).
*/
if (dev->vendor != 0 || dev->hidden) {
prev = &dev->sibling;
continue;
}
/* Unlink it from list. */
*prev = dev->sibling;
if (!once++)
printk(BIOS_WARNING, "PCI: Leftover static devices:\n");
printk(BIOS_WARNING, "%s\n", dev_path(dev));
}
if (once)
printk(BIOS_WARNING, "PCI: Check your devicetree.cb.\n");
/*
* For all children that implement scan_bus() (i.e. bridges)
* scan the bus behind that child.
*/
scan_bridges(bus);
/*
* We've scanned the bus and so we know all about what's on the other
* side of any bridges that may be on this bus plus any devices.
* Return how far we've got finding sub-buses.
*/
post_code(POSTCODE_EXIT_PCI_SCAN_BUS);
}
typedef enum {
PCI_ROUTE_CLOSE,
PCI_ROUTE_SCAN,
PCI_ROUTE_FINAL,
} scan_state;
static void pci_bridge_route(struct bus *link, scan_state state)
{
struct device *dev = link->dev;
struct bus *parent = dev->bus;
uint8_t primary, secondary, subordinate;
if (state == PCI_ROUTE_SCAN) {
link->secondary = parent->subordinate + 1;
link->subordinate = link->secondary + dev->hotplug_buses;
link->max_subordinate = parent->max_subordinate
? parent->max_subordinate
: (CONFIG_ECAM_MMCONF_BUS_NUMBER - 1);
}
if (link->secondary > link->max_subordinate)
die("%s: No more busses available!\n", __func__);
/* This ought to only happen with hotplug buses. */
if (link->subordinate > link->max_subordinate) {
printk(BIOS_WARNING, "%s: Limiting subordinate busses\n", __func__);
link->subordinate = link->max_subordinate;
}
if (state == PCI_ROUTE_CLOSE) {
primary = 0;
secondary = 0xff;
subordinate = 0xfe;
} else if (state == PCI_ROUTE_SCAN) {
primary = parent->secondary;
secondary = link->secondary;
subordinate = link->max_subordinate;
} else if (state == PCI_ROUTE_FINAL) {
primary = parent->secondary;
secondary = link->secondary;
subordinate = link->subordinate;
} else {
return;
}
if (state == PCI_ROUTE_SCAN) {
/* Clear all status bits and turn off memory, I/O and master enables. */
link->bridge_cmd = pci_read_config16(dev, PCI_COMMAND);
pci_write_config16(dev, PCI_COMMAND, 0x0000);
pci_write_config16(dev, PCI_STATUS, 0xffff);
}
/*
* Configure the bus numbers for this bridge: the configuration
* transactions will not be propagated by the bridge if it is not
* correctly configured.
*/
pci_write_config8(dev, PCI_PRIMARY_BUS, primary);
pci_write_config8(dev, PCI_SECONDARY_BUS, secondary);
pci_write_config8(dev, PCI_SUBORDINATE_BUS, subordinate);
if (state == PCI_ROUTE_FINAL) {
pci_write_config16(dev, PCI_COMMAND, link->bridge_cmd);
parent->subordinate = link->subordinate;
}
}
/**
* Scan a PCI bridge and the buses behind the bridge.
*
* Determine the existence of buses behind the bridge. Set up the bridge
* according to the result of the scan.
*
* This function is the default scan_bus() method for PCI bridge devices.
*
* @param dev Pointer to the bridge device.
* @param do_scan_bus TODO
*/
void do_pci_scan_bridge(struct device *dev,
void (*do_scan_bus) (struct bus * bus,
unsigned int min_devfn,
unsigned int max_devfn))
{
struct bus *bus;
printk(BIOS_SPEW, "%s for %s\n", __func__, dev_path(dev));
if (dev->link_list == NULL) {
struct bus *link;
link = malloc(sizeof(*link));
if (link == NULL)
die("Couldn't allocate a link!\n");
memset(link, 0, sizeof(*link));
link->dev = dev;
dev->link_list = link;
}
bus = dev->link_list;
pci_bridge_vga_compat(bus);
pci_bridge_route(bus, PCI_ROUTE_SCAN);
do_scan_bus(bus, 0x00, 0xff);
pci_bridge_route(bus, PCI_ROUTE_FINAL);
}
/**
* Scan a PCI bridge and the buses behind the bridge.
*
* Determine the existence of buses behind the bridge. Set up the bridge
* according to the result of the scan.
*
* This function is the default scan_bus() method for PCI bridge devices.
*
* @param dev Pointer to the bridge device.
*/
void pci_scan_bridge(struct device *dev)
{
do_pci_scan_bridge(dev, pci_scan_bus);
}
/**
* Scan a PCI domain.
*
* This function is the default scan_bus() method for PCI domains.
*
* @param dev Pointer to the domain.
*/
void pci_host_bridge_scan_bus(struct device *dev)
{
struct bus *link = dev->link_list;
pci_scan_bus(link, PCI_DEVFN(0, 0), 0xff);
}
void pci_dev_disable_bus_master(const struct device *dev)
{
pci_update_config16(dev, PCI_COMMAND, ~PCI_COMMAND_MASTER, 0x0);
}
/**
* Take an INT_PIN number (0, 1 - 4) and convert
* it to a string ("NO PIN", "PIN A" - "PIN D")
*
* @param pin PCI Interrupt Pin number (0, 1 - 4)
* @return A string corresponding to the pin number or "Invalid"
*/
const char *pin_to_str(int pin)
{
const char *str[5] = {
"NO PIN",
"PIN A",
"PIN B",
"PIN C",
"PIN D",
};
if (pin >= 0 && pin <= 4)
return str[pin];
else
return "Invalid PIN, not 0 - 4";
}
/**
* Get the PCI INT_PIN swizzle for a device defined as:
* pin_parent = (pin_child + devn_child) % 4 + 1
* where PIN A = 1 ... PIN_D = 4
*
* Given a PCI device structure 'dev', find the interrupt pin
* that will be triggered on its parent bridge device when
* generating an interrupt. For example: Device 1:3.2 may
* use INT_PIN A but will trigger PIN D on its parent bridge
* device. In this case, this function will return 4 (PIN D).
*
* @param dev A PCI device structure to swizzle interrupt pins for
* @param *parent_bridge The PCI device structure for the bridge
* device 'dev' is attached to
* @return The interrupt pin number (1 - 4) that 'dev' will
* trigger when generating an interrupt
*/
static int swizzle_irq_pins(struct device *dev, struct device **parent_bridge)
{
struct device *parent; /* Our current device's parent device */
struct device *child; /* The child device of the parent */
uint8_t parent_bus = 0; /* Parent Bus number */
uint16_t parent_devfn = 0; /* Parent Device and Function number */
uint16_t child_devfn = 0; /* Child Device and Function number */
uint8_t swizzled_pin = 0; /* Pin swizzled across a bridge */
/* Start with PIN A = 0 ... D = 3 */
swizzled_pin = pci_read_config8(dev, PCI_INTERRUPT_PIN) - 1;
/* While our current device has parent devices */
child = dev;
for (parent = child->bus->dev; parent; parent = parent->bus->dev) {
parent_bus = parent->bus->secondary;
parent_devfn = parent->path.pci.devfn;
child_devfn = child->path.pci.devfn;
/* Swizzle the INT_PIN for any bridges not on root bus */
swizzled_pin = (PCI_SLOT(child_devfn) + swizzled_pin) % 4;
printk(BIOS_SPEW, "\tWith INT_PIN swizzled to %s\n"
"\tAttached to bridge device %01X:%02Xh.%02Xh\n",
pin_to_str(swizzled_pin + 1), parent_bus,
PCI_SLOT(parent_devfn), PCI_FUNC(parent_devfn));
/* Continue until we find the root bus */
if (parent_bus > 0) {
/*
* We will go on to the next parent so this parent
* becomes the child
*/
child = parent;
continue;
} else {
/*
* Found the root bridge device,
* fill in the structure and exit
*/
*parent_bridge = parent;
break;
}
}
/* End with PIN A = 1 ... D = 4 */
return swizzled_pin + 1;
}
/**
* Given a device structure 'dev', find its interrupt pin
* and its parent bridge 'parent_bdg' device structure.
* If it is behind a bridge, it will return the interrupt
* pin number (1 - 4) of the parent bridge that the device
* interrupt pin has been swizzled to, otherwise it will
* return the interrupt pin that is programmed into the
* PCI config space of the target device. If 'dev' is
* behind a bridge, it will fill in 'parent_bdg' with the
* device structure of the bridge it is behind, otherwise
* it will copy 'dev' into 'parent_bdg'.
*
* @param dev A PCI device structure to get interrupt pins for.
* @param *parent_bdg The PCI device structure for the bridge
* device 'dev' is attached to.
* @return The interrupt pin number (1 - 4) that 'dev' will
* trigger when generating an interrupt.
* Errors: -1 is returned if the device is not enabled
* -2 is returned if a parent bridge could not be found.
*/
int get_pci_irq_pins(struct device *dev, struct device **parent_bdg)
{
uint8_t bus = 0; /* The bus this device is on */
uint16_t devfn = 0; /* This device's device and function numbers */
uint8_t int_pin = 0; /* Interrupt pin used by the device */
uint8_t target_pin = 0; /* Interrupt pin we want to assign an IRQ to */
/* Make sure this device is enabled */
if (!(dev->enabled && (dev->path.type == DEVICE_PATH_PCI)))
return -1;
bus = dev->bus->secondary;
devfn = dev->path.pci.devfn;
/* Get and validate the interrupt pin used. Only 1-4 are allowed */
int_pin = pci_read_config8(dev, PCI_INTERRUPT_PIN);
if (int_pin < 1 || int_pin > 4)
return -1;
printk(BIOS_SPEW, "PCI IRQ: Found device %01X:%02X.%02X using %s\n",
bus, PCI_SLOT(devfn), PCI_FUNC(devfn), pin_to_str(int_pin));
/* If this device is on a bridge, swizzle its INT_PIN */
if (bus) {
/* Swizzle its INT_PINs */
target_pin = swizzle_irq_pins(dev, parent_bdg);
/* Make sure the swizzle returned valid structures */
if (parent_bdg == NULL) {
printk(BIOS_WARNING, "Could not find parent bridge for this device!\n");
return -2;
}
} else { /* Device is not behind a bridge */
target_pin = int_pin; /* Return its own interrupt pin */
*parent_bdg = dev; /* Return its own structure */
}
/* Target pin is the interrupt pin we want to assign an IRQ to */
return target_pin;
}
#if CONFIG(PC80_SYSTEM)
/**
* Assign IRQ numbers.
*
* This function assigns IRQs for all functions contained within the indicated
* device address. If the device does not exist or does not require interrupts
* then this function has no effect.
*
* This function should be called for each PCI slot in your system.
*
* @param dev Pointer to dev structure.
* @param pIntAtoD An array of IRQ #s that are assigned to PINTA through PINTD
* of this slot. The particular IRQ #s that are passed in depend on the
* routing inside your southbridge and on your board.
*/
void pci_assign_irqs(struct device *dev, const unsigned char pIntAtoD[4])
{
u8 slot, line, irq;
/* Each device may contain up to eight functions. */
slot = dev->path.pci.devfn >> 3;
for (; dev ; dev = dev->sibling) {
if (dev->path.pci.devfn >> 3 != slot)
break;
line = pci_read_config8(dev, PCI_INTERRUPT_PIN);
/* PCI spec says all values except 1..4 are reserved. */
if ((line < 1) || (line > 4))
continue;
irq = pIntAtoD[line - 1];
printk(BIOS_DEBUG, "Assigning IRQ %d to %s\n", irq, dev_path(dev));
pci_write_config8(dev, PCI_INTERRUPT_LINE, irq);
/* Change to level triggered. */
i8259_configure_irq_trigger(irq, IRQ_LEVEL_TRIGGERED);
}
}
#endif