blob: b37d1d9bfc72b0c309f8b165f12f93f75ed444ff [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
#include <commonlib/bsd/helpers.h>
#include <console/console.h>
#include <device/device.h>
#include <device/path.h>
#include <device/pci_def.h>
#include <device/resource.h>
#include <stdlib.h>
#include <string.h>
#include <types.h>
/**
* Given a Local APIC ID, find the device structure.
*
* @param apic_id The Local APIC ID number.
* @return Pointer to the device structure (if found), 0 otherwise.
*/
struct device *dev_find_lapic(unsigned int apic_id)
{
struct device *dev;
struct device *result = NULL;
for (dev = all_devices; dev; dev = dev->next) {
if (dev->path.type == DEVICE_PATH_APIC &&
dev->path.apic.apic_id == apic_id) {
result = dev;
break;
}
}
return result;
}
/**
* Find a device of a given vendor and type.
*
* @param vendor A PCI vendor ID (e.g. 0x8086 for Intel).
* @param device A PCI device ID.
* @param from Pointer to the device structure, used as a starting point in
* the linked list of all_devices, which can be 0 to start at the
* head of the list (i.e. all_devices).
* @return Pointer to the device struct.
*/
struct device *dev_find_device(u16 vendor, u16 device, struct device *from)
{
if (!from)
from = all_devices;
else
from = from->next;
while (from && (from->vendor != vendor || from->device != device))
from = from->next;
return from;
}
/**
* Find a device of a given class.
*
* @param class Class of the device.
* @param from Pointer to the device structure, used as a starting point in
* the linked list of all_devices, which can be 0 to start at the
* head of the list (i.e. all_devices).
* @return Pointer to the device struct.
*/
struct device *dev_find_class(unsigned int class, struct device *from)
{
if (!from)
from = all_devices;
else
from = from->next;
while (from && (from->class & 0xffffff00) != class)
from = from->next;
return from;
}
/**
* Encode the device path into 3 bytes for logging to CMOS.
*
* @param dev The device path to encode.
* @return Device path encoded into lower 3 bytes of dword.
*/
u32 dev_path_encode(const struct device *dev)
{
u32 ret;
if (!dev)
return 0;
/* Store the device type in 3rd byte. */
ret = dev->path.type << 16;
/* Encode the device specific path in the low word. */
switch (dev->path.type) {
case DEVICE_PATH_ROOT:
break;
case DEVICE_PATH_PCI:
ret |= dev->bus->secondary << 8 | dev->path.pci.devfn;
break;
case DEVICE_PATH_PNP:
ret |= dev->path.pnp.port << 8 | dev->path.pnp.device;
break;
case DEVICE_PATH_I2C:
ret |= dev->path.i2c.mode_10bit << 8 | dev->path.i2c.device;
break;
case DEVICE_PATH_APIC:
ret |= dev->path.apic.apic_id;
break;
case DEVICE_PATH_DOMAIN:
ret |= dev->path.domain.domain;
break;
case DEVICE_PATH_CPU_CLUSTER:
ret |= dev->path.cpu_cluster.cluster;
break;
case DEVICE_PATH_CPU:
ret |= dev->path.cpu.id;
break;
case DEVICE_PATH_CPU_BUS:
ret |= dev->path.cpu_bus.id;
break;
case DEVICE_PATH_IOAPIC:
ret |= dev->path.ioapic.ioapic_id;
break;
case DEVICE_PATH_GENERIC:
ret |= dev->path.generic.subid << 8 | dev->path.generic.id;
break;
case DEVICE_PATH_SPI:
ret |= dev->path.spi.cs;
break;
case DEVICE_PATH_USB:
ret |= dev->path.usb.port_type << 8 | dev->path.usb.port_id;
break;
case DEVICE_PATH_GPIO:
ret |= dev->path.gpio.id;
break;
case DEVICE_PATH_MDIO:
ret |= dev->path.mdio.addr;
break;
case DEVICE_PATH_NONE:
case DEVICE_PATH_MMIO: /* don't care */
default:
break;
}
return ret;
}
/*
* Warning: This function uses a static buffer. Don't call it more than once
* from the same print statement!
*/
const char *dev_path(const struct device *dev)
{
static char buffer[DEVICE_PATH_MAX];
buffer[0] = '\0';
if (!dev) {
strcpy(buffer, "<null>");
} else {
switch (dev->path.type) {
case DEVICE_PATH_NONE:
strcpy(buffer, "NONE");
break;
case DEVICE_PATH_ROOT:
strcpy(buffer, "Root Device");
break;
case DEVICE_PATH_PCI:
snprintf(buffer, sizeof(buffer),
"PCI: %02x:%02x.%01x",
dev->bus->secondary,
PCI_SLOT(dev->path.pci.devfn),
PCI_FUNC(dev->path.pci.devfn));
break;
case DEVICE_PATH_PNP:
snprintf(buffer, sizeof(buffer), "PNP: %04x.%01x",
dev->path.pnp.port, dev->path.pnp.device);
break;
case DEVICE_PATH_I2C:
snprintf(buffer, sizeof(buffer), "I2C: %02x:%02x",
dev->bus->secondary,
dev->path.i2c.device);
break;
case DEVICE_PATH_APIC:
snprintf(buffer, sizeof(buffer), "APIC: %02x",
dev->path.apic.apic_id);
break;
case DEVICE_PATH_IOAPIC:
snprintf(buffer, sizeof(buffer), "IOAPIC: %02x",
dev->path.ioapic.ioapic_id);
break;
case DEVICE_PATH_DOMAIN:
snprintf(buffer, sizeof(buffer), "DOMAIN: %04x",
dev->path.domain.domain);
break;
case DEVICE_PATH_CPU_CLUSTER:
snprintf(buffer, sizeof(buffer), "CPU_CLUSTER: %01x",
dev->path.cpu_cluster.cluster);
break;
case DEVICE_PATH_CPU:
snprintf(buffer, sizeof(buffer),
"CPU: %02x", dev->path.cpu.id);
break;
case DEVICE_PATH_CPU_BUS:
snprintf(buffer, sizeof(buffer),
"CPU_BUS: %02x", dev->path.cpu_bus.id);
break;
case DEVICE_PATH_GENERIC:
snprintf(buffer, sizeof(buffer),
"GENERIC: %d.%d", dev->path.generic.id,
dev->path.generic.subid);
break;
case DEVICE_PATH_SPI:
snprintf(buffer, sizeof(buffer), "SPI: %02x",
dev->path.spi.cs);
break;
case DEVICE_PATH_USB:
snprintf(buffer, sizeof(buffer), "USB%u port %u",
dev->path.usb.port_type, dev->path.usb.port_id);
break;
case DEVICE_PATH_MMIO:
snprintf(buffer, sizeof(buffer), "MMIO: %08lx",
dev->path.mmio.addr);
break;
case DEVICE_PATH_GPIO:
snprintf(buffer, sizeof(buffer), "GPIO: %d", dev->path.gpio.id);
break;
case DEVICE_PATH_MDIO:
snprintf(buffer, sizeof(buffer), "MDIO: %02x", dev->path.mdio.addr);
break;
default:
printk(BIOS_ERR, "Unknown device path type: %d\n",
dev->path.type);
break;
}
}
return buffer;
}
const char *dev_name(const struct device *dev)
{
if (dev->name)
return dev->name;
else if (dev->chip_ops && dev->chip_ops->name)
return dev->chip_ops->name;
else
return "unknown";
}
const char *bus_path(struct bus *bus)
{
static char buffer[BUS_PATH_MAX];
snprintf(buffer, sizeof(buffer),
"%s,%d", dev_path(bus->dev), bus->link_num);
return buffer;
}
/**
* Allocate 64 more resources to the free list.
*
* @return TODO.
*/
static int allocate_more_resources(void)
{
int i;
struct resource *new_res_list;
new_res_list = malloc(64 * sizeof(*new_res_list));
if (new_res_list == NULL)
return 0;
memset(new_res_list, 0, 64 * sizeof(*new_res_list));
for (i = 0; i < 64 - 1; i++)
new_res_list[i].next = &new_res_list[i+1];
free_resources = new_res_list;
return 1;
}
/**
* Remove resource res from the device's list and add it to the free list.
*
* @param dev TODO
* @param res TODO
* @param prev TODO
* @return TODO.
*/
static void free_resource(struct device *dev, struct resource *res,
struct resource *prev)
{
if (prev)
prev->next = res->next;
else
dev->resource_list = res->next;
res->next = free_resources;
free_resources = res;
}
/**
* See if we have unused but allocated resource structures.
*
* If so remove the allocation.
*
* @param dev The device to find the resource on.
*/
void compact_resources(struct device *dev)
{
struct resource *res, *next, *prev = NULL;
/* Move all of the free resources to the end */
for (res = dev->resource_list; res; res = next) {
next = res->next;
if (!res->flags)
free_resource(dev, res, prev);
else
prev = res;
}
}
/**
* See if a resource structure already exists for a given index.
*
* @param dev The device to find the resource on.
* @param index The index of the resource on the device.
* @return The resource, if it already exists.
*/
struct resource *probe_resource(const struct device *dev, unsigned int index)
{
struct resource *res;
/* See if there is a resource with the appropriate index */
for (res = dev->resource_list; res; res = res->next) {
if (res->index == index)
break;
}
return res;
}
/**
* See if a resource structure already exists for a given index and if not
* allocate one.
*
* Then initialize the resource to default values.
*
* @param dev The device to find the resource on.
* @param index The index of the resource on the device.
* @return TODO.
*/
struct resource *new_resource(struct device *dev, unsigned int index)
{
struct resource *resource, *tail;
/* First move all of the free resources to the end. */
compact_resources(dev);
/* See if there is a resource with the appropriate index. */
resource = probe_resource(dev, index);
if (!resource) {
if (free_resources == NULL && !allocate_more_resources())
die("Couldn't allocate more resources.");
resource = free_resources;
free_resources = free_resources->next;
memset(resource, 0, sizeof(*resource));
resource->next = NULL;
tail = dev->resource_list;
if (tail) {
while (tail->next)
tail = tail->next;
tail->next = resource;
} else {
dev->resource_list = resource;
}
}
/* Initialize the resource values. */
if (!(resource->flags & IORESOURCE_FIXED)) {
resource->flags = 0;
resource->base = 0;
}
resource->size = 0;
resource->limit = 0;
resource->index = index;
resource->align = 0;
resource->gran = 0;
return resource;
}
/**
* Return an existing resource structure for a given index.
*
* @param dev The device to find the resource on.
* @param index The index of the resource on the device.
* return TODO.
*/
struct resource *find_resource(const struct device *dev, unsigned int index)
{
struct resource *resource;
/* See if there is a resource with the appropriate index. */
resource = probe_resource(dev, index);
if (!resource)
die("%s missing resource: %02x\n", dev_path(dev), index);
return resource;
}
/**
* Round a number up to the next multiple of gran.
*
* @param val The starting value.
* @param gran Granularity we are aligning the number to.
* @return The aligned value.
*/
static resource_t align_up(resource_t val, unsigned long gran)
{
resource_t mask;
mask = (1ULL << gran) - 1ULL;
val += mask;
val &= ~mask;
return val;
}
/**
* Round a number up to the previous multiple of gran.
*
* @param val The starting value.
* @param gran Granularity we are aligning the number to.
* @return The aligned value.
*/
static resource_t align_down(resource_t val, unsigned long gran)
{
resource_t mask;
mask = (1ULL << gran) - 1ULL;
val &= ~mask;
return val;
}
/**
* Compute the maximum address that is part of a resource.
*
* @param resource The resource whose limit is desired.
* @return The end.
*/
resource_t resource_end(const struct resource *resource)
{
resource_t base, end;
/* Get the base address. */
base = resource->base;
/*
* For a non bridge resource granularity and alignment are the same.
* For a bridge resource align is the largest needed alignment below
* the bridge. While the granularity is simply how many low bits of
* the address cannot be set.
*/
/* Get the end (rounded up). */
end = base + align_up(resource->size, resource->gran) - 1;
return end;
}
/**
* Compute the maximum legal value for resource->base.
*
* @param resource The resource whose maximum is desired.
* @return The maximum.
*/
resource_t resource_max(const struct resource *resource)
{
resource_t max;
max = align_down(resource->limit - resource->size + 1, resource->align);
return max;
}
/**
* Return the resource type of a resource.
*
* @param resource The resource type to decode.
* @return TODO.
*/
const char *resource_type(const struct resource *resource)
{
static char buffer[RESOURCE_TYPE_MAX];
snprintf(buffer, sizeof(buffer), "%s%s%s%s",
((resource->flags & IORESOURCE_READONLY) ? "ro" : ""),
((resource->flags & IORESOURCE_PREFETCH) ? "pref" : ""),
((resource->flags == 0) ? "unused" :
(resource->flags & IORESOURCE_IO) ? "io" :
(resource->flags & IORESOURCE_DRQ) ? "drq" :
(resource->flags & IORESOURCE_IRQ) ? "irq" :
(resource->flags & IORESOURCE_MEM) ? "mem" : "??????"),
((resource->flags & IORESOURCE_PCI64) ? "64" : ""));
return buffer;
}
/**
* Print the resource that was just stored.
*
* @param dev The device the stored resource lives on.
* @param resource The resource that was just stored.
* @param comment TODO
*/
void report_resource_stored(struct device *dev, const struct resource *resource,
const char *comment)
{
char buf[10];
unsigned long long base, end;
if (!(resource->flags & IORESOURCE_STORED))
return;
base = resource->base;
end = resource_end(resource);
buf[0] = '\0';
if (dev->link_list && (resource->flags & IORESOURCE_PCI_BRIDGE)) {
snprintf(buf, sizeof(buf),
"bus %02x ", dev->link_list->secondary);
}
printk(BIOS_DEBUG, "%s %02lx <- [0x%016llx - 0x%016llx] size 0x%08llx "
"gran 0x%02x %s%s%s\n", dev_path(dev), resource->index,
base, end, resource->size, resource->gran, buf,
resource_type(resource), comment);
}
void search_bus_resources(struct bus *bus, unsigned long type_mask,
unsigned long type, resource_search_t search,
void *gp)
{
struct device *curdev;
for (curdev = bus->children; curdev; curdev = curdev->sibling) {
struct resource *res;
/* Ignore disabled devices. */
if (!curdev->enabled)
continue;
for (res = curdev->resource_list; res; res = res->next) {
/* If it isn't the right kind of resource ignore it. */
if ((res->flags & type_mask) != type)
continue;
/* If it is a subtractive resource recurse. */
if (res->flags & IORESOURCE_SUBTRACTIVE) {
struct bus *subbus;
for (subbus = curdev->link_list; subbus;
subbus = subbus->next)
if (subbus->link_num
== IOINDEX_SUBTRACTIVE_LINK(res->index))
break;
if (!subbus) /* Why can subbus be NULL? */
break;
search_bus_resources(subbus, type_mask, type,
search, gp);
continue;
}
search(gp, curdev, res);
}
}
}
void search_global_resources(unsigned long type_mask, unsigned long type,
resource_search_t search, void *gp)
{
struct device *curdev;
for (curdev = all_devices; curdev; curdev = curdev->next) {
struct resource *res;
/* Ignore disabled devices. */
if (!curdev->enabled)
continue;
for (res = curdev->resource_list; res; res = res->next) {
/* If it isn't the right kind of resource ignore it. */
if ((res->flags & type_mask) != type)
continue;
/* If it is a subtractive resource ignore it. */
if (res->flags & IORESOURCE_SUBTRACTIVE)
continue;
/* If the resource is not assigned ignore it. */
if (!(res->flags & IORESOURCE_ASSIGNED))
continue;
search(gp, curdev, res);
}
}
}
void dev_set_enabled(struct device *dev, int enable)
{
if (dev->enabled == enable)
return;
dev->enabled = enable;
if (dev->ops && dev->ops->enable)
dev->ops->enable(dev);
else if (dev->chip_ops && dev->chip_ops->enable_dev)
dev->chip_ops->enable_dev(dev);
}
void disable_children(struct bus *bus)
{
struct device *child;
for (child = bus->children; child; child = child->sibling) {
struct bus *link;
for (link = child->link_list; link; link = link->next)
disable_children(link);
dev_set_enabled(child, 0);
}
}
/*
* Returns true if the device is an enabled bridge that has at least
* one enabled device on its secondary bus that is not of type NONE.
*/
bool dev_is_active_bridge(struct device *dev)
{
struct bus *link;
struct device *child;
if (!dev || !dev->enabled)
return 0;
if (!dev->link_list || !dev->link_list->children)
return 0;
for (link = dev->link_list; link; link = link->next) {
for (child = link->children; child; child = child->sibling) {
if (child->path.type == DEVICE_PATH_NONE)
continue;
if (child->enabled)
return 1;
}
}
return 0;
}
/**
* Ensure the device has a minimum number of bus links.
*
* @param dev The device to add links to.
* @param total_links The minimum number of links to have.
*/
void add_more_links(struct device *dev, unsigned int total_links)
{
struct bus *link, *last = NULL;
int link_num = -1;
for (link = dev->link_list; link; link = link->next) {
if (link_num < link->link_num)
link_num = link->link_num;
last = link;
}
if (last) {
int links = total_links - (link_num + 1);
if (links > 0) {
link = malloc(links * sizeof(*link));
if (!link)
die("Couldn't allocate more links!\n");
memset(link, 0, links * sizeof(*link));
last->next = link;
} else {
/* No more links to add */
return;
}
} else {
link = malloc(total_links * sizeof(*link));
if (!link)
die("Couldn't allocate more links!\n");
memset(link, 0, total_links * sizeof(*link));
dev->link_list = link;
}
for (link_num = link_num + 1; link_num < total_links; link_num++) {
link->link_num = link_num;
link->dev = dev;
link->next = link + 1;
last = link;
link = link->next;
}
last->next = NULL;
}
static void resource_tree(const struct device *root, int debug_level, int depth)
{
int i = 0;
struct device *child;
struct bus *link;
struct resource *res;
char indent[30]; /* If your tree has more levels, it's wrong. */
for (i = 0; i < depth + 1 && i < 29; i++)
indent[i] = ' ';
indent[i] = '\0';
printk(BIOS_DEBUG, "%s%s", indent, dev_path(root));
if (root->link_list && root->link_list->children)
printk(BIOS_DEBUG, " child on link 0 %s",
dev_path(root->link_list->children));
printk(BIOS_DEBUG, "\n");
for (res = root->resource_list; res; res = res->next) {
printk(debug_level, "%s%s resource base %llx size %llx "
"align %d gran %d limit %llx flags %lx index %lx\n",
indent, dev_path(root), res->base, res->size,
res->align, res->gran, res->limit, res->flags,
res->index);
}
for (link = root->link_list; link; link = link->next) {
for (child = link->children; child; child = child->sibling)
resource_tree(child, debug_level, depth + 1);
}
}
void print_resource_tree(const struct device *root, int debug_level,
const char *msg)
{
/* Bail if root is null. */
if (!root) {
printk(debug_level, "%s passed NULL for root!\n", __func__);
return;
}
/* Bail if not printing to screen. */
if (!printk(debug_level, "Show resources in subtree (%s)...%s\n",
dev_path(root), msg))
return;
resource_tree(root, debug_level, 0);
}
void show_devs_tree(const struct device *dev, int debug_level, int depth)
{
char depth_str[20];
int i;
struct device *sibling;
struct bus *link;
for (i = 0; i < depth; i++)
depth_str[i] = ' ';
depth_str[i] = '\0';
printk(debug_level, "%s%s: enabled %d\n",
depth_str, dev_path(dev), dev->enabled);
for (link = dev->link_list; link; link = link->next) {
for (sibling = link->children; sibling;
sibling = sibling->sibling)
show_devs_tree(sibling, debug_level, depth + 1);
}
}
void show_all_devs_tree(int debug_level, const char *msg)
{
/* Bail if not printing to screen. */
if (!printk(debug_level, "Show all devs in tree form... %s\n", msg))
return;
show_devs_tree(all_devices, debug_level, 0);
}
void show_devs_subtree(struct device *root, int debug_level, const char *msg)
{
/* Bail if not printing to screen. */
if (!printk(debug_level, "Show all devs in subtree %s... %s\n",
dev_path(root), msg))
return;
printk(debug_level, "%s\n", msg);
show_devs_tree(root, debug_level, 0);
}
void show_all_devs(int debug_level, const char *msg)
{
struct device *dev;
/* Bail if not printing to screen. */
if (!printk(debug_level, "Show all devs... %s\n", msg))
return;
for (dev = all_devices; dev; dev = dev->next) {
printk(debug_level, "%s: enabled %d\n",
dev_path(dev), dev->enabled);
}
}
void show_one_resource(int debug_level, struct device *dev,
struct resource *resource, const char *comment)
{
char buf[10];
unsigned long long base, end;
base = resource->base;
end = resource_end(resource);
buf[0] = '\0';
printk(debug_level, "%s %02lx <- [0x%016llx - 0x%016llx] "
"size 0x%08llx gran 0x%02x %s%s%s\n", dev_path(dev),
resource->index, base, end, resource->size, resource->gran,
buf, resource_type(resource), comment);
}
void show_all_devs_resources(int debug_level, const char *msg)
{
struct device *dev;
if (!printk(debug_level, "Show all devs with resources... %s\n", msg))
return;
for (dev = all_devices; dev; dev = dev->next) {
struct resource *res;
printk(debug_level, "%s: enabled %d\n",
dev_path(dev), dev->enabled);
for (res = dev->resource_list; res; res = res->next)
show_one_resource(debug_level, dev, res, "");
}
}
const struct resource *fixed_resource_range_idx(struct device *dev, unsigned long index,
uint64_t base, uint64_t size, unsigned long flags)
{
struct resource *resource;
if (!size)
return NULL;
resource = new_resource(dev, index);
resource->base = base;
resource->size = size;
resource->flags = IORESOURCE_FIXED | IORESOURCE_ASSIGNED;
resource->flags |= flags;
printk(BIOS_SPEW, "dev: %s, index: 0x%lx, base: 0x%llx, size: 0x%llx\n",
dev_path(dev), resource->index, resource->base, resource->size);
return resource;
}
const struct resource *lower_ram_end(struct device *dev, unsigned long index, uint64_t end)
{
return ram_from_to(dev, index, 0, end);
}
const struct resource *upper_ram_end(struct device *dev, unsigned long index, uint64_t end)
{
if (end <= 4ull * GiB)
return NULL;
printk(BIOS_INFO, "Available memory above 4GB: %lluM\n", (end - 4ull * GiB) / MiB);
return ram_from_to(dev, index, 4ull * GiB, end);
}
void mmconf_resource(struct device *dev, unsigned long index)
{
struct resource *resource = new_resource(dev, index);
resource->base = CONFIG_ECAM_MMCONF_BASE_ADDRESS;
resource->size = CONFIG_ECAM_MMCONF_LENGTH;
resource->flags = IORESOURCE_MEM | IORESOURCE_RESERVE |
IORESOURCE_FIXED | IORESOURCE_STORED | IORESOURCE_ASSIGNED;
printk(BIOS_DEBUG, "Adding PCIe enhanced config space BAR 0x%08lx-0x%08lx.\n",
(unsigned long)(resource->base),
(unsigned long)(resource->base + resource->size));
}
void tolm_test(void *gp, struct device *dev, struct resource *new)
{
struct resource **best_p = gp;
struct resource *best;
best = *best_p;
/*
* If resource is not allocated any space i.e. size is zero,
* then do not consider this resource in tolm calculations.
*/
if (new->size == 0)
return;
if (!best || (best->base > new->base))
best = new;
*best_p = best;
}
u32 find_pci_tolm(struct bus *bus)
{
struct resource *min = NULL;
u32 tolm;
unsigned long mask_match = IORESOURCE_MEM | IORESOURCE_ASSIGNED;
search_bus_resources(bus, mask_match, mask_match, tolm_test, &min);
tolm = 0xffffffffUL;
if (min && tolm > min->base)
tolm = min->base;
return tolm;
}
/* Count of enabled CPUs */
int dev_count_cpu(void)
{
struct device *cpu;
int count = 0;
for (cpu = all_devices; cpu; cpu = cpu->next) {
if (!is_enabled_cpu(cpu))
continue;
count++;
}
return count;
}
/* Get device path name */
const char *dev_path_name(enum device_path_type type)
{
static const char *const type_names[] = DEVICE_PATH_NAMES;
const char *type_name = "Unknown";
/* Translate the type value into a string */
if (type < ARRAY_SIZE(type_names))
type_name = type_names[type];
return type_name;
}
bool dev_path_hotplug(const struct device *dev)
{
for (dev = dev->bus->dev; dev != dev->bus->dev; dev = dev->bus->dev) {
if (dev->hotplug_port)
return true;
}
return false;
}
void log_resource(const char *type, const struct device *dev, const struct resource *res,
const char *srcfile, const int line)
{
printk(BIOS_SPEW, "%s:%d res: %s, dev: %s, index: 0x%lx, base: 0x%llx, "
"end: 0x%llx, size_kb: 0x%llx\n",
srcfile, line, type, dev_path(dev), res->index, res->base,
resource_end(res), res->size / KiB);
}
bool is_cpu(const struct device *cpu)
{
return cpu->path.type == DEVICE_PATH_APIC &&
cpu->bus->dev->path.type == DEVICE_PATH_CPU_CLUSTER;
}
bool is_enabled_cpu(const struct device *cpu)
{
return is_cpu(cpu) && cpu->enabled;
}
bool is_pci(const struct device *pci)
{
return pci->path.type == DEVICE_PATH_PCI;
}
bool is_enabled_pci(const struct device *pci)
{
return is_pci(pci) && pci->enabled;
}
bool is_pci_dev_on_bus(const struct device *pci, unsigned int bus)
{
return is_pci(pci) && pci->bus->secondary == bus;
}